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On the structure of complete local rings.
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I. S. Cohen [1] proved a series of theorems which clearify the
structure of complete local rings. These theorems were generalized
by M. Nagata [2], [3] in the following sense. By a local ring one
means usually a ring, say $0$ , satisfying the following conditions: (i)
$0$ is commutative and has a unity 1. (ii) The non-unit elements of $0$

form a maximal ideal $\mathfrak{m}$ of $0$ . (iii) $0$ is Noetherian. Now Nagata
generalizes this concept in calling a local ring a ring satisfying (i),
(ii) and the following conditions (iii’) instead of (iii).

(iii’) $\bigcap_{i=1}^{\infty}\mathfrak{m}^{i}=(0)$ .
It is clear that one can topologize as usual local rings in this

sense and speak of complete local rings. Structure-theorems corres-
ponding to Cohen’s were given in [2], [3] for complete local rings in
this generalized sense1).

The purpose of this paper is to prove the theorems of Nagata
in a simplified manner. By local rings we mean always those in
Nagata’s sense. The above introduced notations $0$ and $\mathfrak{m}$ , meaning
a local ring and its maximal ideal, will be used throughout the
paper. Moreover we shall always denote with $F$ the residue field
$0/\mathfrak{m}$, and with $\varphi$ the canonical mapping of $0$ onto $F$.

\S 1.

THEOREM 1. Let $0$ be a complete local ring having the same
characteristic as the residue field $F$, then $0$ contains a subfield $K$ which
is isomorphic to $F$, such that $\varphi(K)=F^{2)}$ .

1) An incompleteness of a proof in [2] was corrected in [3], but it is to be noticed
that it was not sufficiently amended.

2) A. Geddes [4] also proved this theorem by an analogons method as ours.
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In case where the characteristic of $0$ and $F$ are both zero, this
theorem may be easily proved by using Hensel’s lemma. (cf. [1] or
[2]: [1] treats only the case $0$ is a local ring in the ordinary sense,
but it is easy to modify the proof so as to adapt also to our case
as was done in [2]).

So we shall treat in the following, only the case where $F$ has
a characteristic $p(\neq 0)$ .

We shall call a local ring $\mathfrak{o}$ is a primary local ring, if some
power of $\mathfrak{m}$ is a zero ideal of $0$ . A primary local ring in this sense
is complete because any Cauchy sequence in such a ring has only a
finite number of elements mutually djfferent from each other.

If $0$ is primary, then there exists some positive integer $n$ such
that $t$)$t^{P^{n}}=(0)$ . $F^{p^{2}},$

$\cdots,$

$F^{p^{n}}$ are subfields of $F$, and we have $ F\supset F^{p}\supset$

$F^{p}\supset\cdots\supset F^{p^{n}})$

LEMMA 1. Let $0$ be a primary local ring having the same charac-
teristic $p$ as the residue field $F$, then $0$ contains a subfield $K^{\prime}$ , which is
isomorphic to $F^{p^{n}}$ such that $\varphi(K^{\prime})=F^{p^{n}}$ .

PROOF. An element of $F^{p^{n}}$ may be written in form $\alpha^{p^{n}},$ $\alpha\in F$.
Let $a$ be an elements of $\varphi^{-1}(\alpha)$ , then $a^{P^{n}}$ is uniquely determined by
$\alpha^{p^{n}}$ , not depending on the choice of $a$ from $\varphi^{-1}(\alpha)$ . For if $b$ is
another element of $\varphi^{-1}(\alpha)$ , then we have $a-b\in \mathfrak{m}$ , and therefore
$a^{P^{n}}-b^{p^{n}}\in \mathfrak{m}^{P^{n}}=(0)$ . Thus we have a correspondence $\psi^{\prime}$ of $F^{p^{n}}$

into $0$ , such that $\psi^{\prime}(\alpha^{p^{n}})=a^{P^{n}}$ . It is evident that $\psi^{\prime}$ preserves ad-

dition and multiplication. Hence $\psi^{\prime}(F^{p^{n}})$ is clcarly a required sub-
field of $0$ .

We shall call a p-basis of $F$ a system $\{\gamma_{\tau}\}_{\tau\epsilon\Gamma}$ of elements of $F$,
satisfying the following conditions:

(i) $[F^{p}(\gamma_{\tau_{1}}, \gamma_{\tau_{2}},\cdots, \gamma_{\tau_{\gamma}}):F^{p}]=p\gamma$ for any $\gamma$ elements $\tau_{1},$ $\tau_{2},\cdots,$ $\tau_{\gamma}$ of $\Gamma$ .
(ii) $F^{p}(\gamma_{\tau})_{\tau\epsilon\Gamma}=F$ .

If $F$ is not perfect, $i$ . $e$ . $F\neq F^{p}$ then a $p$-basis of $F$ is not a null
set, and existence of such a $p$-basis is easily shown by using Zorn’s
lemma.
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LEMMA 2. Let $0$ be a primary local ring, then $0$ contains a sub-
$\leftarrow tieldK$, which is isomorphic to $F$ such that $\varphi(K)=F$.

PROOF. In case $F=F^{p^{n}}$ , this lemma is already proved by
Lemma 1. Now, we shall assume $F\neq F^{p^{n}}$ , $i$ . $e$ . $F\neq F^{p}$ . Let us
choose arbitrarily an element $c_{\tau}$ from $\varphi^{-1}(\gamma_{\tau})$ once for all $\mathcal{T}\in\Gamma$ .
Any element of $F$ may be written uniquely in form of a polynomial

$\overline{P}(\gamma_{\tau_{1}}, \gamma_{\tau_{2}},\cdots, \gamma_{\tau_{\kappa}})$ of $\gamma_{\tau},$
$\tau\in\Gamma$ , with coefficients in $F^{p^{n}}$ , of a degree less

than $p^{l}$ in each $\gamma_{\tau}$ .
Now by Lemma 1, $0$ contains a subfield $\psi^{\prime}(F’ n)$ isomorphic to

$F^{p^{\prime\iota}}-$ we shall denote with $\psi^{t}$ this isomorphism. The polynomial

obtained from $\overline{P}(X_{1}, X_{2},\cdots, X_{k})\in F^{p^{n}}[X_{1}, X_{2},\cdots, X_{k}]$ by replacing the
coefficient $f\in F^{p^{n}}$ by $\psi^{\prime}(f)\in\psi^{\prime}(F^{p^{n}})$ will be denoted with $P(X_{1},$ $X_{2}$ ,

$X_{k})$ .
Then, the correspondence $\psi$ : $\overline{P}(\gamma_{\tau_{1}}, \gamma_{\tau_{2}},\cdots, \gamma_{\tau_{k}})\rightarrow P(c_{\tau_{1}}, c_{\tau_{2}}, \cdots c_{\tau_{h}})$

of $F$ into $0$ preserves addition and multiplication, and $\psi$ is an exten-
sion of $\psi^{\prime}$ . Hence, $\psi(F)$ is a required subfield of $0$ .

PROOF OF THEOREM 1. Now, let $0$ be a complete local ring
having the characteristic $p(\neq 0)$ , then the local rings $0_{1}=0/\mathfrak{n}\iota,$ $0_{2}=0/\mathfrak{m}^{2}$ ,
$ 0_{3}=0/\mathfrak{m}^{3},\cdots$ are primary in the sense above-mentioned, and every $0_{i}$

has a residue field isomorphic to $F$. Let $\theta_{1},$ $\theta_{2},$ $\theta_{3},\cdots$ be the canonical
homomorphisms of $0$ onto $0_{1},0_{2},0_{3},\cdots,$ $\varphi_{i,i+1}$ the canonical homomorphism
of $0_{i+1}$ onto $0_{i}$ , and $\varphi_{j}$ the canonical homomorphism of $0_{i}$ onto $F$

respectively. By Lemma 2, these rings $ 0_{1},0_{2},0_{3},\cdots$ contain subfields
$K_{1},$ $K_{2},$ $ K_{3},\cdots$ respectively, each of which is isomordhic to $F$. We can
assume that $\varphi_{i,i+1}(K_{i+1})=K_{i}$. Indeed it is possible from the proof of
Lemma 2 to construct $K_{i+1}$ in such a way that $\varphi_{j,i+1}(\varphi_{\iota+1}^{-1}(\gamma_{\tau})\cap K_{l+1})=$

$\varphi_{i}^{-1}(\gamma_{\tau})\cap K_{i},$ $\mathcal{T}\in\Gamma$ where $\{\gamma_{\tau}\}_{\tau\cdot\Gamma}$ is a $p$-basis of $F$, then it is evident
that $\varphi_{i,i+1}(K_{i+1})=K_{i}$ .

Now, let $\alpha\in F$ and $\alpha_{i}$ be an element of $\varphi_{i}^{-1}(\alpha)\cap K_{i},$ $ i=1,2,3,\cdots$

and let $a_{i}$ be an element of $\theta_{i^{-1}}(\alpha_{i})$ , then we have a sequence $ a_{1},a_{2},a_{3},\cdots$

in $0$ . This sequence is a Cauchy sequence in $0$ , because $\theta_{i}(a_{i})=\theta_{i}(a_{i+1})$

namely $a_{i}-a_{i+1}\in \mathfrak{m}^{i}$. Since $0$ is complete, this sequence has a limit
$a$ in $0$ . It is evident that $a$ is uniquely determined by $\alpha$ , not depend-
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ing on the choice of $a_{i}$ from $\theta_{i^{-1}}(\alpha_{j}),$ $ i=1,2,3,\cdots$ . This correspondence
$\alpha\rightarrow a$ of into $0$ preserves evidently addition and multiplication. Hence,
the image of $F$ under this correspondence is a required subfield of $0$ .

\S 2

Now let us suppose that $0$ has a characteristic different from the
characteristic of the residue field $F$.

Then, as is well known, either the characteristic of $0$ is zero
and $\mathfrak{m}\ni p(\neq 0)$ , or the characteristic of $0$ is $p\gamma(\gamma>1)$ and $\mathfrak{m}\ni p$. Then
we have the following theorem, the generalization of the theorem
due to Cohen.

THEOREM 2. A complete local ring $0$ having a characteristic
different from the characteristic $p(\neq 0)$ of the residue field $F$ contains
a complete subring $R$ with the maximal ideal $(p)$ , such that $\varphi(R)=F$.

To prove this theorem, we begin by a special case, $i$ . $e$ . by the
following lemma.

LEMMA 3. If $0$ is primary (in the sense mentioned in \S 1), and has
a characteristic different from the characteristic $p$ of $F$, then $0$ contains
a subring $R$ with the maximal ideal $(p)$ , such that $\varphi(R)=F$.

PROOF. Let $n$ be a positive integer such that $\mathfrak{m}^{n}=(0)$ . (It is to
be noticed that here the meaning of $n$ is different from that in \S 1).
Now let us consider the following sequence of subfields of $F:F^{p}$,
$F^{p^{2}},$ $F^{p^{3}},\cdots,$ $F^{p^{n}},\cdots,$ $F^{p^{2n}}$ . Let us denote with $\psi_{0}$ the mapping of
$F^{p^{n}}$ into $0$ defined as follows. Every element of $F^{p^{n}}$ is of the

form $\alpha^{p^{n}}$ , $\alpha\in F$. Let $a$ be an element of $0$ such that $\varphi(a)=\alpha$ .
Then we put $\psi_{0}(\alpha^{P^{n}})=a^{\rho^{n}}$ . It can be shown namely that $a^{P^{n}}$ is
independent of the choice of $a$ in $\varphi^{-1}(\alpha)$ . In fact, let $a+u,$ $u\in \mathfrak{m}$ be
another element of $\varphi^{-1}(\alpha)$ . Then we have

$(a+u)^{p^{n}}=a^{p^{n}}\sum_{i=1}^{p^{n}}t^{p_{i}^{n}})a^{p^{n}-i}u^{i}$ .
But it is easy to see that $p^{n-j}|(^{p_{i}^{n}})$ if $i=sp^{j}$, $(s, p)=1$ , so that

$(^{P_{i}^{n}})u^{i}\in \mathfrak{m}^{n}=(0)$ for all $i=1,2,$ $\cdot\cdot,pn$ Then we have $(a+u)^{P^{n}}=a^{P^{n}}$ .
Using this mapning $\psi_{0}$ of $F^{p^{n}}$ into $0$, write $A_{p^{n}},$ $A_{p^{n+1}},$ $A_{p^{n+2}}$ ,
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..., $A_{p^{2n}}$ for $\psi_{0}$ $(F^{p^{n}}),$ $\psi_{0}(F^{p^{n+1}}),$ $\psi_{0}(F^{p^{n+2}}),$
$\cdots,$

$\psi_{0}(F^{p^{2n}})$ respectively.
Clearly we have $A_{p^{n}}\supset A_{p^{n+1}}\supset\cdots\supset A_{p^{2n}}$ . It is easy to see that
every $A_{p^{i}},$ $i=n,$ $n,+1,\cdots,$ $2n$ is closed under multiplication.

Put now $A=A_{p^{2n}}+pA_{p^{2n-1}}+p^{2}A_{p^{2n-2}}+\cdots+p^{\eta-1}A_{p^{n+1}}$ . We shall
show that this subset $A$ of $0$ is closed under addition and multi-
plication.

Let us begin by showing that $p^{n-1}A_{p^{n+1}}$ is closed under addition.

This result follows immediately from the result $ a^{p^{n+1}}+b^{p^{n+1}}\equiv$

$(a+b)^{p^{n+1}}$ $(mod. p)$ . Now, assuming $p^{k+1}A_{p^{2n-k-1}}+pk+2A_{p^{2n-k-2}}+$

$...+pn-1A_{p^{n+1}}$ as closed under addition, we can prove that $p^{k}A_{p^{2n-\beta}}$

$+p^{\hslash+1}A_{p^{2n-k-1}}+p^{k+2}A_{p^{2n-k-2}}+\cdots+p^{n-1}A_{p^{n+1}}$ is also closed under

addition. For, if we take two elements $p^{k}a^{P^{2n-h}}$ and $p^{k}b^{p^{2n-k}}$ of
$p^{k}A_{p^{2n-k}}$ , the sum of these two may be written in the form:

$p^{k}a^{p^{2n-k}}+p^{k}b^{p^{2n-k}}=pk()^{p^{2n-k}}-\sum_{i^{n}=1}^{p^{2-k_{-1}}}()a^{p^{2n-k_{-i}}}b^{i}$ .

But $p^{k}(p^{2n_{i}-k})$ is zero unless $p^{n+1}|i$, because if $p^{n+1}+i$, then
$p^{\eta-k}|(^{p^{2n_{i}-k}})$ . Hence, the second term of right hand side may be
written in the form:

$\sum cp^{9.-j}na^{p^{2n-k-j}-sp^{j}}b^{sp^{j}}$ , $2n-k>j>n$ , $(s,p)=1$

where $c$ and $s$ are rational integers. By assumption of the induction,
this term belongs to the set $p^{k+1}A_{p^{2n-k-1}}+p^{k+2}A_{p^{2n-k-2}}+\cdots+pn-1$

$A_{p^{n+1}}$ . Hence we see that $A$ is closed under addition. Then $A$

is also closed under multiplication because $p^{i}A_{p^{2n}}-i\cdot pjA_{p^{2n}}-J\subset p^{i+j}$

$A_{p^{2n-i-j}}$ .
If $F$ is perfect, it is clear that $A$ is a local ring with the

maximal ideal $(p)$ , such that $\varphi(A)=F$. So we shall assum that $F$ is
not perfect, $i$ . $e$ . $F\neq F^{p}$.

Now, let us choose arbitrarily an element $c_{\tau}$ once for all from
$\varphi^{-1}(\gamma_{\tau}),$ $\tau\in\Gamma$ as in the proof of lemma 2, where $\{\gamma_{\tau}\}_{\tau\epsilon\Gamma}$ is a $P$-basis
of $F$. Then the mapping $\overline{P}(\gamma_{\tau_{1}}, \gamma_{\tau_{2}},\cdots, \gamma_{\tau_{k}})\rightarrow P(c_{\tau_{1}}, c_{\tau_{2}},\ldots, c_{\tau_{k}})$ of $F$ into
$0$ as used in the proof of lemma 2 may be considered as an extension
of $\psi_{0}$ , where $\overline{P}(\gamma_{\tau_{1}}, \gamma_{\tau_{2}},\ldots, \gamma_{\tau_{k}})$ is a polynominal with coefficients in
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$F^{p^{n}}$ . Let us denote this mapping with $\psi$ and put $\psi(F)=S,$ $S$ has
clearly the property: $6\ni a$ implies $S\ni a^{-1}$ ; $a,$ $a^{-1}\in 0$ . It is easy to
see that we obtain the same subset $S$ if we consider the polynomials

$\overline{P}(\gamma_{\tau_{1}}, \gamma_{\tau_{2}},\cdots, \gamma_{\tau_{k}})$ with the coefficients in $F^{p^{n+i}}$ instead of in $F^{p^{n}}$

where $i$ is one of the numbers 1, $2,\cdots,$ $n$ .
On the other hand, let $R$ be the ring generated by $A$ and

$\{c_{\tau}\}_{\tau e\Gamma}$. Then we have $R=S++pS+p^{2}S+\cdots+p\cdot r-1s$ by the construc-
tion of $S$ and the relation $A=A_{p^{\underline{\circ}}}n+pA_{p^{2n-1}}+p^{2}A_{p^{2n-2}}+\cdots+$

$p^{n-1}A_{p^{n+1}}$ .
It is evident that $R$ is a local ring with the maximal ideal $(p)$ ,

such that $\varphi(R)=F$. This completes the proof of lemma 3.

PROOF OF THEOREM 2. Let $k$ be a positive integer such that
$\mathfrak{n}\iota^{k}*p$. Then $0/\mathfrak{m}^{k},$ $ 0/\mathfrak{m}^{k+1},0/\mathfrak{m}^{k+2}\cdots$ , are primary rings. We see by
Lemma 3 that every $0/\mathfrak{m}^{i},$ $i=k,$ $k+1,$ $ k+2,\cdots$ includes the subring
$R_{i}$ with the maximal ideal $(p)$ , which is mapped on $F$ by the cano-
nical mapping $0/\iota \mathfrak{n}^{;}\rightarrow F$. Let $\theta_{k},$ $\theta_{k+1},$ $\theta_{k+2},\cdots$ be canonical mappings of
$\mathfrak{o}$ onto $0/\mathfrak{m}^{k},$ $ 0/rn^{k+2},0/\mathfrak{m}^{k+2}\cdots$ respectively, $\varphi_{i,i+1}$ the canonical mappfng
of $0/\mathfrak{m}^{i+1}$ onto $0/\mathfrak{m}^{i}$ , and $\varphi_{i}$ be a canonical mapping of $0/\mathfrak{m}^{t}$ onto $F$.
We can assume that $\varphi_{i,i+1}(R_{i+1})=R_{i}$ . Indeed it is clearly possible by
the proof of lemma 3 to construct $R_{i+1}$ in such a way that

$\varphi_{i_{t}+\iota}(\varphi_{i+^{1}1}^{-}(\gamma_{\tau})\cap R_{i+1})=\varphi_{i}^{-1}(\gamma_{\tau})\cap R_{i}$ , $\tau\in\Gamma$

where $\{\gamma_{\tau}\}_{\tau e\Gamma}$ is a $p$-basis of $F$, then it is evident that
$\varphi_{i.i+1}(R_{i+l})=R_{j}$ .

Now let us call a fundamental sequence a sequence $\alpha_{k},$ $\alpha_{k+1},$ $\alpha_{k+2}$ ,
$(\alpha_{i}\in R_{i})$ satisfying $\varphi_{i,i+1}(\alpha_{i+1})=\alpha_{i},$ $i=k,$ $k+1,$ $ k+2,\cdots$ . If $\alpha_{k},$ $\alpha_{k+1}$ ,

$\alpha_{k+2},\cdots$ and $\beta_{k},$ $\beta_{k+l},$ $\beta_{k+2},\cdots$ are fundamental seqnences, then $\alpha_{k}+\beta_{k}$ ,
$\alpha_{k+1}+\beta_{k+1},$ $\alpha_{k+2}+\beta_{k+2},$ $\cdots$ and $\alpha_{k}\cdot\beta_{k},$ $\alpha_{k+1}\cdot\beta_{k+1},$ $\alpha_{k+2}\cdot\beta_{k+2},$ $\cdots$ are ob-
viously also fundamental sequences. In this sense, fundamental
sequences form a ring $\mathfrak{R}$ . We shall write fundamental sequences
with Greek capitals

$A=(\alpha_{k}, \alpha_{k+1}, \alpha_{k+2},\cdots),$ $B=(\beta_{k}, \beta_{k+\downarrow}, \beta_{k+2},\ldots)$

and with
$A+B=(\alpha_{k}+\beta_{k}, \alpha_{k+1}+\beta_{k+1}, \alpha_{k+2}+\beta_{k+2},\cdots)$ ,
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A. $B=(\alpha_{k}\beta_{k}, \alpha_{k+1}\beta_{k+1}, \alpha_{k+2}\beta_{k+2},\cdots)$ .

Now we can map the ring $\mathfrak{R}\ni A,$ $ B,\cdots$ onto a ring $R$ of $0$ in the
following way. Let $A=(\alpha_{k}, \alpha_{k+1}, \alpha_{k+2},\cdots)\in \mathfrak{R}$. Choose an element $a_{i}$

of $\theta_{i}^{-1}(\alpha_{i})$ arbitrarily and consider the sequence $a_{k},$ $a_{k+1},$ $ a_{k\vdash 2},\cdots$ . This
sequence $a_{k},$ $a_{k+1},$ $ a_{k+2},\cdots$ is a Cauchy sequence in $0$ because $\theta_{i}(a_{i+1}$

$-a_{i})=0i$ . $e$ . $a_{i+1}-a_{i}\in m^{j}$ , so it has a limit $a$ in $0$ . Moreover, it is
evident that this limit $a$ is uniquely determined by $A$ , not depending
on the choice of $a_{i}$ in $\theta_{i}^{-1}(\alpha_{j})$ .

We shall write $\Phi(A)=a$ . This mapping $\Phi$ of $\mathfrak{R}$ into $0$ is clearly
a homomorphism. So $\Phi(\mathfrak{R})=R$ is a subring of $0$ , and it is clear that
$\varphi(R)=F$.

Now we shall show that $R$ has the maximal ideal $(p)$ . Remark
first that $R_{i}\subset 0/\mathfrak{m}^{i},$ $i=k,$ $k+1,$ $ k+2,\cdots$ has the maximal ideal $(p)$ , and
$\varphi_{i,i+1}$ maps units and non-units of $R_{i+1}$ to units and non-units of $R_{i}$

respectively. Thus $A=(\alpha_{k}, \alpha_{k+1}, \alpha_{k+}9’\cdots)$ is a unit or a non-unit of $\mathfrak{R}$

according as $\alpha_{h}$ is a unit or a non-unit of $R_{k},$ $i$ . $e$ . $\alpha_{k}\oplus(p)$ or $\in(p)$ .
Therefore $\Phi(A)=a$ is a unit or a non-unit of $R$, according as $a\in E(p)$

or $\in(p)$ .
It remains to show the completeness of $R$. To the purpose let

us considor a Cauchy sequence $a_{1},$ $a_{2},$ $ a_{3},\cdots$ in $R$. Such a sequence is
clearly a Cauchy sequence in $0$ , so has a limit $a$ in $0$ . On the other
hand, the sequence $\theta_{i}(a_{1}),$ $\theta_{l}(a_{2}),$ $\theta_{i}(a_{3})\cdots$ is a Cauclly sequence in $R$ , so
has a limit $\alpha_{i}$ in $R_{i}$ since $R_{j}$ is primary, manely complete. It is
evident that $\theta_{i}(a)=\alpha_{i},$ $(\alpha_{k}, \alpha_{k+1}, \alpha_{k+2},\cdots)=A\in \mathfrak{R}$ and $\Phi(A)=a$ , and this
means that $a\in R$. Hence $R$ is complete.

To go further, we need the following lemma.
LEMMA 4. Let $0$ be a complete local ring with the maximal ideal

$(p)$ , then any complete subring $0^{\prime}$ of $0$ with a maximal ideal $(p)$ , such
that $0^{\prime}/(p)=F=0/(p)$ coincides with $0$ itself.

PROOF. Any element $a$ of $0$ may be expressed in the form
$a_{0}^{\prime}+ap;a_{0}^{\prime}\in 0_{f}^{\prime}a_{1}\in 0$ as $\varphi(0)=\varphi(0^{\prime})$ . In particular, we have a relation
$a_{1}=a_{1}^{\prime}+a_{2}p;a_{1}^{\prime}\in 0^{\prime},$ $a_{2}\in 0$ . Hence we have $a=a_{0}^{\prime}+a_{1}^{\prime}p+a_{2}p^{2}$ ; $a^{\prime},$ $a_{1}^{\prime}\in 0^{\prime}$ ,
$a_{2}\in 0$ . Generally, we have a relation $a=a_{0}^{\prime}+a_{1}^{\prime}p+a^{\prime}\underline{)}p^{2}+\cdots a_{\iota^{-}1}^{\prime}p-1+$

$a_{i}p^{i}$ ; $a_{0}^{\prime},$ $a_{1}^{\prime}.a_{2}^{\prime},\cdots,$ $a_{1-1}^{\prime}\in 0^{\prime},$ $a_{i}\in 0$ . The sequence $a_{0}^{\prime},$ $a_{\acute{J}}+a_{1}^{\prime}p,$ $ a_{0}^{\prime}+a_{1}^{\prime}p+a_{2}^{\prime}p^{2},\cdots$

has a limit $a^{t}$ in $0^{\prime}$ since $0^{t}$ is complete by assumption. On the other
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hand, $a-(a_{0}^{\prime}+a_{1}^{\prime}p+a^{\prime})p^{9}+\cdots+a_{\acute{i}-1}p^{;-1})=a_{i}p^{;}\in(p^{;})$ , and this converges
to zero when $ i\rightarrow\infty$ . This means $a-a^{\prime}=0$ , therefore $a\in 0^{t}$ .

Combining this lemma with Theorem 2, we obtain the following
theorem.

THEOREM 3. Let $0$ be a complete local ring having a characteristic
different from the characteristic $p$ of the residue field F. If $F$ is
perfect, then there exists only one complete subring $R$ of $0$ with the
maximal ideal $(p)$ , such that $\varphi(R)=F$. In the other case, complete
subrings $R,$ $ R^{\prime},\cdots$ of $0$ with the maximal ideal $(p)$ , such that $\varphi(R)=F$,
$\varphi(R^{\prime})=F,\cdots$ , are mutually isomorphic to each other.

PROOF. We shall first show that any $R$ can be regarded as a
subring of $0$ constructed by the method used in the proof of Theorem
2. In considering

$\mathfrak{R}_{0}=\{A;A=(\alpha_{k}, \alpha_{k+1}, \alpha_{k+?},\cdots), \alpha_{i}\in R/\mathfrak{m}^{i}\subset 0/\mathfrak{m}^{i}, \varphi_{i,i+1}(\alpha_{i+1})=\alpha_{i}\}$ ,

we obtain a subring $\Phi(\mathfrak{R}_{0})=R_{0}$ of $R$, but Lemma 4 asserts $R_{0}=R$.
In fact, this construction with $R_{0}$ is the one of the constructions in
the proof of theorem 2.

So the first part of this theorem follows from the proof of
Lemma 3 and Theorem 2.

For the second part of this theorem, we may regard all $R,$ $ R^{\prime},\cdots$

as constructed in the mentioned way, using eventually different $c_{\tau}’ s$

in $\varphi^{-1}(\gamma_{\tau}),$ $\tau\in I^{7}$ in the proof of Lemma 3, Then the isomorphism of
$R,$ $ R^{\prime},\cdots$ is evident from the proof of Lemma 3 and Theorem 2.

Now we can easily prove thefollowing result. (cf. [1] and [2]).
THEOREM 4. Let $0$ and $0^{\prime}$ be complete local rings with a maximal

ideal $(p)$ , having the residue field isomorphic to each other. If $0$ has
the same characteristic as $0^{\prime}$ . then $0$ and $0^{\prime}$ are mutually isomorphic to
each other. If the $cha_{\hat{r}}$ acteristic of $\mathfrak{o}$ is $p^{\gamma}(\neq 0)$ , and the characteristic
of $0^{\prime}$ is zero or $p^{\gamma/}(\gamma^{t}>\gamma)$ , then there exists a homomorphism of $0^{\prime}$ onto $0$ .

PROOF. The first part of this theorem is evident by the proof of
Theorem 3. The second part of the theorem can be proved immedi-
ately from the first part in considering the factor ring $0^{\prime}/(p\gamma)$ .

International Christian
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