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1. Function of $U$-class.

Let $w=f(z)$ be regular and $|f(z)|<1$ in $|z|<1$ , then by Fatou’s
theorem,

$\lim_{z\rightarrow e^{i\theta}}f(z)=f(e^{i0})$ exists almost everywhere on $|z|=1$ , when $z\rightarrow e^{i\theta}$

from the inside of any Stolz domain, whose vertex is at $e^{i9}$ . If $|f(e^{t\theta})|=1$

almost everywhere, we say with $Seide1^{I)}$ that $f(z)$ belongs to U-class
and denote $f(z)eU$. If $(f(z)-a)/\rho\in U$ , we write $f(z)\in \mathfrak{l}J_{\rho}(a)$ . Functions
of U.class play an important r\^ole in several problems. In this paper,
we shall show some applications of them. In this paper, “ capacity”
means “ logarithmic capacity “ and $\gamma(E)$ denotes the capacity of $E$ .

LEMMA 1 (Extension of $Lo\iota vners$ theorem). Let $w=f(z)$ be
regular and $|f(z)|<1$ in $|z|<1,f(0)=0$ . Let $E$ be the set of $e^{i\theta}$ on
$|z|=1$ , such that $|f(e^{t0})|=1$ and $E^{*}$ be the set $f(e^{i\theta})(e^{i0}\in E)$ on $|w|=1$ .
Then $E$ and $E^{*}$ are measurable and $mE^{*}\geqq mE$.

LEMMA 2. If $f(z)eU$ , then $f(z)$ takes any value $of|w|<1$ at least
once, except a set of capacrty zero.

PROOF. Let $E$ be the set of $a(|a|<1)$ , such that $f(z)\neq a$ in $|z|<1$

and suppose that $\gamma(E)>0$ , then by taking a suitable closed sub.set, we
may assume that $E$ is a closed set, contained entirely in $|w|<1$ . Let
$D$ be the domain, which is bounded by $E$ ard $|w|=1$ . We solve the
Dirichlet problem for $D$, with the boundary value 1 on $E$ and $0$ on
$|\iota v|=1$ , and let $u(w)$ be its solution, then since $\gamma(E)>0,$ $E$ contains
a regular point of Dirichlet problem, so that $u(w)\equiv|=_{-}0$ . If we put
$u(f(z))=v(z)$ , then $v(z)$ is a bounded harmonic function in $|z|<1$ .

1) W. Seidel: On the distribution of values of bounded analytic functions. Trans.
Amer. Math. Soc. 36 (1934).

2) M. Tsuji: On an extension of Lowner’s theorm. Proc. Imp. Acad. 18 (1942). The
special case, where $f(z)$ is $schlich\underline{\mathfrak{t}}$ in $|z|<1$ , is proved by Y. Kawakami: On an extension
of L\"owner’s lemma. Jap. Journ. Math 17 (1941).
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Since $f(z)\in U,$ $v(e^{i\theta})=0$ almost everywhere, so that $v(z)\equiv 0$, or $u(w)\equiv 0$ ,
which is absurd. Hence $\gamma(E)=0$ .

THEOREM 1. Let $f(z)\in U$ and $F$ be the Riemann surface, generated
by $w=f(z)$ on the w.plane.

(i) Let $F_{\rho}$ be a connected piece of $F$, which lies above a disc
$ K:|w-a_{0}|<\rho$, which lies in $|w|<1$ . If we map $F_{\rho}$ conformally on
$|\zeta|<1$ by $w=\varphi(\zeta)$ , then $\varphi(\zeta)\in U_{\rho}(a_{0})^{3)}$.

(ii) Let $a$ be any point of $K$ and be covered $n(a)\cdot times$ by $F_{\rho}$ and
$n_{0}=\sup_{a}n(a)$ . Then $F_{\rho}$ covers any point of $Kn_{0}$-times, except a set

of capacity zero. If $ n_{0}<\infty$ , then $F_{\rho}$ covers any point of $Kn_{0}$-times.
(iii) If $f(z)$ is of the form: $f_{0}(z)=e\prod_{\nu=1}^{n}\frac{z-z_{\nu}}{1-\overline{z}_{\nu}z}(|z_{\nu}|<1, |e|=1)$ , then

$F$ covers any point of $|w|<1$ n-times. If $f(z)$ is not of the form $f_{0}(z)$ ,
then $Fcover_{4}s_{)}$ any point of $|w|<1$ infinitely often, except a set of
capacity zero.

PROOF of (i). Let $\Delta_{0}$ be the image of $F_{\rho}$ in $|z|<1$ , then $\Delta_{0}$ is simply
connected, so that $F_{\rho}$ is simply connected.

We may assume that $\Delta_{0}$ has boundary points on $|z|=1$ and let $e_{0}$

be the set of such boundary points. We map $F_{\rho}$ on $|\zeta|<1$ conformally
by $u$) $=\varphi(\zeta)$ , then $\lim_{r\rightarrow 1}\varphi(re^{i\psi})=\varphi(e^{i\psi})$ exists almost everywhere. Let $e_{1}$ be
the set of $e^{i\psi}$ , such that $|\varphi(e^{i\psi})-a_{0}|<\rho$ . If $\zeta=re^{i\psi}\rightarrow e^{i\psi}$, then $w\rightarrow\varphi(e^{;\psi})$

along a curve $L$ . Let $L$ correspond to a curve $\Lambda$ in $\Delta_{0}$ , which ends at
a point $e^{i\theta}\in e_{0}$ . Then if $z\rightarrow e^{i\theta}$ on $\Lambda,$ $w=f(z)\rightarrow\varphi(e^{i\psi})$ . Since $f(z)$ is
bounded, $\lim_{r\rightarrow 1}f(re^{i\theta})=\varphi(e^{i\psi})$ by Hardy’s theorem. Since $f(z)eU$, the set

of such $e^{i\theta}$ is of measure zero. Hence by Lemma 1, $e_{1}$ is a null set,
so that $\varphi(\zeta)\in U_{\rho}(a_{0})$ .

To prove (ii), we shall prove a lemma.
LEMMA 3. Let $K_{0}$ be a disc contained in K If every point of $K_{0}$

is covered n.times by $F_{\rho}(1\leqq n<\infty)$, then every point of $K$ is covered
$n\cdot times$ by $F_{\rho}$ .

PROOF. Let $D$ be the domain, which contains $K_{0}$ and every point
of which is covered n.times by $F_{\rho}$ . Suppose that $D$ does not coincide

3) K. Noshiro: Contributions to the theory of the singularities of analytic functions.
Jap. Journ. Math. 19 (1944-48).

4) O. Frostman: Potentiel d’\’equilibre et capacit\’e des ensembles. Lund. (1935).
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with $K$ and let $\Gamma$ be the part of the boundary of $D$ , which lies in $K$

and $w_{0}\in l’$ .
Then $w_{()}$ is covered at most n.times by $F_{\rho}$ . We shall prove that

$w_{0}$ is covered at most $(n-1)\cdot times$ by $F_{\rho}$ . Suppose that $w_{0}$ is covered
n-times by $F_{\rho}$ , then the part of $F_{\rho}$ , which lies above a small disc $K_{1}$

about $w_{0}$ contains $n$ discs: $F_{1},$
$\cdots,$

$F_{n}$ consisting of inner poInts, where

the part of the Riemann surface of $(w-w_{0})^{k}1$ is considered as $k$ discs.
If there is no other connected piece of $F_{\rho}$ above $K_{1}$ , then $K_{1}$ is covered
n.times by $F_{\rho}$ , so that $w_{0}$ belongs to $D$ , which is absurd. Hence there
is another connected piece $F_{0}$ of $F_{\rho}$ above $K_{1}$ other than $F_{1},$

$\cdots,$
$F_{n}$ .

By Lemma 2 and part (i), $F_{1)}$ covers any points of $K_{1}$ at least
once, except a set of capacity zero, but $F_{0}$ does not cover $D_{0}=D.K_{1}$ ,
which is of positive capacity, which is absurd. Hence every point of
$I^{7}$ is covered at most $(n-1)\cdot times$ by $F_{\rho}$ . Next we shall prove that
$\gamma(I^{7})=0$ . Suppose that $\gamma(\Gamma)>0$ . Let $J_{k}^{v}$ be the sub.set of $\Gamma$ , which
is covered k.times by $F_{\rho}$ , then for some $k,$ $\gamma(I_{k}^{7})>0$. Since by Lemma
2 and the part (i), $F_{p}$ covers any point of $K$ at least once, except a
set of capacity zero, $\gamma(1_{0}^{v})=0$ , so that $1\leqq k\leqq n-1$ . By taking a
suitable closed sub $\cdot$ set, we may assume that $I_{k}^{7}$ is a closed set, con-
tained entirely in $K$. Then there exists a point $w_{0}eI_{k}^{7}$ , such that
$\gamma(\Gamma_{k}\cdot K_{1})>0$ , for any small disc $K_{1}$ about $\iota v_{0}$ .

Since $w_{0}\in I_{k}^{7},$ $w_{0}$ is covered k.times by $F_{\rho}$ , there exists $k$ discs
$F_{1},$

$\cdots,$
$F_{k}$ above $K_{J}$ consisting of inner points.

Since $1\leqq k\leqq n-1$ , there is another connected piece $F_{0}$ above $K_{1}$ ,
other than $F_{1}.$ $F_{k}$ , then similarly as before, $F_{0}$ covers any point of
$K_{1}$ at least once, except a set of capacity zero, but since $I_{k}^{v}\cdot K_{1}$ is
covered k-times in $F_{1},$ $\cdots F_{k},$ $F_{0}$ does not cover $I_{k}^{7}\cdot K_{1}$ , which is of posi.
tive capacity, which is absurd. Hence $\gamma(I^{7})=0$ .

Let $w_{0}\in I^{\prime}$ and $z=z_{i}(w)(i=1,2, \cdots, n)$ be $n$ branches of the inverse
function $z=z(w)$ of $w=f(z)$ and consider

$1^{\underline{n}}I(z-z_{i}(w))=z^{n}+a_{1}(w)z^{n^{-1}}+\cdots+a_{n}(w)=0i=1$

then $a_{i}(w)$ is one.valued, regular and bounded in a neighbourhood of $w_{0}$

and since $\gamma(l^{7})=0,$ $a_{i}(w)$ is regular at $w_{0}$ , so that $w_{0}$ is covered n-times
by $F_{\rho}$ , which is absurd. Hence $D$ coincides with $K$, so that every
point of $K$ is covered n.times by $F_{\rho}$ .
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PROOF of (ii) and (iii).
(ii) Let $n<n_{0}$ and $E_{n}$ be the set of $a$ , such that $n(a)=n$ . We shall
prove that $\gamma(E_{n})=0$ . Suppose that $\gamma(E_{n})>0$ , then we may assume
that $E_{n}$ is a closed set, contained entirely in $K$ Then there exists a
point $w_{0}\in E_{n}$ , such that $\gamma(E_{n}\cdot K_{1})>0$ , for any small disc $K_{1}$ about $w_{0}$ .
Since $w_{0}\in E_{n},$ $w_{0}$ is covered n.times by $F_{\rho}$ , so that there exists $n$ discs
$F_{1},$

$\cdots,$
$F_{n}$ above $K_{1}$ consisting of inner points. Since $n<n_{0}$ , there is a

point $a$, such that $n(a)>n$ , hence by Lemma 3, there is another con-
nected piece $F_{0}$ above $K_{1}$ , other than $F_{1},$

$\cdots,$
$F_{n}$ . Then as before, $F_{0}$

covers any point of $K_{1}$ at least once, except a set of capacity zero, but
since $E_{n}\cdot K_{1}$ is covered n-times in $F_{1},$

$\cdots,$
$F_{n},$ $F_{0}$ does not cover $E_{n}\cdot K_{I}$ ,

which is of positive capacity, which is absurd. Hence $\gamma(E_{n})=0,$ $n<n_{0}$.
Hence $F_{\rho}$ covers any point of $Kn_{0}$-times, except a set of capacity zero.
Suppose that $ n_{0}<\infty$ and let $E$ be the set of $a$, such that $n(a)<n_{0}$ ,
then $E$ is a closed set of capacity zero, so that from the proof of
Lemma 3, $F_{\rho}$ covers any point of $Kn_{0}$-times.
(iii) We take $K:|w|\leqq\rho<1$ and we choose $F_{p}$ , such that $F_{\rho}\subset F_{\rho},$ ,
if $\rho<\rho^{\prime}$ and let $n_{0}=n_{0}(\rho),$

$\lim_{\rho\rightarrow 1}n_{0}(\rho)=\overline{n}_{0}$ . If $\overline{n}_{0}<\infty$ , then since $\lim_{\rho\rightarrow 1}F_{\rho}=F$,

$F$ consists of $\overline{n}_{0}$ sheets and by (ii) $F$ covers any point of $|w|<1$
$\overline{n}_{0}\cdot times$ . By (ii), $F_{p}$ consists of $n$ sheets $F_{\rho^{t)}}^{(}(i=1,\cdots, n)(n\leqq\overline{n}_{0})$ . Let
$v_{\rho}$ be the sum of orders of branch points in $F_{p}$ and $\rho^{(i)}$ be the Euler’s
characteristic of $F_{\rho}^{(j)}$ , then $\rho^{(i)}\geqq-1$ . If we consider the image of $F_{\rho}$

in $|z|<1$ , then we see that $F_{\rho}$ is simply connected, hence by Hurwitz’s
relation, we have

$-1=\sum_{i\propto 1}^{n}\rho^{(j)}+v_{\rho}\geqq-n+v_{p}\geqq-\overline{n}_{0}+v_{\rho},$ $v_{p}\leqq\overline{n}_{0}-1$ .

Hence there is only a finite number of branch points in $F$, so that $f(z)$

is regular on $|z|=1$ . Since $|f(z)|=1$ on $|z|=1$ , we see, by the principle
of inversion, that $f(z)$ is a rational function of the form $f_{0}(z)$ . Hence
if $f(z)$ is not of the form $f_{0}(z)$ , then $\overline{n}_{0}=\infty$ , so that $F$ covers any point
of $|w|<1$ infinitely often, except a set of capacity zero.

2. Open Riemann surface with null boundary.

Let $F$ be an open Riemann surface with null boundary, spread
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over the z-plane. If $F$ consists of a finite number of sheets, we shall
call it a quasi.closed surface.

THEOREM 2. Let $F_{\rho}$ be a connected piece of $F$, which lies above a
disc $ K:|z-a_{0}|<\rho$ .

(i) If we map the universal covering surface of $F_{\rho}$ conformally
on $|\zeta|<1$ by $z=\varphi(\zeta)$ , then $\varphi(\zeta)\in U_{\rho}(a_{0})$ .

(ii) Let $a$ be any point of $K$ and be covered $n(a)$ -times by $F_{\rho}$ and
$n_{0}=\sup_{a}n(a)$ . Then $F_{\rho}$ covers any point of $Kn_{0}$-times, except a set of
capasity zero.5)

(iii) If $F$ is not quasi-closed, then $F$ covers any point $z$ infinitely
often, except a set of capacity zero.6)

PROOF. (i) If $F_{\rho}$ is compact, (i) follows easily from Fatou’s
theorem, so that we assume that $F_{\rho}$ is non-compact. We map the
universal covering surface of $F$ conformally on $|x|<1$ by $z=\psi(x)$ ,
then by a theorem,6) proved by the author, the ideal boundary of $F$ is
mapped on a null set on $|x|=1$ .

By this, we can prove as Theorem 1, that $\varphi(\zeta)\in U_{\rho}(a_{0})$ .
(ii) Suppose that a disc $K_{0}$ contained entirely in $K$ be covered

exactly n.times by $F_{Q}(1\leqq n<\infty)$ and let $D$ be the domain, which
contains $K_{0}$ and every point of which is covered n-times by $F_{\rho}$ , then
as before, we can prove that the part $I^{\gamma}$ of the boundary of $D$ in $K$

is of capacity zero, so that $F_{\rho}$ covers any point of $K$ n-times, except
a set of capacity zero. In this case $n_{0}=n$.

Next suppose that there exists no such a disc $K_{0}$ and let $E_{n}(n=0$,
1,2, ) be the set of $a$, such that $n(a)=n$ . Then we can prove as
before, that $\gamma(E_{n})=0$, if $n<n_{0}$ . Hence $F_{\rho}$ covers any point of $K,$ $n_{0^{-}}$

times, except a set of capacity zero.
(iii) We put $n_{0}=n_{0}(\rho)$ and $\lim_{p\rightarrow\infty}n_{0}(\rho)=\overline{\vec{n}}_{0}$ , If $\vec{n}_{0}<\infty$ , then since

$\lim_{\rho\rightarrow\infty}F_{\rho}=F,$
$F$ consists of $\overline{n}_{0}$ sheets, so that $F$ is quasi-closed, hence if

$F$ is not quasi-closed, then $\overline{n}_{0}=\infty$ , so that $F$ covers any point $z$ in.
finitely often, except a set of capacity zero.

5) Y. Nagai: On the behaviour of the boundary of Riemann surfaces. II. Proc. Jap.
Acad. 26 (1950).

6) M. Tsuji: Some metrical theorems on $Fuc1_{1sian}$ groups. Kodai Math. Seminar
Reports. (1950).
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From Theorem 2, we have easily
THEOREM 3. The projection of direct transcendental singularities

of $F$ on the z-plane is of capacity zero.

3. Implicit function $y(x)$ defined by an integral
relation $G(x, y)=0$.

Let $G(x,y)$ be an integral function of two variables $x$ and $y$ and
$y(x)$ be an analytic function defined by $G(x,y)=0$ and $F$ be its Riemann
surface spread over the x-plane. If $G(x,y)$ is of the form:

$G(x,y)=A_{0}(x)y^{n}+A_{1}(x)y^{n-1}+\cdots+A_{n}(x)$ ,

where $A_{i}(x)$ are integral functions of $x$, then $y(x)$ is an algebroid
function and $F$ consists of $n$ sheets. We shall prove

THEOREM 4. Let $F_{\rho}$ be a connected piece of $F$, which lies above a
disc $ K:|x-a_{0}|<\rho$ .

(i) If we map the universal covering surface of $F_{\rho}$ conformally
on $|\zeta|<1$ by $x=\varphi(\zeta)$ , then $\varphi(\zeta)\in U_{p}(a_{0})$ .

(ii) Let $a$ be any point of $K$ and be covered $n(a)$ -times by $F_{\rho}$ and
$n_{0}=\sup_{a}n(a)$ . Then $F_{\rho}$ covers any point of $Kn_{0}\cdot times$, except a set of
capacity zero. If $ n_{0}<\infty$ , then $F_{\rho}$ covers any point of $Kn_{0}$-times.

(iii) If $y(x)$ is not an algebroid function, $F$ covers any point $x$

infinitely often, except a set of capacity zero.7)

PROOF. (i) As Julia8) proved, if $x$ tends to an accessible boundary
point of $F$, then $\lim y(x)=\infty$ . Let $E$ be the set of $e^{i\theta}$ on $|\zeta|=1$ , such
that $|\varphi(e^{i\theta})-a_{0}|<\rho$ , then if $\zeta$ tends to $e^{i\theta}$ from the inside of any Stolz
domain, whose vertex is at $e^{i\theta}$ , then $x=\varphi(\zeta)$ tends to an accessible
boundary point of $F$, so that $\lim y(\varphi(\zeta))=\infty$ , hence by Lusin-Priwaloff’s
theorem, $E$ is a null set, hence $\varphi(\zeta)\in U_{p}(a_{0})$ .

(ii) Let $K_{0}$ be a disc contained in $K$ and suppose that every point
of $K_{0}$ is covered n-times by $F_{\rho}(1\leqq n<\infty)$ and let $D$ be the domain,
which contains $K_{0}$ and every point of which is covered n-times by $F_{\rho}$ ,

7) M. Tsuji: Theory of meromorphic functions in a neighbourhood of a closed set
of capacity zero. Jap. Journ. Math. 19 (1944).

8) G. Julia: Sur le domaine d’existence d’une fonction implicite d\’efinie par une
relation enti\‘ere $G(x, y)=0$ . Bull. Soc. Math. France (1926).
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then similarly as before, we can prove that if $D$ does not coincide
with $K$, the part $I^{7}$ of the boundary of $D$ in $K$ is of capacity zero.

Let $x_{0}\in I^{7}$ and $y_{i}(x)(i=1,2, \cdots, n)$ be $n$ branches of $y(x)$ in $D$ and
suppose that $y_{j}(x)(i=1,2, \cdots, k)(k\leqq n)$ are not meromorphic at $x_{0}$ and
consider

$\Gamma^{k}Ii=1(\frac{1}{y}-y_{i}(x)1)=\frac{1}{y^{k}}+_{y^{\iota_{k-1}}}^{a(x)}-+\cdots+a_{k}(x)=0$ ,

Then since $1/y(x)$ tends to zero, when $x$ tends to an accessible boundary
point of $F,$ $a_{i}(x)$ is one.valued, regular and bounded in a neighbourhood
of $x_{0}$ , and since $\gamma(I^{v})=0,$ $a_{i}(x)$ is regular at $x_{0}$ , so that $x_{0}$ is covered
n.times by $F_{\rho}$ , which is absurd. Hence $D$ coincides with $K$, so that
$F_{\rho}$ covers any pont of $K$ n-times. From this we can prove the reman.
ing part of the theorem similarly as Theorem 1.

From Theorem 4, we have
THEOREM 5. The proiection of direcl transcendental singularities

of $F$ on the x-plane is of capacity zero.7)

4. Cluster set of a meromorphic function.

Let $\Delta$ be a domain on the z-plane and $\Gamma$ be its boundary and $z_{0}$

be a non-isolated boundary point. We denote the part of $\Delta$ , contained
in $|z-z$ ) $|<r$ by $\Delta_{r}$ , and that of $\Gamma$ in $|z-z_{0}|\leqq r$ by $I_{r}^{7}$ . Let $w=f(z)$

be one.valued and meromporphic in $\Delta$ and $W_{r}$ be the set of values
taken by $w=f(z)$ in $\Delta_{r}$ and $- W_{\overline{r}}$ be its closure, then

$\lim_{r\rightarrow 0}\overline{W_{r}}=ff_{\Delta}(z_{0})$ (1)

is called the cluster set of $f(z)$ in $\Delta$ at $z_{0}$ .
Let $e$ be a set of capacity zero on $\Gamma$ , such that $z_{0}\in e$ and $e_{r}$ be

the part of $e$ lying in $|z-z|\leqq r$. Let

$V_{r}(l^{v}-e)=\sum H_{\Delta}(\zeta)\zeta\epsilon T_{r}-e_{r}$ added for all $\zeta\in I_{r}-e_{r}$ , (2)

and $\overline{V_{r}}(I^{7}-e)$ be its closure, then

$\lim_{r\rightarrow 0}V_{r}(\Gamma-e)=H_{\Gamma-e}(z_{0})$ (3)

is called the cluster set of $f(z)$ on $I^{7}-e$ at $z_{0}$,
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Evidently, $H_{\Delta}(z_{0})$ and $H_{\Gamma- e}(z_{0})$ are closed sets and $H_{\Gamma-e}(z_{0})\subset H_{\Delta}(z_{0})$ .
In the former paper9) I have proved:
THEOREM 6. Every boundary point of $H_{\Delta}(z)$ belongs to $H_{T-e}(z_{0})$ .
When $e$ consists of only one point $z_{0}$ , the theorem is proved by

Iversen. $1\ovalbox{\tt\small REJECT}$ )

First we shall prove a lemma.
LEMMA 4. Let $\Delta$ be a bounded domain and $\Gamma$ be its boundary

and $e$ be a set of capacity zero on $I^{7}$ and $z_{0}\in e$ be a non-isolated
boundary $p$ int, which is a regular point of Dirichlet problem for $\Delta$ .
Let $w=f(z)$ be one-valued, regular and bounded in $\Delta$ .

If $\varlimsup_{\zeta\rightarrow zo}\lim_{z\rightarrow\zeta\epsilon T-e}|f(z)|\leq M$, where $z\rightarrow\zeta e\Gamma-e$ , from the inside of $\Delta$ ,

then $\varlimsup_{z\rightarrow zo}$
$|f_{(}z$ ) $|\leqq M$, where $z\rightarrow z_{0}$ from the inside of $\Delta$ .

PROOF. We may assume that $|f(z)|\leqq 1$ in $\Delta$ . For any small $e>0$ ,
we choose $\rho$, such that

$z\rightarrow\zeta\epsilon I_{\rho^{\rightarrow}}e_{p}1-im|f(z)|\leqq M+e$ .

We solve the Dirichlet problem for $\Delta$ , with the boundary value $M+e$

on $I_{\rho}^{\prime}$ and 1 on $I^{7}-\Gamma_{\rho}$ and let $u(z)$ be its solution. Since $z_{0}$ is a
regular point of Dirichlet problem, $\lim_{z\rightarrow z_{0}}u(z)=M+e$ , when $z\rightarrow z_{0}$ from

the inside of $\Delta$ . $u(z)$ takes the given boundary value, except a set of
capacity zero and since $|f(z)|$ is a continuous bounded subharmonic
function and $|f(z)|\leqq u(z)$ on $I^{7}$ , except a set of capacity zero, we have
$|f(z)|\leqq u(z)$ in $\Delta$ , so that $\varlimsup_{z\rightarrow z_{0}}|f(z)|\leqq M+e$ . Since $e>0$ is arbitrary,

we have $\varlimsup_{z\rightarrow z_{0}}|f(z)|\leqq M$.
PROOF of THEOREM 6.
Suppose that there exists a boundary point $w_{0}$ of $H_{\Delta}(z_{0})$ , which

9) M. Tsuji: On the cluster set of a meromorphic function. Proc. Imp. Acad. 19
(1943).

10) F. Iversen: Sur quelques propri\’et\’es des fonctions monog\^enes au voisinage d’un
point singulier. \"Ofv. af Finska Vet. Soc. Forh. 58 (1916). K. Kunugui: Sur un th\’eor\‘eme
de MM. Seidel-Beurling. Proc. Imp. Acad. 15 (1939).
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does not belong to $H_{T-e}(z_{0})$ and we assume that $w_{0}=0$ . Then we take
$r$ and $\rho$ small, such that

$\overline{V_{r}}(l^{\prime}-e)$ lies outside of $|w|=\rho>0$ . (1)

Since $w_{0}=0$ is a boundary point of $H_{\Delta}(z_{0})$ , there exists $w_{1}(|w_{1}|<\rho/2)$ ,
1which does not belong to $H_{\Delta}(z_{0})$ . Since $H_{\Delta}(z_{0})$ is a closed set,

$\overline{f}(\overline{z)}-w_{1}^{-}$

is bounded in a neighbourhood of $z_{0}$ .
(i) First suppose that $z_{0}$ is a regular point of Dirichlet problem.

Then by Lemma 4 and (1), since $w=0$ belongs to $H_{\Delta}(z_{0})$ ,

$\frac{1}{|\iota v_{1}|}\leqq\varlimsup_{z\rightarrow zo}\frac{1}{)}-\leqq\overline{\lim}\varlimsup_{40}--\leqq\varlimsup_{\zeta\rightarrow zo\zeta}\varlimsup_{\epsilon\Gamma- e}$

$\leqq\frac{1}{\rho-|w_{1}|}$ ,

so that $|w_{1}|\geqq\rho/2$ , which is absurd. Hence the theorem is proved in
this case.

(ii) Next suppose that $z_{0}$ is an irregular point of Dirichlet problem.
Then in any small neighbourhood of $z_{0}$ , there is a Jordan curve $C$ in $\Delta$ ,
surrounding $z_{0}$ . We assume that $C$ lies in $|z-z_{0}|<r$ and there is no
zero points of $f(z)$ on it, then by taking $r$ and $\rho$ small, we may
assume that

$\overline{V}_{r}(1-e)$ lies outside of $|w|=2\rho$ and $|f(z)|>2\rho$ on C. (2)

We consider the image of $|w|<\rho$ on the z.plane, which lies in $C$. It
consists of at most a countable number of connected domains $\{\Delta_{i}\}_{i\rightarrow 1,2}..$ .
We shall prove that there is one $\Delta_{0}$ among $\{\Delta_{i}\}$ , which contains $z_{0}$ on
its boundary. If otherwise, then since $w=0$ belongs to $H_{\Delta}(z_{0})$ and $w=0$

is a boundary point of $H_{\Delta}(z_{0})$ , there are infinitely many $\{\Delta_{\nu}\}_{\nu\Leftrightarrow 12}\cdots$

among $\{\Delta_{i}\}$ , such that the boundary $I_{\nu}^{7}$ of $\Delta_{\nu}$ has common points with
$\Gamma$ and contains $z_{d}\rightarrow z_{0}$ , such that $f(z_{\nu})\rightarrow 0$ . Then we shall prove that
$\Delta_{\nu}$ converges to $z_{0}$ . For, if otherwise, $I_{\nu}^{\prime}$ has a common point $\zeta_{\nu}$ with
a certain Jordan curve C’ in $\Delta$ , surrounding $z_{0}$ , which is contained
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inside of $C$. Let $\zeta$ be one of limit points of $\zeta_{\nu}$ , then $f(z)$ is meromorphic

at $\zeta$ and in any small neighbourhood of $\zeta$ , there are infinitely many
niveau curves $|f(z)|=const.=\rho$ , which is absurd. Hence $\Delta_{\nu}$ converges
to $z_{0}$ . By (2), the common part $e_{\nu}$ of $\Gamma_{\nu}$ with $\Gamma$ belongs to $e$ , so that
it is of capacity zero. If we map the universal covering surface of $\Delta_{\nu}$

conformally on $|\zeta|<1$ by $z=\varphi_{V}(\zeta)$ , then $e_{\nu}$ is mapped on a null set on
$|\zeta|=1$ , so that if we put $w=f(\varphi_{v}(\zeta))=F_{\nu}(\zeta)$ , then $\frac{F_{\nu}(\zeta)}{\rho}$ belongs to

U-class, hence $F_{\nu}(\zeta)$ takes any value of $|w|<\rho$ at least once, except a
set of capacity zero. Since there are infinitely many $\Delta_{\nu}$ converging to
$z_{0},$ $f(z)$ takes any value of $|w|<\rho$ infinitely often, in any small
neighbourhood of $z_{0}$ , except a set of capacity zero, hence $|w|<\rho$ belongs
to $H_{\Delta}(z_{0})$ , which is absurd. Hence there is one $\Delta_{0}$ among $\{\Delta_{i}\}$ , which
contains $z_{0}$ on its boundary. Since $w=0$ is a boundary point of $H_{\Delta}(z_{0})$ ,

we see from the above proof, that there is only a finite number of
such $\Delta_{0}$ , hence one fixed $\Delta_{0}$ contains infinitely many $z_{\nu}\rightarrow z_{0}$, such that
$f(z_{\nu})\rightarrow 0$ . If we consider the images of $|w|<\frac{\rho}{n}(n=1,2,\cdots)$ in $\Delta_{0}$ , we
see that there exists a curve $L$ in $\Delta_{0}$, which ends at $z_{0}$ , such that
$f(z)\rightarrow 0$ , when $z\rightarrow z_{0}$ on $L$ . We take off $L$ from $\Delta_{0}$ and put $\Delta_{0}=\Delta_{0}-L\sim$ ,

then $z_{0}$ is a regular point of Dirichlet problem for $\sim_{0}\Delta$ . Let $w_{1}(|w_{1}|<\frac{\rho}{2})$

lie outside of $H_{\Delta}(z_{0})$ . If we apply Lemma 4 to $\frac{1}{f(z)-w_{1}}$ for $\tilde{\Delta}_{0}$ , then

$\varlimsup_{z\rightarrow z_{0}}\mapsto^{f(z)^{1}-w_{1}|}\leqq\frac{1}{|w_{1}|}$ , or
$\varliminf_{z\rightarrow Z_{0}}$

$|f(z)-w_{1}|\geqq|w_{1}|$ , hence $|w-w_{1}|<$

$|w_{1}|$ does not belong to $H_{\Delta}(z_{0})$ . Similarly we see that $0<|w|\leqq|w_{1}|$

does not belong to $H_{\Delta}(z_{0})$ , which is absurd, since $H_{\Delta}(z_{0})$ contains a
continuum, which connects $z_{0}$ to $H_{\Gamma-- e}(z)$ . Hence the theorem is proved
in this case.

From Theorem 6, we see that the same result as Lemma 4 holds,
if $z_{0}$ is an irregular point of Dirichlet problem. Hence

THEOREM 7. The same result holds as Lemma 4, for any non.
isolated boundary point $z_{0}$ .

By Theorem 6, $H_{\Delta}(z_{0})-H_{I-t},(z_{0})$ is an open set, if it is not empty,
so that it consists of at most a countable number of connected domains
(components).
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THEOREM 8 Let $D$ be one of components of $H_{\Delta}(z_{0})-H_{T-e}(z_{0})$ ,

Then in any small neighbourhood of $z_{0},$ $f(z)$ takes any value of $D$

infinitely often, except a set of capacity zero.
PROOF. Let $E_{n}$ $(n=0,1,2, \cdot. )$ be the set of points of $D$ , which are

taken $n\cdot times$ by $\iota v=f(z)$ in a neighbourhood $U:|z-z_{0}|<r$ of $z_{0}$ , and
suppose that $\gamma(E_{l})>0$, then by taking a suitable closed sub.set, we
may assume that $E_{n}$ is a closed set. Hence by taking $r$ small, we may
assume that $f(z)$ does not take the values $eE_{n}$ in $U$. There exists a
point $w_{0}eE_{n}$ , such that $\gamma(E_{n}\cdot K)>0$ , for any small disc $K$ about $w_{0}$ .
We assume that $w_{0}=0$ . We can choose $r$ , such that $|z-z|=r$ does
not contain points of $e$ and zero points of $f(z)$ , then by taking $r$ and
$\rho$ small, we assume that

$V,(I’-e)$ lies outside of $|w|=2\rho$ and $|f(z)|>2\rho$ on $|z-z_{0}|=r$. (1)

We consider the images of $|w|<\rho$ on the z-plane, then there is one
domain $\Delta_{0}$ among the images, which lies in $|z-z_{0}|<r$. By (1), if the
boundary $I_{0}^{7}$ of $\Delta_{0}$ has common points with $\Gamma$ , then the common part
$e_{0}$ is a sub-set of $e$ , so that it is of capacity zero. By mapping the
universal covering surface of $\Delta_{0}$ conformally on $|\zeta|<1$ , we see as
before, that $f(z)$ takes in $\Delta_{\mathfrak{d}}$ any value of $ K:|w|<\rho$ at least once,
except a set of capacity zero, but $f(z)$ does not take values $\in E_{n}\cdot K$,
which is of positive capacity, which is absurd. Hence $\gamma(E_{n})=0(n=0$ ,
1, 2, $\cdots$ ), so that in $U,$ $f(z)$ takes any value of $D$ infinitely often, except
a set of capacity zero.

REMARK. If $e$ consists of only one point $z_{0}$ , then $f(z)$ takes any
value of $D$ infinitely often, with two possible exceptions in any neigh-
bourhood of $z_{0}^{11)}$.

Mathematical Institute, Tokyo University.

11) K. Kunugui : Stir un probl\‘eme (le M. A. Beurling $Proc$ . Imp. Acad. 19 (1940).
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(1949-50).
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