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Borel’s direction of a meromorphic
function in a unit circle.

By Masatsugu Tsuji

(Received, April 14, 1955)

1. Analogue of Biernacki-Rauch’s theorem.

Let f(z) be a meromorphic function of finite order p >0 for
|z| < o, then Valiron? proved that there exists a Borel’s direction J:
argz=4,, which satisfies the following condition. Let «: |argz—8,]<$8
be any small angular domain, which contains J and z.(a, ») be zero
points of f(z)—ea in », multiple zeros being counted only once, then
for any >0,

E 1 =0
v zfa, w)P7"

with two possible exceptions for a.
If f(z) is of divergence type, then

S S
v lzv(a: w) Ip

with two possible exceptions for a.

This Valiron’s theorem is generalized by Biernacki and Rauch as
follows.

Let g(z) be a meromorphic function of order <p for |z| <, and
z(f=g, w) be zero points of f(z)—g(z) in », multiple zeros being counted
only once, then for any ¢ >0,

1 _
Z lalf=g o)

1) G. Valiron: Recherches sur le théoréme de M. Borel dans la théorie des fonc-
tions méromorphes. Acta Math, 52 (1928). M. Tsuji: On Borel’s directions of moro-
morphic functions of finite order. Tohoku Math, Journ. 2 (1950).
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with two possible exceptions for g. (Biernacki).?
If f(z) is of divergence type and g(z) be such that r]_‘(_r%dl < oo,
v
where T(7, g) is the Nevanlinna’s characteristic function of g, then

1
> o=, )P

with two possible exceptions for g. (Rauch).®

We shall prove the following analogue of Biernacki-Rauch’s theorem
for a meromorphic function in a unit circle.

THEOREM 1. Let f(z) be a mevomorphic function of ﬁmte order
p>0 in |2|<1. Then there exists a point z, on |z2|=1 and a line J
through 2z, directed inward of |z|<1, which may coincide with the
tangent of |z|=1 at z,, which satisfies the following condition.

Let o be any small angular domain, which contains J and is
bounded by two lines through z, and g(z) be a meromorphic function
of order <p in |z2| <1 and z(f=4g, w) be zero points of f(z)—g(z) in
w, multiple zeros being counted only ownce, then for any >0,

S (1-lz(f=g @) pr =

with two possible exceptions for g.
1
If 1(2) is of divergence type and g(z) be such that joT(r, 2(—»)y-dr
<o, then

VZ 1—lz(f=g, »)|)ft=00

with two possible exceptions for g.

2. Some lemmas.

For the proof, we shall use the following lemmas.

2) M. Biernacki: Sur les directions de Borel des fonctions méromorphes. Acta
Math. 56 (1930). M. Tsuji: On Borel's directions of meromorphic functions of finite
order, III. Kodai Math. Seminar Reports. (1950),

3) A. Rauch: Extensions de théoréme relatifs aux directions de Borel des fonctions
méromorphes. Journ, de Math, 12 (1933). M. Tsuji. lLc. 2).
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LEMMA 12 Let w(z) be mervomorphic in 2| <1 and

S(r)= —71: ”m’g(ﬁ%ﬂzﬁﬁg , 2=r€".

3
If the number of zero points of 1} (w(z2)—a;) in 12] <1 be <n, where

multiple zeros are counted only once, then

St <A—,  0<r<1,

where A™>0 is a constant, which depends on a,, a;, a, only.

LEMMA 2. Let w(z) be mervomorphic in |z|< 1 and 4 4, be two
angular domains, each of which is bounded by two lines through z2=1,
divected inward of 12|1<1 and 4A(r), 4(r) be the part of 4,4, which

lies in 0 rnn< 2| Z7r<1 <rog%>, where 7, is so chosen, that the

circle |z|=r, meets the both sides of 4, 4.
We put

S(r, 4)= —71; HN) <\~1~%%-P>zrdrd9 , 2=,

T(r, 4)= S _~9<_er dr.

7o

Let n(r, a; 40) be the number of zero points of w(z)—a in dy(»),
multiple zeros being counted only once and

N(r, a; 9= 22840 gy

7o

Then

| S(r,4)§3§31n(£4i3—, a;; 4)+0(log 117 )

T, ) S 20 N[22, ai; 0)+0(1).

4) J. Dufresnoy: Sur les domains couverts par des valeurs d’'une fonction méromorphe
ou algébroide Ann. Ecole Norm. sup. (3), 58 (1941). M. Tsuji. Lc. 1).
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PROOF. Let #=1— lgft (»=0,1,2,---) and for »>>2, 4, be the
part of 4, which lies in »-;<[z|<#» and 4% be that of 4, which

lies in . < |z < 7. We put

S,= '177 HAK%YMMG )

3 .
and #% be the number of zero points of [_]1 (w(z)—a;) in 4%, multiple

zeros being counted only once.

Let L be the bisector of the two bounding lines of 4 and 2z, be
v+ 7y |
—

We map 4% conformally on |¢|<1, such that z, becomes ¢=0, then
the image of 4, is contained in [¢] <A <1, where A is a constant,
independent of ».

Hence if we apply Lemma 1, then S, < %%+ K (K=const.), so that

the common point of L with the circle |z|=

%Svgin3+lfn=}ﬁ_}ng+0(log 11 )

v=2 v=2 —¥n
n
1'Z‘Z)S»:S(r,,, 4)—S(7, 4) and since 4% overlap at most 3-times, we have

” 3
Z} ny <3 Zl‘ (w1, @ 4o), SO that
= =

S(r, 4) <3 3} nlrwiai; 4)+O(log 1 ). (2)
i-1 1—7,
If a1 <r=r, then S(r, 4) < S(#s, 4) and 7,,;= f"‘i—+3§ 7'23 ,
hence
3, r+3 . 1
Str, ) <33 n(713, ai; 4)+0(log —1—), 3)
so that
r+3 ] ,t
r n’( g 4 N n(t, a;; 4,)

3
ar+0)=125| = 75 at+ 0,

o

70 ¥
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1
70+3 5 +3 7
Where t0= 1’04 _2_ 24 = 8 °
Since 4t—3gf;i for tg%, we have
T(r, 4) <21 231 N(%EL, a;; 40)+ o). (4)

LEMMA 3. Let w(z) be meromorphic in (2| <1 and 4 4y be two
sectors

4: |z1X], |larg(z—p)|Za, 0<p<],

4o: 2|1, |arg(z—p) | Za, 0<pep<1
and A(r), 4(rv) be the part of 4, 4,, which
1tr _<lza<r<i.

Let S(, 4), T, 4), n(r, a; 4,), N(7, a; 4,)
be defined as Lemma 2. Then

lies in

S(r,4) <9 231} n(—’:;—“)’—, a;; 40) + 0(——1—) ,

1—7»

T, ) < 63 N4, a5 40)+0(log 21— ).

Proor. Let »,=1— =7 (»=0,1,2, ---) and for »=>2,

2\)

tp S Cargz< R g <lel <,

(s=0, £1, £2, ) ) (1)

A?,,s : %@8— <argz< %—})i ’ rv—zélzlérxwh

s

where we choose 8_>0 so small that if 4, has common points with 4,
then 4%, is contained in 4, and the range of s is such that 4,, has

common points with 4, so that the number of such s is O(2¥).
Let
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o L (i

and »Y; be the number of zero points of [I(w(z) a;) in 4%, multiple

zeros being counted only once.

If we map 49; conformally on |¢| <1, such that the center of 49
becomes ¢=0, then the image of 4, is contained in |¢| <A <1, where
A is a constant, independent of » and s. Hence if we apply Lemma 1,
S, s =1+ const., so that

SIS, <3S+ 0= Bl +0( ).
v=2 s v=2 s 1—7,

i;z Svs = S(7s, 4)—S(r, 4) and since 49, overlap at most 9-times,
” 3
2 2ms <9 231711, ;5 40), SO that

Strm £) <9 2 nrurs as; 49 +0( 1 ). 3

If ri-1=7=<7s, then S(7, 4) < S(¥y, 4) and 7,1 < 713 , hence

St ) <92 n(-7*3 a4 a)+0(- 1), (@)

From this we have as [Lemma 2,

T(r, 4) < 63 1231 N(_f%&, a;; 40) + 0<log 1—1-r > .

LEMMA 4. Let f(z)= 8i(2)w(z) + g2) , where w(z), g:(z)
= el + glz)
(z—l 2,3,4) are meromorphic in 1z| < 1.
Let 4 < 4y be two angular domains of Lemma 2. Then

S, f3 ) < 27S<%f3~, w; Ao> + O(JO " a("’ f;)z dr)
where :

T, 8)= 31Tt ).
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The same relation holds, if 4 < 4, are sectors of [Lemma 3, where 27
is replaced by 729.

Proor. Let 4 4, be two angular domains of Lemma 2. We
define 4,, 4% as before. If we map 4% conformally on |¢| <1, such that
z, becomes ¢=0, then the image of 4, is contained in [¢]| < p, <],
where p, is a constant, independent of ».

First we consider two special cases: f(z)=w(z)+g(2), f(z)=w(z)g(2)
and first consider the case f(z)=w(z)+ g(2).

Let D, be the image of |[¢| < —1—7;&’ in 4% and put

1 1 1l o122 - _ 20
Vo ”Diog Vit(gl rdrdd=M,, z=re", 1)

where |D,| denotes the area of D,. Then we see easily that

[| .. 108V 1F1gP pdedp < AM,, A=const., t=pe”. (2)
=57

Let B> 0 and E be the set of p in [po, 1; Po ] such that

|, logv/1+igF dp>BM,,

then
BM”S dp <S dpS logv/'1+gP dsvS—l—f Pdf’j log v'1+|gP do
E "~ JE S=p = po JE iCi=p
<[ 108y T+IgP pdpde < AV
Po §|S%& Po

so that

: A

d s
jE pg‘ BPO

hence if B>0 is sufficiently large, there exists p,<[p;, such that
po< p1 < po+ —1%«"—"«, pot Z—Gé—f’_@gng iizﬂ and
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s,g,_plog Vi+igl dp <BM,, | o Jog v i+[gP dp <BM,. (3)

=pa

Let
stf an= L[ (HLOL Noaras,

1+] f(2) P @
_ 1 L1V . _df
S(f, p)= 7SSI;rSp(-ﬁ_|}'L|2_) pdpdp, [ = —E ’

then ‘
S(f, 4v) < S(f, p1) < S, p2) < S(f, 1)=S(f, 49) .

By Nevanlinna’s fundamental theorem,

A W U G —
S de= |, o v Tl gl do

27 [=py1 1 P

e |

log vV 1+ |w]? do

{8l =pg

— L[ tog v/ THTwE dpt [ e 2) g, ®)
2m Jigl=e Py P

Now by (3),

1 S 1 S
2—7r—jl§l=p120g V1+|w+gP d¢§,——~54\ log v1+|w|? de

27 J1e=p,

+ | logy/THIgl dp+1< 1| logyTiTwE dp
2m Ju

2 181=p2 f=pg

+0O(M,)+1,
L logvi+TwF do= —ij

29 Jl=p 2

log v 1+ |w+g—gP do

I=p1

<-L| logvitiwrgFde+ 1| logy/1+1gF do+1
27 Jil=p 27 Jigl=n

1 S
g"z‘?fm-,}log V1+|w+gl dp+OM,)+1,
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so that
1 S 1 .
o log v 1+ |w+gP d?)—*j log vV1+|w+ gl do
a J1el=p, 27 JUl=p,

<L | logviFTwFdp— - logvTHTwF do
igl

= 27 Jigi=p, 27 -5

+O(M)+2. (7)

S"ﬁ n(p, w+g, =) dPSjpz nlp, W, ©) 4,4 J"ﬂ np, 8 ©) 45
g P e P P

51

P

< j—”“”:—“) dp+ O(n(py, g, ),

where #(p, g, «) is the number of poles of g in [¢] < p.
Now the image of |¢| < p, in 49 is contained in |z] < = (< 7041),
such that »,,;— = %riitl- , SO that if we denote the number of poles

of g(z) in |zl < » by n(7, g, <), then n(p,, g, ) < n(r, g, =), so that

[l wtg, @) go (" West0.2) gy 4 O(nir, g, ). (8)
P P P1 p

Hence by (5), (6), (7), (8),

S""’M dpéjpz S, P) 4o 1 O(M,)+ O(n(rs, 2, ©))+2.
P P

P1 P1

Since

Stf, e log P2 < ("SR o, (" S0P gy < S, py) log P2
P noop Py

we have
S(f, pY) < S(w, p2)+ O(M,) + O(n(r,, g, =)+ O(1) .
Since S(f, 4,) < S(f, p) and S(w, p2) < S(w, 43),
S(f, 4,) < S(w, £3)+ O(M,)+ O(n(r., g, ))+0(1) . (9)
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Since 4y <D, < 43,

=~ 1 14 (gl rdrde < — log v/ 1F g rdrdf
M, Dl SSDvlogu/1+|g| rdrdd < N ﬂdgonga—lgq rdr

Tvia B
< const. Zz”jr ﬁrdrSl 1 log v 1+|gf]t df < const. 2" T(#r.1, £) -

T, @)+ O = | " 2582 4y = n(r, g, )=

v

g const. M or

2y ’
n(y, &, ) < const. 2°T(#v.1, &) (11)
and
j::i?%i—;‘% dr > const. 22T (#v+1, &) (12)
so that from (9), (10}, (11), K1_25|,
S(f, 42) < S(w, 4)+ O(Sj%(f_f% dr), f=w+g. (@)

Next consider the case f(z)=w(z)g(2).

We choose P1 in [Po, Pot+ 1_:—PO_J and P2 in I:PO+ 2(1—P0) , 1+P0 ]’
6 6 2
such that

P _ "_—__—‘i—— _ %
f o lor v+ 1gP dp=00), [ Toz /14 1 dp=0(),

where

M= 5” SSDvlog J1+ T;? rdrdd . (15)

Then

[ logv/i+iwgpde < | logvi+iwpdy
2 : 4 :

1g1=p; — 2 I=pg
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1 7 A 1 1+ Tl O(M,
+ jlglspzog VItighdy < - Lgl=p£0g V1+|wlPdp+OM),
1 T Ede— 1 wg \2
2 jlclwzog Vitlwfde 2 ﬁlél'f’llogx/lql-' g dp
1 SR 1 1
= 27 j\;\-p{og V1+lwgl dp+ 29 jls‘-9¥og~/1+ |g? @
< 1 j log v/ 1+ wglde+OM,),
20 1&gl =py
so that
J——j log v'1+ |wgl? dp— 1 j log v/'1+|wgl dp
2 Jigt=p; 2¢ 1¢1=p1
1 S log v 1+ w2 dp— —J—LS log v/ 1+ |wl de
T 27 JKl-es 29 Jigi=n
+O(M,)+OMY). (16)

Since as M. < const. 2VT(rm, %>= const. 2°T (7.1, 2), Wwe
have for f=wg, so that

S(f, 4) < Sw, £)+0(|**LE8). 4y}, fmwrg, f=wg.
Tyl (1_7)2
If we sum up for »=2,3,---,n, then since 4% overlap at most
3-times, ,
. . rﬂ+2 T(r’ g) '
S(rn’ f: A) g 38(7n+1: w’ AO)+O(SO M(l——r)z dr) .
rn-]+3 7‘+3

If 7o <7 =<7y then S(, 4) < S(7s, 4) and 7,,,= " < i

1+rn+1 < r+7

= , So that
2

Yni2 =

S50 <35(7 4% ws ) vof [ B2 ),

f=w+g, f=wg.
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Now we consider the general case f= Lwt+g , then

W+ gy
F=mt+ —_ where = &, p,= BETEE  p— & g that
w+ hy gs g3 3
f=w+h, w=hw,, w,= *1*ﬁ , Wy=w+hs. (19)

ws

Let 4< 4,4, 4, be four angular domains, each of which is
bounded by two lines through z=1, directed inward of |z|<1. Then

by [18),

Str, £; <380, wi; a)+O([ LB ar), m= "3, A=TTT

Sty wis ) < 3S(r, 1055 4+ 0( [ ’Erl(ﬁ%)dr) = 13 T
as

S(7, wa; 42)=S(#2, ws; 45) ,

S(?’z, Ws, Az)<35(1’3, w, Ao)"l‘ O(jfa Z‘l(r’:l)sz) dr >

yo n+3 _ r+63 . 1+ 7 _ r+127
3= = 3=

4 64 3 8 128

Since T(», h;)=0O(T(», g)) (:=1, 2, 3), we have

Str, 3 ) < 27S(ZE0 w; 4y)+ o(jo & (Tl(i g;g dr).  (20)

Hence the case, where 4 < 4, are angular domains of [Lemma 2, is
proved. Similarly we can prove the case, where 4 < 4, are sectors of
Lemma 3, by taking 4, 4%, instead of 4,, 4%, then since 49, overlap
at most 9-times, we have the similar relations as [18), where 3 is

replaced be 9, so that in (20), 27 is replaced by 729. Hence the lemma
is proved.



302 M. Tsuji

3. Proof of Theorem 1.
Now we shall prove [Theorem 1. Let 2>>0 be such that

[ 10, a-rrar=eo (1)

where k=p—¢ (¢_>0) in general and k=p, if f(2) is of divergence type.
By dividing the unit circle |[z|=1 into 2” equal parts, we see that there

exists an angular domain 4, of maginitude —231-, bounded by two

2n

lines through z=0, such that 4,>4,>--->4,>---
1
| 70, 5 a1 rpidr=co . 2)

Let 4, converge to a direction L: argz=#6,, z,=¢*, then for any
small angular domain 4: |argz—6,| <8, which contains L,

j:T(r, £ (1= ldp=co . 3)
We denote the sector: |argz—6y| < 8, |2 <<1 by the same letter 4.
2 Let £ be an angular domain of maginitude <,
¢ﬁﬁ% bounded by two lines through z, which lie sym-
‘D metric to L. We denote the common part of
4 and £ by the same letter 2. Then 4 consists

<
of three parts: 4=92+ £+ 2", as shown in the

figure, so that
T(r, f; )=T(r, f; )+ T(», f; 2)V+ T(r, f; 2"),
hence

oo =S:T(r, [ a)(1—7)F1 dr=S:T(r, f; @)1 —r)k1dy
+[ 10 f A=+ [ T £ A=y, (@)
First suppose that

j:)T(r, f; 2)YA—»)¢ldr= o, (5)
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By dividing £ into 27 equal parts by lines through z, we see that
there exists a line J in £ through z, such that for any small angular
domain o, which contains J and is bounded by two lines through 2z,

(.10, f; )1 —rpidr=co. (6)

Let o Cw; Tew, be three small angular domains, each of which is
bounded by two lines through z,.

Let g;(z) (i=1, 2, 3) be three meromorphic functions in |z| < 1, such
that

ﬁT(r, 21— r)ldr< o (i=1,2,3). 7)

Hence if we put 7T(», g)= 231} T(7, g;), then

[ T @1yt < o (8)
We shall prove that for one of g;,
3 (1|2 f=gi, @) = oo
If we put
we SR BB e po Bwth (g

’

f—g 2:— & haw+ hy

where h,=gy(2:—g1), h:=g1(g&:—25), hs=2—8, hh=2—2.
Hence T(7, h;))=O0(T(r, @) (i=1, 2, 3,4), so that by Lemma 4,

S(r, f: o) < const. s( 72463 W w1)+ O(p(7)), (10)
where
"B T(r,g)
o=| " [78 ar.
Hence
T(r, f: w) < const. T(%@, w; w1> +O(F (), (11)

where
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r(n)=|'0(ar,
so that by (6),

oo :j;T(f’, f; 0)(1—7) 1dr < const. S:T(r, w; w))(1—7)1dy
+o([wra-rttar). 1)

We shall prove that ﬁw(r)(1—r)k-ldr< .

S:ilf(r)(l——r)"‘*drz [— (1—’?: v(7) :lr+ }e j:(l—r)kﬂr)dr

< —,}j:(l — P O(P)dr < —m}m [a—rrgriar

r 7’+127 ARl 2
gconst.j0T< 128 ,g)(l ) dr=0() .

Hence Elw(r)(l—r)k‘ldr< o, so that from [12),
0
1
LT(r, w; @) (1—7)1dr=co . (13)

If we put ¢,=0, @,=1, ;= and apply for o, < w, then
from we see that one of

1 1
([N, w=0; o)1= 1dr, [N w=1; )1~
1
jON(f’, W= ; wo)(1—7)*"1dr
is 0. Without loss of generality, we assume that

j:N(r, w=0; wp)(1—)k-1dr= oo . (14)

Since
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3
n(r, w=0; wo) < n(#, f=gi; wo)+ (7, L= 8s; wo)+ 2107, &= o) ,

3
N, w=0; w)) < N7, f=4g1; wo)+ N, £:=gs; 0+ le N(7, g;= ; w))
N7, =815 w)+O(T(7, 2)), (15)
we have from [14), (8),

[N, f=gi; o)1= tdr=c0, or S3(1—|a(f=g1; on) =0 .

Hence
ST(1—|2/(f=g; on) 1= o (16)

with two possible exceptions for g.
1
If SOT(r, f; 2Y1—#»)e1dr < o, then from (4), one of
1 1
SOT(T, f; 2 1—7»)"dy, XOT(r, f; 2" —»)¥1dr is . Suppose that

j :T(r, £ @) (1—7Fldr=oo | (17)

Let ¢ be the common point of the boundaries of 4 and £, which
lies on the boundary of £’ and z; be the
point on |z|=1, which lies on the line:
arg z=arg¢. Let & be a point on the

segment 0f, such that ¢= -S0T4L

be the point on |z|=1, which lies symmetric
to z, with respect to the line 0z, Let
be the angular domain, bounded by two
lines ¢z, and ¢z and 3, be that, bounded
by two lines £z, and ¢@,. Then by

j:ﬂr, £ 31— P \dr= oo . (18)

By means [18) and [Lemma 3, we can prove similarly as above that
SV (1—|z,(f=g; 2o )= o, with two possible exceptions for g. Hence
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1
if jOT(r, f; (A —7)1dr < o for any £2, then if we denote the tangent
of |z]=1 at z, directed toward z,, by J, then

g(l“lz‘v(fzg9 w)l)k+1_—_oo ’ (19)

with two possible exceptions for g for any angular domain », which
contains J.

Hence by [(16), [19), in any case, there exists a line J through z,
such that g‘,(l—lzv( f=g; w)|)*'=1co, with two possible exceptions for

g, for any angular domain », which contains J.

If f(z) is of divergence type, then k=p, so that J satisfies the
condition of the theorem.

If f(z) is of convergence type, let k=p—e, (e, >e; > -+ >e,—0),
then we see easily that 2z, can be chosen independently of 7. Let J,
be the corresponding line through z; and J be one of limiting postitions
of J., then J satisfies the condition of the theorem. Hence the theorem
is proved.

4. Meromorphic functions of the class:

1 1 =N’}
lim T(r, Hilog 7 _,. .

Let f(2) be meromorphic in |z|<1, such that 11?11 T(r, f)log 4

then as well known, f(z) takes any value infinitely often in |z| <1,
with two possible exceptions. We shall prove
THEOREM 2. Let f(z) be meromorphic in |z| <1, such that

= o0
?

- 1
1313 T(r, )log v —, =,

and g(z) be mevomorphic in 2| <1, such that T(r,2)=O0(). Then
there exists a point z, on |z|=1 and a line J through z, directed
inward of |z| <1, which may coincide with the tangent of |z|=1 at z,,
such that in any small angular domain o, which contains J and is
bounded by two lines through z, f(2)—g(2) has infinitely many zero
points, with two possible exceptions for g. More precisely
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_ 1
lim Nz, f=g; «)/log 7~ =

with two possible exceptions for g.

PRrROOF. Similarly as the proof of Theorem 1, there exists a line
L: arg z=6,, zy=e¢", such that for any small angular domain
4 : |larg z—6,| < 8, which contains L,

- 1
lim Tz, f; 4)/log 1=, =% (1)
r=>1 v

We define 2, 2’ 2" as before, then one of

P 1 17s / 1
I:rﬂ TG, f; 2)/log 7, lim T(r f; 2)log 1,

. 1
lim TX#, f; 2")/log 7
r->1 4
is oo,

Suppose that

1
1—7 =% (2)
Then as before, there exists a line J in £, through z, such that for
any small angular domain », which contains J and is bounded by two
lines through z,

lim T(r, f; ©)/log

_ 1
lirfl’ T(r, f; 0)log —,~ =. (3)

Let w < w; < w, be three angular domains of any small magnitude,
each of which is bounded by two lines through z, and g;(z) (i=1, 2, 3) be
three meromorphic functions in |z] <1, such that 7(7, g;)=0(1)
(:=1,2,3) and put

& &2 &s _ hw+h,
W= g g~ 7= hw+h,

T(T’, g)=z§-‘i T(rs gz) ’

Then T(», h;))=0(T(7», 2))=0Q) (i=1,2,3, 4).
By Lemma 4,

(4)
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S(r, f; w) < const. S(EE w; w))+0(01r)), (5)
64
where
B T, g) 1
_ 78 5 —of 1
| ot)=| " 2 ar=0(11),
so that

T(7, f; o) < const. T( 72463—, w; w1)+ 0<log 1ir )

Hence by (3),
, 1
Hm Tz, w; @)/log 7~ =0, (6)

so that by for one of N(r,w=0; w;), N(», w=1; wy),
N(7, w= oo; a), say, N(r,w=0; o),

_ 1
im N(r, w=0; wo)/log ~{_,~=co . (7)

Similarly as the proof of [Theorem 1, we have

N(r,w=0; wy) < N(7, f=4g1; wp)+ O(T (7, 8))=N(7, f=21; wo)+ O(1),
so that

lirrjil N(r, f =g1; w))/log - =oco, (8)

1—7»
Hence ] satisfies the condition of the theorem.
If T(r, f; .Q)=O<log 11

Theorem 1, that the tangent J of |z|=1 at 2z, satisfies the condition
of the theorem.

> for any £, then we can prove as

5. Meromorphic functions of the class:
lir? T(r, f)= .

Let f(z) be meromorphc in |z| <1, such that linl1 T(r, f)= o0, then

as well known, f(z) takes any value infinitely often in |z| <1, except
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a set of logarithmic capacity zero.
THEOREM 3. Let f(z) be meronorphic in lzl <1, such that

11rr11 T(r, f)= o

Then there exists a direction J: argz=6, such that in any small
angular domain o: |arg z2—0,| <38, f(2) takes any value infinitely often,
except a set of logarithmic capacity zero.

In the former paper, I map the sector: |arg z—6,] <8, [2]<1 on
|¢] <1 conformally, and reduce the theorem to the case of a mero-
morphic function in |¢[<T1, such that £1H1 T(p,f)=c0, £=pe*. We

shall give a direct proof as follows. »

Proor. By dividing the unit circle |z]=1 into 2” equal parts, we
see that there exists a direction J: arg z=46,, such that for any small
angular domain e: [argz—§,| <8, which contains J,

lim 7(7, f; @)= . B¢
We suppose that 9,=0 and put
w: |argz|<§, wy: |arg z| < 28 2)

and «(7), w(7) be the part of w, wy, which lies in 0 < < |z|Z7<<]1
and I’, be the boundary of wy(7).

Let 2z, &)=

larg z| < 28, |z| <7, with & as ifs pole and [g, b]=

;" ) be the Green’s function of the sector :

la—b]
VvV (1+[aP)(L+15E)

We put
z)=Ilo IMJ#, v(2) =g(z, 3
u(z)=log [f2), a] (2) g( &) (3)
and apply Green’s formula: S (u_{iv_ —v ﬁi>ds=0 for the domain,
o ov ov

which is obtained from w,(7), by taking off small discs about zero pcints
z(a), zv(b) of f(z)ma, fz)—b in wy(r) and then making the radii of

5) G. Valiron: Points de Picard et points de Borel des fonctions méromorphes
dans un cercle. Bull. des Sci. Math. (1932). M. Tsuji: On Borel's directions of mero-
morphic functions of finite order, II. Kodai Math. Seminar Reports. (1950).
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these discs tend to zero, we have

1 j 1 5 2 —
i L 8 ds— o )& a ds:{ﬂ% fr()zv(a) £o)- %og,(z”(b) £)=0, (4)
where » is the inner normal of I°, and v, is the arc of the circle
|z|=#, such that |argz| < 26.

Hence if we put

* _ 1 1 ag(z’ CQ);
THna)= 2m S rl ¢ [f(2), a] ov @

- LS &z, Co)

- -ds+ S1g(a(@), 4, (5)

[f ) z,(a)ewe(r)

then T*(7,a)=T*(», b), so that T%(», @) is independent of @, hence if we
put
T*(n)=T*(r,a), (6)
then
T (r) = X3 g(zv(a), £)—0(1) = Z g(v(d) &)—0Q).

zy(@) ewo(r) zy(a) ew(r)
If z(a)€w(7), then
2(z,(@), £o) = const. (r—|z(a)])
so that if we denote the number of zero points of f(z)—a in «(») by
n(7, a; »), then

T*(#) > const. j'(r-— dn(t, a; ©)—O(1)= const. j'n(t, a: w)dt—0(1).

Let dw(a) be the surface element on the w=f(z)-sphere K, then
dw(a)

mw

multiplying and integrating on K, we have by (1),

T*(r) = const. SrS(t, w)dt—O(1) = const. T(7, f; w)—O(1)—> o, r—1. (8)

Suppose that f(z) takes any value @ of a set E of positive logarithmic
capacity finite times in ; then we may assume that E is a closed
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set, so that by taking 7, sufficiently near to 1, we assume that f(z)==a,
acE, in wyr), so that if ackFE,

YN, 1 1 08z, &) . |
T =T*(ra)= Srrlog e Tt ds—0(1). (9)
Let
w(w)=| log @37] du@), | dula)=1

be the conductor potential of E, such that z(w) < M < for any
w, then from (9),

()= T"(r, addu(@)=0(1),

which contradicts (8). Since &_>0 is arbitrary, f(z) takes any value
infinitely often in any small angular domain, which contains J, except
a set of logarithmic capacity zero.

REMARK. It is probable that there exists a point z, on |z|=1 and
a line J through 2z, such that in any small angular domain, which
contains J and is bounded by two lines through 2, f(z) takes any
value infinitely often, except a set of logarithmic capacity zero, but I
have no proof for it.

Mathematical Institute,
Rikkyo University, Tokyo.
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