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On the structure of complete local rings.

By Masao NARITA

(Received Nov. 25, 1955)

I.S. Cohen proved a series of theorems which clearify the
structure of complete local rings. These theorems were generalized
by M. Nagata [3] in the following sense. By a local ring one
means usually a ring, say o, satisfying the following conditions: (i)
0 is commutative and has a unity 1. (ii) The non-unit elements of o
form a maximal ideal m of o. (iii) o is Noetherian. Now Nagata
generalizes this concept in calling a local ring a ring satisfying (i),
(ii) and the following conditions (iii’) instead of (iii).

(iii") ‘ [\1 mi=(0).

It is clear that one can topologize as usual local rings in this
sense and speak of complete local rings. Structure-theorems corres-
ponding to Cohen’s were given in [3] for complete local rings in
this generalized senseb.

The purpose of this paper is to prove the theorems of Nagata
in a simplified manner. By local rings we mean always those in
Nagata’s sense. The above introduced notations o and m, meaning
a local ring and its maximal ideal, will be used throughout the
paper. Moreover we shall always denote with F the residue field
o/m, and with @ the canonical mapping of o onto F.

§ 1.

THEOREM 1. Let o be a complete local ring having the same
characteristic as the residue field F, then o contains a subfield K which
is isomorphic to F, such that ¢(K)=F?.

1) An incompleteness of a proof in was corrected in but it is to be noticed
that it was not sufficiently amended.

2) A. Geddes also proved this theorem by an analogons method as ours.
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In case where the characteristic of o and F are both zero, this
theorem may be easily proved by using Hensel’s lemma. (cf. or
[2]: [1] treats only the case o is a local ring in the ordinary sense,
but it is easy to modify the proof so as to adapt also to our case
as was done in [2].

So we shall treat in the following, only the case where F has
a characteristic p(==0).

We shall call a local ring v is a primary local ring, if some
power of m is a zero ideal of . A primary local ring in this sense
is complete because any Cauchy sequence in such a ring has only a
finite number of elements mutually djfferent from each other.

If o is primary, then there exists some positive integer » such

that m#*=(0). F?,..., F*" are subfields of F, and we have FOF#>
};‘1.‘12 e O 7,

LEMMA 1. Let o be a primary local ring having the same charac-
teristic p as the rvesidue field F, then v contains a subfield K', which is

isomorphic to F?" such that ¢(K')=F?",
PROOF. An element of F?" may be written in form «?”, a=F.
Let @ be an elements of @ '(«), then a?” is uniquely determined by

a?”, not depending on the choice of @ from ¢@-'(a). For if & is
another element of @ '(«), then we have a—bcm, and therefore

a’” —b?"=m?"=(0). Thus we have a correspondence v’ of F*”"
into o, such that Y/(a?”)=a?". It is evident that y’ preserves ad-
dition and multiplication. Hence /(F*") is clcarly a required sub-
field of o.

We shall call a p-basis of F' a system {v .}., of elements of F,

satisfying the following conditions:

(i) [F?(v., fy,z,---,'y,r):Fi’]:pT for any v elements 7, 7,---, 7, of I

(i) FY)er=F.

If F is not perfect, i.e. F'==F? then a p-basis of F is not a null
set, and existence of such a p-basis is easily shown by using Zorn’s
lemma.
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LEMMA 2. Let o be a primary local ring, then o contains a sub-
field K, which is isomorphic to F such that ¢(K)=F.

PROOF. In case F=F?", this lemma is already proved by

Lemma 1. Now, we shall assume F=F?", i.e. F==F’ Let us
choose arbitrarily an element c¢. from @~'(v.) once for all -&1TI'.
Any element of F' may be written uniquely in form of a polynomial

P Vep+os7.,) Of v, &1, with coefficients in F?”, of a degree less

than p* in each ..
Now by Lemma 1, o contains a subfield ¥/(F") isomorphic to
F*". we shall denote with 4y’ this isomorphism. The polynomial

obtained from P(X, X,, -, X,)©F?*"'[X,X,,---,X,] by replacing the

coefficient fCF*" by ' (f)&y'(F?") will be denoted with P(X, X,,
o, X)-
Then, the correspondence v : P(v., Y. Y, )—>P(Cpy €y Cy))

of F into o preserves addition and multiplication, and vy is an exten-
sion of yY'. Hence, Y(F') is a required subfield of o.

PrROOF OF THEOREM 1. Now, let o be a complete local ring
having the characteristic p(==0), then the local rings o, =o0/n, 0,=0/m?
p,=o/m%..- are primary in the sense above-mentioned, and every o,
has a residue field isomorphic to F. Let 6,6,,86,,--- be the canonical
homomorphisms of o onto o, 0,, 0,,---, ®; ;,; the canonical homomorphism
of o;,, onto v;, and @; the canonical homomorphism of o, onto F
respectively. By Lemma 2, these rings o, 0, 0,--- contain subfields
K, K, K,--- respectively, each of which is isomordhic to F. We can
assume that @, ;,,(K;,)=K, Indeed it is possible from the proof of
Lemma 2 to construct K;,, in such a way that ¢, ., (®:i(v.)NK,.)=
o7 (v.) N K, 7=I" where {v.}.r is a p-basis of F, then it is evident
that ¢i,i+1(Ki+1)::Ki‘

Now, let a=F and «; be an element of @ Y (a)NK, i=1,2,3,---
and let a; be an element of 6;!(«;), then we have a sequence a,,a,,a,,:--
in 0. This sequence is a Cauchy sequence in o, because 6,(a;)=0,(a;.,)
namely a;—a;.,—~m’. Since o is complete, this sequence has a limit
a in o. It is evident that @ is uniquely determined by «, not depend-
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ing on the choice of @; from ;' («,), t=1,2,3,---. This correspondence
a—a of into o preserves evidently addition and multiplication. Hence,
the image of F under this correspondence is a required subfield of o.

§2

Now let us suppose that o has a characteristic different from the
characteristic of the residue field F.

Then, as is well known, either the characteristic of o is zero
and m>p(==0), or the characteristic of o is p7(y>1) and m>p. Then
we have the following theorem, the generalization of the theorem
due to Cohen.

THEOREM 2. A complete local ring o having a characteristic
different from the characteristic p(==0) of the residue field F contains
a complete subrving R with the maximal ideal (p), such that ¢(R)=F.

To prove this theorem, we begin by a special case, i.e. by the
following lemma.

LEMMA 3. If ois primary (in the sense mentioned in § 1), and has
a characteristic different from the characteristic p of F, then o contains
a subring R with the maximal ideal (p), such that (R)=1F.

PrROOF. Let n be a positive integer such that m»=(0). (It is to
be noticed that here the meaning of » is different from that in §1).
Now let us consider the following sequence of subfields of F': F?,

F?' F?...,F?"... Fv”  Let us denote with v, the mapping of
F?" into o defined as follows. Every element of F?” is of the
form a?”, a=F. Let a be an element of o such that ¢(a)=«.

Then we put Y, (a?”)=a?”. It can be shown namely that a?” is
independent of the choice of @ in ¢~ '(«a). In fact, let a+u, u&=m be
another element of @ (o). Then we have

(a +u)1’" —aq?” Zf’:l (1)1,”) at” —iyi .
But it is easy to see that pr—i[(?”) if i=sp’, (s,p)=1, so that

(*Hwcmr=(0) for all i=1,2,---,p». Then we have (a-+u)""=a’".

Using this mapning ¥, of F?” into o, write A, Apn+1, A+,
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vy Ay for A, (F2"), 9 (FP"7), 4 (F#"™), oo, 4 (F?™)  respectively.
Clearly we have AgnDAp+1D .- DAz, It is easy to see that
every A, t=n,n-+1,--,2n is closed under multiplication.

Put now A=A +pAm-1+p*Apn-2+4--- +p" A+, We shall
show that this subset A of o is closed under addition and multi-
plication. .

Let us begin by showing that p»~'A .+ is closed under addition.

n+i1

This result follows immediately from the result a?""' + " =

(@+8)”"" (mod. p). Now, assuming p*!A a1 + p*+2A 2n-p-2 +
o +pn7'Auet as closed under addition, we can prove that p*A -
+ pE Akt + PEYA ok + --- + pIA et i also closed under

addition. For, if we take two elements pra?™ * and p¥*™ * of
p*A 22—k, the sum of these two may be written in the form:

prar" ™ 4 ptor T = pra 1 by = TR (R a0 b

But pk(ﬂg",._k) is zero wunless p»*'|7, because if p»*'}i, then

p"**[(ﬁ2",-_k). Hence, the second term of right hand side may be
written in the form:

E cp‘ln—j abm_k—j"s‘bi bspj , 2n—k>]> n, (S, p) =1

where ¢ and s are rational integers. By assumption of the induction,
this term belongs to the set p**'A pn—t-1 + Pp*°A n—t—2 + .- + prt
A+, Hence we see that A is closed under addition. Then A
is also closed under multiplication because p'A,m—i«piA n—iCpi*s
ApZn—i—j.

If Fis perfect, it is clear that A is a local ring with the
maximal ideal (p), such that @(A)=F. So we shall assum that F is
not perfect, i.e. F=F?,

Now, let us choose arbitrarily an element ¢, once for all from
@ (v.), 7<I" as in the proof of lemma 2, where {v ., is a p-basis
of F. Then the mapping P(V., Yoy Ve, )= P(Ceyy €peeey €) of F into

o as used in the proof of lemma 2 may be considered as an extension
of ¥, where P(v,, 7,5 7.,) is a polynominal with coefficients in
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F*". Let us denote this mapping with ¥ and put Y(F)=S, S has
clearly the property: S=a implies S=>a™'; a,a'&o. It is easy to
see that we obtain the same subset S if we consider the polynomials

P(7. Vep++» ¥c,) With the coefficients in F?"*" instead of in F?"

where 7 is one of the numbers 1, 2,---, #n.

On the other hand, let R be the ring generated by A and
{€.}.e;» Then we have R=S+ +pS+p’S+---+p*~'S by the construc-
tion of S and the relation A :Ap‘-’n —l—pAp‘ln—l —I-'PzAf,?n—‘z 4 oeee
p"_‘AI,nH.

It is evident that R is a local ring with the maximal ideal (p),
such that @(R)=F. This completes the proof of lemma 3.

PrROOF OF THEOREM 2. Let %k be a positive integer such that
m#pp. Then o/m# o/mk*!, o/m**>.., are primary rings. We see by
Lemma 8 that every o/w, ¢=k,k+1,k+2,.- includes the subring
R. with the maximal ideal (p), which is mapped on F' by the cano-
nical mapping o/m'—F. Let 0,,6,,,, 6,,,--- be canonical mappings of
o onto o/ni% o/m#+? o/m**2... respectively, @;;,, the canonical mappfng
of o/mi*! onto o/m’, and @, be a canonical mapping of o/m’ onto F.
We can assume that ¢, ., (R;,,)=R, Indeed it is clearly possible by
the proof of lemma 8 to construct R;,, in such a way that

PP (7 N RH—I) =@ (7N R;,, ~&r
where {v_}.r is a p-basis of F, then it is evident that
Piin(Rip)=R; .

Now let us call a fundamental sequence a sequence 4, ., 0y,
«(a;&ER)) satisfying o, (¢, )=«qa; t=kk+1,k+2,--. If «aa,.,,
Qproyre and By, Byy Brisr--- are fundamental seqnences, then o+ By,
pii + Bri Xpys + Bpyoy-- aNd Qv By, Xpyy * Bpyiy Apys » Bpyoy - are ob-
viously also fundamental sequences. In this sense, fundamental

sequences form a ring M. We shall write fundamental sequences
with Greek capitals

A= (0 Qi) Agree)y B=(Bp Bryis Bryor--)
and with
A+B= (ak+Bk? ak+1+8k+1, ak+2—i—Bk+2’...) ,
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A B=(, By i Briir Apps Brysy ) -

Now we can map the ring RSA, B,--- onto a ring R of o in the
following way. Let A=(«a,, a,, ,, @z 4---)&R.  Choose an element ag;
of 6;'(«;) arbitrarily and consider the sequence a,, a,.,, @, --- This
sequence @, @, ,a,, ., -- is a Cauchy sequence in o because 6;(a,.,
—a;)=0 1i.e. a,,—a;=m’, so it has a limit ¢ in o. Moreover, it is
evident that this limit @ is uniquely determined by A, not depending
on the choice of @, in 6;'(«,).

We shall write @(A)—=a. This mapping @ of R into o is clearly
a homomorphism. So @(N)=R is a subring of o, and it is clear that
@(R)=F.

Now we shall show that R has the maximal ideal (p). Remark
first that R,co/w, i=k,k+1,k+2,--- has the maximal ideal (p), and
®; ;.1 Mmaps units and non-units of R;,, to units and non-units of R;
respectively. Thus A=(«, &, , Q5 --) is @ unit or a non-unit of R
according as «, is a unit or a non-unit of R, i.e. a,d-(p) or (p).
Therefore @(A)—a is a unit or a non-unit of R, according as ad-(p)
or &(p).

It remains to show the completeness of K. To the purpose let
us considor a Cauchy sequence a,a, a,--- in R. Such a sequence is
clearly a Cauchy sequence in o, so has a limit @ in 0. On the other
hand, the sequence 6,(a)).0,(a,), 6,(a,)--- is a Cauchy sequence in R, so
has a limit «; in R; since R; is primary, manely complete. It is
evident that 6,(@)=q,, (a;, A}, Xppoy-)=ACR and @(A)=a, and this
means that a=R. Hence R is complete.

To go further, we need the following lemma.

LEMMA 4. Let o be a complete local ving with the maximal ideal
(D), then any complete subring o' of o with a maximal ideal (D), such
that o'[/(p)=F=o/(p) coincides with o itself.

PROOF. Any element @ of o may be expressed in the form
a,+ap;a—=o,a o as @(0)=@(v). Inparticular, we have a relation
a,=a+a,p;a<o,ao0. Hence we have a=a,+a p+a,p’:a,a,cv,
a,=o. Generally, we have a relation a—=a,+a p+a,p*+---a,_ p~'+
a;p;a,al.a,--,a_—0o,a;=o0. The sequence a,a,+a;p, a,+a p+a,p*---
has a limit @’ in o’ since o’ is complete by assumption. On the other
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hand, a—(a;,+a p+a,p’+---+a,_, p=a,p'=(p’), and this converges
to zero when ¢— co. This means a—a’'=0, therefore a<o'.

Combining this lemma with [Theorem 2, we obtain the following
theorem.

THEOREM 3. Let ¢ be a complete local ring having a characteristic
different from the charactervistic p of the residue field F. If F is
perfect, then there exists only one complete subring R of o with the
maximal ideal (p), such that @R)—F. In the other case, complete
subrings R, R',--- of o with the maximal ideal (p), such that @(R)=F,
@(RY=F,---, are mutually isomorphic to each other.

Proor. We shall first show that any R can be regarded as a
subring of o constructed by the method used in the proof of Theorem
2. In considering

Ro={A; A= (), Apyy, Qpypee), GCR/M Co/, @, 440 (y) =),

we obtain a subring ¢(R)=R, of R, but Lemma 4 asserts R =R.
In fact, this construction with R, is the one of the constructions in
the proof of theorem 2.

So the first part of this theorem follows from the proof of
Lemma 8 and Theorem 2.

For the second part of this theorem, we may regard all R, R/,.--
as constructed in the mentioned way, using eventually different c¢’s
in @ (v,), 7=1" in the proof of Lemma 3, Then the isomorphism of
R, R,... is evident from the proof of Lemma 38 and Theorem 2.

Now we can easily prove thefollowing result. (cf. and [2]).

THEOREM 4. Let o and o' be complete local rings with a maximal
tdeal (p), having the residue field isomorphic to each other. If o has
the same characteristic as o'. then o and o are mutually isomorphic to
each other. If the chaiacteristic of o is pr (==0), and the characteristic
of o' is zero ov pv' (v >ry), then there exists a homomorphism of o' onto o.

PROOF. The first part of this theorem is evident by the proof of
Theorem 3. The second part of the theorem can be proved immedi-
ately from the first part in considering the factor ring o/(p").

International Christian
University, Tokyo.



L1]
Lz21]

L3]
L4]

On the structure of complete local rings. 443

References

I.S. Cohen, On the structure and 1deal theory of complete local rings; Trans.

Amer. Math. Soc., 59 (1956), pp. 54-106.
M. Nagata, On the structure of complete local rings; Nagoya Math. J., 1 (1950),

pp. 63-70.

M. Nagata, Corrections; Nagoya Math. J., § (1953) pp. 145-147.

A. Geddes, A short proof of the existence of coefficient fields for complete equi-
characteristic local rings, J. Lond. Math. Soc., 29 (1954), pp. 334-341.




	On the structure of complete ...
	\S 1.
	THEOREM 1. ...

	\S 2
	THEOREM 2. ...

	References


