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Homogeneous Riemannian spaces
of four dimensions.
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E. Cartan [1] gave a general method to determine homogeneous
Riemannian spaces, $i$ . $e$ . those which admit a transitive group of
isometries or motions. He determined, in particular, applying his
own method, the topological structure of three dimensional homo-
geneous Riemannian spaces.

On the other hand, K. Yano [10] has given many beautiful theo-
rems on groups of isometries in a Riemannian space. But unfortun-
ately four dimensional spaces are excluded in most of his theorems.

The purpose of the present paper is to determine, by the same
method as Cartan’s, the topological structure of four dimensional
homogeneous Riemannian spaces which are connected and simply con-
nected. Following the programme indicated in [1], we shall first
determine in \S 1 all the types of subgroups of the proper orthogonal
group $R(4)$ in four variables. In \S 2, we shall explain, for the sake
of completeness, the general method of E. Cartan [1]. In \S 3, we shall
determine homogeneous Riemannian spaces admitting each subgroup
obtained in \S 1 as the group of stability. In most cases we deter-
mine the local structure of homogeneous Riemannian spaces by the
method of moving frames, and from the local structure obtained we
shall find the topological structure of the spaces.

Our main result is the following
THEOREM. Any four dimensional homogeneous Riemannian space

which is connected and simply connected is homeomorphic to one of the
following manifolds:

Euclidean space of four dimensions,
Sphere of four dimensions,
Complex projective space of two complex dimensions,
Product space of two spheres of two dimensions,
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Product space of a straight line and a sphere of three dimensions,
Product space of $a$ Euclidean plane and a sphere of two dimensions.
In \S 4 we shall consider the cases which are exceptional in Yano’s

theorems. \S 5 is devoted to the discussions of homogeneous Rieman-
nian spaces of four dimensions whose fundamental group is compact.
Finally in \S 6, we shall consider homogeneous K\"ahlerian spaces of
two complex dimensions.

\S 1. Subgroups of the proper orthogonal group $R(4)$ in
four variables. In this section we shall determine the types of
connected subgroups of $R(4)$ . It is well known that the universal
covering group of the proper orthogonal group $R(4)$ in four variables
is the product group of the universal covering group of the proper
orthogonal group $R(3)$ in three variables by itself [3]. In a Euclidean
space $E^{1}$ of four dimensions, there exist two families $\mathfrak{E}$ and $\mathfrak{E}^{\prime}$ of
oriented orthogonal frames $(e_{0}, e_{1}, e_{2}, e_{3})$ of unit vectors at the origin
of $E^{4}$ . With respect to one of these two families, say $\mathfrak{E}$, we define

$\theta_{ij}=de_{i}\cdot e_{j}$ $(i,j, k=0,1,2,3)$ ,
where

$\theta_{ij}+\theta_{ji}=0$ .
The differential forms $\theta_{ij}$ satisfy the following equations of structure
of our group $R(4)$ :
(1.1) $d\theta_{ij}=\sum_{k}\theta_{ik}\wedge\theta_{kj}$ .

Introducing the following differential forms:
$\varphi_{1}=\theta_{01}-\theta_{23}$ , $\varphi_{2}=\theta_{02}-\theta_{31}$ , $\varphi_{3}=\theta_{03}-\theta_{12}$ ;

(1.2)
$\psi_{1}=-\theta_{01}-\theta_{23}$ , $\psi_{2}=-\theta_{02}-\theta_{31}$ , $\psi_{3}=-\theta_{03}-\theta_{12}$ ,

we have the relations

$d\varphi_{1}=\varphi_{2}\wedge\varphi_{3}$ , $d\varphi_{2}=\varphi_{3}\wedge\varphi_{1}$ , $d\varphi_{3}=\varphi_{1}\wedge\varphi_{2}$ ;
(1.3)

$d\psi_{1}=\psi_{2}\wedge\psi_{3}$ , $d\psi_{2}=\psi_{3}\wedge\psi_{1}$ , $d\psi_{3}=\psi_{1}\wedge\psi_{2}$

by virtue of (1.1). From (1.3), we have the decomposition of the
universal covering group of $R(4)$ . If we use the family $\mathfrak{E}^{\prime}$ of frames
instead of $\mathfrak{E}$ , the systems of forms $\varphi_{p}$ and $\psi_{p}(p=1,2,3)$ are inter-
changed mutually. From these preliminary remarks we get
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PROPOSITION. Let $\mathfrak{H}$ be a non-trivial subalgebra of the Lie algebra
$\mathfrak{G}$ of $R(4)$ . Then $\mathfrak{H}$ is equivalent, under an adjoint transformation in-
duced on $\mathfrak{G}$ by an element of the orthogonal group $O(4)$ , to one of the
subalgebras defined by the following equations:

$1^{0}$ . $\varphi_{2}=\varphi_{3}=0$ ;

$2^{0}$ . $\varphi_{1}-\psi_{1}=0$ , $\varphi_{2}-\psi_{2}=0$ , $\varphi_{3}-\psi_{3}=0$ ;

$3^{0}$ . $\varphi_{1}=\varphi_{2}=\varphi_{3}=0$ ;

$4^{0}$ . $\varphi_{2}=\varphi_{3}=\psi_{2}=\psi_{3}=0$ ;

$5^{0}$ . $\varphi_{1}=\varphi_{2}=\varphi_{3}=\psi_{2}=\psi_{3}=0$ ;

$6^{0}$ . $\varphi_{2}=\varphi_{3}=\psi_{2}=\psi_{3}=0$ , $m\varphi_{1}=\psi_{1}$ $(m>0)$ .
Each of these equations can be expressed by the corresponding

relations among $\theta’ s$ according to the definition (1.2). From these
equations, we are able to construct the matrix-representation of a
connected subgroup of $R(4)$ corresponding to each of the subalgebras
given in the above list, and we have a familiar linear group in each
case.

By virtue of this proposition, we have a lemma concerning sub-
groups of $R(4)$ .

LEMMA. Let $g$ be a connected Lie subgroup of the proper orthogonal
group $R(4)$ in four variables. Then $g$ is one of the eight subgroups
$g_{1},$ $g_{2},\cdots,$ $g_{8}$ of $R(4)$ up to conjugation with respect to $O(4)$ , where the sub-
groups $g_{1},$ $g_{2},\cdots,$ $g_{8}$ are defined as follows:

(I) $g_{1}=R(4)$ and $\dim g_{1}=6$ ;

(II) $g_{2}$ has the Lie algebra defined by $1^{0}$ and $\dim g_{2}=4$ ;

(III) $g_{3}$ has the Lie algebra defined by $2^{0}$ and $\dim g_{3}=3$ ;

(IV) $g_{4}$ has the Lie algebra defined by $3^{0}$ and $\dim g_{4}=3$ ;

(V) $g_{5}$ has the Lie algebra defined by $4^{0}$ and $\dim g_{6}=2$ ;

(VI) $g_{6}$ has the Lie algebra defined by $5^{0}$ and $\dim g_{6}=1$ ;

(VII) $g_{7}$ has the Lie algebra defined by $6^{0}$ and $\dim g_{7}=1$ ;

(VIII) $g_{8}$ is composed only of the identity element.
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It is to be noted that $R(4)$ has no subgroup of order 5 and has
subgroups of order 4. In general, D. Montgomery and H. Samelson
[7] have proved that in an n-dimensional Euclidean space, for $n\neq 4$ ,
there exists no proper subgroup of the rotation group of order greater
than $(n-1)(n-2)/2$ .

\S 2. General method of E. Cartan. The homogeneous Rieman-
nian space $M$ is naturally identified with the coset space $G/g$ of the
fundamental group $G$ of $M$, where $G$ is a Lie group and $g$ is the
subgroup of stability at a point $O\in M$. Let us suppose hereafter that
the group $G$ is effective on $M$. The group of stability at the point
$O$ induces a group $\tilde{g}$ of orthogonal transformations on the tangent
space of $M$ at $O$. Since $G$ is effective on $M,$ $g$ is isomorphic to $\tilde{g}$.
It is not an essential restriction, for our problem, to assume that $g$

is connected. Therefore the subgroup $g$ is assumed to be one of the
subgroups $g_{1},$ $g_{2},\ldots,$ $g_{8}$ contained in the lemma of \S 1.

We shall begin with a sketch of the Cartan’s method [1]. An
element of the Lie algebra of $R(4)$ can be expressed by

$\sum_{i<j}\xi_{ij}X_{ij}$ , $\xi_{ij}+\xi_{ji}=0$ ;

where $\xi’ s$ are real numbers and $X’ s$ are the infinitesimal operators
such that $X_{ij}f=x^{i}\partial f/\partial x^{j}-x^{j}\partial f/\partial x^{i}$. Here, Latin indices $i,j,$ $ k,\ldots$ run
over the range $0,1,2,3$ in this section. Let us suppose that the Lie
algebra of the group $g$ of stability, which is considered as a sub-
group of $R(4)$ , is expressed by some linear equations

(2.1) $\sum_{i<j}A_{aij}\xi_{ij}=0$ $(\alpha=1,2,\ldots, m)$ ,

where $m$ is an integer and $A_{aij}$ are constants.
On the other hand, let $\mathfrak{F}$ be a family of adapted frames $(P, e_{i})$

of $G$ on $M$, where the point $P$ runs over $M$ In usual way, the
variation of frames of $\mathfrak{F}$ can be given by the equations

$dP=\sum_{k}\omega_{k}e_{k}$ ,
$de_{i}=\sum_{k}\omega_{ik}e_{k}$ , $\omega_{ij}+\omega_{ji}=0$ .

These equations give the Euclidean connection of the Riemannian
space $M$ with respect to the family $\mathfrak{F}$ of adapted frames. The
Riemannian metric on the space $M$, which is invariant under the
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fundamental group $G$ , is given by

$ds^{2}=\sum_{k}\omega_{k}^{?}$ .
Moreover, the relative components of the group $G$ are given by
some independent linear combinations of the forms $\omega_{i}$ and $\omega_{ij}$.

On the subgroup $g$ of $G$ , which is defined by $\omega_{i}=0$ , the forms $\omega_{ij}$

satisfy the relations
$\sum_{i<j}A_{aij}\omega_{ij}=0$ $(\alpha=1,2,\cdots, m)$ .

Then, on the group $G$ we have

(2.2) $\sum_{i<j}A_{aij}\omega_{ij}=\sum_{i}C_{ai}\omega_{i}$ $(\alpha=1,2,\cdots, m)$ ,

where $c_{ai}$ are constants to be determined.
An element $X=\sum_{i<J}\xi_{ij}X_{ij}$ of the Lie algebra of $g$ induces an

infinitesimal transformation on the family $\mathfrak{F}$ of adapted frames, and
then $X$ induces variations of $\omega_{j}$ and $\omega_{ij}$. The variations of the forms
$\omega_{i}$ and $\omega_{ij}$ induced by $X$ are given by

$\delta\omega_{i}=\sum_{k}\xi_{ik}\omega_{k}$ ,
$\delta\omega_{ij}=\sum_{k}\xi_{ik}\omega_{kj}+\sum_{k}\xi_{jk}\omega_{ik}$ .

Since the relations (2.2) are invariant, we have

(2.2) $\sum_{i<;}A_{\alpha ij}\delta\omega_{ij}=\sum_{i}c_{ai}\delta\omega_{i}$ $(\alpha=1,2,\cdots, m)$ .
Thus, substituting the above variations of $\omega_{i}$ and $\omega_{ij}$ in both sides
of $(2.2)^{\prime}$ , we have the following relations:

(2.3) $\sum_{i<i}\sum_{k}A_{aij}(\xi_{ik}\omega_{kj}+\xi_{jk}\omega_{ik})=\sum_{i,k}c_{\alpha i}\xi_{ik}\omega_{k}$ $(\alpha=1,2,\cdots, m)$ ,

where

$\sum_{i<j}A_{aij}\xi_{ij}=0$ .
From (2.3), we have some relations among the constants $c_{\alpha i}$. These

relations are very useful for us to determine the constants $c_{ai}$.
The equations of structure of the Riemannian space $M$ are, as is

well known, given by
$d_{\omega_{i}=\sum_{k}\omega_{ik}\wedge\omega_{k}}$ ,

(2.4)
$d\omega_{ij}=\sum_{k}\omega_{ik}\wedge\omega_{kj}+\Omega_{ij}$ ,

where $\Omega_{ij}=-\Omega_{ji}$ are the curvature forms of $M$ Let us here re-
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member well-known identities

(2.5) $\sum_{k}\Omega_{ik}\wedge\omega_{k}=0$ ,

and the identities of Bianchi

(2.6) $d\Omega_{ij}+\sum_{k}\Omega_{ik}\wedge\omega_{kj}-\sum_{k}\omega_{ik}\wedge\Omega_{kj}=0$ .
If the constants $c_{ai}$ are thus determined, we can write down the

equations (2.4) of structure of the Riemannian space $M$ Consequent-
ly, when the group $g$ of stability is given, the structure of the
Riemannian space $M$ is obtained. Since $M$ is complete, we can deter-
mine the topological structure of $M$, using the local structure of the
Riemannian space $M$ and the following lemma [1].

LEMMA. Let $M$ be an n-dimensional complete Riemannian space
which is connected and simply connected. Then $M$ is homeomorphic to
a sphere of $n$ dimensions, if its sectional curvature is a positive constant.
When $M$ has non-positipe sectional curvature, it is homeomorphic to a
Euclidean space of $n$ dimensions.

Furthermore, some additional remarks are needed. If the funda-
mental group $G$ of the homogeneous space $M$ is locally isomorphic
to a direct product of two groups $G_{1}$ and $G_{2}$ , and if, under the same
local isomorphism, the subgroup $g$ of stability is so, then the space
$M$ is locally isometric to a product space of two homogeneous Rie-
mannian spaces $M_{1}$ and $M_{2}$ whose fundamental groups are $G_{1}$ and $G_{2}$

respectively. In addition, if $M_{1}$ and $M_{2}$ are simply connected, then
$M$ is the direct product of $M_{1}$ and $M_{2}$ , since $M$ is simply connected.

Let us now introduce some notations about linear groups and
manifolds which will be used frequently in the paper.

$R(n)$ is the proper orthogonal group in $n$ real variables.
$L(n)$ is the connected component of the identity in the group of

all non-singular linear transformations in $n$ real variables $(x_{1}, x_{2},\cdots, x_{n})$

which leave invariant the quadratic form

$x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2}$ .
$U(n)$ is the unitary group in $n$ complex variables, and
$SU(n)$ is the group of all unitary transformations whose deter-

minants are equal to 1.
$\Lambda_{n}$ is the subgroup of $SU(n)$ which is composed of $n$ matrices
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$I_{n},$ $\lambda_{1}I_{n},\cdots,$ $\lambda_{n- 1}I_{n}$ , where $I_{n}$ is the unit n-matrix and $1,$ $\lambda_{1},$ $\lambda_{2},\cdots,$ $\lambda_{n-1}$

are distinct $n$ roots of the equation $x^{n}-1=0$ .
$\mathfrak{L}(n)$ is the group of all non-singular linear transformations in

$n$ complex variables $(z_{1}, z_{2},\cdots, z_{n})$ which leave invariant the form

$z_{1}\overline{z}_{1}+z_{2}\overline{z}_{2}+\cdots+z_{n- 1}\overline{z}_{n-1}-z_{n}\overline{z}_{n}$ .
$S\mathfrak{L}(n)$ is the group of all linear transformations of the group

$\mathfrak{L}(n)$ whose determinants are equal to 1.
$\mathfrak{M}(n)$ is the group of proper motions in an n-dimensional Euclidean

space.
$\mathfrak{M}_{H}(n)$ is the group of all martices which have the form

,

where the matrix $A$ runs over $U(n)$ and $a_{1},$ $a_{2},\cdots,$ $a_{\iota}$ take all complex
numbers.

$S\mathfrak{M}_{H}(n)$ is the subgroup of $\mathfrak{M}_{H}(n)$ for which $A$ runs over $SU(n)$ .
$E^{n}$ is a Euclidean space of $n$ dimensions.
$S^{\prime\iota}$ is a sphere of $n$ dimensions.
$P(C, n)$ is a complex projective space of $n$ complex dimensions.

(It is well known that $P(C,$ $n)$ is simply connected.)
$C(+, n)$ is a Riemannian space of $n$ dimensions with positive

constant curvature.
$C(-, n)$ is a Riemannian space of $n$ dimensions with negative

constant curvature.
$C(0, n)$ is a locally flat Riemannian space of $n$ dimensions.

\S 3. Determination of the space. We shall determine, for
each type of groups of stability, the local structure of the Rieman-
nian space $M$ following the Cartan’s method explained in \S 2. In
this section, the head-number of CASE denotes the type of the groups
of stability appearing in the lemma of \S 1. During the discussions
developed here, we talk frequently about such familiar linear groups
that are given at the end of \S 2. Therefore, some appendices are
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added at the end of the paper about the structure of these groups.
In subseq uent paragraphs indices run over the following ranges:

$i,j,$ $k,$ $=0,1,2,3$ ; $p,$ $q,$ $r,$ $\ldots=1,2,3$ ;

$\alpha,$ $\beta,$ $\gamma,\cdots=0,1$ .
3.1. CASE (I). In this case $g=R(4)$ . Then the Riemannian space

$M$ admits free mobility around any point of the space. Thus, $M$ is
$C(+, 4),$ $C(-, 4)$ or $C(O, 4)[1]$ . Consequently, the group $G$ is locally
isomorphic to $R(5),$ $L(5)$ or $\mathfrak{M}(4)$ respectively (Appendices 1, 2 and 5)
and hence $M$ is homeomorphic to $S^{4}$ or $E^{4}$ .

REMARK. M. Obata [8] has proved the following fact without
the additional condition that $M$ is simply connected. That is, if $M$

is $C(-, 4)$ or $C(0,4)$ , then it is homeomorphic to $E^{4}$ .
3.2. CASE (II). In this case, the equations (2.1) become

$\xi_{02}-\xi_{31}=\xi_{03}-\xi_{12}=0$ .
As a consequence of (2.3), we have

$\omega_{02}=\omega_{31}$ $\omega_{03}=\omega_{12}$ .
If we now put

$\pi_{0}=\omega_{0}+\sqrt{-1}\omega_{1}$ , $\pi_{1}=\omega_{2}-\sqrt{-1}\omega_{3}$ ,

then, by virtue of the first system of equations (2.4), we have
$d_{\pi_{0}=\pi_{00}\wedge\pi_{0}+\pi_{01}\wedge\pi_{1}}$ ,

(3.1)
$d_{\pi_{1}=\pi_{10}\wedge\pi_{0}+\pi_{11}\wedge\pi_{1}}$ ,

where
$\pi_{00}=-\sqrt{}^{-}-1^{-}\omega_{01}$ , $\pi_{11}=\sqrt{-}1\omega_{23}$ ,

$\pi_{01}=-\overline{\pi}_{10}=\omega_{02}+\sqrt{}^{-}-1\omega_{03}$ .
Here the conjugate complex of the form $\pi_{a\beta}$ is denoted by $\overline{\pi}_{a\beta}$ , and
analogous notations will be used for complex valued differential
forms throughout the paper. Then we are able to see that

$\pi_{a\beta}+\overline{\pi}_{\beta a}=0$ .
If we now put
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(3.2) $\Phi_{a\beta}=d\pi_{a\beta}-\sum_{\gamma}\pi_{a\gamma}\wedge\pi_{\gamma\beta}$ ,

then we have

$\Phi_{a\beta}+\overline{\Phi_{\beta a}}=0$ .
Hence $M$ is an Hermitian space without torsion, that is, a Kahlerian
space.

Moreover, in this case, the group $g$ of stability induces a com-
plex linear group $\tilde{g}$ on the complex tangent space $T$ of $M$ at the point
$O\in M$, and the group $g$ is isomorphic to $U(2)$ . Thus, the group $\tilde{g}$

transforms the (complex) directions on $T$ transitively; in other words,
$M$ admits free mobility around any point in the sense of the Hermitian
geometry. Then $M$ is a K\"ahlerian space with constant holomorphic
sectional curvature. Therefore, the curvature tensor of $M$ is given
by

$R_{a\overline{\beta}\gamma\overline{\delta}}=K(g_{a\overline{\beta}}g_{\gamma\overline{\delta}}+g_{a\overline{\delta}}g_{\gamma\overline{\beta}})$

according to K. Yano [9], where $K$ is a real constant, and

$ds^{2}=\sum_{a,\beta}g_{a\overline{\beta}}\pi_{a}\overline{\pi}_{\beta}(=\sum_{\gamma}\pi_{\gamma}\overline{\pi}_{\gamma})$ .
On the other hand, since $\Phi_{a\beta}$ are given by

$\Phi_{\alpha\beta}=\sum_{\gamma,\delta}R_{a}^{\beta_{\gamma\overline{\delta}}}\pi_{\gamma}\wedge\overline{\pi}_{\delta}$ ,

then we obtain
$\Phi_{00}=K(2\pi_{0}\wedge\overline{\pi}_{0}+\pi_{1}\wedge\overline{\pi}_{1})$ ,

(3.3) $\Phi_{11}=K(\pi_{0}\wedge\overline{\pi}_{0}+2\pi_{1}\wedge\overline{\pi}_{1})$ ,
$\Phi_{01}=-\overline{\Phi_{10}}=K\pi_{1}\wedge\overline{\pi}_{0}$ .

Now we shall consider three cases. In the case $K=0$ , we have
that $M$ is $C(O, 4)$ . Hence $Mis$ homeomorphic to $E^{4}$ and $G$ is locally
isomorphic to $\mathfrak{M}_{H}(2)$ (Appendix 6). In the case where $M$ is $C(O, 4)$ ,
the group $G$ contains a subgroup which is isomorphic to $S\mathfrak{M}_{H}(2)$

(\S 3.4. CASE (IV)). Then $G$ is isomorphic to $\mathfrak{M}_{H}(2)$ , when $M$ is $C(0,4)$ .
When $K\neq 0$ , replacing $\sqrt{}[K\overline{|}\pi_{0}$ and $\sqrt{}|K|\pi_{1}$ by $\pi_{0}$ and $\pi_{1}$

respectively, we have

$\Phi_{00}=e(2\pi_{0}\wedge\overline{\pi}_{0}+\pi_{1}\wedge\overline{\pi}_{1})$ ,
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$\Phi_{11}=\epsilon(\pi_{0}\wedge\overline{\pi}_{0}+2\pi_{1}\wedge\overline{\pi}_{1})$ ,

$\Phi_{01}=-\overline{\Phi}_{10}=e\pi_{1}\wedge\overline{\pi}_{0}$ ,

where $e$ is the sign of $K$ Hence, if we replace $\overline{\pi}_{a}$ and $\overline{\pi}_{\alpha\beta}$ by $\pi_{a}$

and $\pi_{a\beta}$ respectively, we have the following results.
When $K>0,$ $G$ is locally isomorphic to $SU(3)$ and $M$ is homeo-

morphic to $P(C, 2)$ (Appendix 3). Moreover, in this case $G$ is iso-
morphic to the factor group $SU(3)/\Lambda_{3}$ .

When $K<0$, the general sectional curvature of $M$ is always
negative according to K. Yano [9]. Consequently, $M$ is homeomorphic
to $E^{4}$ and $G$ is locally isomorphic to $S\mathfrak{L}(3)$ (Appendix 4).

As a consequence, we see that $M$ is homeomorphic to $E^{4}$ or
$P(C, 2)$ .

REMARK. The following fact holds good, as is known in \S 3.1,
without the additional condition that $M$ is simply connected. That
is, if the constant $K$ is negative or zero, $M$ is homeomorphic to $E^{4}$ .

We can easily generalize the results obtained in this paragraph.
That is, we obtain the following theorem.

THEOREM 1. Let $g$ be the group of stability of a $2n$-dimensional
homogeneous Riemannian space $V^{2n}=G/g$. If $g$ is isomorphic to the
real representation of $U(n)$ , then $V^{\underline{)}}n$ is a K\"ahlerian space with con-
stant holomorphic sectional curvature. If $V^{)}n$ is connected and simply
connected, and if $g$ is as above, then $V^{2n}$ is homeomorphic to $P(C, n)$ or
$E^{\underline{0}n}$ and the fundamental group $G$ is isomorphic to one of two groups
$SU(n+1)/\Lambda_{n+l},$ $\mathfrak{M}_{H}(n)$ , or locally isomorphic to $S\mathfrak{L}(n+1)$ .

3.3. CASE (III). In this case, the equations (2.1) become

$\xi_{01}=\xi_{02}=\xi_{03}=0$ .
As a consequence of (2.3), we have

$\omega_{op}=C\omega_{p}$ ,

where $c$ is a constant.
According to K. Yano [10], if $c=0$ , the Riemannian space $M$ is

one of the following spaces:
$V^{1}\times C(+, 3)$ , $V^{1}\times C(-, 3)$ , $C(0,4)$ ,

where $V^{1}$ is a straight line with its natural Riemannian metric.
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Consequently, $G$ is locally isomorphic to one of the following groups:

$A_{1}\times R(4)$ , $A_{1}\times L(4)$ , $A_{1}\times \mathfrak{M}(3)$

respectively, where $A_{1}$ is a l-dimensional vector group (Appendices
1, 2 and 5). Hence $M$ is homeomorphic to $E^{1}\times S^{3}$ or $E^{4}$ .

If $c\neq 0$ , according to K. Yano [10], $M$ is $C(-, 4)$ . Hence $M$ is
homeomorphic to $E^{4}$ . Here, we can assume $c=1$ without loss of gener-
ality. Then the group $G$ is locally isomorphic to a subgroup $G^{\prime}$ of
$L(5)$ by virtue of (2.4). Moreover, the group $G^{\prime}$ leaves invariant
every point on the straight line defined by

$x_{2}=x_{3}=x_{4}=0$ , $x_{1}+x_{5}=0$

in a space of five variables $(x_{1}, x_{2}, x_{3}, x_{4}, x_{6})$ on which the group $L(5)$

operates (Appendix 2).
Consequently, we find that $M$ is homeomorphic to $E^{4}$ or $E^{1}\times S^{3}$ .
REMARK. M. Obata [8] has proved the following two facts with-

out the additional condition that $M$ is simply connected. That is,
when $M$ is $C(-, 4)$ , it is homeomorphic to $E^{4}$ . When $M$ is locally iso-
metric to $V^{1}\times C(-, 3)$ or $C(0,4),$ $M$ is homeomorphic to $E^{4}$ or $S^{1}\times E^{3}$ .

3.4. CASE (IV). In this case, the equations (2.1) become

$\xi_{01}-\xi_{23}=\xi_{02}-\xi_{31}=\xi_{03}-\xi_{12}=0$ .

As a consequence of (2.3), we obtain

$\omega_{01}=\omega_{23}$ , $\omega_{02}=\omega_{31}$ , $\omega_{03}=\omega_{12}$ .
Putting now

$\pi_{0}=\omega_{0}+\sqrt{-1}\omega_{1}$ , $\pi_{1}=\omega_{2}-\sqrt{-1}\omega_{3}$ ,

we $see\cdot that$ the first system of (2.4) is reduced to (3.1), where

$\pi_{00}=-\sqrt{-1}\omega_{01}$ , $\pi_{11}=\sqrt{-1}\omega_{01}$ ,

$\pi_{01}=-\overline{\pi}_{10}=\omega_{02}-\sqrt{-1}\omega_{03}$ .
Evidently we have

$\pi_{a\beta}+\overline{\pi}_{\beta a}=0$ , $\pi_{00}+\pi_{11}=0$ .
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If we introduce the curvature forms $\Phi_{a\beta}^{\$}$ by (3.2), then we can
easily see that

$\Phi_{a\beta}+\overline{\Phi}_{\beta a}=0$ , $\Phi_{00}+\Phi_{11}=0$ .
Therefore, $M$ is a K\"ahlerian space. The group $g$ of stability behaves
in the same manner as in \S 3.2 CASE (II). Thus, the holomorphic
sectional curvature of $M$ is constant. Then we have the same rela-
tions as (3.3). On the other hand, since $\Phi_{00}+\Phi_{11}=0$ as mentioned
above, the constant $K$ in (3.3) is equal to zero. Consequently, $M$ is
$C(O, 4)$ and $G$ is locally isomorphic to $S\mathfrak{M}_{H}(2)$ (Appendix 6). Hence
$M$ is homeomorphic to $E^{4}$ .

REMARK. The results in this paragraph hold good without the
condition that $M$ is simply connected.

In this case, we can determine globally the fundamental group $G$

as follows. Since the given space $M=G/g$ is simply connected and $g$

is isomorphic to $SU(2)$ which is simply connected, the fundamental
group $G$ is also simply connected. Thus $G$ is isomorphic to $S\mathfrak{M}_{H}(2)$ ,
which is simply connected.

We can easily generalize the results obtained in this paragraph.
That is, we can prove the following

THEOREM 2. Let $g$ be the group of stability of a $2n$-dimensional
homogeneous Riemannian space $V^{2n}=G/g$. If $g$ is isomorphic to the real
representation of $SU(n)$ , then $V^{2n}$ is flat for $n\neq 3$. $I_{J}V^{2n}$ is connected,
and if $g$ is as above, then $V^{2n}$ is homeomorphic to $E^{4}$ and the funda-
mental group $G$ is isomorphic to $S\mathfrak{M}_{H}(n)$ for $n\neq 3$.

3.5. CASE (V). In this case, the equations (2.1) become

$\xi_{02}=\xi_{03}=\xi_{31}=\xi_{12}=0$ .
By virtue of (2.3), we have

$\omega_{02}=\omega_{03}=\omega_{31}=\omega_{12}=0$ .
Hence, if we now put $\omega_{01}=\omega$ and $\omega_{23}=\tilde{\omega}$ , we can easily see that

the forms $\Omega_{ij}$ are zero except

$\Omega_{01}=d\omega$ , $\Omega_{23}=d_{\tilde{\omega}}$ .
Since it follows from (2.5) that
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$d\omega\wedge\omega_{0}=d\omega\wedge\omega_{1}=0$ ,

$d\tilde{\omega}\wedge\omega_{2}=d\tilde{\omega}\wedge\omega_{3}=0$ ,

we have naturally

$d_{\omega}=K_{\omega_{0}\wedge\omega_{1}}$ , $d_{\tilde{\omega}}=K^{\prime_{\omega_{2}\wedge\omega_{3}}}$ .
In the above equations $K$ and $K^{\prime}$ are constants. Consequently, the
given space $M$ is a product space of two Riemannian spaces $M_{1}$ and
$M_{2}$ of two dimensions whose curvatures are constants.

If $K=0$ , the space $M_{1}$ is flat and then $M_{1}$ is homeomorphic to $E^{2}$ .
Thus $G_{1}$ is locally isomorphic to $\mathfrak{M}(2)$ , where $G_{1}$ is the fundamental
group of $M_{1}$ (Appendix 5). In the case where $K<0,$ $M_{1}$ is $C(+, 2)$ .
Then $M_{1}$ is homeomorphic to $S^{2}$ and $G_{1}$ is locally isomorphic to $R(3)$

(Appendix 1). When $K>0,$ $M$ is $C(-, 2)$ . Then $M_{1}$ is homeomorphic
to $E^{2}$ and $G_{1}$ is locally isomorphic to $L.(3)$ (Appendix 2). Moreover,

in the same way, the space $M_{2}$ and its fundamental group $G_{2}$ are
obtained. Consequently, the given space $M$ is homeomorphic to

$S^{2}\times S^{2}$ , $E^{2}\times S^{2}$ or $E^{4}$ .
3.6. CASE (VI). In this case, the equations (2.1) become

$\xi_{02}=\xi_{03}=\xi_{31}=\xi_{12}=0$ , $\xi_{23}=m\xi_{01}$ $(m>0)$ .
As a consequence of (2.3), we have

$\omega_{02}=\omega_{03}=\omega_{31}=\omega_{12}=0$ , $\omega_{23}=m\omega_{01}$ $(m>0)$ .
Then every form $\Omega_{ij}$ in (2.4) is zero except

$\Omega_{01}=d\omega_{01}$ , $\Omega_{23}=md\omega_{01}$ .

Furthermore, using (2.5), we get $d_{\omega_{01}}\wedge\omega_{i}=0$ , since $m\neq 0$. Then we
obtain automatically

$d\omega_{01}=0$ .
Therefore we have $\Omega_{ij}=0$ . Hence $M$ is $C(0,4)$ , and so $M$ is homeo-
morphic to $E^{4}$ . 0bserving (2.4), we can easily find that the group $G$

is locally isomorphic to a subgroup of $\mathfrak{M}(4)$ whose rotation-part is
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the group defined by the equations $5^{0}$ in Proposition in \S 1 (Appen-

dix 5).

3.7. CASE (VII)1). In this case, the equations (2.1) become

$\xi_{02}=\xi_{03}=\xi_{12}=\xi_{23}=\xi_{31}=0$ .
By virtue of (2.3), we have

$\omega_{02}=a\omega_{0}+b\omega_{1}$ , $\omega_{03}=\alpha\omega_{0}+\beta\omega_{1}$ ,

$\omega_{12}=-b\omega_{0}+a\omega_{1}$ , $\omega_{31}=\beta\omega_{0}-\alpha\omega_{1}$ , $\omega_{23}=r\omega_{2}+t\omega_{3}$ ,

where $a,$ $b,$ $\alpha,$ $\beta,$ $r$ and $t$ are constants which must be determined.
According to (2.5), we obtain

$2ab+r\beta=0$ , $2\alpha b-rb=0$ ,

(3.4) $2a\beta+t\beta=0$ , $2\alpha\beta-tb=0$ , $ar+\alpha t=0$ ,

$d_{\omega_{01}}=2K\omega_{0}\wedge\omega_{1}+(br+\beta t)\omega_{2}\wedge\omega_{3}$ ,

where $K$ is a constant. If we consider the identity (2.6) of Bianchi
for $i=0,$ $j=1$ , it is easily seen that

2$aK+\beta(br+\beta t)=0$ ,
(3.5)

2 $\alpha K-b(br+\beta t)=0$ .
These relations will be frequently used in the following discussions.

Since the treatment in this step is more complicated, we shall
consider following four cases:

(i) $b\neq 0$ , $\beta\neq 0$ ; (ii) $b\neq 0$ , $\beta=0$ ;

(iii) $b=0$ , $\beta\neq 0$ ; (iv) $b=0$ , $\beta=0$ .
3.7, (i). The case where $b\neq 0,$ $\beta\neq 0$ . Evidently, from (3.4),

we have

(3.6) $ r=2\alpha$ , $t=-2a$ , $ab+\alpha\beta=0$ .

1) Prof. T. $6tsuki$ has given the author manv valuable suggestions concerning the
treatments of this section.
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In this case, the equations (3.5) are reduced to

$aK+\beta(b\alpha-a\beta)=0$ ,

$\alpha K-b(b\alpha-a\beta)=0$ .
As a consequence of these relations and (3.6), it is easily seen

that $K=b^{2}+\beta^{2}$ , if $a\neq 0(\alpha\neq 0$ is a natural consequence of $a\neq 0$ and
$\beta\neq 0)$ . Then we have

$d\omega_{01}=2(b^{2}+\beta^{2})\omega_{0}\wedge\omega_{1}+2(b\alpha-a\beta)\omega_{2}\wedge\omega_{3}$ .
On the other hand, according to (3.6) and equations (2.4) of structure
of the space $M$, we obtain

$d_{\omega_{2}}=2b\omega_{0}\wedge\omega_{1}+2\alpha\omega_{2}\wedge\omega_{3}$ ,

$d\omega_{3}=2\beta\omega_{0}\wedge\omega_{1}-2a\omega_{2}\wedge\omega_{3}$ .
By virtue of these relations, if we put $\omega=\omega_{01}-b\omega_{2}-\beta\omega_{3}$ , we

get easily

$d\omega=0$ .
Therefore, the equation $\omega=0$ defines a subgroup $G^{\prime}$ of the funda-
mental group G. 0bviously $G^{t}$ is transitive on the given space
$M$ Hence $M$ is homeomorphic to $G^{\prime}$ , since $M$ is simply connected.
Moreover, $G^{\prime}$ is homeomorphic to $E^{4}$ or $E^{1}\times S^{3}$ , because it has four
parameters and is simply connected. (The proof of this statement
will be given in \S 3.8.). Consequently, $M$ is homeomorphic to $E^{4}$ or
$E^{1}\times S^{3}$ . In particular, it is obtained by more detailed calculations
on the structure of $G^{\prime}$ that $M$ is homeomorphic to $E^{4}$ .

When $a=0$ ( $\alpha=0$ is an obvious consequence of $a=0$ and $\beta\neq 0$ ),

it is easily proved by virture of (2.4) that

$d\omega_{3}=2\beta\omega_{0}\wedge\omega_{1}$ , $d\omega_{01}=2K\omega_{0}\wedge\omega_{1}$ .
Then, if we put $\omega=\beta\omega_{01}-K\omega_{3}$ , we have

$d_{\omega}=0$ .
Therefore, the equation $\omega=0$ defines a subgroup $G^{\prime}$ of the group $G$ ,
and the group $G^{\prime}$ is transitive on the space $M$, since $\beta\neq 0$ . Hence
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$M$ is homeomorphic to $E^{1}$ or $E^{1}\times S^{3}$ , by the same reason as above.

3.7, (ii). The case where $b\neq 0,$ $\beta=0$ . It is easily seen from
(3.4) that

$a=t=0$ , $ r=2\alpha$ ,

$d_{\omega_{01}}=2K_{\omega_{0}\wedge\omega_{1}}+2\alpha b_{\omega_{2}\wedge\omega_{3}}$ .
By virture of (3.5), we have $\alpha K=\alpha b^{2}$ . Then $K=b^{2}$ , if $\alpha\neq 0$ . On
the other hand, according to (2.4) we obtain

$d\omega_{2}=2b\omega_{0}\wedge\omega_{1}+2\alpha\omega_{2}\wedge\omega_{3}$ .
Consequently, if we put $\omega=\omega_{01}-b_{\omega_{2}}$ , we have

$d_{\omega}=0$ .
Therefore, the equation $\omega=0$ defines a subgroup $G^{\prime}$ of the group
$G$, and the group $G^{\prime}$ is evidently transitive on the space $M$ Thus
$M$ is homeomorphic to $E^{1}$ or $E^{1}\times S^{3}$ by the same reason as in \S 3.7, (i).

When $\alpha=r=0$ , it is easily seen that

$d_{\omega_{2}}=2b_{\omega_{0}\wedge\omega_{1}}$ , $d_{\omega_{01}}=2K_{\omega_{0}\wedge\omega_{1}}$ .
Consequently, if we put $\omega=b\omega_{01}-K\omega_{2}$ , we have

$d_{\omega}=0$ .
Therefore, a subgroup $G^{\prime}$ of the group $G$ is defined by the equa-

tion $\omega=0$ and the group $G^{\prime}$ is transitive on $M$ by virtue of $b\neq 0$ .
Then $M$ is homeomorphic to $E^{4}$ or $E^{1}\times S^{3}$ by the same reason as in
\S 3.7, (i). In particular, by more detailed consideration about the
structure of $G^{\prime}$ , it is obtained that $M$ is homeomorphic to $E^{4}$ .

3.7, (iii). The case where $b=0,$ $\beta\neq 0$ . In this case, the same
results as in \S 3.7, (ii) are obtained by an analogous process.

3.7, (iv). The case where $b=\beta=0$ . By virtue of (3.4), we have

$d_{\omega_{01}}=2K_{\omega_{0}\wedge\omega_{1}}$ .
0bserving (3.5) again, we can easily see that $aK=\alpha K=0$ . Then
$K=0$ , if $a\neq 0$ (or $\alpha\neq 0$ ). That is, we have
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$d\omega_{01}=0$ .
Therefore, a subgroup $G^{\prime}$ of the group $G$ is defined by $\omega_{01}=0$ , and
the group $G^{\prime}$ is evidently transitive on $M$. Thus, if $a\neq 0$ (or $\alpha\neq 0$), $M$

is homeomorphic to $E^{4}$ or $E^{1}\times S^{3}$ by the same reason as in \S 3.7, (1).

In particular, from more detailed consideration on the structure of
$G^{\prime}$ it follows that $M$ is homeomorphic to $E^{4}$ .’

When $a=\alpha=0$ , the first system in (2.4) and the curvature forms
are reduced to

$d\omega_{0}=\omega_{01}\wedge\omega_{1}$ , $d\omega_{1}=\omega_{10}\wedge\omega_{0}$ ,

$\Omega_{01}=d\omega_{01}=2K\omega_{0}\wedge\omega_{1}$ ;

$d\omega_{2}=\gamma\omega_{2}\wedge\omega_{3}$ , $d_{\omega_{3}}=t\omega_{2}\wedge\omega_{3}$ ,

$\Omega_{23}=(t^{2}+r^{2})\omega_{2}\wedge\omega_{3}$ ,

where all forms $\Omega_{ij}$ , except $\Omega_{01}$ and $\Omega_{23}$ , are equal to zero.
Therefore, the space $M$ is a product of two spaces $M_{1}$ and $M_{2}$

of two dimensions whose structures are given respectively by the
first and the second systems in the above equations.

Now let us consider the spaces $M_{1}$ and $M_{2}$ . When $K<0,$ $M_{1}$ is
$C(+, 2)$ and the fundamental group $G_{1}$ of $M_{1}$ is locally isomorphic
to $R(3)$ (Appendix 1). In the case where $K>0,$ $M_{1}$ is $C(-, 2)$ and
$G_{1}$ is locally isomorphic to $L(3)$ (Appendix 2). If $K=0,$ $M_{1}is.C(0,2)$

and $G_{1}$ is locally isomorphic to $\mathfrak{M}(2)$ (Appendix 5). Considering the
space $M_{2}$ , it is $C(-, 2)$ or $C(0,2)$ , as a consequence of $t^{2}+r^{2}\geqq 0$ , and
its fundamental group $G_{2}$ is locally isomorphic to a 2-dimensional
vector group $A_{2}$ or the group $\Gamma$ composed of all non-singular matrices

of the form in which $a$ and $b$ are real.

Summing up the results in this step, we see that $M$ is homeo-
morphic to $E^{2}\times S^{2}$ or $E^{4}$ , and the group $G$ is locally isomorphic to
one of the following groups:

$R(3)\times A_{2}$ , $L(3)\times A_{2}$ , $\mathfrak{M}(2)\times A_{2}$ , $ R(3)\times\Gamma$ ,

$ L(3)\times\Gamma$ , $\mathfrak{M}(2)\times\Gamma$ .
We have here come to an end in CASE (VII), and, consequently,
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we can say that $M$ is homeomorphic to

$E^{I},$ $E^{2}\times S^{2}$ or $E^{1}\times S^{3}$

$in$ CASE (VII).

3.8. CASE (VIII). In this case the group $G$ is simply transitive
on $M$ locally. Since $M$ is simply connected, $M$ is homeomorphic to
$G$ . Then, if we know every topological type of simply connected
groups with four parameters, our problem is completely solved.

First of all, it is easily seen that there is no semi-simple group
with four parameters. If we now denote the Lie algebra of the
group $G$ by $\mathfrak{G}$ and the radical of $\mathfrak{G}$ by $\mathfrak{r}$ , then it is well known that
the factor algebra $\mathfrak{S}=\mathfrak{G}/\mathfrak{r}$ is semi-simple or $\{0\}$ and $\mathfrak{G}$ is the direct
sum of $\mathfrak{r}$ and $\mathfrak{S}$ as a vector space. When $\mathfrak{S}\neq\{0\}$ , we have $\dim \mathfrak{r}=1$

and $\dim \mathfrak{S}=3$, since $\dim \mathfrak{S}\neq 4$ and $\dim \mathfrak{S}\geqq 3$.
Hence, according to E. Cartan [2], the group $G$ is topologically

a product space of $E^{1}$ and a semi-simple group $H$ with three para-
meters which is simply connected, as $G$ is simply connected. On the
other hand, if $\dim \mathfrak{S}=3$, the Lie algebra $\mathfrak{S}$ has one of the following
structures:

$d\theta_{1}=\theta_{2}\wedge\theta_{3}$ , $d\theta_{2}=\theta_{3}\wedge\theta_{1}$ , $d\theta_{3}=\theta_{1}\wedge\theta_{2}$ ;

and

$d\theta_{1}=\theta_{2}\wedge\theta_{3}$ , $d\theta_{2}=\theta_{3}\wedge\theta_{1}$ , $d\theta_{3}=-\theta_{1}\wedge\theta_{2}$ ,

where $\theta_{1},$ $\theta_{2}$ and $\theta_{3}$ are suitably chosen relative components of $H$

whose Lie algebra is $\mathfrak{S}$ . When $\mathfrak{S}$ has the first structure, it generates
a compact group $H$ which is homeomorphic to $S^{3}$ . If $\mathfrak{S}$ is of the
second structure, then it is the Lie algebra of the unimodular group
in two variables. On the other hand, the group $H$ is homeomorphic
to $E^{3}$ in the second case, since the unimodular group in two variables
is topologically the product space of $E^{2}$ and $S^{1}$ ([5], p. 14).

From these considerations, we see that the group $G$ is homeo-
morphic to $E^{4}$ or $E^{1}\times S^{3}$ when $G$ is not solvable. On the other hand,
E. Cartan [2] has proved that the group $G$ is homeomorphic to $E^{4}$ , if
it is solvable and simply connected.

Summing up the above results, the group $G$ and also the space
$M$ is homeomorphic to $E^{4}$ or $E^{1}\times S^{3}$ .
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3.9. Conclusion. In the preceding paragraphs \S 3.1-3.8, we
have obtained several results. From these results, the following
Theorems 3 and 4 are established, and the former is the main result
in this paper.

THEOREM 3. The homogeneous Riemannian space of four dimen-
sions, which is connected and simply connected, is homeomorphic to one
of the following manifolds:

$E^{4}$ , $S^{4}$ , $P(C, 2)$ , $S^{2}\times S^{2}$ , $E^{1}\times S^{3}$ , $E^{2}\times S^{2}$ .
THEOREM 4. Let $G/g=M$ be a homogeneous Riemannian space of

four dimensions. Then the Riemannian space $M$ and the local structure
of the group $G$ are completely determined, if $r=\dim G\geqq 6$ , as follows:

If $r=10,$ $M$ is of constant sectional curvature and

$G\cong R(5)$ , $L(5)$ or $\mathfrak{M}(4)$ .

If $r=8,$ $M$ is a 2-dimensional K\"ahlerian space with constant holo-
morphic sectional curvature and

$G\cong SU(3)$ , $S\mathfrak{L}(3)$ or $G=\mathfrak{M}_{H}(2)$ .

If $r=7,$ $M$ is the product space of a straight line and a 3-dimen-
sional Riemannian space with constant sectional curvature, or $M$ is a 4-
dimensional Riemannian space with constant negative sectional curvature,
and in this case

$G\cong A_{1}\times R(4)$ , $A_{1}\times L(4)$ , $A_{1}\times \mathfrak{M}(3)$

or a subgroup of $L(5)$ (\S 3.3),

or $G=S\mathfrak{M}_{H}(2)$ . Here, $A_{1}$ is a l-dimensional vector group.
If $r=6,$ $M$ is a product space of two Riemannian spaces of two

dimensions each of which is of constant curvature and
$G\cong R(3)\times R(3)$ , $R(3)\times L(3)$ , $R(3)\times \mathfrak{M}(2)$ ,

$L(3)\times L(3)$ , $L(3)\times \mathfrak{M}(2)$ or $\mathfrak{M}(2)\times \mathfrak{M}(2)$ .
Here, $\cong$ means local isomorphism.

\S 4. Some remarks concerning Yano’s theorems. Recently,
K. Yano [10] has proved the following theorems.
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THEOREM A. In an n-dimensional Riemannian space, for $n\neq 4$ , there
exists no group of motions of order $r$ such that

$n(n+1)/2>r>n(n-1)/2+1$ .
THEOREM B. If an n-dimensional Riemannian space, for $n\neq 4$ ,

admits a group of motions of order $n(n-1)/2+1$ , then the group is
transitive.

THEOREM C. A necessary and sufficient condition that an n-dimen-
sional Riemannian space $V^{n}$ for $n>4,$ $n\neq 8$ admits a group of motions
of order $r=n(n-1)/2+1$ is that the space be the product of a straight
line and an $(n-1)$ -dimensional Riemannian space of constant curvature
or that the space be of negative constant curvature.

For the exceptional case of Theorem $A$ , the following theorem
holds good.

THEOREM $A^{\prime}$ . In any 4-dimensional Riemannian space there exists no
group of motions of order 9. If a 4-dimensional Riemannian space
admits a group of motions of order 8, then the group of motions is
transitive and the space is a K\"ahlerian space whose holomorphic sectional
curvature is constant.

The first part of this theorem is derived from the fact that $R(4)$

has no subgroup of order 5. The second part is a consequence of
the discussions given in \S 3.2, CASE (II). It is evident that the con-
verse of the second part holds good locally.

It is easily seen that Theorem $B$ holds good also for $n=4$ , and,
according to CASE (III) and (II), we have Theorem $C$ for $n=4$ .

REMARK. The exceptional case in Theorem $C$ for $n=8$ has been
recently removed by M. Obata [8].

\S 5. The case where $G$ is compact. We consider the case
where $G$ is compact in this section. The homogeneous Riemannian
space $M=G/g$ has one of the structures given in the following
Theorem 5, when the group $G$ is compact. For brevity’s sake, we
shall introduce some notations.

$K(+, n)$ and $K(-,n)$ are K\"ahlerian spaces of $n$ complex dimensions
whose holomorphic sectional curvatures are positive and negative
constants respectively.

$V^{1}$ is a straight line with its natural Riemannian metric.
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$A_{r}$ is a vector group of $r$ dimensions.
$T^{r}$ is a toroidal group of $r$ dimensions.
In this section the local isomorphism between two groups $H$ and

$K$ is denoted by $H\cong K$.
THEOREM 5. Let $M=G/g$ be a homogeneous Riemannian space of

four dimensions whose fundamental group $G$ is compact. Then $G$ and
$M$ have one of the following structures:

If $\dim G=10,$ $G\cong R(5)$ and $M$ is $C(+, 4)$ .
If $\dim G=8,$ $G\cong SU(3)$ and $M$ is $K(+, 2)$ .
If $\dim G=7,$ $G\cong A_{1}\times R(4)$ and $M$ is the product of $V$ ‘ and $C(+, 3)$

locally.
If $\dim G=6,$ $G\cong R(3)\times R(3)$ and $M$ is locally the product of $C(+, 2)$

by itself.
If $\dim G=5,$ $G\cong A_{2}\times R(3)$ . Then $M$ is the product of $C(0,2)$ and

$C(+, 2)$ locally.
If $\dim G=4$ , then $G=T^{4}$ and $M$ is flat; or $G\cong A_{1}\times R(3)$ and $M$

is the product of $V^{1}$ and $C(+, 3)$ locally.
There is no group $G$ of dimension 9.
The following lemma is required to prove Theorem 5 [5].
LEMMA. Let us suppose that $G$ is a connected Lie group and there

is a connected Lie subgroup $H$ of $G$ which is solvable and whose closure
$\overline{H}$ is equal to G. Then the group $G$ is solvable also.

PROOF of Theorem 5. Theorem 5 for $\dim G\geqq 6$ is obvious as a
consequence of \S 3.1-3.5. Thus we shall develop here the proof for
$\dim G=5$ and for $\dim G=4$ .

When $\dim G=5$ , CASE (VI) in \S 3.6 and CASE (VII) in \S 3.7 must
be discussed. In CASE (VI), $G$ is locally isomorphic to the subgroup
of $\mathfrak{M}(4)$ given in \S 3.6, and hence CASE (VI) does not occur for
compact $G$.

In CASE (VII), there is a subgroup $G^{\prime}$ of $G$ which is transitive
on $M$ and whose dimension is equal to 4, if it does not happen that

$a=b=\alpha=\beta=0$ .
For $a,$ $b,$ $\alpha,$ $\beta\neq 0,$ $G^{\prime}$ is solvable but not Abelian. Thus $G^{\prime}$ is not

closed in $G$ , since a solvable and compact group is Abelian. Since
$\dim G^{t}=\dim G+1$ , then $\overline{G}^{\prime}=G$. Hence $G$ itself is solvable by virtue of
the above lemma. Consequently, $G$ is Abelian, since $G$ is solvable and
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compact. This contradicts the fact that $G$ is effective on $M$ Thus
this case does not occur for compact $G$.

For $b,$ $\beta\neq 0$ and $a=\alpha=0,$ $G$ is locally the product of $A_{2}$ and a
semi-simple group of three dimensions by virtue of its structure, if
$K\neq b^{2}+\beta^{1}$ . Then there is a covering group $\tilde{G}$ of $G$ which is the
product of $ T\lrcorner$

) and a compact semi-simple group of three dimensions,
since $G$ is compact. Hence $G\cong A_{2}\times R(3)$ , and consequently $K>b^{2}+\beta^{2}$ .
Moreover, $M$ is locally the product of $C(O, 2)$ and $C(+, 2)$ by virtue
of the fact that $K>b^{2}+\beta^{2}$ . When $K=b^{2}+\beta^{3},$ $G$ is solvable but not
Abelian. Then $G$ must be non-compact, if $ K=b^{2}+\beta^{1}\lrcorner$

For $b\neq 0$ and $a=\alpha=\beta=0$ , we have the same results as above.
For $a,$ $b,$ $\alpha\neq 0$ and $\beta=0,$ $G^{\prime}$ is solvable but not Abelian. Then

$G$ is not compact in this case.
Finally, for $a=b=\alpha=\beta=0,$ $ G\cong A\lrcorner$

)
$\times R(3)$ is easily obtained from

the fact that $G$ is compact. Then $M$ is locally the product of $C(O, 2)$

and $C(+, 2)$ by virtue of the structure of the Riemannian space $M$

Here, we have the required theorem for $\dim G=5$ , summing up
these results.

When $G$ is compact and of dimension 4, $G$ is Abelian or $G\cong A_{1}$

$\times R(3)$ . Therefore, $M$ is flat or locally the product of $V^{1}$ and $C(+, 3)$ .
Hence we have the required results for $\dim G=4$ . Thus Theorem 5
is proved completely.

REMARK. By definition, a homogeneous Riemannian space $M=G/g$
is called locally symmetric, if there is an involutive antomorphism $\sigma$

of the Lie algebra $\mathfrak{G}$ of $G$ and the subalgebra $\mathfrak{G}$ ‘ of $\mathfrak{G}$ corresponding
to $g$ is the one composed of all elements invariant by $\sigma$ . It is easily
seen from Theorem 4 that any homogeneous Rientannian space $M=G/g$

of four dimensions is locally symmetric, if $\dim G$ is greater than 5.

\S 6. Homogeneous K\"ahlerian spaces of two complex
dimensions. A homogeneous Riemannian space $M=G/g$ of even
dimensions is called a homogeneous K\"ahlerian space by definition, if
$M$ is Kahlerian and the K\"ahlerian structure of $M$ is invariant under
the fundamental group $G$. Then we have the following theorem
from Theorem 5.

THEOREM $5^{\prime}$ . Let $M=G/g$ be a homogeneous K\"ahlerian space of
two complex dimensions and $G$ be compact. Then the group $G$ and the
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space $M$ have one of the following structures.
If $\dim G=8,$ $G\cong SU(3)$ and $M$ is $K(+, 2)$ .
If $\dim G=6,$ $G\cong SU(2)\times SU(2)$ and $M$ is locally the product of

$K(+, 1)$ by itself.
If $\dim G=5,$ $G\cong A_{2}\times SU(2)$ and $M$ is the product of $C(O, 2)$ and

$K(+, 1)$ locally.
If $\dim G=4,$ $G=T^{4}$ and $M$ is locally unitary.
There is no homogeneous K\"ahlerian space $G/g$ of two complex di-

mensions whose fundamental group $G$ is of dimension 7.
Here, $\cong$ means the local isomorphism.
It is easily seen from Theorem 5‘ that any homogeneous K\"ahlerian

space of two complex dimensions is locally symmetric, if $G$ is compact
and $\dim G\geqq 5$ . This has been already given by A. Lichnerowicz [6].

The author wishes to express here his gratitute to Professor
H. Hombu, Professor S. Hokari, Professor K. Yano and his colleague
Mr. M. Obata. The author has had frequent opportunities to discuss
with these mathematicians and been able to get valuable advices
and suggestions from them.

Appendix

The structure of the familiar linear groups, which are used in
the present paper, is as follows. Indices run over the following
ranges:

$i,j,$ $k,\cdots=1,2,\cdots,$ $n$ ;

$\alpha,$ $\beta,$ $\gamma,\cdots=1,2,\cdots,$ $n-1$ .
1. $R(n)$ . Let $\theta_{ij}$ be the relative components of $R(n)$ as usual.

Then we have

$d\theta_{ij}=\sum_{k}\theta_{ik}\wedge\theta_{kj}$ , $\theta_{ij}+\theta_{ji}=0$ ,

Putting $\theta_{a}=\theta_{an}$ , we have
$d\theta_{a\beta}=\sum_{\gamma}\theta_{a\gamma}\wedge\theta_{\gamma\beta}-\theta_{a}\wedge\theta_{\beta}$ ,
$d\theta_{a}=\sum_{\gamma}\theta_{\alpha\gamma}\wedge\theta_{\gamma}$ , $\theta_{\alpha\beta}+\theta_{\beta a}=0$ .

These equations are those of structure of an $(n-1)$ -dimensional
Riemannian space with constant positive sectional curvature.
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2. $L(n)$ . Let $\theta_{ij}$ be the relative components of $L(n)$ as usual.
Then we have

$d\theta_{ij}=\sum_{k}\theta_{ik}\wedge\theta_{kj}$ ,

$\theta_{a\beta}+\theta_{\beta a}=0$ , $\theta_{an}-\theta_{na}=0$ , $\theta_{nn}=0$ .
If we put $\theta_{a}=\theta_{\alpha n}$ , it follows that

$d\theta_{a\beta}=\sum_{\gamma}\theta_{a\gamma}\wedge\theta_{\gamma\beta}+\theta_{\alpha}\wedge\theta_{\beta}$ ,

$d\theta_{a}=\sum_{\gamma}\theta_{\alpha\gamma}\wedge\theta_{\gamma}$ , $\theta_{a\beta}+\theta_{\beta a}=0$ .
These equations are those of structure of an $(n-1)$ -dimensional

Riemannian space with constant negative sectional curvature.

3. $U(n)$ and $SU(n)$ . Let $\theta_{ij}$ be the complex relative components
of $U(n)$ as usual. Then we obtain

$d\theta_{ij}=\sum_{k}\theta_{ik}\wedge\theta_{kj}$ , $\theta_{ij}+\overline{\theta_{ji}}=0$ ,

where $\overline{\theta_{ij}}$ denotes the complex conjugate of $\theta_{i_{7}}$ .
Putting $\pi_{a}=\theta_{\alpha n},$ $\pi_{a\beta}=\theta_{a\beta}(\alpha\neq\beta)$ and $\pi_{a_{t}x}=\theta_{aa}-\theta_{nn}$ , it is easily seen

that

$d\pi_{a\beta}=\sum_{\gamma}\pi_{a\gamma}\wedge\pi_{\gamma\beta}-\pi_{\alpha}\wedge\overline{\pi}_{\beta}$ $(\alpha\neq\beta)$ ,

$d\pi_{aa}=\sum_{\gamma}\pi_{a\gamma}\wedge\pi_{\gamma a}-(\pi_{a}\wedge\overline{\pi}_{a}+\sum_{\gamma}\pi_{\gamma}\wedge\overline{\pi}_{\gamma})$ ,

$d\pi_{\alpha}=\sum_{\gamma}\pi_{\alpha\gamma}\wedge\pi_{\gamma}$ ,

$\pi_{a\beta}+\overline{\pi}_{\beta a}=0$ .
For $SU(n)$ , the relation $\sum_{k}\theta_{kk}=0$ must be added.
These equations for $SU(n)$ are those of structure of an $(n-1)-$

dimensional K\"ahlerian space with constant positive holomorphic sectional
curvature.

4. $\mathfrak{L}(n)$ and $S\mathfrak{L}(n)$ . Let $\theta_{ij}$ be the relative components of $\mathfrak{L}(n)$

as usual. Then
$d\theta_{ij}=\sum_{k}\theta_{ik}\wedge\theta_{kj}$ ,

$\theta_{a\beta}+\overline{\theta_{\beta a}}=0$ , $\theta_{an}-\overline{\theta_{na}}=0$ , $\theta_{nn}+\overline{\theta_{nn}}=0$ .
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If we put $\pi_{a}=\theta_{an},$ $\pi_{a\beta}=\theta_{a\beta}(\alpha\neq\beta)$ and $\pi_{aa}=\theta_{a\alpha}-\theta_{nn}$ , then it follows
that

$d\pi_{a\beta}=\sum_{\gamma}\pi_{\alpha\gamma}\wedge\pi_{\gamma\beta}+\pi_{\alpha}\wedge\overline{\pi}_{\beta}$ $(\alpha\neq\beta)$ ,

$d\pi_{aa}=\sum_{\gamma}\pi_{a\gamma}\wedge\pi_{\gamma a}+(\pi_{a}\wedge\overline{\pi}_{a}+\sum_{\gamma}\pi_{\gamma}\wedge\overline{\pi}_{\gamma})$ ,

$d\pi_{a}=\sum_{\gamma}\pi_{a\gamma}\wedge\pi_{\gamma}$ , $\pi_{a\beta}+\overline{\pi}_{\beta a}=0$ .

For $S\mathfrak{L}(n)$ , the condition $\sum_{k}\theta_{kk}=0$ must be added.
These equations for $S\mathfrak{L}(n)$ are those of structure of an $(n-1)-$

dimensional K\"ahlerian space with constant negative holomorphic sectional
curvature.

5. $\mathfrak{M}(n)$ . Let $\theta_{j}$ and $\theta_{ij}$ be the relative components of $\mathfrak{M}(n)$ as
usual. Then we have

$d\theta_{i;}=\sum_{k}\theta_{ik}\wedge\theta_{kj}$ , $d\theta_{i}=\sum_{k}\theta_{ik}\wedge\theta_{k}$ .
These equations are those of structure of a flat Riemannian space of

$n$ dimensions.

6. $\mathfrak{M}_{H}(n)$ and $S\mathfrak{M}_{H}(n)$ . Let $\pi_{i}$ and $\pi_{ij}$ be the relative com-
ponents of $\mathfrak{M}_{H}(n)$ as usual. Then we have

$d\pi_{ij}=\sum_{k}\pi_{ik}\wedge\pi_{kj}$ , $\pi_{ij}+\overline{\pi}_{ji}=0$ ,

$d\pi_{i}=\sum_{k}\pi_{ik}\wedge\pi_{k}$ .
These equations are those of structure of an n-dimensional K\"ahlerian

space which is locally unitary.
For $S\mathfrak{M}_{H}(n)$ , the conditions $\sum_{k}\pi_{kk}=0$ must be added.

Tokyo Metropolitan University.
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