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Theory of arithmetic linear transformations and
its application to an elementary proof

of Dirichlet’s theorem.
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Introduction.

A. Selberg [8] proved Dirichlet’s theorem about the primes in an
infinite arithmetic progression in an elementary way. His basic idea
was in the introduction of a new kind of asymptotic formulas, a
typical one being the so-called Selberg’s asymptotic equality. His
method, however, is not entirely different from those used in classical
proofs since Dirichlet, and this fact is explained in the present paper
by a principle, which we would call theory of arithmetic linear
transformations.

This principle was, in its essence, perceived by many authors,
notably by Mobius, Glaisher (Cf. [2, Chapt. XIX]), Landau, Selberg
and others (Cf. [7, 10]), but seems not fully recognized.

It is observed that any of the existing proofs of Dirichlet’s
theorem consists of the two steps. The first, and the formal part is

the derivation of the theorem from the fact that $\beta(\chi)=\sum_{n=1}^{\infty}\chi(n)/n\neq 0$

for any non-principal real character $\chi mod k$. And the second, more
conceptual part is the proof of this fact.

As for the first part, the classical proofs make use of Dirichlet
L-fuuctions associated with characters $\chi mod k$ (which are generating
functions of $\chi$ in the form of Dirichlet series), whereas Selberg re-
places it by Selberg’s asymptotic equality. In the idea of the proof,
the classical method is more elementary, since it aims to generalize
the well-known Mertens-Polignac formula $\sum_{p\leqq x}\log p/p=\log x+O(1)$ ,

whereas Selberg uses a more complicated sum. Here we can proceed
along the classical line without resorting to L-functions.
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As for the second step, the classical (Mertens.Landau [4, 5,])
method is decisively simpler, if not natural, since Selberg’s method
cannot avoid the use of the reciprocity law of quadratic residues.
We can again give an interpretation of the former, which seems
readily to be generalized to any algebraic number field.

\S 1. Arithmetic linear transformations.

l.–Let $A$ be the totality of complex-valued arithmetic functions
$\alpha$ , and let $F$ be the totality of complex-valued functions $f$ defined
over the interval $(0, +\infty)$ such that $f(x)=0$ over $(0,1)$ . $A$ is natur-
ally imbedded in $F$ by putting $\alpha(x)=0$ for non-integral values of $x$.
This injection map will be denoted by $i:\alpha\rightarrow i(\alpha)$ .

For $\alpha\in A$ and $f\in F$ we define $S_{a}f$ by

(1) $(S_{a}f)(x)=\sum_{n}\alpha(n)f(x/n)$ .
The summation may be restricted to $1\leqq n\leqq x$, and it is obvious that
$S_{a}f\in F$. $S_{a}$ is hence a linear transformation of $F$, which we shall
call an arithmetic linear transformation. If $\beta\in A$ we have

$S_{a}i(\beta)=i(\alpha*\beta)$ ,

where $\alpha\kappa\beta$ is called the convolution of $\alpha$ and $\beta$ :

$(\alpha*\beta)(n)=\sum_{m1n}\alpha(m)\beta(n/m)$ .

It is also obvious that

$S_{a}f+S_{\beta}f=S_{a+\beta}f$,
(2)

$S_{a}S_{\beta}f=S_{a*\beta}f$ ,

(3) $\alpha*(\beta*\gamma)=(\alpha*\beta)*\gamma$ .

Note that (3) is the special case of (2). Now $A$ forms a commutative
ring with respect to $(+, *)$ , whose unit element $e$ is defined by

(4) $e(n)=\delta_{n,1}$ (Kronecker delta).

The $\alpha$ with $\alpha(1)\neq 0$ has an inverse $\alpha^{(-1)}$ .
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$2.$–The family $A$ forms another ring $A(+, .)$ with respect to
addition $(+)$ and term-by-term multiplication $(\cdot)$ . The unit element
$\iota$ is here defined by

(5) $\iota(n)=1$ (for any $n$).

The inverse of $\iota$ in the sense of convolution is denoted by $\mu$, where

$\mu(n)=(-1)^{s}$, if $n$ is product of $s(\geq 0)$ distinct primes;
(6)

$=0$ , otherwise.

It is the Mobius’ function. And Mobius’ inversion formula may be
written compactly as
(7) $S_{\iota}f=g_{\rightarrow}\leftarrow S_{\mu}g=f$ ,

(8) $\iota*\alpha=\beta_{\rightarrow}\leftarrow\mu*\beta=\alpha$ ,

the two forms corresponding to (2) and (3). The second is conveni-
ently written as
(9) $(\mu*\beta)(n)=\prod_{pn}\Delta\beta(n)p$

where $\Delta$ is an analogue of difference operator $\Delta$ in the theory of
$p$

finite differences:

(10) $\Delta\alpha(n)=\alpha(n)-\alpha(n/p)p$

$3.$–We denote by $L$ the arithmetic function

(11) $L(n)=\log n$ .
Then we have

(12) $ L(\alpha*\beta)=L\alpha*\beta+\alpha*L\beta$,

or the term-by-term multiplication by $L$ yields a derivation of the
ring $A(+, *)$ . The last formula has its counterpart in $F$ :

(13) $\log xS_{a}f(x)=S_{L\alpha}f(x)+S_{a}\log xf(x)$ .
A very important family of arithmetic functions is defined by
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(14) $A_{m}=\mu*L^{m}$ $(m=0,1,2, \cdots)$ .
( $L^{0}$ denotes of course $\iota.$ ) $\Lambda_{1}=\Lambda$ is von Mangoldt’s function, and $\Lambda_{2}$

is Selberg’s function. In a more explicit form they are given by
(Cf. [10])

$\Lambda(n)=L(p)$ , if $n$ is power of prime $p$,
(15)

$=0$ , otherwise;

$\Lambda_{2}(n)=(2e-1)L^{2}(p)$ , if $n=pe$ and $p$ prime,

$=2L(p)L(q)$ , if $n=peq^{f}$ where $p,$ $q$ are
(16) distinct primes,

$=0$ , otherwise;

and in general if $n=p_{1}e_{1}\ldots p_{s^{S}}e$ where $p_{1},\cdots,$ $p_{s}$ are distinct primes,

(17) $\Lambda_{m}(n)=\sum\frac{m.!}{j_{1}!\cdot\cdot j_{s}!}\nabla^{e^{j_{1^{1}}}}\cdots\nabla^{e_{s^{s}}^{i}L(p_{1})^{j_{1}}\cdots L(p_{s})^{j_{s}}}$

summation being taken over all positive integral solutions $(j_{1},\cdots,j_{s})$

of $m=j_{1}+\cdots+j_{s}$, and where $\nabla^{e^{j}=e^{j}-}(e-1)^{j}$, for instance $\Lambda_{m}(n)=0$

if $s>m,$ $i$ . $e.$ , if $n$ has more than $m$ distinct prime factors.

$4.-\alpha\in A$ is termed multiplicative if $\alpha(mn)=\alpha(m)\alpha(n)$ for $(m, n)=1$

and factorable if $\alpha(mn)=\alpha(m)\alpha(n)$ unconditionally. In either case
$\alpha=0$ ( $i$ . $e.,$ $\alpha(n)=0$ for any $n$), or $\alpha(1)=1$ and $\alpha^{(-1)}$ exists.

If $\alpha$ and $\beta$ are multiplicative, $\alpha\beta$ and $\alpha*\beta$ are multiplicative,
and if $\alpha\neq 0$ is multiplicative $\alpha^{(-1)}$ is so.

If $\alpha$ and $\beta$ are factorable, $\alpha\beta$ is factorable.
If $\alpha$ is factorable, then

(18) $\alpha(\beta\star\gamma)=\alpha\beta*\alpha\gamma$ .

$5.$–Now let $k>1$ be an integer, and $a$ be an integer such that
$(a, k)=1,0<a<k$ . For any of these $\varphi(k)$ values of $a$ we define
arithmetic functions $\iota_{a}$ by $\iota_{a}(n)=1$ or $0$ , according as $n\equiv a$ , or $n\not\equiv a$

$(mod k)$ . These functions $\iota_{a}$ will form a group if we define their
composition by $\iota_{a}O\iota_{b}=\iota_{c}$ , for $c\equiv ab$ $(mod k)$ ; and the characters of
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this group are characters $mod k$ . Denote these characters by $\chi,$ $\cdots$ .
Then as is well known

$\chi=\sum_{a}\chi(a)\iota_{a}$ ,
(19)

.

$\iota_{a}=\varphi(k)1\sum_{\chi}\chi\overline{(}a)$ ,

the bar indicating of course conjugate complex.

$6.$–Let 1 denote the unit element of the ring $F$, i. e., the func-
tion with constant value 1 over $[1, \infty$ ) and $0$ over $(0,1)$ . We define
the trace $T(\alpha)$ of the element $\alpha\in A$ by $T(\alpha)=S_{a}1$ . Note that this
is the function of $x$, though the argument $x$ is not written explicitly.
We have for instance

$T(\iota)=[x]$ ,
(20)

$T(\alpha*\beta)=S_{\alpha}T(\beta)=S_{\beta}T(\alpha)$ ,

and the Selberg’s asymptotic equality may be written as
(21) $T(\Lambda_{2})=2x\log x+O(x)$ ,

of which a natural generalization is

(22) $T(\Lambda_{m})=mx\log^{m-1}x+O(x\log^{m-2}x)$ $(m\geq 2)$ ,
whereas the case $m=1$ ,

(23) $T(\Lambda)\sim x$

is essentially difficult to prove and is equivalent to the prime-number
theorem, since $T(\Lambda)=\psi(x)$ is Tchebychef’s function.

$7.$–All the above results are readily extended to the case of an
arbitary (finite) algebraic number field $K$, with slight modifications.
We state them here merely for a future use.

First $A$ is replaced by the totally $A_{K}$ of arithmetic functions of
$K,$ $i,$ $e.$ , functions $\alpha$ of integral ideals $\mathfrak{a}$ of K. $F$ remains the same.
The definition (1) is replaced by

(1) $(S_{\alpha}f)(x)=\sum_{t1}\alpha(\mathfrak{a})f(x/N\mathfrak{a})$ .
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There is no injection map this time, but the convolution of $\alpha$ and $\beta$

in $A_{K}$ is defined directly by

$(\alpha*\beta)(\mathfrak{a})=\sum_{b|\alpha}\alpha(b)\beta(\mathfrak{a}/b)$ .
Instead of (11) we define

(11) $L(\mathfrak{a})=\log N\mathfrak{a}$ .
Then (7), (8), (12) and (13) remain valid; and (4) $-(9)$ , (10), (15) $-(18)$

will be valid if we replace $n$ by $\mathfrak{a},$ $p$ by $\mathfrak{p}$ , prime ideal in $K$, and 1
(in (5)) by $0$ , the unit ideal in $K$.

Next we must replace (20) by the formula of Dedekind, stating
that

(20‘) $T(\iota)=gx+O(x^{1-1/n})$ ,

where $g$ is a positive constant denoting the “ natural density “ of
ideals in $K$, and $n$ is the degree of $K$ over rational field. Then (21)-
(23) will be valid, and can be proved by mere transliteration.

\S 2. Elementary proof of Dirichlet’s theorem.

$8.$–We now return to the case of rational number field and
prove some lemmas. These are more or less well known, but we
present here just in the form which is ready to be generalized for
any algebraic number field.

LEMMA 1. $S_{\mu}x=O(x)$ .
PROOF. $S_{\mu}x=S_{\mu}[x]+S_{\mu}(x-[x])=S_{\mu}T(\iota)+S_{\mu}O(1)=T(\mu*\iota)+O(S_{\iota}1)$

$=1+O([x])=O(x)$ .
LEMMA 2. S. $\log x=_{1}x+O(\log x)$ .
PROOF. S. $\log x=\log xS_{\iota}1-S_{L}1=[x]\log x-\log[x]!=x\log x+O(\log x)$

$-(x\log x-x+O(\log x))=x+O(\log x)$ .
LEMMA 3. $\psi(x)=T(\Lambda)=O(x)$ .
PROOF. $T(\Lambda)=S_{\mu}T(L)=S_{\mu}\log[x]!=S_{\mu}(x\log x-x+O(\log x))$

$=S_{\mu}x\log x+O(x)+O(x)$ . But since $S_{\iota}x=x\sum_{n\leq x}1/n=x\log x+Cx+O(1)$ ,

with Euler’s constant $C$, we have $x=S_{\mu}S_{\iota}x=S_{\mu}x\log x+CS_{\mu}x+S_{\mu}O(1)$

$=S_{\mu}x\log x+O(x)+O(x),$ $i$ . $e.,$ $S_{\mu}x\log x=O(x)$ .
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LEMMA 4. $S_{\Lambda}x=x\log x+O(x)$ .
PROOF. $S_{\Lambda}x=S_{\Lambda}[x]+S_{\Lambda}O(1)=S_{\Lambda}T(\iota)+O(S_{\Lambda}1)=T(L)+O(\psi(x))$

$=\log[x]!+O[x]=x\log x+O(x)$ . This Lemma is equivalent to the
Mertens-Polignac formula $\sum_{p\leqq x}\log p/p=\log x+O(1)$ .

$9.$–Now let $k$ be an integer $>1$ , and $\chi$ be a non-principal

character $mod$ . $k$ , and put $\beta=\beta(\chi)=\sum_{n=1}^{\infty}\chi(n)/n$.
LEMMA 5. If $\beta\neq 0,$ $S_{\chi\Lambda}x=O(x)$ .
PROOF. It is easy to see that $\sum_{n>x}\chi(n)/n=O(1/x)$ . Thus $S_{\chi}x$

$=x\sum_{n\leqq x}\chi(n)/n=\beta x-x\sum_{n>x}\chi(n)/n=\beta x+O(1)$ . Applying $S_{\chi\Lambda}$ we have

$S_{\chi\Lambda}S_{\chi}x=\beta S_{\chi\Lambda}x+OS(1)$ , $i$ . $e.,$ $S_{\chi L}x=S_{\chi\Lambda*\chi}x=\beta S_{\chi\Lambda}x+OS_{\Lambda}(1)=\beta S_{\chi\Lambda}x+O(x)$ ,
by using (18), (14). Since $\sum_{n\leqq x}\chi(n)L(n)/n$ is bounded, $S_{\chi L}x=O(x)$ , and

$S_{\chi\Lambda}x=O(x)$ , provided that $\beta\neq 0$ .
LEMMA 6. If $\beta=0$ , $S_{\chi\Lambda}x=-x\log x+O(x)$ .
PROOF. $S_{\chi}x\log x=\log xS_{\chi}x-S_{\chi L}x=(\beta x+O(1))\log x-S_{\chi L}x=-S_{\chi\ovalbox{\tt\small REJECT} L}x+$

$O(\log x)$ . Applying $S_{\chi\mu}$ we. find $x\log x=S_{\chi\mu^{*}\chi}x\log x=-S_{\chi\mu*\chi L}x$

$+S_{\chi\mu}O(\log x)=-S_{\chi\Lambda}x+O(x)$ .
LEMMA 7. There is at most one non-principal character $\chi mod k$

such that $\beta=0$ , and if there exists one such, it must be a real character.
PROOF. By (19) we have

(24) $\varphi(k)S_{\iota\Lambda}x=\sum_{\chi}\chi(a)S_{\chi A}x$ .
Here left-hand side is

(25)
$\varphi(k)x\sum_{n\leqq x}n\equiv a(mcdk)$ $n$

$\Lambda(n)\geq 0$ ,

and the right-hand side is, by Lemmas 6 and $7,$ $=(1-u)x\log x+O(x)$ ,
if we denote by $u$ number of non-principal characters $\chi$ with $\beta(\chi)=0$ .
This means that $u=0$ or $u=1$ , and that if $u=1$ , the character $\chi$

with $\beta(\chi)=0$ must be real, since $\beta(\chi)=0$ and $\beta(\chi)=0$ are equivalent.
There are thus only. two possibilities;
A) $u=0$ . Then by (25),

$n\equiv a(mod k)\sum_{n\leqq x}\Lambda(n)/n=(\varphi(k))^{\leftarrow 1}\log x+O(1)$

,
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which, after standard transformation yields

$p\equiv a(mod k)\sum_{p\leqq x}\log p/p=(\varphi(k))^{-1}\log x+O(1)$

This, in particular, implies that there are inflnitely many primes in
the arithmetic progression $a,$ $a+k,$ $ a+2k,\cdots$ .

B) $u=1$ . Then denoting the exceptional character by $\chi$ we
have

$p\equiv ap\leq\sum_{x=}\log p/p=(1-\chi(a))/\varphi(k)\cdot\log x+O(1)$
,

which means, roughly speaking, almost all primes satisfy $\chi(p)=-1$ .
Thus in order to prove Dirichlet’s theorem, we have only to

show that $\beta\neq 0$ for any real non-principal character, or that there
are “ sufficiently many ” primes with $x(p)=1$ for each non-principal
real character. These two directions correspond to the classical
(Mertens-Landau) and Selberg’s proofs.

$10.$–In the rest of the paper $\chi$ always denotes a real non-
principal character $mod$ . $k$. We define $\xi=\iota*\chi$ and $\eta=\xi*\xi$ . These
are multiplicative, as seen from \S 4, and if $p$ is a prime, $\xi(p^{\underline{\circ}})=$

$1+x(p)+\cdots+\chi(pe)\geqq 0$ , where the equality sign is valid only when
$x(p)=-1$ and $2+e$. Thus

(26) $\xi(n)\geq 0$

and

(27) $\xi(n^{2})\geq 1$ , $\xi(pn^{2})\geq 1$ (for $p$ with $x(p)=1$ ) ,

for any integer $n$.
LEMMA 8. $T(\xi)=\beta x+O(\sqrt{x})$ ,

$T(\xi)\geq[\sqrt{x}]$ .
PROOF. $T(\xi)=\sum_{n\leq x}\xi(n)=\sum_{n\leq x}\sum_{m1n}\chi(m)=’\sum_{mn\leq x}\chi(n)=Z_{1}+Z_{2}$ , where $Z_{1}$

$=\sum_{n\leqq\sqrt{}^{\frac{x}{x}}}\chi(n)=\sum_{\leq mn\leqq\sqrt{}}n_{m\leqq}n\sqrt{}(x_{-+O(1))=\beta x+O(\sqrt{}\overline{x}}n-)+$
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$+O(\sqrt x)=\beta x+O(\sqrt x )$ , and $Z_{A}$
)

$=\sum_{m_{n>\sqrt{}}n\leqq x_{X}}\chi(n)=\sum_{x_{\sqrt{}}m<\sqrt{}}\sum_{x ,x<n\leqq}\chi(n)m=\sum_{ll<x}O(1)\sqrt{}$

$=O(\sqrt x)$ . This is the first relation. Next it follows from (26),

(27) that $T(\xi)=\sum_{\leq flx}\xi(n)\geqq\sum_{n^{2}\leq x}\xi(n^{2})\geqq\sum_{n^{2}\leq x}1=[\sqrt x]$ .

LEMMA 9. $T(\eta)=\beta(S_{\xi}x+O(x))+O(\sqrt x)$ ,
1 $\sqrt x\log x$

$T(\eta)\geqq 4$ $(x\geq 4)$ .

PROOF. $T(\eta)=S_{\xi}T(\xi)=S_{\xi}(\beta x+O(\sqrt x))=\beta S_{\xi}x+S_{\xi}O(\sqrt x)$ . As

$\xi(n)\geqq 0$ and $\sqrt x/n\geqq 0$ we see that $S_{\xi}O(\sqrt x)=O(S_{\xi}\sqrt x)$ , and it is

sufficient to prove that $S_{\xi}\sqrt x=\beta x+O(\sqrt x)$ , or that

(28) $\sum_{n\leqq x1^{/n}}\xi(n)=\beta\sqrt x+O(1)$ .

This is just the relation which Mertens [4] and Landau [5] adopted.
The relation (28) is proved quite in the same way as the previous

Lemma if we use auxilliary evaluations $\sum_{n\leqq x}1/\sqrt n=2\sqrt x^{-}+B$

$+O(1/\sqrt x)$ and $\sum_{x<n<y}\chi(n)/\sqrt n=O(1/\sqrt x)$ . The second part of the

Lemma is simple. In fact $T(\eta)=S_{\xi}T(\xi)\geqq S_{\xi}[\sqrt x]=$ $21\sqrt x\sum_{r\leq X}\xi(n)/\sqrt{n}$

$\geqq 21$ $\sqrt x$
$\sum_{n^{\angle}\leq x}\xi(n^{2})/\sqrt n^{2}\geqq$ $41\sqrt x\log x$.

Now Lemma 9 assures that $\beta>0$ , completing a proof of Dirich-
let’s theorem.

ll.–On the other hand Selberg [8] proved that

(29) $\sum_{\chi(p)=1}\log p/p>$
$91$ $\log x$ ,

which is seen equivalent to $\beta\neq 0$ . (29) is again equivalent to a
weaker one
(30) $\sum_{\chi(p)=1}\log p/p=\infty$ .
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In proving (29) Selberg used the reciprocity law of quadratic residues,
which gives an integer $D$ such that $x(p)=(D|p)$ with Legendre
symbol, and he showed (29) through an evaluation of the product

$P=\prod_{\sqrt{x}0<|u<_{\sqrt{}}}|u^{2}-Dv^{2}|0<|v1^{1}<x|D\overline{|}$

In view of (30) we may use somewhat simpler product than $P$,

(31) $R=\prod_{1^{\sqrt{D|}}<u<\wedge x}(u^{2}-D)$ .

Indeed if (30) is false, then $\beta=0$ and we have $T(\xi)=O(\sqrt x^{-})$ by

Lemma 8. We see from (27) that
$T(\xi)\geq\sum_{x^{(p)=1}}[\sqrt{}-x/p^{-}]\geq\sum_{p^{(p,^{1}}}[\sqrt x/px_{\leq^{)=}x}]$

$=\sum_{\sqrt{x}^{=1}}x^{(p)}p\leq(\sqrt{x}/\sqrt{p}+O(1))=\sqrt{x}(\sum_{p^{x_{\leq x^{1}}^{(p_{\sqrt{}^{)=}}}}}1/\sqrt{p}+O(1))$
and hence that

(32) $\sum_{x^{(p)=1}}1/\sqrt{p}<\infty$ .

Now if $p$ divide $R$, then $(D|p)=\chi(p)=1$ , and the order of $R$ with

respect to $p$ is given, for $p\leq\sqrt{x}$, by an analogue of Legendre’s
formula [2, p. 262]:

$2[\sqrt{x}/p]+[\sqrt{x}/p^{2}]+\cdots)+O(1)=2\sqrt{x/}p+O(\sqrt{x/}p^{?})+O(1)$ ,

whereas if $p>\sqrt{x}$ and $p|R$ then the order of $R$ with respect to $p$

is 1 or 2. Since it is evident that $\log R=\sqrt x\log x+O(\sqrt{x})$ , we have

$\prime_{X\log x+O(\sqrt{x})\leq 2\sqrt{x}}p^{\chi}\leq^{(\delta_{x^{1\chi}}^{\log p/p+O(\sqrt{x})}\delta^{\log p/p^{2}+},^{=}}p\leq^{p}x^{1}p$,

$+O\psi(\sqrt{x})+2\sum_{1}p>p_{\sqrt{}}R_{x}\log p=O(\sqrt x)+O(\sqrt{x})+O(\sqrt{x})+2$ $\sum_{p_{\sqrt{}}R_{x},p>}\log p$

,

2 $\sum_{\chi(p)}\log p\geq 2$
$\sum_{p_{\sqrt{}^{1R_{-}}},p>x}\log p\geq\sqrt xIogx+O(\sqrt x)$

.
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On the other hand, considering (32), we can take $x$ sufficiently
large and assume

$\sum_{p^{x_{>x}^{(p_{\sqrt{}^{)=1}}}}}1/\sqrt p^{-}<41$

Then, we would have

$\sqrt{}^{-}x\log x+O(\sqrt x)<2$
$\sum_{(p)=1,\sqrt{}}\log p=2$$\sum_{\prime,x^{\chi}<p\leq x}\sqrt{}\overline{p}\log p/\sqrt{p}x_{x<p^{1}\leq x}^{(p)=}$

$\leq 2\sqrt x\log xp>x^{-}\chi\delta_{\sqrt{}}1/\sqrt p<\frac{1}{2}\sqrt x\log x$
,

which is a contradiction. This completes again a proof of Dirichlet’s
theorem.

Kyushu University.
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