Borel's direction of a meromorphic function in a unit circle.

By Masatsugu Tsuji

(Received, April 14, 1955)

1. Analogue of Biernacki-Rauch's theorem.

Let f(z) be a meromorphic function of finite order $\rho > 0$ for $|z| < \infty$, then Valiron¹⁾ proved that there exists a Borel's direction J: $\arg z = \theta_0$, which satisfies the following condition. Let ω : $|\arg z - \theta_0| < \delta$ be any small angular domain, which contains J and $z_{\nu}(a, \omega)$ be zero points of f(z)-a in ω , multiple zeros being counted only once, then for any $\varepsilon > 0$,

$$\sum_{\nu} \frac{1}{|z_{\nu}(a,\omega)|^{\rho-\varepsilon}} = \infty$$

with two possible exceptions for a.

If f(z) is of divergence type, then

$$\sum_{\nu} \frac{1}{|z_{\nu}(a,\omega)|^{\rho}} = \infty$$

with two possible exceptions for a.

This Valiron's theorem is generalized by Biernacki and Rauch as follows.

Let g(z) be a meromorphic function of order $<\rho$ for $|z|<\infty$, and $z_{\nu}(f=g,\omega)$ be zero points of f(z)-g(z) in ω , multiple zeros being counted only once, then for any $\varepsilon>0$,

$$\sum_{\nu} \frac{1}{|z_{\nu}(f=g,\omega)|^{\rho-\varepsilon}} = \infty$$

¹⁾ G. Valiron: Recherches sur le théorème de M. Borel dans la théorie des fonctions méromorphes. Acta Math. 52 (1928). M. Tsuji: On Borel's directions of moromorphic functions of finite order. Tohoku Math. Journ. 2 (1950).

with two possible exceptions for g. (Biernacki).2)

If f(z) is of divergence type and g(z) be such that $\int_{-r}^{\infty} \frac{T(r,g)dr}{r^{\rho+1}} < \infty$, where T(r,g) is the Nevanlinna's characteristic function of g, then

$$\sum_{\nu} \frac{1}{|z_{\nu}(f=g,\omega)|^{\rho}} = \infty$$

with two possible exceptions for g. (Rauch).3)

We shall prove the following analogue of Biernacki-Rauch's theorem for a meromorphic function in a unit circle.

THEOREM 1. Let f(z) be a meromorphic function of finite order $\rho > 0$ in |z| < 1. Then there exists a point z_0 on |z| = 1 and a line J through z_0 , directed inward of |z| < 1, which may coincide with the tangent of |z| = 1 at z_0 , which satisfies the following condition.

Let ω be any small angular domain, which contains J and is bounded by two lines through z_0 and g(z) be a meromorphic function of order $\langle \rho | in | z | \langle 1 \rangle$ and $z_{\nu}(f=g,\omega)$ be zero points of f(z)-g(z) in ω , multiple zeros being counted only once, then for any $\varepsilon > 0$,

$$\sum_{\nu} (1 - |z_{\nu}(f = g, \omega)|)^{\rho + 1 - \varepsilon} = \infty$$

with two possible exceptions for g.

If f(z) is of divergence type and g(z) be such that $\int_0^1 T(r, g)(1-r)^{p-1}dr$ $<\infty$, then

$$\sum_{\nu} (1 - |z_{\nu}(f = g, \omega)|)^{\rho+1} = \infty$$

with two possible exceptions for g.

2. Some lemmas.

For the proof, we shall use the following lemmas.

²⁾ M. Biernacki: Sur les directions de Borel des fonctions méromorphes. Acta Math. 56 (1930). M. Tsuji: On Borel's directions of meromorphic functions of finite order, III. Kōdai Math. Seminar Reports. (1950),

³⁾ A. Rauch: Extensions de théorème relatifs aux directions de Borel des fonctions méromorphes. Journ, de Math, 12 (1933). M. Tsuji. l.c. 2).

292 М. Тѕил

LEMMA 1.4 Let w(z) be meromorphic in |z| < 1 and

$$S(r) = \frac{1}{\pi} \iint_{|z| \le r} \left(\frac{|w'(z)|}{1 + |w(z)|^2} \right)^2 r dr d\theta$$
, $z = re^{i\theta}$.

If the number of zero points of $\prod_{i=1}^{3} (w(z)-a_i)$ in |z| < 1 be $\leq n$, where multiple zeros are counted only once, then

$$S(r) \leq n + \frac{A}{1-r}$$
, $0 \leq r < 1$,

where A>0 is a constant, which depends on a_1 , a_2 , a_2 only.

LEMMA 2. Let w(z) be meromorphic in |z| < 1 and $\Delta < \Delta_0$ be two angular domains, each of which is bounded by two lines through z=1, directed inward of |z| < 1 and $\Delta(r)$, $\Delta_0(r)$ be the part of Δ , Δ_0 , which lies in $0 < r_0 \le |z| \le r < 1$ $\left(r_0 \ge \frac{1}{2}\right)$, where r_0 is so chosen, that the circle $|z| = r_0$ meets the both sides of Δ , Δ_0 .

We put

$$S(r, \Delta) = \frac{1}{\pi} \iint_{\Delta(r)} \left(\frac{|w'(z)|}{1 + |w(z)|^2} \right)^2 r dr d\theta, \quad z = re^{i\theta},$$

$$T(r, \Delta) = \int_{r_0}^r \frac{S(r, \Delta)}{r} dr.$$

Let $n(r, a; \Delta_0)$ be the number of zero points of w(z)-a in $\Delta_0(r)$, multiple zeros being counted only once and

$$N(r,a;\Delta_0)=\int_{r_0}^r\frac{n(r,a;\Delta_0)}{r}dr.$$

Then

$$S(r, \Delta) \leq 3 \sum_{i=1}^{3} n\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O\left(\log \frac{1}{1-r}\right),$$

$$T(r, \Delta) \leq 21 \sum_{i=1}^{3} N\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O(1).$$

⁴⁾ J. Dufresnoy: Sur les domains couverts par des valeurs d'une fonction méromorphe ou algébroïde Ann. Ecole Norm. sup. (3), 58 (1941). M. Tsuji. l.c. 1).

PROOF. Let $r_{\nu}=1-\frac{1-r_0}{2^{\nu}}$ $(\nu=0,1,2,\cdots)$ and for $\nu\geq 2$, Δ_{ν} be the part of Δ , which lies in $r_{\nu-1}\leq |z|\leq r_{\nu}$ and Δ_{ν}^0 be that of Δ_0 , which lies in $r_{\nu-2}\leq |z|\leq r_{\nu+1}$. We put

$$S_{\nu} = \frac{1}{\pi} \iint_{\mathcal{A}_{\nu}} \left(\frac{|w'(z)|}{1 + |w(z)|^2} \right)^2 r dr d\theta \tag{1}$$

and n_{ν}^{0} be the number of zero points of $\prod_{i=1}^{3} (w(z) - a_{i})$ in Δ_{ν}^{0} , multiple zeros being counted only once.

Let L be the bisector of the two bounding lines of Δ and z_{ν} be the common point of L with the circle $|z| = \frac{r_{\nu-1} + r_{\nu}}{2}$.

We map Δ_{ν}^{0} conformally on $|\zeta| < 1$, such that z_{ν} becomes $\zeta = 0$, then the image of Δ_{ν} is contained in $|\zeta| \leq \lambda < 1$, where λ is a constant, independent of ν .

Hence if we apply Lemma 1, then $S_{\nu} \leq n_{\nu}^{0} + K(K=\text{const.})$, so that

$$\sum_{\nu=2}^{n} S_{\nu} \leq \sum_{\nu=2}^{n} n_{\nu}^{0} + Kn = \sum_{\nu=2}^{n} n_{\nu}^{0} + O\left(\log \frac{1}{1-r_{n}}\right).$$

 $\sum_{\nu=2}^{n} S_{\nu} = S(r_{n}, \Delta) - S(r_{1}, \Delta) \text{ and since } \Delta_{\nu}^{0} \text{ overlap at most 3-times, we have}$ $\sum_{i=1}^{n} n_{\nu}^{0} \leq 3 \sum_{i=1}^{3} n(r_{n+1}, a_{i}; \Delta_{0}), \text{ so that}$

$$S(r_n, \Delta) \leq 3 \sum_{i=1}^{3} n(r_{n+1}, a_i; \Delta_0) + O\left(\log \frac{1}{1-r_n}\right).$$
 (2)

If $r_{n-1} \le r \le r_n$, then $S(r, \Delta) \le S(r_n, \Delta)$ and $r_{n+1} = \frac{r_{n-1} + 3}{4} \le \frac{r+3}{4}$, hence

$$S(r, \Delta) \leq 3 \sum_{i=1}^{3} n\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O\left(\log \frac{1}{1-r}\right), \tag{3}$$

so that

$$T(r, \Delta) \leq 3 \sum_{i=1}^{3} \int_{r_0}^{r} \frac{n(\frac{r+3}{4}, a_i; \Delta_0)}{r} dr + O(1) = 12 \sum_{i=1}^{3} \int_{t_0}^{\frac{r+3}{4}} \frac{n(t, a_i; \Delta_0)}{4t - 3} dt + O(1),$$

where
$$t_0 = \frac{r_0 + 3}{4} \ge \frac{\frac{1}{2} + 3}{4} = \frac{7}{8}$$
.

Since $4t-3 \ge \frac{4t}{7}$ for $t \ge \frac{7}{8}$, we have

$$T(r, \Delta) \leq 21 \sum_{i=1}^{3} N\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O(1).$$
 (4)

LEMMA 3. Let w(z) be meromorphic in |z| < 1 and $\Delta < \Delta_0$ be two sectors

 Δ : $|z| \le 1$, $|\arg(z-\rho)| \le \alpha$, $0 < \rho < 1$, Δ_0 : $|z| \le 1$, $|\arg(z-\rho_0)| \le \alpha$, $0 < \rho_0 < \rho < 1$ and $\Delta(r)$, $\Delta_0(r)$ be the part of Δ , Δ_0 , which lies in $\frac{1+\rho}{2} = r_0 \le |z| \le r < 1$.

Let $S(r, \Delta)$, $T(r, \Delta)$, $n(r, a; \Delta_0)$, $N(r, a; \Delta_0)$ be defined as Lemma 2. Then

$$S(r, \Delta) \leq 9 \sum_{i=1}^{3} n\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O\left(\frac{1}{1-r}\right),$$

$$T(r, \Delta) \leq 63 \sum_{i=1}^{3} N\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O\left(\log \frac{1}{1-r}\right).$$

PROOF. Let $r_{\nu} = 1 - \frac{1 - r_0}{2^{\nu}} (\nu = 0, 1, 2, \dots)$ and for $\nu \ge 2$,

$$\Delta_{\nu,s}: \frac{(s-1)\delta}{2^{\nu}} \leq \arg z \leq \frac{s\delta}{2^{\nu}}, \quad r_{\nu-1} \leq |z| \leq r_{\nu},
(s=0, \pm 1, \pm 2, \cdots)$$

$$\Delta_{\nu,s}^{0}: \frac{(s-2)\delta}{2^{\nu}} \leq \arg z \leq \frac{(s+1)\delta}{2^{\nu}}, \quad r_{\nu-2} \leq |z| \leq r_{\nu+1},$$
(1)

where we choose $\delta > 0$ so small that if $\Delta_{\nu,s}$ has common points with $\Delta_{\nu,s}$ then $\Delta_{\nu,s}^0$ is contained in Δ_0 and the range of s is such that $\Delta_{\nu,s}$ has common points with $\Delta_{\nu,s}$ so that the number of such s is $O(2^{\nu})$.

Let

$$S_{\nu,s} = \frac{1}{\pi} \iint_{A_{\nu,s}} \left(\frac{|w'(z)|}{1 + |w(z)|^2} \right)^2 r dr d\theta \tag{2}$$

and $n_{\nu,s}^0$ be the number of zero points of $\prod_{i=1}^3 (w(z) - a_i)$ in $\Delta_{\nu,s}^0$, multiple zeros being counted only once.

If we map $\Delta_{\nu,s}^0$ conformally on $|\zeta| < 1$, such that the center of $\Delta_{\nu,s}^0$ becomes $\zeta=0$, then the image of $\Delta_{\nu,s}$ is contained in $|\zeta| \leq \lambda < 1$, where λ is a constant, independent of ν and s. Hence if we apply Lemma 1, $S_{\nu,s} \leq n_{\nu,s}^0 + \text{const.}$, so that

$$\sum_{\nu=2}^{n} \sum_{s} S_{\nu,s} \leq \sum_{\nu=2}^{n} \sum_{s} n_{\nu,s}^{0} + O(2^{n}) = \sum_{\nu=2}^{n} \sum_{s} n_{\nu,s}^{0} + O\left(\frac{1}{1-r_{n}}\right).$$

 $\sum_{\nu=2}^{n} \sum_{s} S_{\nu,s} \geq S(r_n, \Delta) - S(r_1, \Delta) \text{ and since } \Delta_{\nu,s}^{0} \text{ overlap at most 9-times,}$ $\sum_{\nu=2}^{n} \sum_{s} n_{\nu,s}^{0} \leq 9 \sum_{i=1}^{3} n(r_{n+1}, a_i; \Delta_0), \text{ so that}$

$$S(r_n, \Delta) \leq 9 \sum_{i=1}^{3} n(r_{n+1}, a_i; \Delta_0) + O\left(\frac{1}{1-r_n}\right).$$
 (3)

If $r_{n-1} \le r \le r_n$, then $S(r, \Delta) \le S(r_n, \Delta)$ and $r_{n+1} \le \frac{r+3}{4}$, hence

$$S(r, \Delta) \leq 9 \sum_{i=1}^{3} n\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O\left(\frac{1}{1-r}\right). \tag{4}$$

From this we have as Lemma 2,

$$T(r, \Delta) \leq 63 \sum_{i=1}^{3} N\left(\frac{r+3}{4}, a_i; \Delta_0\right) + O\left(\log \frac{1}{1-r}\right).$$

LEMMA 4. Let $f(z) = \frac{g_1(z)w(z) + g_2(z)}{g_3(z)w(z) + g_4(z)}$, where w(z), $g_i(z)$ (i=1,2,3,4) are meromorphic in |z| < 1.

Let $\Delta \subset \Delta_0$ be two angular domains of Lemma 2. Then

$$S(r, f; \Delta) \leq 27S\left(\frac{r+63}{64}, w; \Delta_0\right) + O\left(\int_0^{\frac{r+127}{128}} \frac{T(r, g)}{(1-r)^2} dr\right),$$
 where
$$T(r, g) = \sum_{i=1}^4 T(r, g_i).$$

The same relation holds, if $\Delta \subset \Delta_0$ are sectors of Lemma 3, where 27 is replaced by 729.

PROOF. Let $\Delta \subset \Delta_0$ be two angular domains of Lemma 2. We define Δ_{ν} , Δ_{ν}^0 as before. If we map Δ_{ν}^0 conformally on $|\zeta| < 1$, such that z_{ν} becomes $\zeta=0$, then the image of Δ_{ν} is contained in $|\zeta| \leq \rho_0 < 1$, where ρ_0 is a constant, independent of ν .

First we consider two special cases: f(z) = w(z) + g(z), f(z) = w(z)g(z) and first consider the case f(z) = w(z) + g(z).

Let D_{ν} be the image of $|\zeta| \leq \frac{1+\rho_0}{2}$ in Δ_{ν}^0 and put

$$\frac{1}{|D_{\nu}|} \iint_{D_{\nu}} \log \sqrt{1+|g|^2} \, r dr d\theta = M_{\nu}, \qquad z = re^{i\theta}, \qquad (1)$$

where $|D_{\nu}|$ denotes the area of D_{ν} . Then we see easily that

$$\iint_{|\zeta| \le \frac{1+\rho_0}{2}} \log \sqrt{1+|g|^2} \, \rho d\rho d\varphi \le AM_{\nu}, \quad A = \text{const.}, \quad \zeta = \rho e^{i\varphi}. \quad (2)$$

Let B > 0 and E be the set of ρ in $\left[\rho_0, \frac{1+\rho_0}{2}\right]$, such that

$$\int_{|\mathcal{E}|=0} \log \sqrt{1+|g|^2} \, d\varphi > BM_{\nu},$$

then

$$\begin{split} BM_{\nu} & \int_{E} d\rho \leq \int_{E} d\rho \int_{|\zeta| = \rho} \log \sqrt{1 + |g|^{2}} \ d\varphi \leq \frac{1}{\rho_{0}} \int_{E} \rho d\rho \int_{|\zeta| = \rho} \log \sqrt{1 + |g|^{2}} \ d\varphi \\ & \leq \frac{1}{\rho_{0}} \iint_{|\zeta| \leq \frac{1 + \rho_{0}}{\rho_{0}}} \log \sqrt{1 + |g|^{2}} \ \rho d\rho d\varphi \leq \frac{AM_{\nu}}{\rho_{0}} \ , \end{split}$$

so that

$$\int_E \! d
ho \! \le \! rac{A}{B
ho_0}$$
 ,

hence if B > 0 is sufficiently large, there exists $\rho_1 < \rho_2$, such that $\rho_0 \le \rho_1 \le \rho_0 + \frac{1-\rho_0}{6}$, $\rho_0 + \frac{2(1-\rho_0)}{6} \le \rho_2 \le \frac{1+\rho_0}{2}$ and

$$\int_{|\zeta| = \rho_1} \log \sqrt{1 + |g|^2} \, d\varphi \leq BM_{\nu}, \quad \int_{|\zeta| = \rho_2} \log \sqrt{1 + |g|^2} \, d\varphi \leq BM_{\nu}. \quad (3)$$

Let

$$S(f, \Delta_{\nu}) = \frac{1}{\pi} \iint_{\Delta_{\nu}} \left(\frac{|f'(z)|}{1 + |f(z)|^{2}} \right)^{2} r dr d\theta,$$

$$S(f, \rho) = \frac{1}{\pi} \iint_{|\zeta| \leq \rho} \left(\frac{|f'|}{1 + |f|^{2}} \right)^{2} \rho d\rho d\varphi, \quad f' = \frac{df}{d\zeta},$$

$$(4)$$

then

$$S(f, \Delta_{\nu}) \leq S(f, \rho_1) \leq S(f, \rho_2) \leq S(f, 1) = S(f, \Delta_{\nu}^0)$$
.

By Nevanlinna's fundamental theorem,

$$\int_{\rho_{1}}^{\rho_{2}} \frac{S(f,\rho)}{\rho} d\rho = \frac{1}{2\pi} \int_{|\zeta| = \rho_{2}} \log \sqrt{1 + |w+g|^{2}} d\varphi
- \frac{1}{2\pi} \int_{|\zeta| = \rho_{1}} \log \sqrt{1 + |w+g|^{2}} d\varphi + \int_{\rho_{1}}^{\rho_{2}} \frac{n(\rho, w+g, \infty)}{\rho} d\rho, \quad (5)$$

$$\int_{\rho_{1}}^{\rho_{2}} \frac{S(w,\rho)}{\rho} d\rho = \frac{1}{2\pi} \int_{|\zeta| = \rho_{2}} \log \sqrt{1 + |w|^{2}} d\varphi
- \frac{1}{2\pi} \int_{|\zeta| = \rho_{1}} \log \sqrt{1 + |w|^{2}} d\varphi + \int_{\rho_{1}}^{\rho_{2}} \frac{n(\rho, w, \infty)}{\rho} d\rho. \quad (6)$$

Now by (3),

$$\frac{1}{2\pi} \int_{|\zeta| = \rho_2} \log \sqrt{1 + |w + g|^2} \, d\varphi \leq \frac{1}{2\pi} \int_{|\zeta| = \rho_2} \log \sqrt{1 + |w|^2} \, d\varphi$$

$$+ \frac{1}{2\pi} \int_{|\zeta| = \rho_2} \log \sqrt{1 + |g|^2} \, d\varphi + 1 \leq \frac{1}{2\pi} \int_{|\zeta| = \rho_2} \log \sqrt{1 + |w|^2} \, d\varphi$$

$$+ O(M_{\nu}) + 1,$$

$$\frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |w|^2} \, d\varphi = \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |w + g - g|^2} \, d\varphi$$

$$\leq \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |w + g|^2} \, d\varphi + \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |g|^2} \, d\varphi + 1$$

$$\leq \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |w + g|^2} \, d\varphi + O(M_{\nu}) + 1,$$

so that

$$\frac{1}{2\pi} \int_{|\zeta| = \rho_{2}} \log \sqrt{1 + |w + g|^{2}} \, d\varphi - \frac{1}{2\pi} \int_{|\zeta| = \rho_{1}} \log \sqrt{1 + |w + g|^{2}} \, d\varphi
\leq \frac{1}{2\pi} \int_{|\zeta| = \rho_{2}} \log \sqrt{1 + |w|^{2}} \, d\varphi - \frac{1}{2\pi} \int_{|\zeta| = \rho_{1}} \log \sqrt{1 + |w|^{2}} \, d\varphi
+ O(M_{\nu}) + 2.$$
(7)
$$\int_{\rho_{1}}^{\rho_{2}} \frac{n(\rho, w + g, \infty)}{\rho} \, d\rho \leq \int_{\rho_{1}}^{\rho_{2}} \frac{n(\rho, w, \infty)}{\rho} \, d\rho + \int_{\rho_{1}}^{\rho_{2}} \frac{n(\rho, g, \infty)}{\rho} \, d\rho
\leq \int_{\rho_{1}}^{\rho_{2}} \frac{n(\rho, w, \infty)}{\rho} \, d\rho + O(n(\rho_{2}, g, \infty)),$$

where $n(\rho, g, \infty)$ is the number of poles of g in $|\zeta| \leq \rho$.

Now the image of $|\zeta| \leq \rho_2$ in Δ_{ν}^0 is contained in $|z| \leq \tau_{\nu} (\langle r_{\nu+1})$, such that $r_{\nu+1} - \tau_{\nu} \geq \frac{\text{const.}}{2^{\nu}}$, so that if we denote the number of poles of g(z) in $|z| \leq r$ by $n(r, g, \infty)$, then $n(\rho_2, g, \infty) \leq n(\tau_{\nu}, g, \infty)$, so that

$$\int_{\rho_1}^{\rho_2} \frac{n(\rho, w+g, \infty)}{\rho} d\rho \leq \int_{\rho_1}^{\rho_2} \frac{n(\rho, w, \infty)}{\rho} d\rho + O(n(\tau_{\nu}, g, \infty)).$$
 (8)

Hence by (5), (6), (7), (8),

$$\int_{\rho_1}^{\rho_2} \frac{S(f,\rho)}{\rho} d\rho \leq \int_{\rho_1}^{\rho_2} \frac{S(w,\rho)}{\rho} d\rho + O(M_v) + O(n(\tau_v,g,\infty)) + 2.$$

Since

$$S(f, \rho_1) \log \frac{-\rho_2}{\rho_1} \leq \int_{\rho_1}^{\rho_2} \frac{S(f, \rho)}{\rho} d\rho$$
, $\int_{\rho_1}^{\rho_2} \frac{S(w, \rho)}{\rho} d\rho \leq S(w, \rho_2) \log \frac{-\rho_2}{\rho_1}$,

we have

$$S(f, \rho_1) \leq S(w, \rho_2) + O(M_{\nu}) + O(n(\tau_{\nu}, g, \infty)) + O(1).$$

Since $S(f, \Delta_{\nu}) \leq S(f, \rho_1)$ and $S(w, \rho_2) \leq S(w, \Delta_{\nu}^0)$,

$$S(f, \Delta_{\nu}) \leq S(w, \Delta_{\nu}^{0}) + O(M_{\nu}) + O(n(\tau_{\nu}, g, \infty)) + O(1).$$
 (9)

Since $\Delta_{\nu} \subset D_{\nu} \subset \Delta_{\nu}^{0}$,

$$M_{
u} = rac{1}{|D_{
u}|} \iint_{D_{
u}} \log \sqrt{1+|g|^2} \ rdrd heta \leq rac{1}{|ec{ert}_{
u}|} \iint_{ec{ert}_{
u}} \log \sqrt{1+|g|^2} \ rdrd heta$$

$$\leq \text{const. } 2^{2\nu} \int_{r_{\nu-2}}^{r_{\nu+1}} r dr \int_{|z|=r} \log \sqrt{1+|g|^2} d\theta \leq \text{const. } 2^{\nu} T(r_{\nu+1}, g).$$
 (10)

$$T(r_{\nu+1},g)+O(1) \geq \int_{\tau_{\nu}}^{r_{\nu+1}} \frac{n(r,g,\infty)}{r} dr \geq n(\tau_{\nu},g,\infty)(r_{\nu+1}-\tau_{\nu})$$

$$\geq \text{const.} \frac{n(\tau_{\nu},g,\infty)}{2^{\nu}}, \text{ or }$$

$$n(\tau_{\nu}, g, \infty) \leq \text{const. } 2^{\nu} T(r_{\nu+1}, g) \tag{11}$$

and

$$\int_{r_{\nu+1}}^{r_{\nu+2}} \frac{T(r,g)}{(1-r)^2} dr \ge \text{const. } 2^{\nu} T(r_{\nu+1},g), \qquad (12)$$

so that from (9), (10), (11), (12),

$$S(f, \Delta_{\nu}) \leq S(w, \Delta_{\nu}^{0}) + O\left(\int_{r_{\nu+1}}^{r_{\nu+2}} \frac{T(r, g)}{(1-r)^{2}} dr\right), f = w + g.$$
 (13)

Next consider the case f(z) = w(z)g(z).

We choose ρ_1 in $\left[\rho_0, \rho_0 + \frac{1-\rho_0}{6}\right]$ and ρ_2 in $\left[\rho_0 + \frac{2(1-\rho_0)}{6}, \frac{1+\rho_0}{2}\right]$, such that

$$\int_{|\zeta|-\rho_2} \log \sqrt{1+|g|^2} \ d\varphi = O(M_{\nu}), \quad \int_{|\zeta|-\rho_1} \log \sqrt{1+\frac{1}{|g|^2}} \ d\varphi = O(M_{\nu}^*), \quad (14)$$

where

$$M_{\nu}^* = \frac{1}{|D_{\nu}|} \iint_{D_{\nu}} \log \sqrt{1 + \frac{1}{|g|^2}} r dr d\theta.$$
 (15)

Then

$$\frac{1}{2\pi}\int_{|\zeta|-\rho_2}\!\!\!\log\sqrt{1+|wg|^2}\,d\varphi \leqq \frac{1}{2\pi}\int_{|\zeta|-\rho_2}\!\!\!\!\log\sqrt{1+|w|^2}\,d\varphi$$

$$\begin{split} & + \frac{1}{2\pi} \int_{|\zeta| = \rho_2} \log \sqrt{1 + |g|^2} \, d\varphi \leq \frac{1}{2\pi} \int_{|\zeta| = \rho_2} \log \sqrt{1 + |w|^2} \, d\varphi + O(M_{\nu}) \,, \\ & - \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |w|^2} \, d\varphi = \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + \frac{|wg|^2}{g}} \, d\varphi \\ & \leq \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |wg|^2} \, d\varphi + \frac{1}{2\varphi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + \frac{1}{|g|^2}} \, d\varphi \\ & \leq \frac{1}{2\pi} \int_{|\zeta| = \rho_1} \log \sqrt{1 + |wg|^2} \, d\varphi + O(M_{\nu}^*) \,, \end{split}$$

so that

$$\frac{1}{2\pi} \int_{|\zeta| - \rho_{2}} \log \sqrt{1 + |wg|^{2}} \, d\varphi - \frac{1}{2\varphi} \int_{|\zeta| - \rho_{1}} \log \sqrt{1 + |wg|^{2}} \, d\varphi$$

$$\leq \frac{1}{2\pi} \int_{|\zeta| - \rho_{2}} \log \sqrt{1 + |w|^{2}} \, d\varphi - \frac{1}{2\varphi} \int_{|\zeta| - \rho_{1}} \log \sqrt{1 + |w|^{2}} \, d\varphi$$

$$+ O(M_{\nu}) + O(M_{\nu}^{*}). \tag{16}$$

Since as (10), $M_{\nu}^* \leq \text{const. } 2^{\nu} T\left(r_{\nu+1}, \frac{1}{g}\right) = \text{const. } 2^{\nu} T(r_{\nu+1}, g)$, we have (13) for f = wg, so that

$$S(f, \Delta_{\nu}) \leq S(w, \Delta_{\nu}^{0}) + O\left(\int_{r_{\nu+1}}^{r_{\nu+2}} \frac{T(r, g)}{(1-r)^{2}} dr\right), f = w + g, f = wg.$$
 (17)

If we sum up (17) for $\nu=2,3,\dots,n$, then since Δ^0_{ν} overlap at most 3-times,

$$S(r_n, f; \Delta) \leq 3S(r_{n+1}, w; \Delta_0) + O\left(\int_0^{r_{n+2}} \frac{T(r, g)}{(1-r)^2} dr\right).$$

If $r_{n-1} \le r \le r_n$, then $S(r, \Delta) \le S(r_n, \Delta)$ and $r_{n+1} = \frac{r_{n-1}+3}{4} \le \frac{r+3}{4}$, $r_{n+2} = \frac{1+r_{n+1}}{2} \le \frac{r+7}{8}$, so that

$$S(r, f; \Delta) \leq 3S(\frac{r+3}{4}, w; \Delta_0) + O(\int_0^{\frac{r+7}{8}} \frac{T(r, g)}{(1-r)^2} dr),$$
 (18)
 $f = w + g, \quad f = wg.$

Now we consider the general case $f = \frac{g_1 w + g_2}{g_3 w + g_4}$, then $f = h_1 + \frac{h_2}{w + h_3}$, where $h_1 = \frac{g_1}{g_3}$, $h_2 = \frac{g_2 g_3 - g_1 g_4}{g_3^2}$, $h_3 = \frac{g_4}{g_3}$, so that $f = w_1 + h_1$, $w_1 = h_2 w_2$, $w_2 = \frac{1}{w_3}$, $w_3 = w + h_3$. (19)

Let $\Delta \subset \Delta_1 \subset \Delta_2 \subset \Delta_0$ be four angular domains, each of which is bounded by two lines through z=1, directed inward of |z| < 1. Then by (18),

$$S(r, f; \Delta) \leq 3S(r_1, w_1; \Delta_1) + O\left(\int_0^{r_1'} \frac{T(r, h_1)}{(1-r)^2} dr\right), \quad r_1 = \frac{r+3}{4}, \quad r_1' = \frac{r+7}{8},$$

$$S(r_1, w_1; \Delta_1) \leq 3S(r_2, w_2; \Delta_2) + O\left(\int_0^{r_2'} \frac{T(r, h_2)}{(1-r)^2} dr\right), \quad r_2 = \frac{r_1+3}{4}, \quad r_2' = \frac{r_1+7}{8},$$

$$S(r_2, w_2; \Delta_2) = S(r_2, w_3; \Delta_2),$$

$$S(r_2, w_3; \Delta_2) \leq 3S(r_3, w; \Delta_0) + O\left(\int_0^{r_3'} \frac{T(r, h_3)}{(1-r)^2} dr\right),$$

$$r_3 = \frac{r_2+3}{4} = \frac{r+63}{64}, \quad r_3' = \frac{r_2+7}{8} = \frac{r+127}{128}.$$

Since $T(r, h_i) = O(T(r, g))$ (i=1, 2, 3), we have

$$S(r, f; \Delta) \leq 27S\left(\frac{r+63}{64}, w; \Delta_0\right) + O\left(\int_0^{\frac{r+127}{128}} \frac{T(r, g)}{(1-r)^2} dr\right).$$
 (20)

Hence the case, where $\Delta \subset \Delta_0$ are angular domains of Lemma 2, is proved. Similarly we can prove the case, where $\Delta \subset \Delta_0$ are sectors of Lemma 3, by taking $\Delta_{\nu,s}$, $\Delta_{\nu,s}^0$ instead of Δ_{ν} , Δ_{ν}^0 , then since $\Delta_{\nu,s}^0$ overlap at most 9-times, we have the similar relations as (18), where 3 is replaced be 9, so that in (20), 27 is replaced by 729. Hence the lemma is proved.

3. Proof of Theorem 1.

Now we shall prove Theorem 1. Let k>0 be such that

$$\int_{0}^{1} T(r, f)(1-r)^{k-1} dr = \infty , \qquad (1)$$

where $k=\rho-\varepsilon$ ($\varepsilon>0$) in general and $k=\rho$, if f(z) is of divergence type. By dividing the unit circle |z|=1 into 2^n equal parts, we see that there exists an angular domain Δ_n of maginitude $\frac{2\pi}{2^n}$, bounded by two lines through z=0, such that $\Delta_1>\Delta_2>\cdots>\Delta_n>\cdots$

$$\int_{0}^{1} T(r, f; \Delta_{n}) (1-r)^{k-1} dr = \infty.$$
 (2)

Let Δ_n converge to a direction L: $\arg z = \theta_0$, $z_0 = e^{i\theta_0}$, then for any small angular domain Δ : $|\arg z - \theta_0| < \delta$, which contains L,

$$\int_{0}^{1} T(r, f; \Delta) (1 - r)^{k-1} dr = \infty.$$
 (3)

We denote the sector: $|\arg z - \theta_0| \le \delta$, |z| < 1 by the same letter Δ .

Let \mathcal{Q} be an angular domain of maginitude $\langle \pi$, bounded by two lines through z_0 , which lie symmetric to L. We denote the common part of Δ and Ω by the same letter Ω . Then Δ consists of three parts: $\Delta = \Omega + \Omega' + \Omega''$, as shown in the figure, so that

$$T(r, f; \Delta) = T(r, f; \Omega) + T(r, f; \Omega') + T(r, f; \Omega''),$$
 hence

$$\infty = \int_0^1 T(r, f; \Delta) (1 - r)^{k-1} dr = \int_0^1 T(r, f; \Omega) (1 - r)^{k-1} dr
+ \int_0^1 T(r, f; \Omega') (1 - r)^{k-1} dr + \int_0^1 T(r, f; \Omega') (1 - r)^{k-1} dr.$$
(4)

First suppose that

$$\int_0^1 T(r, f; \Omega) (1-r)^{k-1} dr = \infty.$$
 (5)

By dividing \mathcal{Q} into 2^n equal parts by lines through z_0 , we see that there exists a line J in \mathcal{Q} through z_0 , such that for any small angular domain ω , which contains J and is bounded by two lines through z_0 ,

$$\int_0^1 T(r, f; \omega) (1-r)^{k-1} dr = \infty.$$
 (6)

Let $\omega \subset \omega_1 \subset \omega_0$ be three small angular domains, each of which is bounded by two lines through z_0 .

Let $g_i(z)$ (i=1, 2, 3) be three meromorphic functions in |z| < 1, such that

$$\int_{0}^{1} T(r, g_{i})(1-r)^{k-1} dr < \infty \quad (i=1, 2, 3).$$
 (7)

Hence if we put $T(r,g) = \sum_{i=1}^{3} T(r,g_i)$, then

$$\int_{0}^{1} T(r,g)(1-r)^{k-1} dr < \infty .$$
 (8)

We shall prove that for one of g_i ,

$$\sum_{\nu} (1-|z_{\nu}(f=g_{i},\omega_{0})|)^{k+1} = \infty$$
.

If we put

$$w = \frac{f - g_1}{f - g_3} \cdot \frac{g_2 - g_3}{g_2 - g_1}$$
, then $f = \frac{h_1 w + h_2}{h_3 w + h_4}$, (9)

where $h_1=g_3(g_2-g_1)$, $h_2=g_1(g_3-g_2)$, $h_3=g_2-g_1$, $h_4=g_3-g_2$. Hence $T(r,h_i)=O(T(r,g))$ (i=1,2,3,4), so that by Lemma 4,

$$S(r, f; \omega) \leq \text{const. } S\left(\frac{r+63}{64}, w; \omega_1\right) + O(\varphi(r)),$$
 (10)

where

$$\Phi(r) = \int_0^{\frac{r+127}{128}} \frac{T(r,g)}{(1-r)^2} dr.$$

Hence

$$T(r, f; \omega) \leq \text{const. } T\left(\frac{r+63}{64}, w; \omega_1\right) + O(\Psi(r)),$$
 (11)

where

$$\Psi(r) = \int_0^r \Phi(r) dr,$$

so that by (6),

$$\infty = \int_0^1 T(r, f; \omega) (1 - r)^{k-1} dr \leq \text{const.} \int_0^1 T(r, w; \omega_1) (1 - r)^{k-1} dr + O\left(\int_0^1 \Psi(r) (1 - r)^{k-1} dr\right).$$
(12)

We shall prove that $\int_0^1 \Psi(r)(1-r)^{k-1} dr < \infty.$

$$\int_{0}^{r} \Psi(r)(1-r)^{k-1} dr = \left[-\frac{(1-r)^{k} \Psi(r)}{k} \right]^{r} + \frac{1}{k} \int_{0}^{r} (1-r)^{k} \Phi(r) dr
\leq \frac{1}{k} \int_{0}^{r} (1-r)^{k} \Phi(r) dr \leq \frac{1}{k(k+1)} \int_{0}^{r} (1-r)^{k+1} \Phi'(r) dr
\leq \text{const.} \int_{0}^{r} T\left(\frac{r+127}{128}, g\right) (1-r)^{k-1} dr = O(1) .$$

Hence $\int_0^1 \Psi(r)(1-r)^{k-1}dr < \infty$, so that from (12),

$$\int_{0}^{1} T(r, w; \omega_{1})(1-r)^{k-1} dr = \infty.$$
 (13)

If we put $a_1=0$, $a_2=1$, $a_3=\infty$ and apply Lemma 2 for $\omega_1 \subset \omega_0$, then from (13), we see that one of

$$\int_0^1 N(r, w=0; \omega_0) (1-r)^{k-1} dr, \qquad \int_0^1 N(r, w=1; \omega_0) (1-r)^{k-1} dr,$$

$$\int_0^1 N(r, w=\infty; \omega_0) (1-r)^{k-1} dr$$

is ∞ . Without loss of generality, we assume that

$$\int_0^1 N(r, w=0; \omega_0)(1-r)^{k-1} dr = \infty.$$
 (14)

Since

$$n(r, w=0; \omega_0) \leq n(r, f=g_1; \omega_0) + n(r, g_2=g_3; \omega_0) + \sum_{i=1}^{3} n(r, g_i=\infty; \omega_0),$$

$$N(r, w=0; \omega_0) \leq N(r, f=g_1; \omega_0) + N(r, g_2=g_3; \omega_0 + \sum_{i=1}^{3} N(r, g_i=\infty; \omega_0))$$

$$\leq N(r, f=g_1; \omega_0) + O(T(r, g)),$$
(15)

we have from (14), (8),

$$\int_0^1 N(r, f = g_1; \, \omega_0) (1-r)^{k-1} dr = \infty \,\, , \quad \text{or} \quad \sum_{\nu} (1-|z_{\nu}(f = g_1; \, \omega_0)|)^{k+1} = \infty \,\, .$$

Hence

$$\sum_{\nu} (1 - |z_{\nu}(f = g; \omega_0)|)^{k+1} = \infty$$
 (16)

with two possible exceptions for g.

If $\int_0^1 T(r,f;\Omega)(1-r)^{k-1}dr < \infty$, then from (4), one of $\int_0^1 T(r,f;\Omega')(1-r)^{k-1}dr$, $\int_0^1 T(r,f;\Omega'')(1-r)^{k-1}dr$ is ∞ . Suppose that

$$\int_{0}^{1} T(r, f; \Omega') (1 - r)^{k-1} dr = \infty .$$
 (17)

Let ζ be the common point of the boundaries of Δ and Ω , which

lies on the boundary of \mathcal{Q}' and z_1 be the point on |z|=1, which lies on the line: $\arg z=\arg \zeta$. Let ζ_0 be a point on the segment $\overline{0\zeta}$, such that $\zeta=\frac{\zeta_0+z_1}{2}$, and z_2 be the point on |z|=1, which lies symmetric to z_0 with respect to the line $\overline{oz_1}$. Let Σ be the angular domain, bounded by two lines $\overline{\zeta z_0}$ and $\overline{\zeta z_2}$ and Σ_0 be that, bounded by two lines $\zeta_0\overline{z_0}$ and $\zeta_0\overline{z_0}$. Then by (17),

$$\int_0^1 T(r, f; \Sigma)(1-r)^{k-1} dr = \infty.$$
 (18)

By means (18) and Lemma 3, we can prove similarly as above that $\sum_{n} (1-|z_n(f=g;\Sigma_0)|)^{k+1} = \infty$, with two possible exceptions for g. Hence

if $\int_0^1 T(r, f; \Omega)(1-r)^{k-1} dr < \infty$ for any Ω , then if we denote the tangent of |z|=1 at z_0 , directed toward z_1 , by J, then

$$\sum_{\nu} (1 - |z_{\nu}(f = g, \omega)|)^{k+1} = \infty , \qquad (19)$$

with two possible exceptions for g for any angular domain ω , which contains J.

Hence by (16), (19), in any case, there exists a line J through z_0 , such that $\sum_{\nu} (1-|z_{\nu}(f=g;\omega)|)^{k+1} = \infty$, with two possible exceptions for g, for any angular domain ω , which contains J.

If f(z) is of divergence type, then $k=\rho$, so that J satisfies the condition of the theorem.

If f(z) is of convergence type, let $k=\rho-\varepsilon_n$ ($\varepsilon_1>\varepsilon_2>\cdots>\varepsilon_n\to 0$), then we see easily that z_0 can be chosen independently of n. Let J_n be the corresponding line through z_0 and J be one of limiting postitions of J_n , then J satisfies the condition of the theorem. Hence the theorem is proved.

4. Meromorphic functions of the class:

$$\overline{\lim}_{r\to 1} T(r, f)/\log \frac{1}{1-r} = \infty.$$

Let f(z) be meromorphic in |z| < 1, such that $\overline{\lim_{r \to 1}} T(r, f) / \log \frac{1}{1 - r} = \infty$, then as well known, f(z) takes any value infinitely often in |z| < 1, with two possible exceptions. We shall prove

THEOREM 2. Let f(z) be meromorphic in |z| < 1, such that

$$\overline{\lim_{r\to 1}} T(r, f)/\log \frac{1}{1-r} = \infty ,$$

and g(z) be meromorphic in |z| < 1, such that T(r,g) = O(1). Then there exists a point z_0 on |z| = 1 and a line J through z_0 , directed inward of |z| < 1, which may coincide with the tangent of |z| = 1 at z_0 , such that in any small angular domain ω , which contains J and is bounded by two lines through z_0 , f(z) - g(z) has infinitely many zero points, with two possible exceptions for g. More precisely

$$\lim_{r\to 1} N(r, f=g; \omega)/\log \frac{1}{1-r} = \infty$$

with two possible exceptions for g.

PROOF. Similarly as the proof of Theorem 1, there exists a line L: $\arg z = \theta_0$, $z_0 = e^{i\theta_0}$, such that for any small angular domain Δ : $|\arg z - \theta_0| < \delta$, which contains L,

$$\lim_{r \to 1} T(r, f; \Delta) / \log \frac{1}{1 - r} = \infty.$$
 (1)

We define Ω , Ω' Ω'' as before, then one of

$$\overline{\lim}_{r\to 1} T(r, f; \Omega)/\log \frac{1}{1-r}, \qquad \overline{\lim}_{r\to 1} T(r, f; \Omega')/\log \frac{1}{1-r},$$

$$\overline{\lim}_{r\to 1} T(r, f; \Omega'')/\log \frac{1}{1-r}$$

is ∞ .

Suppose that

$$\overline{\lim}_{r\to 1} T(r, f; \Omega)/\log \frac{1}{1-r} = \infty.$$
 (2)

Then as before, there exists a line J in Ω , through z_0 , such that for any small angular domain ω , which contains J and is bounded by two lines through z_0 ,

$$\lim_{r \to 1} T(r, f; \omega) / \log \frac{1}{1 - r} = \infty.$$
 (3)

Let $\omega < \omega_1 < \omega_0$ be three angular domains of any small magnitude, each of which is bounded by two lines through z_0 and $g_i(z)$ (i=1, 2, 3) be three meromorphic functions in |z| < 1, such that $T(r, g_i) = O(1)$ (i=1, 2, 3) and put

$$w = \frac{f - g_1}{f - g_3} \cdot \frac{g_2 - g_3}{g_2 - g_1}, \quad f = \frac{h_1 w + h_2}{h_3 w + h_4},$$

$$T(r, g) = \sum_{i=1}^{3} T(r, g_i),$$
(4)

Then $T(r, h_i) = O(T(r, g)) = O(1)$ (i=1, 2, 3, 4). By Lemma 4,

$$S(r, f; \omega) \leq \text{const. } S\left(\frac{r+63}{64}, w; \omega_1\right) + O(\phi(r)),$$
 (5)

where

$$\Phi(r) = \int_{0}^{\frac{r+127}{128}} \frac{T(r,g)}{(1-r)^2} dr = O\left(\frac{1}{1-r}\right),$$

so that

$$T(r, f; \omega) \leq \text{const. } T\left(\frac{r+63}{64}, w; \omega_1\right) + O\left(\log \frac{1}{1-r}\right).$$

Hence by (3),

$$\overline{\lim}_{r\to 1} T(r, w; \omega_1)/\log \frac{1}{1-r} = \infty , \qquad (6)$$

so that by Lemma 2, for one of $N(r, w=0; \omega_0)$, $N(r, w=1; \omega_0)$, $N(r, w=\infty; \omega_0)$, say, $N(r, w=0; \omega_0)$,

$$\lim_{r\to 1} N(r, w=0; \omega_0)/\log \frac{1}{1-r} = \infty.$$
 (7)

Similarly as the proof of Theorem 1, we have

$$N(r, w=0; \omega_0) \le N(r, f=g_1; \omega_0) + O(T(r, g)) = N(r, f=g_1; \omega_0) + O(1),$$
 so that

$$\lim_{r\to 1} N(r, f=g_1; \omega_0)/\log \frac{1}{1-r} = \infty.$$
 (8)

Hence I satisfies the condition of the theorem.

If $T(r, f; \Omega) = O\left(\log \frac{1}{1-r}\right)$ for any Ω , then we can prove as Theorem 1, that the tangent J of |z|=1 at z_0 satisfies the condition of the theorem.

5. Meromorphic functions of the class:

$$\lim_{r\to 1} T(r, f) = \infty.$$

Let f(z) be meromorphe in |z| < 1, such that $\lim_{r \to 1} T(r, f) = \infty$, then as well known, f(z) takes any value infinitely often in |z| < 1, except

a set of logarithmic capacity zero.

THEOREM 3.50 Let f(z) be meronorphic in |z| < 1, such that

$$\lim_{r\to 1} T(r,f) = \infty.$$

Then there exists a direction J: $\arg z = \theta_0$, such that in any small angular domain ω : $|\arg z - \theta_0| < \delta$, f(z) takes any value infinitely often, except a set of logarithmic capacity zero.

In the former paper, I map the sector: $|\arg z - \theta_0| < \delta$, |z| < 1 on $|\zeta| < 1$ conformally, and reduce the theorem to the case of a meromorphic function in $|\zeta| < 1$, such that $\lim_{\rho \to 1} T(\rho, f) = \infty$, $\zeta = \rho e^{i\varphi}$. We shall give a direct proof as follows.

PROOF. By dividing the unit circle |z|=1 into 2^n equal parts, we see that there exists a direction $J: \arg z = \theta_0$, such that for any small angular domain $\omega: |\arg z - \theta_0| < \delta$, which contains J,

$$\lim_{r \to 1} T(r, f; \omega) = \infty . \tag{1}$$

We suppose that $\theta_0 = 0$ and put

$$\omega: |\arg z| < \delta, \quad \omega_0: |\arg z| < 2\delta$$
 (2)

and $\omega(r)$, $\omega_0(r)$ be the part of ω , ω_0 , which lies in $0 < r_0 \le |z| \le r < 1$ and Γ_r be the boundary of $\omega_0(r)$.

Let $g(z, \zeta_0) \left(\zeta_0 = \frac{r_0}{2} \right)$ be the Green's function of the sector:

 $|\arg z| < 2\delta$, |z| < r, with ζ_0 as its pole and $[a, b] = \frac{|a-b|}{\sqrt{(1+|a|^2)(1+|b|^2)}}$.

We put

$$u(z) = \log \frac{[f(z), b]}{[f(z), a]}, \quad v(z) = g(z, \zeta_0)$$
(3)

and apply Green's formula: $\int_C \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu}\right) ds = 0$ for the domain, which is obtained from $\omega_0(r)$, by taking off small discs about zero points $z_{\nu}(a)$, $z_{\nu}(b)$ of f(z)-a, f(z)-b in $\omega_0(r)$ and then making the radii of

⁵⁾ G. Valiron: Points de Picard et points de Borel des fonctions méromorphes dans un cercle. Bull. des Sci. Math. (1932). M. Tsuji: On Borel's directions of meromorphic functions of finite order, II. Kōdai Math. Seminar Reports. (1950).

these discs tend to zero, we have

$$\frac{1}{2\pi}\int_{\Gamma_{\nu}} u \frac{\partial g}{\partial \nu} ds - \frac{1}{2\pi}\int_{\gamma_0} g \frac{\partial u}{\partial \nu} ds + \sum_{z_{\nu}(a)\in\omega_0(r)} g(z_{\nu}(a), \zeta_0) - \sum_{z_{\nu}(b)\in\omega_0(r)} g(z_{\nu}(b), \zeta_0) = 0, (4)$$

where ν is the inner normal of Γ_r and γ_0 is the arc of the circle $|z|=r_0$, such that $|\arg z|\leq 2\delta$.

Hence if we put

$$T^{*}(r,a) = \frac{1}{2\pi} \int_{\Gamma_{r}} \log \frac{1}{[f(z), a]} \frac{\partial g(z, \zeta_{0})}{\partial \nu} ds$$
$$- \frac{1}{2\pi} \int_{\gamma_{0}} g(z, \zeta_{0}) \frac{\partial}{\partial \nu} \log \frac{1}{[f(z), a]} ds + \sum_{z_{\nu}(a) \in \omega_{0}(r)} g(z_{\nu}(a), \zeta_{0}), (5)$$

then $T^*(r,a) = T^*(r,b)$, so that $T^*(r,a)$ is independent of a, hence if we put

$$T^*(r) = T^*(r, a)$$
, (6)

then

$$T^*(r) \geq \sum_{z_{\nu}(a) \in \omega_0(r)} g(z_{\nu}(a), \zeta_0) - O(1) \geq \sum_{z_{\nu}(a) \in \omega(r)} g(v(a), \zeta_0) - O(1)$$
.

If $z_{\nu}(a) \in \omega(r)$, then

$$g(z_{\nu}(a), \zeta_0) \geq \text{const.} (r - |z_{\nu}(a)|)$$

so that if we denote the number of zero points of f(z)-a in $\omega(r)$ by $n(r, a; \omega)$, then

$$T^*(r) \ge \text{const.} \int_{r_0}^r (r-t) dn(t, a; \omega) - O(1) = \text{const.} \int_{r_0}^r n(t, a; \omega) dt - O(1).$$

Let $d\omega(a)$ be the surface element on the w=f(z)-sphere K, then multiplying $\frac{d\omega(a)}{\pi}$ and integrating on K, we have by (1),

$$T^*(r) \ge \text{const.} \int_{r_0}^r S(t, \omega) dt - O(1) \ge \text{const.} T(r, f; \omega) - O(1) \to \infty, r \to 1.$$
 (8)

Suppose that f(z) takes any value a of a set E of positive logarithmic capacity finite times in ω_0 , then we may assume that E is a closed

set, so that by taking r_0 sufficiently near to 1, we assume that $f(z) \neq a$, $a \in E$, in $\omega_0(r)$, so that if $a \in E$,

$$T^{*}(r) = T^{*}(r, a) = \frac{1}{2\pi} \int_{\Gamma_{r}} \log \frac{1}{[f(z), a]} \frac{\partial g(z, \zeta_{0})}{\partial \nu} ds - O(1).$$
 (9)

Let

$$u(w) = \int_E \log \frac{1}{[w, a]} d\mu(a), \qquad \int_E d\mu(a) = 1$$

be the conductor potential of E, such that $u(w) \leq M < \infty$ for any w, then from (9),

$$T^*(r) = \int_E T^*(r, a) d\mu(a) = O(1)$$
,

which contradicts (8). Since $\delta > 0$ is arbitrary, f(z) takes any value infinitely often in any small angular domain, which contains J, except a set of logarithmic capacity zero.

REMARK. It is probable that there exists a point z_0 on |z|=1 and a line J through z_0 , such that in any small angular domain, which contains J and is bounded by two lines through z_0 , f(z) takes any value infinitely often, except a set of logarithmic capacity zero, but I have no proof for it.

Mathematical Institute, Rikkyo University, Tokyo.