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\S 1. Introduction.

Recently Goodman [1], investigating the class of functions $T(p)$ ,
the set of typically-real functions of order $p$, has obtained the fol-
lowing result:

THEOREM A. Let

(1.1) $f(z)=z^{q}+\sum_{n=q+1}^{\infty}c_{n}z^{n}$

be a function of the class $T(p)$ . Suppose that in addition to the q-th
order zero at $z=0,$ $f(z)$ has exactly 1 zeros, $a_{1},$ $a_{2},\cdots,$ $a_{/}$, such that
$0<|a_{j}|<1,$ $j=1,2,\cdots,$ $l$. Then

(1.2) $f(z)\ll(\overline{1-}z)^{2(p-t)}z^{q}-\left(\begin{array}{l}1+z\\1-z\end{array}\right)I(l+1)/2\rceil N(z)$ ,

(1.3) $|f(re^{i\theta})|\leqq(1-r)^{(p-t)}-r^{q_{9}}\lrcorner\left(\begin{array}{ll}1+ & r\\1^{-}-r & \end{array}\right)\cdot N(r)$ , $0\leqq r<1$ ,

where

(1.4) $t=p-(q+l)$ ,

(1.5) $N(z)=\prod_{j=1}^{l}(1+|a_{j}|z)(1+|a^{Z_{j}}|)$ .

Relating to this theorem Umezawa [2] has shown that when $t=0$ ,
the estimates (1.2), (1.3) hold also for the functions belonging to a
wider class of functions $D(p)$ , which is the set of regular functions
of order $p$ in the direction of a diametral line. But he has not
touched the case $t>0$ . In this paper we shall show that also for
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the case $t>0$ much the same estimates as (1.2), (1.3) hold. But they
will be given as corollaries of results for certain more general
functions. (Corollaries 2, $2a,$ $2b$ ).

The purpose of this note is to introduce some new classes of
functions related to $T(p),$ $D(p)$ and to investigate their properties
similar to (1.2), (1.3).

\S 2. Functions of order $p$ in all in the directions
of two rays. Main theorem.

DEFINITION 1. Let $f(z)$ be meromorphic in $|z|\leqq 1$ and let $ f(z)\neq$

$0,$ $\infty$ for $|z|=1$ . If there exist such two rays starting from the origin
as are crossed by $f(e^{i\theta})2p$ times in all as $e^{i\theta}$ traverses the boundary
of the unit circle, then $f(z)$ is said to be of order $p$ in all in the
directions of the two rays. If further the minor angle formed by
the two rays is equal to $\alpha$ , then $f(z)$ is said to belong to the class
$M(p, \alpha)$ .

DEFINITION 2. In Definition 1 a point $f(e^{i\theta 0})$ lying on either of the
two rays is called a positively or negatively cutting point according
as at the point the angular velocity of $f(e^{i\theta})$ about the origin is
positive or negative when $e^{i\theta}$ traverses the boundary of the unit
circle in the positive direction.

DEFINITION 3. In Definition 1 if particularly $f(z)$ is regular in
$|z|\leqq 1$ and the $2p$ points at which $f(e^{i\theta})$ crosses the two rays are all
positively cutting points, then $f(z)$ is said to be starlike of order $p$

in the directions of the two rays. If further the minor angle formed
by the two rays is equal to $\alpha$, then $f(z)$ is said to belong to the
class $S(p, \alpha)$ .

The two special cases that $\alpha=\pi$ and $\alpha=0$ will be discussed
particularly in detail in \S \S 3 and 4.

LEMMA. Let $f(z)$ be a function of the class $M(p, \alpha)$ which has exactly
$j$ zeros and exactly $k$ poles in $|z|<1$ and let $t=p-(j-k)$ , then $f(z)$ has
exactly $2p-t$ positively cutting points and exactly $t$ negatively cutting
points.

PROOF. Let $\mu,$ $\nu$ denote the numbers of the positively and the
negatively cutting points respectively. Then it can easily be seen
that the increment of $\arg f(z)$ is $(\mu-\nu)\pi$ as $z$ traverses the circle
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$|z|=1$ in the positive direction. On the other hand, as is well known,
the same quantity is equal to $ 2(j-k)\pi$. Consequently

$\mu-\nu=2(j-k)$ , $\mu+\nu=2p$ .
Hence $\mu=p+(j-k)=2p-t$ , $\nu=p-(j-k)=t$ .

THEOREM. Let $f(z)$ be a function of the class $M(p, \lambda\pi)$ having the
expansion

(2.1) $f(z)=z^{q}+\sum_{n=q+1}^{\infty}c_{n}z^{n}$ ( $q$ : an integer, positive, negative or zero)

in a neighbourhood of the origin. Suppose that $f(z)$ has, in $0<|z|<1$ ,
exactly $l$ zeros, $a_{1},$ $a_{2},\cdots,$ $a_{l}$, and exactly $m$ poles, $b_{1},$ $b_{2},\cdots,$ $b_{m}$ . Finally let
$f(e^{i\theta_{\mu}}),$ $\mu=1,2,\cdots,$ $2p-t$ , and $f(e^{i\varphi_{\nu}}),$ $\nu=1,2,\cdots,$ $t$ , denote the positively and
the negatively cutting points respectively, where

(2.2) $t=p-(q+l-m)$

necessarily holds in virtue of the lemma. Then

(2.3) $r^{q}(-11\frac{-r}{+r})\min_{z1=r}^{2-\lambda}|A(z)B(z)|\leqq|f(re^{i\theta})|\leqq r^{q}(\frac{1}{1}\frac{+r}{-r})\max_{|z|=r}^{2-\lambda}|A(z)B(z)|$ ,

$0\leqq r<1$ ,

(2.4) $\{z^{-q}f(z)/A(z)B(z)\}^{1/(2-\lambda)}\ll(1+z)/(1-z)$ ,

where

(2.5) $A(z)=\prod_{j=1}^{l}(1-\overline{a}_{j}z)\left(\begin{array}{ll}1- & z\\ & a_{j}\end{array}\right)/\prod_{k\Leftrightarrow 1}^{m}(1-\overline{b}_{k}z)(1-\overline{.b}^{z_{k}})$ ,

(2.6) $B(z)=\prod_{\nu-1}^{l}(e^{i\varphi_{\nu}}-z)/^{2}\prod_{\mu=1}^{p-l}(e^{i\theta_{\mu}}-z)$ .

PROOF. Let us suppose that $f(z)$ is of order $p$ in all in the direc-
tions of two rays $OX,$ $OY$ such that $\angle XOY=\lambda\pi$. Set

$g(z)=f(z)(\prod_{k-1}^{m}b_{k}/\prod_{j-1}^{l}a_{j})(-z)^{l-m}/A(z)$

$=f(z)\prod_{j-1}^{l}\frac{z}{(z-a_{j})(1-\overline{a}_{j}z)}\prod_{k=1}^{m}\frac{(z-b_{k})(1-\overline{b}_{k}z)}{z}$ ,
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then $g(z)$ is meromorphic in $|z|\leqq 1$ and has no zeros and no poles in
$0<|z|\leqq 1$ . Moreover $\arg g(z)=\arg f(z)$ for $|z|=1$ , because

$\frac{z}{(z-a_{j})(1-\overline{a}_{j}z)}=\frac{1}{|1-\overline{a}_{j}z|^{2}}>0,$
$\frac{(z-b_{k})(1-\overline{b}_{k}z)}{z}=|1-\overline{b}_{k}z|^{2}>0$

on $|z|=1$ .
Therefore $g(z)$ is also of order $p$ in all in the directions of $OX,$ $OY$

and further the points $g(e^{i\theta_{\mu}}),$ $\mu=1,2,\cdots,$ $2p-t$, and the points $g(e^{i\varphi_{\nu}})$ ,
$\nu=1,2,\cdots,$ $t$ , are also the positively and the negatively cutting points
of $g(z)$ respectively. Next set

$h(z)=(-1)^{p-l}\exp[\frac{i}{2}(\sum_{\nu=1}^{t}\varphi_{\nu}-\sum_{\mu\subset 1}^{2p-l}\theta_{\mu})]z^{t-P}/B(z)$ ,

then, since

$h(e^{i\theta})=2^{2(p-t)}\prod_{\mu=1}^{2p-t}\sin\prod_{\nu=1}^{t}[cosec]\frac{\varphi_{\nu}-\theta}{2}\underline{\theta}_{\mu}-\underline{\theta}2$
’

$h(z)$ is real on $|z|=1$ except at each $e^{i\varphi_{\nu}}$ , at which $ h(z)=\infty$ , and
changes its sign at each of $e^{i\theta_{\mu}},$

$e^{i\varphi_{\nu}}$ as $z$ traverses the circle $|z|=1$ .
We can choose therefore a suitable sign $\sigma,$ $+$ or -, so that $\sigma h(z)$

may be positive for every $z(|z|=1)$ at which $g(z)$ takes a value in
the major angle $XOY$ and may be negative for every $z(|z|=1)$ at
which $g(z)$ takes a value in the minor angle $XOY$.

Let us lastly, for this $\sigma$ , put

$F(z)=\sigma h(z)g(z)$ ,

then $F(z)$ is regular and has no zeros in $|z|<1$ , and further it is also
regular on $|z|=1$ except at each $e^{i\varphi_{\nu}}$ and takes no values interior to
the minor angle $XOY$. Moreover the image curve of the circle
$|z|=1$ by $F(z)$ (hereafter we denote it by $C$ ) touches $OX$ or $OY$ at
the points $F(e^{i\theta_{\mu}})=0,$ $\mu=1,2,\cdots,$ $2p-t$ , and at the points $ F(e^{i\varphi_{\nu}})=\infty$ ,
$\nu=1,2,\cdots,$ $t$ . To see the manner of $C$ touching at these points, we pro-
long $OX,$ $OY$ in the opposite directions and denote these prolongations
by $OX^{\prime},$ $OY^{\prime}$ , and further denote the four minor angles $XOY,$ $YOX^{r}$ ,
$X^{\prime}OY^{\prime},$ $Y^{\prime}OX$ by $D_{1},$ $D_{2},$ $D_{3},$ $D_{4}$ respectively. We may here assume
that $D_{1},$ $D_{2},$ $D_{3}$ and $D_{4}$ lie in the counter-clockwise order.
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Under this arrangement we can easily see, from the above-
mentioned properties of $g(z)$ and $h(z)$ , that
(1) if $g(e^{\theta_{\mu}}’\cdot)$ lies on $OX$, then when $e^{i\theta}$ passes $e^{i\theta_{\mu}},$ $C$ runs from $D_{4}$

into $D_{3}$ , touching $XX^{\prime}$ at the origin,
(2) if $g(e^{i\theta_{\mu}})$ lies on $OY$, then when $e^{i\theta}$ passes $e^{\dot{f}}\theta_{\mu}$ $C$ runs from $D_{3}$

into $D_{2}$ , touching $Y^{\prime}Y$ at the origin,
(3) if $g(e^{:\varphi_{\nu}})$ lies on $OX$, then when $e^{i\theta}$ passes $e^{i\varphi_{\nu}},$ $C$ runs from $D_{3}$

into $D_{4}$ , touching $X^{\prime}X$ at the point at infinity,
(4) if $g(e^{i\varphi_{\nu}})$ lies on $OY$, then when $e^{i\theta}$ passes $e^{i_{\varphi_{\nu}}},$ $C$ runs from $D_{2}$

into $D_{3}$ , touching YY‘ at the point at infinity,
provided that $e^{i\theta}$ traverses the circle $|z|=1$ in the positive direction.

Therefore, for every $\rho(<1)$ sufficiently close to 1, $F(\rho e^{i\theta})$ lies
within the major angle $XOY$, which is equal to $(2-\lambda)\pi$. Consequently
it holds for a branch of $F(z)^{1/(2-\lambda)}$ and for a real $\alpha$ suitably chosen
that

$\mathfrak{R}\{e^{i\alpha}F(\rho e^{i\theta})^{1/(2-\lambda)}\}>0$

for every $\rho(<1)$ sufficiently close to 1. On the other hand
$\mathfrak{R}\{e^{ia}F(z)^{1/(2-\lambda)}\}$ is harmonic in $|z|<1$ because of the properties of
$F(z)$ stated above. Hence

$\mathfrak{R}\{e^{ia}F(z)^{t/(2-\lambda)}\}>0$ for $|z|<1$ ,

which yields

(2.7) $|F(0)|^{1/(2-\lambda)}1_{\frac{-r}{+r}}1\leqq|F(re^{1}\theta)|^{1/(2-\lambda)}\leqq|F(0)|^{1/(2-\lambda)}\frac{1+r}{1-r}$ $0\leqq r<1$ ,

(2.8) $F(z)^{1/(2-\lambda)}\ll|F(0)|^{1/(2-\lambda)}11\frac{+z}{-z}$ .

Thus we obtain (2.3), (2.4) respectively by substituting

$F(z)=(-1)^{q}\sigma\exp[\frac{i}{2}(\sum_{\nu-1}^{l}\varphi_{\nu}-\sum_{\mu-1}^{2p-l}\theta_{\mu})](\prod_{k\Leftrightarrow 1}^{m}b_{k}/\prod_{j\Leftrightarrow 1}^{l}a_{j})z^{-q}f(z)/A(z)B(z)$

in (2.7), (2.8). This proves the theorem.
COROLLARY 1. Under the hypotheses of the theorem we have



Some classes of meromorphic functions with assigned zeros and poles. 45

(2.9) $\frac{r^{q}}{(1+r)^{?(p- t)}\lrcorner}(\frac{1-r}{1+r})_{P(\overline{r)}}^{\underline{|N}(-r)|}l+2-\lambda\leqq|f(re^{i\theta})|$

$\leqq\frac{r^{q}}{(1-r)^{(p-t)}\underline{9}}(\frac{1+r}{1-r})^{l+2-\lambda}\frac{N(r)}{|P(-r)|}$ $0\leqq r<1$ ,

(2.10) $|c_{q+1}|\leqq 2(p+2-\lambda)+\sum_{J^{\leftarrow 1}}^{l}(|a_{j}|+\frac{1}{|a_{j}|})+\sum_{k=1}^{m}(|b_{k}|+\frac{1}{|b_{k}|})$ ,

where

(2.11) $N(z)=\prod_{j-1}^{l}(1+|a_{j}|z)(1+\frac{z}{|a_{j}|})$ , $P(z)=\prod_{k=1}^{m}(1+|b_{k}|z)(1+\frac{z}{|b_{k}|})$ .

PROOF. It is clear that

$|N(-r)|/P(r)\leqq|A(re^{i\theta})|\leqq N(r)/|P(-r)|$ ,

$(1-r)^{l}/(1+r)^{2p- t}\leqq|B(re^{i\theta})|\leqq(1+r)^{l}/(1-r)^{2p-\ell}$ .
Hence (2.9) follows from (2.3). Next when $|z|=r\rightarrow 0$ , we have

$|f(z)/z^{q}|=|1+c_{q+1}z|+O(r^{2})$ .
On the other hand from (2.9)

$|f(z)/z^{q}|\leqq 1+\{2(p+2-\lambda)+\sum_{<,J1}^{l}(|a_{j}|+\frac{1}{|a_{j}|})+\sum_{k=1}^{m}(|b_{k}|+\frac{1}{|b_{k}|})\}r+O(r^{2})$ .

Hence (2.10) holds.

COROLLARY la. Let $f(z)=z^{P}+\sum_{n=p+1}^{\infty}c_{n}z^{n}$ be a function of the class
$S(p, \lambda\pi)$ , then

(2.12) $\frac{r^{p}}{(1+r)^{2}p}(\frac{1-r}{1+r})^{2-\lambda}\leqq|f(re^{i\theta})|\leqq\frac{r^{p}}{(1-r)^{2}p}(\frac{1+r}{1-r})^{2-\lambda},$ $0\leqq r<1$ ,

(2.13) $|c_{p+1}|\leqq 2(p+2-\lambda)$ .

PROOF. In this case $f(z)$ has no zeros and no poles in $0<|z|\leqq 1$ ,
and $q=p$. Therefore both $N(z)$ and $P(z)$ disappear and $t$ vanishes.
Thus (2.12), (2.13) follow at once from (2.9), (2.10).
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3. Functions of order $p$ in the direction
of one straight line.

DEFINITION 4. Let $f(z)$ be a function of the class $M(p, \pi)$ , then
$f(z)$ is said to be of order $p$ in the direction of one straight line.
Because in this case the two rays in Definition 1 form one whole
straight line.

The classes $\tau(p),$ $D(p)$ are special ones of $M(p, \pi)$ , and the idea
of $T(p)$ was first introduced by Rogosinski [12] for $p=1$ and extended
to the case of general $p$ by Robertson $[4,5]$ , and that of $D(p)$ was
first introduced by Ozaki [9] for $p=1$ and extended to the case of
general $p$ by Ozaki, Umezawa, and Takatsuka [6], [13]. Moreover, as
is well known, a function $f(z)$ belonging to the class $S(p, \pi)$ is said
to be starlike of order $p$ in the direction of one straight line, and
the idea of $S(p, \pi)$ was first introduced by Robertson [3] for $p=1$

and extended to the case of general $p$ by him [4].
DEFINITION 5. Let $f(z)$ be meromorphic in $|z|\leqq 1$ , and let a

straight line $f(\zeta),f(=\zeta),$ $|\zeta|=1$ , be a diametral line of $f(z)$ , then the
segment $[f(\zeta),f(-\zeta)]$ is called a diametral segment and the points
$f(\zeta),f(-\zeta)$ are called the ends of the diametral segment.

REMARK. The idea of diametral line was introduced by Ozaki
$[9, 10]$ and DeBruijn [11] and was studied in detail by Ozaki, Ume-
zawa, and Takatsuka [6] and Umezawa [2]. It was shown by them
that if $f(z)$ is regular in $|z|\leqq 1$ , then there exists a point $\zeta(|\zeta|=1)$

for which the three points $f(\zeta),$ $0$ , and $f(-\zeta)$ lie on one straight line.
Similarly we can easily see that there exists such a diametral line
also for a function meromorphic in $|z|\leqq 1$ .

COROLLARY 2. In the theorem, let $f(z)$ be a function of the class
$M(p, \pi)$ then

(3.1) $\frac{r^{q}}{(1+r)^{2(p-t)}}(\frac{1-r}{1+r})^{l+1}\underline{|N}_{P^{(}}\frac{-r)|}{(r)}\leqq|f(re^{i\theta})|$

$\leqq\frac{r^{q}}{(1-r)^{2(p- t)}}(-1-r1\underline{+}r)^{l+1}|P(-N(\frac{r)}{r)|}$ $0\leqq r<1$ ,

(3.2) $f(z)\langle\langle\frac{z^{q}}{(1-z)^{2(p-t)}}(- 11\frac{+z}{-z})^{l+1}\frac{N(z)}{P(-z)}$ ,



Some classes of meromorphic functions with assigned zeros and poles. 47

where $t,$ $N(z)$ , and $P(z)$ are defined by (2.2), (2.11), and $f(z)$ of (3.2)

denotes the expansion (2.1).
A part of this corollary has been obtained by Ito [8].
PROOF. Substituting $\lambda=1$ in (2.9), we immediately obtain (3.1).

Next, from (2.4) we have

$f(z)\ll z^{q}\frac{1+z}{1-z}$ maj $[A(z)B(z)]$ .

where maj $[A(z)B(z)]$ denotes a majorant of $[A(z)B(z)]$ . On the other
hand obviously

$A(z)\ll N(z)/P(-z)$ , $B(z)\ll(1+z)^{t}/(1-z)^{2p-f}$ .
Hence (3.2) holds.

COROLLARY $2a$ . In the theorem let $f(z)$ be of order $p$ in the direction
of a diametral line and let further the ends of the diametral segment
be both positively cutting points, then

(3.3) $\frac{r^{q}}{(1+r)^{2(p- t)}}(\frac{1-r}{1+r})^{t}\frac{1-r^{2}}{1+r^{2}}\frac{-r)|}{(r)}\underline{|N}(P\leqq|f(re^{i\theta})|$

$\leqq\frac{r^{q}}{(1-r)^{2(p-t)}}(\frac{1+r}{1-r})^{l}\frac{N(r)}{|P(-r)|}$ , $0\leqq r<1$ ,

(3.4) $f(z)\ll\frac{z^{q}}{(1-z)^{2(p-t)}}(\frac{1+z}{1-z})^{t}\frac{N(z)}{P(-z)}$ .

PROOF. Let $f(e^{i\theta_{\mu 1}}),$ $f(e^{i\theta_{\mu_{2}}})$ be the ends of the diametral segment,
then $e^{i\theta_{\mu 1}}=-e^{i\theta_{\mu_{2}}}$. Therefore in this case $B(z)$ has the following form:

$B(z)=\prod_{\nu-1}^{l}(e^{i\varphi_{\nu}}-z)/(-e^{2i\theta_{\mu 1}}+z^{2})\prod^{2p-l},(e^{i\theta_{\mu}}-z)\mu\neq^{\mu_{\mu_{1}^{-1}\mu a}}$

Hence

$\frac{(1-r)^{l}}{(1+r^{2})(1+r}--)^{2p-l-2^{-\leqq}}|B(re^{i\theta})|\leqq\frac{1+r)^{l}}{(1-r)^{2p-t-2}}\overline{(}1\overline{-r^{2}})($

$B(z)\ll\frac{(1+z)^{l}}{(1-z^{2})(1-z)^{2}p-t-2}$ .
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Applying these inequalities to (2.3), (2.4), with $\lambda s$ replaced by 1, we
obtain (3.3), (3.4) respectively.

Similarly we have the following corollary.
$CoROLLARY2b$ . In the theorem let $f(z)$ be of order $p$ in the direction

of a diametral line and let further the ends of the diametral segment be
both negatively cutting points, then

(3.5) $\frac{r^{q}}{(1+r)^{2(p-t)}}(\frac{1-r}{1+r})^{l}\underline{|N}_{P^{(}}\frac{-r)}{(r)}-\leqq||f(re^{i\theta})|$

$\leqq\frac{r^{q}}{(1-r)^{2(p-t)}}(\frac{1+r}{1-r})^{t}\frac{1+r^{2}}{1-r^{2}}\frac{N(r)}{|P(-r)|}$ $0\leqq r<1$ .
(3.6) $f(z)\langle\langle\frac{z^{q}}{(1-z)^{\underline{\circ}(p-p)}}(-11--+\frac{z}{z})_{1^{-}-z^{2}P(}^{1+_{-}z_{--}^{2}N(}l-\frac{z)}{-z)}$

COROLLARY $2c$. In the theorem let $f(z)$ be starlike of order $p$ in the
direction of a diametral line, then

(3.7) $\frac{r^{q}}{(1+r)^{2}p}\frac{1-r^{2}}{1+r^{2}}|N(-r)|\leqq|f(re^{i\theta})|\leqq\frac{r^{q}}{(1-r)^{2}p}N(r),$ $0\leqq r<1$ ,

(3.8) $f(z)\langle\langle\frac{z^{q}}{(1-z)^{2}p}N(z)$ .

(3.8) and the right-hand inequality of (3.7) are the results of
Umezawa [2] mentioned in \S 1.

PROOF. In this case $f(z)$ is regular for $|z|\leqq 1$ and has exactly
$p-q$ zeros, $a_{1},$ $a_{2},\ldots,$ $a_{p-q}$ , in $0<|z|<1$ , Therefore $P(z)$ disappears and
$t$ vanishes. Moreover both the ends of the diametral segment are
positively cutting points. Thus by Corollary $2a$ we obtain (3.7), (3.8).

Let us now compare the result of Theorem A with ours.
In Theorem $A,$ $f(z)$ is of order $p$ in the direction of the real axis,

which is a diametral line of $f(z)$ , and the points $f(1),$ $f(-1)$ are the
ends of the diametral segment. It can easily be verified that when
$t$ is odd, one of the points $f(1),$ $f(-1)$ is positively cutting point and
the other is a negatively cutting one, and when $t$ is even, the points
$f(1),$ $f(-1)$ are both positively cutting ones or are both negatively
cutting ones.

Therefore (1.2), (1.3) for an odd $t$ are contained in our result,
Corollary 2. Moreover when $t$ is even and both the points $f(1),$ $f(-1)$
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are positively cutting ones, (1.2) and (1.3) are contained in our result,
Corollary $2a$. But when $t$ is even and both the points $f(1),$ $f(-1)$

are negatively cutting ones, (1.2) and (1.3) are not contained in our
result, Corollary $2b$ .

The following two corollaries are special ones of Corollaries 2
and $2c$.

COROLLARY $2d$ . Let $f(z)=z^{P}+\sum_{n=p+1}^{\infty}c_{n}z^{n}$ be a function of the class
$S(p, \pi)$ , then

(3.9) $\frac{r^{p}}{(1+r)^{2p}}\frac{1-r}{1+r}\leqq|f(re^{i\theta})|\leqq\frac{r^{p}}{(1-r)^{2}p}\frac{1+r}{1-r}$ , $0\leqq r<1$ ,

(3.10) $f(z)\ll\frac{z^{p}}{(1-z)^{2p}}\frac{1+z}{1-z}$ .

This is the result due to Robertson [4] and Ito [7].

COROLLARY $2e$ . $L\ell tf(z)=z^{p}+\sum_{n=p+1}^{\infty}c_{n}z^{n}$ be starlike of order $p$ in the

direction of a diametral line, then

(3.11) $\frac{r^{p}}{(1+r)^{2}p}\frac{1-r^{2}}{1+r^{2}}\leqq|f(re^{i\theta})|\leqq\frac{r^{p}}{(1-r)^{2}p}$ , $0\leqq r<1$ ,

(3.12) $f(z)\langle\langle-\frac{z^{p}}{1-z)^{2}p}($ .

(3.12) is the result due to Ozaki, Umezawa, and Takatsuka [6].

4. Functions of order $p$ in the direction of one ray.

DEFINITION 6. Let $f(z)$ be a function of the class $M(p, O)$ , then
$f(z)$ is said to be of order $p$ in the direction of one ray. Because in
this case the two rays in Definition 1 coincide with each other and
$f(e^{i\theta})$ crosses the ray exactly $p$ times as $e^{i\theta}$ traverses the circle $|z|=1$ .
Similarly a function $f(z)$ belonging to the class $S(p, O)$ is said to be
starlike of order $p$ in the direction of one ray.

COROLLARY 3. In the theorem, let $f(z)$ be a function of the class
$M(p, 0)$ then
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(4.1) $\overline{(1+}r\overline{)^{(p-t)}}r^{q_{2}}(\frac{1-r}{1+r})_{P(\overline{r})}^{|\underline{N}(-r)|}l+2\leqq|f(re^{i\theta})|$

$\leqq\overline{(1}^{p-t)}\frac{r^{p}}{-r)^{2(}}(_{1-\overline{r}}1\underline{+}r)_{\overline{|}P(-r)|}^{l+2}N(r)$ , $0\leqq r<1$ ,

(4.2) $f(z)\ll\frac{z}{(1-z}q)^{\overline{2(p-t)}}\left(\begin{array}{l}1+z\\1-z\end{array}\right)N(\underline{z})$ ,

where $N(z),$ $P(z)$ are defined by (2.11).
PROOF. Substituting $\lambda=0$ in (2.9), we immediately obtain (4.1).

Next, from (2.4)

$f(z)\langle\langle z^{q}(-11\frac{+z}{-z})^{2}maj[A(z)B(z)]$ ,

which yields (4.2).
COROLLARY $3a$ . In the theorem let $f(z)$ be of order $p$ in the direction

of a ray containing a diametral segment and let further the ends of
the diametral segment be both posilively cutting points, then

(4.3) $\frac{r^{q}}{(1+r)^{2(p-t)}}(\frac{1-r}{1+r})^{t}(\frac{1-r^{2}}{1+r^{2}})^{2}\underline{|N}_{P^{(}}\frac{-r)|}{(r)}\leqq|f(re^{i\theta})|$

$\leqq\frac{r^{q}}{(1-r)^{2(p- t)}}(\frac{1+r}{1-r})_{\overline{|P}}^{l}\frac{N(r)}{(-r)|}$ $0\leqq r<1$ ,

(4.4) $f(z)\langle\langle(1=z^{q}z)^{2(\overline{p}-f)}-(\frac{1+z}{1-z})^{t}-\frac{N(z)}{(-z)}P$ .

PROOF. In this case, since the two rays in the theorem coincide
with each other, we now have

$e^{i\theta_{\mu}}=e^{i\theta_{\mu+1}}$ , $\mu=1,3,\cdots,$ $2p-t-1$ ,

$e^{i\varphi_{\nu}}=e^{i\varphi_{\nu+1}}$ , $\nu=1,3,\cdots,$ $t-1$ .
Therefore, if $f(e^{i\theta_{\mu 1}}),$ $f(e^{i\theta_{\mu_{2}}})$ are the ends of the diametral segment,
then

$e^{i\theta_{\mu 1}}=e^{i\theta_{\mu_{1}+1}}=-e^{i\theta_{\mu_{\theta}}}=-e^{i\theta_{\mu z^{+1}}}$ .
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Accordingly $B(z)$ has the following form:

$B(z)=_{\nu}\Gamma_{=}^{t}I_{1}(e^{i\varphi_{\nu}}-z)/(-e^{2i\theta_{\mu 1}}+z^{2})^{2}\prod_{\mu=1}^{2p-l},(e^{i\theta_{\mu}}-z)\mu\neq\mu_{1},\mu_{1}+1\mu_{2},\mu_{2}+1^{\cdot}$

Hence

$\frac{(1-r)^{t}}{(1+r^{2})^{2}(1+r)^{2}p-t-4}\leqq|B(re^{i\theta})|\leqq\frac{(1+r)^{l}}{(1-r^{2})^{2}(1-r)^{2}p-l-4}$ ,

$B(z)\langle\langle\underline{(}1_{-}\underline{+}z\underline{)^{t}}$ .
$(-z^{2})^{2}(-z)^{2}$

Thus from (2.3), (2.4), with $\lambda s$ replaced by $0$ , we obtain (4.3), (4.4)
respectively.

REMARK. It is worth noting that (4.4) and the right-hand in-
equality of (4.3) coincide with the corresponding results of Corollary
$2a$ .

Similarly we have the following corollary.
COROLLARY $3b$ . In the theorem let $f(z)$ be of order $p$ in the direction

of a ray containing a diametral segment and let further the ends of
the diametral segment be both negatively cutting points, then

(4.5) $\frac{r^{q}}{(1+r)^{2(p-t)}}(\frac{1-r}{1+r})^{l}\frac{|N(-r)|}{P(r)}\leqq|f(re^{i\theta})|$

$\leqq\frac{r^{q}}{(1-r)^{2(p-t)}}(\frac{1+r}{1-r})^{l}(\frac{1+r^{2}}{1-r^{2}})^{2}\frac{N(r)}{|P(-r)|},$ $0\leqq r<1$ ,

(4.6) $f(z)\ll\frac{z^{q}}{(1-z)^{2(p-t)}}(\frac{1+z}{1-z})^{l}(\frac{1+z^{2}}{1-z^{2}})^{2}\frac{N(z)}{P(-z)}$ .

We here notice that the left-hand inequality of (4.5) also coincides
with the corresponding one of Corollary $2b$ .

COROLLARY $3c$. In the theorem let $f(z)$ be starlike of order $p$ in the
direction of a ray containing a diametral segment, then

(4.7) $\frac{r^{q}}{(1+r)^{2p}}(\frac{1-r}{1+r}2-2)^{2}|N(-r)|\leqq|f(re^{i\theta})|\leqq\frac{r^{q}}{(1-r)^{2}p}N(r),$ $0\leqq r<1$ ,

(4.8) $f(z)\ll\frac{z^{q}}{(1-z)^{2}p}N(z)$ .
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PROOF. Just as in the proof of Corollary $2c$ we obtain (4.7),
(4.8) respectively from (4.3), (4.4).

The following two corollaries are special ones of Corollaries 3
and $3c$.

COROLLARY $3d$ . Let $f(z)=z^{p}+\sum_{n-p+1}^{\infty}c_{n}z^{n}$ be a function of the class
$S(p, 0)$ , then

(4.9) $\frac{r^{p}}{(1+r)^{2}p}(\frac{1-r}{1+r})^{2}\leqq|f(re^{i\theta})|\leqq\frac{r^{p}}{(1-r)^{2}p}(\frac{1+r}{1-r})^{2}$, $0\leqq r<1$ ,

(4.10) $f(z)\langle\langle\frac{z^{p}}{(1-z)^{p}\lrcorner)}(-11\frac{+z}{-z})^{2}$.

COROLLARY $3e$ . Let $f(z)=z^{p}+\sum_{n-p+1}^{\infty}c_{n}z^{n}$ be starlike of order $p$ in the

direction of a ray containing a diametral segment, then

(4.11) $\frac{r^{p}}{(1+r)^{2}p}(\frac{1-r^{2}}{1+r^{2}})^{2}\leqq|f(re^{i\theta})|\leqq\frac{r^{p}}{(1-r)^{p}\lrcorner)}$ , $0\leqq r<1$ ,

(4.12) $f(z)\ll\frac{z^{p}}{(1-z)^{2}p}$ .

Nara Gakugei University.
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