Function of U-class and its applications.

By Masatsugu TSUJI

(Received July 23, 1954)

1. Function of U-class.

Let w = f(z) be regular and |f(z)| < 1 in |z| < 1, then by Fatou's theorem, $\lim_{z \to e^{i\theta}} f(z) = f(e^{i\theta})$ exists almost everywhere on |z| = 1, when $z \to e^{i\theta}$

from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$. If $|f(e^{i\theta})|=1$ almost everywhere, we say with Seidel¹⁾ that f(z) belongs to U-class and denote $f(z) \in U$. If $(f(z)-a)/\rho \in U$, we write $f(z) \in U_{\rho}(a)$. Functions of U-class play an important rôle in several problems. In this paper, we shall show some applications of them. In this paper, "capacity" means "logarithmic capacity" and $\gamma(E)$ denotes the capacity of E.

LEMMA 1.²⁾ (Extension of Löwner's theorem). Let w = f(z) be regular and |f(z)| < 1 in |z| < 1, f(0)=0. Let E be the set of $e^{i\theta}$ on |z|=1, such that $|f(e^{i\theta})|=1$ and E^* be the set $f(e^{i\theta})(e^{i\theta} \in E)$ on |w|=1. Then E and E^* are measurable and $mE^* \ge mE$.

LEMMA 2. If $f(z) \in U$, then f(z) takes any value of |w| < 1 at least once, except a set of capacity zero.

PROOF. Let *E* be the set of a(|a| < 1), such that $f(z) \neq a$ in |z| < 1and suppose that $\gamma(E) > 0$, then by taking a suitable closed sub-set, we may assume that *E* is a closed set, contained entirely in |w| < 1. Let *D* be the domain, which is bounded by *E* and |w|=1. We solve the Dirichlet problem for *D*, with the boundary value 1 on *E* and 0 on |w|=1, and let u(w) be its solution, then since $\gamma(E) > 0$, *E* contains a regular point of Dirichlet problem, so that u(w) = 0. If we put u(f(z)) = v(z), then v(z) is a bounded harmonic function in |z| < 1.

¹⁾ W. Seidel: On the distribution of values of bounded analytic functions. Trans. Amer. Math. Soc. 36 (1934).

²⁾ M. Tsuji: On an extension of Löwner's theorm. Proc. Imp. Acad. 18 (1942). The special case, where f(z) is schlicht in |z| < 1, is proved by Y. Kawakami: On an extension of Löwner's lemma. Jap. Journ. Math. 17 (1941).

Since $f(z) \in U$, $v(e^{i\theta}) = 0$ almost everywhere, so that $v(z) \equiv 0$, or $u(w) \equiv 0$, which is absurd. Hence $\gamma(E) = 0$.

THEOREM 1. Let $f(z) \in U$ and F be the Riemann surface, generated by w=f(z) on the w-plane.

(i) Let F_{ρ} be a connected piece of F, which lies above a disc $K: |w-a_0| \leq \rho$, which lies in $|w| \leq 1$. If we map F_{ρ} conformally on $|\zeta| \leq 1$ by $w = \varphi(\zeta)$, then $\varphi(\zeta) \in U_{\rho}(a_0)^{3}$.

(ii) Let a be any point of K and be covered n(a)-times by F_{ρ} and $n_0 = \sup_{a} n(a)$. Then F_{ρ} covers any point of K n_0 -times, except a set of capacity zero. If $n_0 < \infty$, then F_{ρ} covers any point of K n_0 -times.

(iii) If f(z) is of the form: $f_0(z) = \varepsilon \prod_{\nu=1}^n \frac{z-z_\nu}{1-\overline{z}_\nu z}$ ($|z_\nu| < 1$, $|\varepsilon| = 1$), then F covers any point of |w| < 1 n-times. If f(z) is not of the form $f_0(z)$, then F covers any point of |w| < 1 infinitely often, except a set of

PROOF of (i). Let Δ_0 be the image of F_{ρ} in |z| < 1, then Δ_0 is simply connected, so that F_{ρ} is simply connected.

We may assume that Δ_0 has boundary points on |z|=1 and let e_0 be the set of such boundary points. We map F_{ρ} on $|\zeta| < 1$ conformally by $w = \varphi(\zeta)$, then $\lim_{r \to 1} \varphi(re^{i\psi}) = \varphi(e^{i\psi})$ exists almost everywhere. Let e_1 be the set of $e^{i\psi}$, such that $|\varphi(e^{i\psi}) - a_0| < \rho$. If $\zeta = re^{i\psi} \rightarrow e^{i\psi}$, then $w \rightarrow \varphi(e^{i\psi})$ along a curve *L*. Let *L* correspond to a curve Λ in Δ_0 , which ends at a point $e^{i\theta} \in e_0$. Then if $z \rightarrow e^{i\theta}$ on Λ , $w = f(z) \rightarrow \varphi(e^{i\psi})$. Since f(z) is bounded, $\lim_{r \to 1} f(re^{i\theta}) = \varphi(e^{i\psi})$ by Hardy's theorem. Since $f(z) \in U$, the set of such $e^{i\theta}$ is of measure zero. Hence by Lemma 1, e_1 is a null set, so that $\varphi(\zeta) \in U_{\rho}(a_0)$.

To prove (ii), we shall prove a lemma.

capacity zero.4)

LEMMA 3. Let K_0 be a disc contained in K. If every point of K_0 is covered n-times by F_{ρ} $(1 \le n < \infty)$, then every point of K is covered n-times by F_{ρ} .

PROOF. Let D be the domain, which contains K_0 and every point of which is covered *n*-times by F_{ρ} . Suppose that D does not coincide

³⁾ K. Noshiro: Contributions to the theory of the singularities of analytic functions. Jap. Journ. Math. 19 (1944-48).

⁴⁾ O. Frostman: Potentiel d'équilibre et capacité des ensembles. Lund. (1935).

with K and let I' be the part of the boundary of D, which lies in K and $w_0 \in I'$.

Then w_0 is covered at most *n*-times by F_{ρ} . We shall prove that w_0 is covered at most (n-1)-times by F_{ρ} . Suppose that w_0 is covered *n*-times by F_{ρ} , then the part of F_{ρ} , which lies above a small disc K_1 about w_0 contains *n* discs: F_1, \dots, F_n consisting of inner points, where the part of the Riemann surface of $(w-w_0)^{\frac{1}{k}}$ is considered as *k* discs. If there is no other connected piece of F_{ρ} above K_1 , then K_1 is covered *n*-times by F_{ρ} , so that w_0 belongs to *D*, which is absurd. Hence there is another connected piece F_0 of F_{ρ} above K_1 other than F_1, \dots, F_n .

By Lemma 2 and part (i). F_0 covers any points of K_1 at least once, except a set of capacity zero, but F_0 does not cover $D_0 = D.K_1$, which is of positive capacity, which is absurd. Hence every point of I' is covered at most (n-1)-times by F_ρ . Next we shall prove that $\gamma(I')=0$. Suppose that $\gamma(I')>0$. Let I'_k be the sub-set of Γ , which is covered k-times by F_ρ , then for some $k, \gamma(I'_k)>0$. Since by Lemma 2 and the part (i), F_ρ covers any point of K at least once, except a set of capacity zero, $\gamma(I'_0)=0$, so that $1\leq k\leq n-1$. By taking a suitable closed sub-set, we may assume that Γ_k is a closed set, contained entirely in K. Then there exists a point $w_0 \in \Gamma_k$, such that $\gamma(\Gamma_k \cdot K_1) > 0$, for any small disc K_1 about w_0 .

Since $w_0 \in \Gamma_k$, w_0 is covered k-times by F_{ρ} , there exists k discs F_1, \dots, F_k above K_1 consisting of inner points.

Since $1 \leq k \leq n-1$, there is another connected piece F_0 above K_1 , other than F_1, \dots, F_k , then similarly as before, F_0 covers any point of K_1 at least once, except a set of capacity zero, but since $\Gamma_k \cdot K_1$ is covered k-times in $F_1, \dots F_k, F_0$ does not cover $\Gamma_k \cdot K_1$, which is of positive capacity, which is absurd. Hence $\gamma(\Gamma)=0$.

Let $w_0 \in I^r$ and $z=z_i$ (w) $(i=1, 2, \dots, n)$ be *n* branches of the inverse function z=z(w) of w=f(z) and consider

$$\prod_{i=1}^{n} (z-z_{i}(w)) = z^{n} + a_{1}(w)z^{n-1} + \cdots + a_{n}(w) = 0,$$

then $a_i(w)$ is one-valued, regular and bounded in a neighbourhood of w_0 and since $\gamma(I')=0$, $a_i(w)$ is regular at w_0 , so that w_0 is covered *n*-times by F_{ρ} , which is absurd. Hence *D* coincides with *K*, so that every point of *K* is covered *n*-times by F_{ρ} .

168

PROOF of (ii) and (iii).

(ii) Let $n < n_0$ and E_n be the set of a, such that n(a) = n. We shall prove that $\gamma(E_n) = 0$. Suppose that $\gamma(E_n) > 0$, then we may assume that E_n is a closed set, contained entirely in K. Then there exists a point $w_0 \in E_n$, such that $\gamma(E_n \cdot K_1) > 0$, for any small disc K_1 about w_0 . Since $w_0 \in E_n$, w_0 is covered *n*-times by F_{ρ} , so that there exists *n* discs F_1, \dots, F_n above K_1 consisting of inner points. Since $n < n_0$, there is a point a, such that n(a) > n, hence by Lemma 3, there is another connected piece F_0 above K_1 , other than F_1, \dots, F_n . Then as before, F_0 covers any point of K_1 at least once, except a set of capacity zero, but since $E_n \cdot K_1$ is covered *n*-times in F_1, \dots, F_n, F_0 does not cover $E_n \cdot K_1$, which is of positive capacity, which is absurd. Hence $\gamma(E_n)=0$, $n < n_0$. Hence F_{ρ} covers any point of K n_0 -times, except a set of capacity zero. Suppose that $n_0 < \infty$ and let E be the set of a, such that $n(a) < n_0$, then E is a closed set of capacity zero, so that from the proof of Lemma 3, F_{ρ} covers any point of K n_0 -times.

(iii) We take $K: |w| \leq \rho < 1$ and we choose F_{ρ} , such that $F_{\rho} \subset F_{\rho'}$, if $\rho < \rho'$ and let $n_0 = n_0(\rho)$, $\lim_{\rho \to 1} n_0(\rho) = \overline{n}_0$. If $\overline{n}_0 < \infty$, then since $\lim_{\rho \to 1} F_{\rho} = F$, F consists of \overline{n}_0 sheets and by (ii) F covers any point of |w| < 1 \overline{n}_0 -times. By (ii), F_{ρ} consists of n sheets $F_{\rho}^{(i)}$ $(i=1,\dots,n)$ $(n \leq \overline{n}_0)$. Let v_{ρ} be the sum of orders of branch points in F_{ρ} and $\rho^{(i)}$ be the Euler's characteristic of $F_{\rho}^{(i)}$, then $\rho^{(i)} \geq -1$. If we consider the image of F_{ρ} in |z| < 1, then we see that F_{ρ} is simply connected, hence by Hurwitz's relation, we have

$$-1 = \sum_{i=1}^{n} \rho^{(i)} + v_{\rho} \ge -n + v_{\rho} \ge -\bar{n}_{0} + v_{\rho}, \quad v_{\rho} \le \bar{n}_{0} - 1.$$

Hence there is only a finite number of branch points in F, so that f(z) is regular on |z|=1. Since |f(z)|=1 on |z|=1, we see, by the principle of inversion, that f(z) is a rational function of the form $f_0(z)$. Hence if f(z) is not of the form $f_0(z)$, then $\overline{n}_0 = \infty$, so that F covers any point of |w| < 1 infinitely often, except a set of capacity zero.

2. Open Riemann surface with null boundary.

Let F be an open Riemann surface with null boundary, spread

over the z-plane. If F consists of a finite number of sheets, we shall call it a quasi-closed surface.

THEOREM 2. Let F_{ρ} be a connected piece of F, which lies above a disc $K: |z-a_0| < \rho$.

(i) If we map the universal covering surface of F_{ρ} conformally on $|\zeta| < 1$ by $z = \varphi(\zeta)$, then $\varphi(\zeta) \in U_{\rho}(a_0)$.

(ii) Let a be any point of K and be covered n(a)-times by F_{ρ} and $n_0 = \sup_{a} n(a)$. Then F_{ρ} covers any point of K n_0 -times, except a set of capasity zero.⁵⁾

(iii) If F is not quasi-closed, then F covers any point z infinitely often, except a set of capacity zero.⁶⁾

PROOF. (i) If F_{ρ} is compact, (i) follows easily from Fatou's theorem, so that we assume that F_{ρ} is non-compact. We map the universal covering surface of F conformally on |x| < 1 by $z = \psi(x)$, then by a theorem,⁶⁾ proved by the author, the ideal boundary of F is mapped on a null set on |x|=1.

By this, we can prove as Theorem 1, that $\varphi(\zeta) \in U_{\rho}(a_0)$.

(ii) Suppose that a disc K_0 contained entirely in K be covered exactly *n*-times by F_{ρ} $(1 \leq n < \infty)$ and let D be the domain, which contains K_0 and every point of which is covered *n*-times by F_{ρ} , then as before, we can prove that the part I' of the boundary of D in Kis of capacity zero, so that F_{ρ} covers any point of K *n*-times, except a set of capacity zero. In this case $n_0 = n$.

Next suppose that there exists no such a disc K_0 and let E_n $(n=0, 1, 2, \cdots)$ be the set of a, such that n(a)=n. Then we can prove as before, that $\gamma(E_n)=0$, if $n < n_0$. Hence F_ρ covers any point of K, n_0 -times, except a set of capacity zero.

(iii) We put $n_0 = n_0(\rho)$ and $\lim_{\rho \to \infty} n_0(\rho) = \bar{n}_0$, If $\bar{n}_0 < \infty$, then since $\lim_{\rho \to \infty} F_{\rho} = F$, F consists of \bar{n}_0 sheets, so that F is quasi-closed, hence if F is not quasi-closed, then $\bar{n}_0 = \infty$, so that F covers any point z infinitely often, except a set of capacity zero.

⁵⁾ Y. Nagai: On the behaviour of the boundary of Riemann surfaces. II. Proc. Jap. Acad. 26 (1950).

⁶⁾ M. Tsuji: Some metrical theorems on Fuchsian groups. Kodai Math. Seminar Reports. (1950).

From Theorem 2, we have easily

THEOREM 3. The projection of direct transcendental singularities of F on the z-plane is of capacity zero.

3. Implicit function y(x) defined by an integral relation G(x, y)=0.

Let G(x, y) be an integral function of two variables x and y and y(x) be an analytic function defined by G(x, y)=0 and F be its Riemann surface spread over the x-plane. If G(x, y) is of the form:

$$G(x, y) = A_0(x)y^n + A_1(x)y^{n-1} + \cdots + A_n(x)$$

where $A_i(x)$ are integral functions of x, then y(x) is an algebroid function and F consists of n sheets. We shall prove

THEOREM 4. Let F_{ρ} be a connected piece of F, which lies above a disc $K: |x-a_0| < \rho$.

(i) If we map the universal covering surface of F_{ρ} conformally on $|\zeta| < 1$ by $x = \varphi(\zeta)$, then $\varphi(\zeta) \in U_{\rho}(a_0)$.

(ii) Let a be any point of K and be covered n(a)-times by F_{ρ} and $n_0 = \sup_{a} n(a)$. Then F_{ρ} covers any point of K n_0 -times, except a set of capacity zero. If $n_0 < \infty$, then F_{ρ} covers any point of K n_0 -times.

(iii) If y(x) is not an algebroid function, F covers any point x infinitely often, except a set of capacity zero.⁷⁾

PROOF. (i) As Julia⁸⁾ proved, if x tends to an accessible boundary point of F, then $\lim y(x) = \infty$. Let E be the set of $e^{i\theta}$ on $|\zeta| = 1$, such that $|\varphi(e^{i\theta}) - a_0| < \rho$, then if ζ tends to $e^{i\theta}$ from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$, then $x = \varphi(\zeta)$ tends to an accessible boundary point of F, so that $\lim y(\varphi(\zeta)) = \infty$, hence by Lusin-Priwaloff's theorem, E is a null set, hence $\varphi(\zeta) \in U_{\rho}(a_0)$.

(ii) Let K_0 be a disc contained in K and suppose that every point of K_0 is covered *n*-times by F_{ρ} $(1 \leq n < \infty)$ and let D be the domain, which contains K_0 and every point of which is covered *n*-times by F_{ρ} ,

⁷⁾ M. Tsuji: Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero. Jap. Journ. Math. 19 (1944).

⁸⁾ G. Julia: Sur le domaine d'existence d'une fonction implicite définie par une relation entière G(x, y) = 0. Bull. Soc. Math. France (1926).

then similarly as before, we can prove that if D does not coincide with K, the part I' of the boundary of D in K is of capacity zero.

Let $x_0 \in I'$ and $y_i(x)$ (i=1, 2, ..., n) be *n* branches of y(x) in *D* and suppose that $y_i(x)$ (i=1, 2, ..., k) $(k \leq n)$ are not meromorphic at x_0 and consider

$$\prod_{i=1}^{k} \left(\frac{1}{y} - \frac{1}{y_{i}(x)} \right) = \frac{1}{y^{k}} + \frac{a_{1}(x)}{y^{k-1}} + \dots + a_{k}(x) = 0,$$

Then since 1/y(x) tends to zero, when x tends to an accessible boundary point of F, $a_i(x)$ is one-valued, regular and bounded in a neighbourhood of x_0 , and since $\gamma(I')=0$, $a_i(x)$ is regular at x_0 , so that x_0 is covered *n*-times by F_{ρ} , which is absurd. Hence D coincides with K, so that F_{ρ} covers any pont of K *n*-times. From this we can prove the remaning part of the theorem similarly as Theorem 1.

From Theorem 4, we have

THEOREM 5. The projection of direct transcendental singularities of F on the x-plane is of capacity zero.⁷⁾

4. Cluster set of a meromorphic function.

Let \varDelta be a domain on the z-plane and Γ be its boundary and z_0 be a non-isolated boundary point. We denote the part of \varDelta , contained in $|z-z_1| < r$ by \varDelta_r , and that of Γ in $|z-z_0| \leq r$ by Γ_r . Let w=f(z)be one-valued and meromporphic in \varDelta and W_r be the set of values taken by w=f(z) in \varDelta_r and W_r be its closure, then

$$\lim_{r \to 0} \overline{W_r} = H_{\Delta}(z_0) \tag{1}$$

is called the cluster set of f(z) in Δ at z_0 .

Let e be a set of capacity zero on Γ , such that $z_0 \in e$ and e_r be the part of e lying in $|z-z| \leq r$. Let

$$V_r(I'-e) = \sum_{\zeta \in T_r - e_r} H_d(\zeta), \text{ added for all } \zeta \in I'_r - e_r, \qquad (2)$$

and $\overline{V_r}(\Gamma - e)$ be its closure, then

$$\lim_{r \to 0} V_r(\Gamma - e) = H_{\Gamma - e}(z_0) \tag{3}$$

is called the cluster set of f(z) on I'-e at z_0 ,

172

Evidently, $H_{\Delta}(z_0)$ and $H_{\Gamma-e}(z_0)$ are closed sets and $H_{\Gamma-e}(z_0) \subset H_{\Delta}(z_0)$. In the former paper⁹⁾ I have proved:

THEOREM 6. Every boundary point of $H_{A}(z)$ belongs to $H_{\Gamma-e}(z_{0})$.

When e consists of only one point z_0 , the theorem is proved by Iversen.¹⁰

First we shall prove a lemma.

LEMMA 4. Let Δ be a bounded domain and Γ be its boundary and e be a set of capacity zero on Γ and $z_0 \in e$ be a non-isolated boundary p int, which is a regular point of Dirichlet problem for Δ . Let w = f(z) be one-valued, regular and bounded in Δ .

If $\overline{\lim_{\zeta \to z_0}} \lim_{z \to \zeta \in \Gamma - e} |f(z)| \leq M$, where $z \to \zeta \in \Gamma - e$, from the inside of Δ ,

then $\lim_{z\to\infty} |f(z)| \leq M$, where $z \to z_0$ from the inside of Δ .

PROOF. We may assume that $|f(z)| \leq 1$ in Δ . For any small $\varepsilon > 0$, we choose ρ , such that

$$\lim_{z\to\zeta\in\Gamma_{\rho}\to e_{\rho}}|f(z)|\leq M+\varepsilon.$$

We solve the Dirichlet problem for \varDelta , with the boundary value $M + \varepsilon$ on Γ_{ρ} and 1 on $\Gamma - \Gamma_{\rho}$ and let u(z) be its solution. Since z_0 is a regular point of Dirichlet problem, $\lim_{z \to z_0} u(z) = M + \varepsilon$, when $z \to z_0$ from the inside of \varDelta . u(z) takes the given boundary value, except a set of capacity zero and since |f(z)| is a continuous bounded subharmonic function and $|f(z)| \leq u(z)$ on Γ , except a set of capacity zero, we have $|f(z)| \leq u(z)$ in \varDelta , so that $\lim_{z \to z_0} |f(z)| \leq M + \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have $\lim |f(z)| \leq M$.

PROOF OF THEOREM 6.

Suppose that there exists a boundary point w_0 of $H_{\mathcal{A}}(z_0)$, which

⁹⁾ M. Tsuji: On the cluster set of a meromorphic function. Proc. Imp. Acad. 19 (1943).

¹⁰⁾ F. Iversen: Sur quelques propriétés des fonctions monogênes au voisinage d'un point singulier. Öfv. af Finska Vet. Soc. Förh. 58 (1916). K. Kunugui: Sur un théorème de MM. Seidel-Beurling. Proc. Imp. Acad. 15 (1939).

M. Tsuji

does not belong to $H_{\Gamma-e}(z_0)$ and we assume that $w_0=0$. Then we take r and ρ small, such that

$$\overline{V_r}(I'-e)$$
 lies outside of $|w| = \rho > 0.$ (1)

Since $w_0=0$ is a boundary point of $H_{a}(z_0)$, there exists w_1 $(|w_1| < \rho/2)$, which does not belong to $H_{a}(z_0)$. Since $H_{a}(z_0)$ is a closed set, $\frac{1}{f(z)-w_1}$ is bounded in a neighbourhood of z_0 .

(i) First suppose that z_0 is a regular point of Dirichlet problem. Then by Lemma 4 and (1), since w=0 belongs to $H_{d}(z_0)$,

$$\frac{1}{|w_1|} \leq \overline{\lim_{z \to z_0}} \frac{1}{|f(z) - w_1|} \leq \overline{\lim_{\zeta \to z_0}} \frac{1}{|\zeta \in \Gamma^{-e}|} \frac{1}{|f(z) - w_1|} \leq \overline{\lim_{\zeta \to z_0}} \frac{1}{|\zeta \in \Gamma^{-e}|} \frac{1}{|f(z)| - |w_1|} \leq \frac{1}{|\rho - |w_1|},$$

so that $|w_1| \ge \rho/2$, which is absurd. Hence the theorem is proved in this case.

(ii) Next suppose that z_0 is an irregular point of Dirichlet problem. Then in any small neighbourhood of z_0 , there is a Jordan curve C in Δ , surrounding z_0 . We assume that C lies in $|z-z_0| < r$ and there is no zero points of f(z) on it, then by taking r and ρ small, we may assume that

$$\overline{V_r}(\Gamma - e)$$
 lies outside of $|w| = 2\rho$ and $|f(z)| > 2\rho$ on C. (2)

We consider the image of $|w| < \rho$ on the z-plane, which lies in C. It consists of at most a countable number of connected domains $\{\Delta_i\}_{i=1, 2\cdots}$. We shall prove that there is one Δ_0 among $\{\Delta_i\}$, which contains z_0 on its boundary. If otherwise, then since w=0 belongs to $H_{\mathcal{A}}(z_0)$ and w=0is a boundary point of $H_{\mathcal{A}}(z_0)$, there are infinitely many $\{\Delta_v\}_{v=1, 2}\cdots$ among $\{\Delta_i\}$, such that the boundary Γ_v of Δ_v has common points with Γ and contains $z_v \rightarrow z_0$, such that $f(z_v) \rightarrow 0$. Then we shall prove that Δ_v converges to z_0 . For, if otherwise, Γ_v has a common point ζ_v with a certain Jordan curve C' in Δ , surrounding z_0 , which is contained inside of C. Let ζ be one of limit points of ζ_{ν} , then f(z) is meromorphic at ζ and in any small neighbourhood of ζ , there are infinitely many niveau curves $|f(z)| = \text{const.} = \rho$, which is absurd. Hence Δ_{ν} converges to z_0 . By (2), the common part e_{ν} of Γ_{ν} with Γ belongs to e, so that it is of capacity zero. If we map the universal covering surface of Δ_{ν} conformally on $|\zeta| < 1$ by $z = \varphi_{\nu}(\zeta)$, then e_{ν} is mapped on a null set on $|\zeta|=1$, so that if we put $w=f(\varphi_{\nu}(\zeta))=F_{\nu}(\zeta)$, then $\frac{F_{\nu}(\zeta)}{\rho}$ belongs to U-class, hence $F_{\nu}(\zeta)$ takes any value of $|w| < \rho$ at least once, except a set of capacity zero. Since there are infinitely many Δ_{ν} converging to z_0 , f(z) takes any value of $|w| < \rho$ infinitely often, in any small neighbourhood of z_0 , except a set of capacity zero, hence $|w| < \rho$ belongs to $H_{\mathcal{A}}(z_0)$, which is absurd. Hence there is one \mathcal{A}_0 among $\{\mathcal{A}_i\}$, which contains z_0 on its boundary. Since w=0 is a boundary point of $H_{d}(z_0)$, we see from the above proof, that there is only a finite number of such Δ_0 , hence one fixed Δ_0 contains infinitely many $z_{\nu} \rightarrow z_0$, such that $f(z_{\nu}) \rightarrow 0$. If we consider the images of $|w| < \frac{\rho}{n}$ $(n=1, 2, \cdots)$ in Δ_0 , we see that there exists a curve L in Δ_0 , which ends at z_0 , such that $f(z) \to 0$, when $z \to z_0$ on L. We take off L from Δ_0 and put $\widetilde{\Delta}_0 = \Delta_0 - L$, then z_0 is a regular point of Dirichlet problem for \widetilde{a}_0 . Let $w_1 \left(|w_1| < \frac{\rho}{2} \right)$ lie outside of $H_{\Delta}(z_0)$. If we apply Lemma 4 to $\frac{1}{f(z)-w_1}$ for $\widetilde{\Delta}_0$, then $\overline{\lim_{z \to z_0}} \frac{1}{|f(z) - w_1|} \leq \frac{1}{|w_1|}, \text{ or } \lim_{z \to z_0} |f(z) - w_1| \geq |w_1|, \text{ hence } |w - w_1| < \frac{1}{|w_1|}$ $|w_1|$ does not belong to $H_d(z_0)$. Similarly we see that $0 < |w| \le |w_1|$ does not belong to $H_{\mathcal{A}}(z_0)$, which is absurd, since $H_{\mathcal{A}}(z_0)$ contains a continuum, which connects z_0 to $H_{\Gamma-e}(z)$. Hence the theorem is proved in this case.

From Theorem 6, we see that the same result as Lemma 4 holds, if z_0 is an irregular point of Dirichlet problem. Hence

THEOREM 7. The same result holds as Lemma 4, for any nonisolated boundary point z_0 .

By Theorem 6, $H_{\Delta}(z_0) - H_{\Gamma-e}(z_0)$ is an open set, if it is not empty, so that it consists of at most a countable number of connected domains (components).

M. Tsuji

THEOREM 8.⁽⁹⁾ Let D be one of components of $H_{d}(z_{0}) - H_{\Gamma-e}(z_{0})$. Then in any small neighbourhood of z_{0} , f(z) takes any value of D infinitely often, except a set of capacity zero.

PROOF. Let E_n $(n=0, 1, 2, \cdots)$ be the set of points of D, which are taken *n*-times by w=f(z) in a neighbourhood $U: |z-z_0| < r$ of z_0 , and suppose that $\gamma(E_n) > 0$, then by taking a suitable closed sub-set, we may assume that E_n is a closed set. Hence by taking r small, we may assume that f(z) does not take the values $\in E_n$ in U. There exists a point $w_0 \in E_n$, such that $\gamma(E_n \cdot K) > 0$, for any small disc K about w_0 . We assume that $w_0=0$. We can choose r, such that |z-z|=r does not contain points of e and zero points of f(z), then by taking r and ρ small, we assume that

$$V_{\nu}(I'-e)$$
 lies outside of $|w|=2\rho$ and $|f(z)|>2\rho$ on $|z-z_0|=r$. (1)

We consider the images of $|w| < \rho$ on the z-plane, then there is one domain Δ_0 among the images, which lies in $|z-z_0| < r$. By (1), if the boundary Γ_0 of Δ_0 has common points with Γ , then the common part e_0 is a sub-set of e, so that it is of capacity zero. By mapping the universal covering surface of Δ_0 conformally on $|\zeta| < 1$, we see as before, that f(z) takes in Δ_0 any value of $K: |w| < \rho$ at least once, except a set of capacity zero, but f(z) does not take values $\in E_n \cdot K$, which is of positive capacity, which is absurd. Hence $\gamma(E_n)=0$ (n=0, $1, 2, \cdots)$, so that in U, f(z) takes any value of D infinitely often, except a set of capacity zero.

REMARK. If *e* consists of only one point z_0 , then f(z) takes any value of *D* infinitely often, with two possible exceptions in any neighbourhood of z_0^{11} .

Mathematical Institute, Tokyo University.

¹¹⁾ K. Kunugui: Sur un problème de M. A. Beurling. Proc. Imp. Acad. 19 (1940). K. Noshiro: Note on the cluster sets of analytic functions. Journ. Math. Soc. Japan 1 (1949-50).