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On a conjecture of Kaplansky on quadratic forms

By Tosir\^o TSUZUKU

(Received April 20, $16^{\subset}.4$)

In his recent paper1) Kaplansky took up some problems on quad-
ratic forms over a not formally real field of characteristic different
from two. Among others he made the following conjecture: Let $F$

be a field of characteristic different from two which is not formally
real, and let the multiplicative group of non.zero elements of $F$ modulo
squares be pricisely of order $n$ . Then every quadratic form in $n+1$

variables over $F$ represents zero (non-trivally). $He$ affirmed this $con$ .
jecture in the following two special caces: (1) $n\leqq 8,$ (2) $-1$ is a sum
of four or less squares in $F$. In the present paper we shall show on
modifying and refining Kaplansky’s methods that his conjecture is
true; in fact we shall prove a more finer statement.

The writer wishes to express his gratitude to Prof. T. Nakayama
and Mr. T. Ono for their valuable suggestions.

Let $l^{i^{\tau}}$ be a field of characteristic different from two which is not
formally real (that is, $-1$ is a sum of squares in $F$ ). We shall fix this
field throughout this paper. After Kaplansky, we define three invariants
of $F$ as follows:

(a) $A$ is the order of the multiplicative group of non.zero elements
of $F$ moduls squares. $A$ may be infinite; if it is finite it is evidently
a power of 2.

(b) $B$ is the smallest integer $n$ such that $-1$ is a sum of $n$

squares in $F$.
(c) $C$ is the smallest integer $n$ such that every quadratic form in

$n+1$ variables over $F$ is a null form (i.e. a form which represents zero
non-trivially).

On the value of $B$ , we have the following

1) I. Kaplansky, ‘ Quadratic forms ‘’ J. Math. Soc. Japan, vol. 5 (1953) pp. 200-207.
We refer of this paper as K. Q.
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PROPOSITION 1. (Kaplansky) $B=1,2,4$ or a multiple of $8^{2)}$

About the relationship of $A$ and $B$ , we prove the following
PROPOSITION 2 If $B>$ ], then

$A\geq[\frac{B}{B}]+[\frac{B}{B-1}]+[\frac{B}{B-2}]+\cdots+[\frac{B}{3}-\rfloor+[\frac{B}{2}]+1$

( $[*1$ means the integral part of $*$ ).
PROOF. Set $-1=a_{1}^{2}+a_{2}^{2}+\cdots+a_{B}^{2}$ with $B$ minimal. Let $\sigma$ and $\delta$

be any two partial sums of this expresion of $-1$ , say $\sigma=a_{\sigma_{1}}^{2}+\cdots+a_{\sigma_{j}}^{2}$

and $\delta=a_{\delta_{1}}^{2}+\cdots+a_{\delta_{j}}^{2}$ .
$1^{o}$ If $i\neq j$, then $\sigma$ and $\delta$ must be in different classes of non.zero

elements modulo squares, for otherwise the representation of $-1$ could
be shortened.

$2^{o}$ If $1<i=j$ and $\{\sigma\}\cap\{\delta\}=\emptyset$ where $\{\sigma\}$ and $\{\delta\}$ denote the
sets of indices $\sigma_{1},$ $\cdots,$

$\sigma$; and $\delta_{1}$ , $\delta_{j}$ respectively, then $\sigma$ and $\delta$ must
be in different classes of non.zero elements modulo squares. Indeed, if
$\sigma$ and $\delta$ are in the same class of non-zero elements modulo squares,
then we may write $\sigma=\delta\cdot a^{2},$ $a\in F$. Hence we get $\sigma+\delta=\delta(1+a^{2})$ . Here,
by the assumption $\{\sigma\}\cap\{\delta\}=\psi,$ $\sigma+\delta$ is a partial sum of $2i$ squares in
the above expression of $-1$ . On the other hand, $\delta(1+a^{2})$ is the sum
of $i$ or $i+1$ squares according as $i$ is even or odd. Since $2i>i+1$ by
our assumption $i>1,$ $-1$ is expressed as sum of $B-1$ or less squares.

From 1o and $2^{o}$ we get our proposition easily.
As an immediate consequence of this proposition we have
COROLLARY 3. If $A>2$ , then $B<A^{4)}$

As for the relations of $A,$ $B$ and $C$, we prove the following
PROPOSITION 4

(1) $C\leqq AB$ for any $B$.
(2) $c_{--<_{=}AB}/2$ if $B\geq 2$ .
(3) $C-\leq AB/4$ if $B\geq 4$ .
(4) $c_{\underline{-<}A(B+2^{2t-1}+2^{t}-2)}/2^{2t}$ if $2^{t+1}>B\geqq 2^{t},$ $t>2$ .
(5) $C\leqq A(B+2^{3t- 3}+2^{2t-2}+2^{t}-6)/2^{3t-1}$ if $2^{t+1}>B\geqq 2^{t},$ $t>3$ .

2) The proof of this proposition is in K. Q.
3) This proposition is a refinement of Theorem 4 in K. Q.
4) This is Theorem 4 in K. Q.
5) This is a refinement of Theorem 5 in K. Q.
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PROOF. (1), (2) and (3) are proved in K. Q. So we shall prove
(5), and indicate the modifications needed in proving (4) (which is
easier than (5)).

Let $F^{*}$ be the multiplicative group of non.zero elements in F. We
denote by $G$ the group $F^{*}/(F^{*})^{2}$ and by $<a>$ the element of $G$ re-
presented by $a\in F^{*}$ . By definition $G$ is a group of order $A$ . If $2^{t+I}>$

$B\geqq 2^{t}$ , then we may construct in a similar way as in th $e$ proof of
proposition 2 a subgroup $H_{0}$ of $G$ of order $2^{t}$ such that each element.
of $H_{0}$ is the sum of at most two squares. In fact, write $-1=a_{1}^{2}+\cdots$

$+a_{B}^{2}$ with $B$ minimal. (We shall fix this expression of $-1$ throughout

the present proof.) Then $\frac{B}{2}(\geqq 2^{t-1})$ elements $<a_{1}^{2}+a_{2}^{2}>,$ $<0_{3}^{2}+a_{t}^{2}>$ ,

$<a_{B-1}^{2}+a_{B}^{2}>$ of $G$ are different from each other (and from $<1>$),
and therefore the order of the subgroup of $G$ which is generated by
these elements is at least $2^{t}$ . Each element of this subgroup is a sum
of at most two squares (because a sum of two squares times a sum of
two squares is a sum of two squares). Thus we have a subgroup $H_{0}$

of order $2^{t}$ such that each elements is a sum of at most two squares.
By $<1>,$ $<c_{1}>,$ $<c_{2}>,$ $’\cdot$ $<c_{2^{t}-1}>$ we denote all the elements of $H_{0}$ .
Let $H_{1}$ be the subgroup of $G$ generated by $H_{0}$ and $<-1>$ . Since
$<-1>$ is not in $H_{0}$ , the order of $H_{1}$ is $2^{l+1}$ . Now, we consider the
partial sum $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ of the above fixed expression of $-1$ and
denote it by $d_{1}$ . Since $<d_{1}>$ is not in $H_{1}$ , the order of the subgroup
$H_{2}$ of $G$ generated by $H_{1}$ and $<d_{1}>$ is $2^{t+2}$ . Similarly if we put $d_{2}$

$=a_{\mathfrak{d}}^{2}+a_{6}^{2}+a_{t}^{2}+a_{8}^{2}$ , then $<d_{2}>$ is not in $H_{2}$ . For, if $H_{2}\ni<d_{2}>$ , then
$<d_{2}>=\pm<1>,$ $\pm<c_{i}>$ or $\pm<d_{1}><c_{i}>$ and in each case we would
obtain a shorten expression of $-1$ (as a sum of squares); observe that
a sum of four squares times a sum of four squares is again a sum of
four squares. Thus we obtain the subgroup $H_{3}$ of order $2^{t+3}$ of $G$

which is generated by $H_{2}$ and $<d_{2}>$ . Furthermore, on observing
$B\geqq 2^{t}>8$ by assumption, we consider $a_{9}^{2}+a_{1)}^{2}+a_{11}^{2}+a_{12}^{2}$ . Generally we
cannot say that $<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}>$ is outside of $H_{3}$ . But either
$<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}>$ or $<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}>$ is not in $H_{3}$ . For, firstly,
the above argument shows that $<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{\rfloor 2}^{2}>$ and $<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}$

$+a_{16}^{2}>$ are different from $\pm<1>,$ $\pm<c_{i}>,$ $\pm<d_{j}>$ , $\pm<d_{j}><c_{i}>$ ,
$1\geqq i\geqq 2^{t}-1,$ $j=1,2$ . Further, $<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}>$ can not be equal to
$-<d_{1}><d_{2}>or-<d_{2}><d_{0}.><c_{i}>$ and $<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}>can$ not
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be equal to $-<d_{1}><d_{2}>$ or $-<d_{1}><d_{2}><c_{j}>$ , for in either case
$-1$ would be a sum of less than eight squares. Therefore if both
$<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}>$ and $<a_{13}^{2}+a_{1t}^{2}+a_{15}^{2}+a_{16}^{2}>$ were in $H_{3}$ , we should
have $<a_{9}^{2}+a_{10}^{2}+a_{1\downarrow}^{2}+a_{12}^{2}>=<d_{1}><d_{2}>$ or $<d_{1}><d_{2}><c;>$ and $<a_{13}^{2}$

$+a_{14}^{2}+a_{15}^{2}+a_{\vec{1}6}>=<d_{1}><d_{2}>$ or $<d_{1}><d_{?}><c_{j}>$ . In either case
$<a_{9}^{2}+a_{10}^{2}+\cdots\#\cdot a_{15}^{2}+a_{16}^{2}>=<d_{1}><d_{2}><a$ sum of at most 4 squares$>$
$=<a$ sum of at most 4-squares$>$ and the expression of $-1$ could be
shortend. Thus either $<a_{9}^{2}+a_{io}^{9}+a_{11}^{2}+a_{J2}^{2}>$ or $<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}>$ is
not in $H_{3}$ . Denote it by $d_{3}$ and let $H_{4}$ be the subgroup of $G$ which is
generated by $H_{4}$ and $<d_{3}>$ . The order of $H_{4}$ is $2^{t+4}$.

Now, for a natural number $k$ with $B\geqq 4k$ , assume that we have
a subgroup $H_{k+1}$ of order $2^{t+k+1}$ of $G$ generated by $H_{1},$ $<d_{1}>,$ $\cdots,$ $<d_{k}>$ ,
where each $d_{i}$ is a partial sum of four terms in our expresion of $-1$

and different $d_{i}$ have no common term. We may suppose $-1=d_{1}+d_{2}$

$+\cdots+d_{k}+a_{4k\}1}^{2}+\cdots+a_{B}^{2}$ by enumerating $a_{i}$ suitably. If here $B\geq 4k$

$+4(2^{k}-k)=2^{k^{+}2}$, then we see, in the same way as above, that for at least
one of $a_{4k+1}^{2}+\cdots+a_{4k+4}^{2},$ $a_{4k\vdash 5}^{2}+\cdots+a_{4k+8}^{2},$

$\cdots,$ $a_{4k+4(2^{k}-k- 1)+1}^{2}+\cdots+a_{4k+4t2^{k}-k)}^{2}$

its class modulo squares is outside of $H_{k\vdash 1}$ . For, otherwise each of
those $2^{k}-k$ classes would bc either a product of at least two $<d>s$
or a product of at least two $<d>s$ and one $<c_{i}>$ . But the number
of the products of at least two $<d>s$ is $\left(\begin{array}{lllllll} & & & & & & k\\ & & & & & & k\end{array}\right)+\left(\begin{array}{llllllll} & & & & & & & k\\ & & & & & & k & -1\end{array}\right)+\cdots+\left(\begin{array}{lllllll} & & & & & & k\\ & & & & & & 2\end{array}\right)=\Delta^{k}$

$-k-1$ . Therefore, there should exist two among our classes, say
$<a_{4r+1}^{2}+\cdots+a_{4r+4}^{2}>$ and $<a_{4s\vdash 1}^{2}+\cdots+a_{4s\vdash 4}^{2}>(r\neq s)$ , such that $<a_{4r+1}^{2}+\cdots$

$+a_{r\ovalbox{\tt\small REJECT}+4}^{2\ovalbox{\tt\small REJECT}}>=<d_{j_{1}}>\cdots<d_{i_{\kappa}}>$ or $<d_{i_{1}}>\cdots<d_{i_{\kappa}}><c_{i}>,$ $<a_{4s+1}^{2}+\cdots+a_{4s+4}^{2}>$

$=<d_{i_{1}}>\cdots<d_{i_{\kappa}}>$ or $<d_{i_{1}}>\cdots<d_{i_{K}}><c_{j}>$ , with a common set $ d_{i_{1}},\cdots$ ,
$d_{i_{\kappa}}$ . Then

$=<d_{i_{1}}^{2}>\cdot\cdot<d_{i_{\kappa}}>^{r+}<^{4}the^{2}sumofa^{2}t^{s\dagger 4}most<a_{4r+1}+.\cdot\cdot+a_{4}^{2}+a_{4S+1}+\cdots+a_{4}>$

four squares$>$
$=<the$ sum of at most four squares$>$

and the expression of $-1$ could be shortend. Therefore at least one
of our classes is not in $H_{k+1}$ . Denoting the corresponding sum of four
elements by $d_{k+1}$ , we get a subgroup $H_{k+2}$ of order $ 2^{tk+2}\vdash$ of $G$ which
is generated by $H_{k+1}$ and $<d_{k+1}>$ . In this way, for the maximum $k$

such that $B/4\geqq k+2^{k}-k=2^{k}$, we can form a subgroup $ff_{k+2}=\{H_{1},<d_{1}>$ ,
$<d_{k+1}>\}$ of order $2^{t+k+2}$ of $G$. If $2^{l+1}>B\geqq 2^{t}$, then $k=t-2$ . Thus

we can form the subgroup $H_{t}=\{H_{1}, <d_{1}>, \cdots, <d_{t-1}>\}$ of order $2^{2t}$ of
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$G$ . Obviously, each element of $H_{t}$ is a sum of at most 4 squares.
Next, on considering the partial sums of eight squares in our fixed

expression of $-1$ instead of th $e$ sum of four squares, we can form
in a similar manner as above a subgroup $H=\{H_{t}, <^{\prime}e_{1}>, \cdots, <e_{i-2}>\}$

. of order $2^{2t+\iota-2}=2^{3t-2}$ of $G$ wh$ere$ each $e_{\sigma}$ is a partial sum $ a_{\sigma_{1}}^{2}+a_{\sigma 2}^{2}+\cdots$

$+a_{\sigma \mathfrak{g}}^{?}$ of eight term in our fixed expression of $-1$ and for $\sigma\neq\tau e_{\sigma}$ and
$e_{\tau}$ have no common term; we omit details. Denote the elements of $H$

by $\pm<1>,$ $\pm<c_{i}>,$ $\pm<d_{j_{1}}>\cdots<d_{j_{s}}>,$ $\pm<d_{j_{1}}>\cdots<d_{j_{s}}><c;>$ ,
$\pm<e_{k_{1}}>\cdots<e_{k_{r}}>,$ $\pm<e_{k_{1}}>\cdots<e_{k_{r}}><c_{i}>$ ,
$\pm<e_{k_{1}}>\cdots<e_{k_{r}}><d_{j_{1}}>\cdots<d_{j_{s}}>$ and
$\pm<e_{k_{1}}>\cdots<e_{k_{r}}><d_{j_{1}}>\cdots<d_{j_{s}}><c_{i}>$ where $i=1,$ $ 2^{t}-1,1\leqq$

$s\leqq t-1,1\leqq r\leqq t-2$ .
Now let there be given a quadratic form $f=\sum b_{i}x_{i}^{2}$ in $A(B+2^{3t-3}$

$+2^{2t^{-}2}+2^{t}-6)/2^{3t2}-$ variables. If we map the coefficents $b_{i}$ of $f$ into
$G/H$ of order $A/2^{3t-2}$ by natural mapping $b_{i}\rightarrow<b_{i}>mod H$, at least
$B+2^{3t-2}+2^{2t-2}+2^{t}-6$ of the $b’ s$ must be mapped into a same class, in
$G/H$. After multiplying by a suitable constant, we may assume that
$B+2^{3t^{-}3}+2^{2t-2}+2^{t}-6$ of $b’ s$ are actually in $H$. We denote these element
by $b_{\lambda(j)},$ $i=1,$ $\cdots,$

$B+2^{3t-3}+2^{\prime}-t-2+2^{t}-6$ . Now if $<c_{i}>$ (or $-<c;>$ ,
$\pm<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>,$ $\pm<e_{\tau_{1}}>\cdots<e_{\mathcal{T}}><c_{i}>,$ $\pm<e_{\tau_{1}}>\cdots<e_{\tau}r><d_{\sigma_{1}}>$

$...<d_{\sigma s}><c_{i}>)$ occurs twice among $<b>s$ that is, if for some $k_{1},$ $k_{2}$

$(\neq)<b_{\lambda(k_{1})}>=<b_{\lambda(k_{2})}>=<c;>$ (or $-<c;>,$ $\pm<d_{\sigma_{1}}>\cdots<d_{\sigma s}><c_{i}>$ ,
$\pm<e_{\tau_{1}}>\cdots<e_{\tau_{f}}><c;>$ , $\pm<e_{\tau_{1}}>\cdots<e_{\tau,}><d_{\sigma_{1}}>\cdots<d_{\sigma s}><c_{i}>$), the
$(b_{\lambda(k_{1})}, b_{\lambda(k_{2})})^{6)}\sim(c_{i}, c_{i})\sim(1,1)$ (or $-(1,1)$ , $\pm(d_{\sigma_{1}}\cdots d_{\sigma_{S}}, d_{\sigma_{1}s} d_{\sigma}),$ $(e_{\tau_{1}}\cdots e_{\tau,}$ ,
$e_{\tau_{1}}\cdots e_{\tau,}),$ $(e_{\tau_{1}}\cdots e_{\tau}\cdot d_{\sigma_{1}}\cdots d_{\sigma_{S}}, e_{\tau_{1}}\cdots e_{\tau}rr . d_{\sigma_{1}}\cdots d_{\sigma})s$ Hence, on transforming
$f$ to a congruent form, we can assume that each of $\pm<c;>,$ $\pm<d_{\sigma_{1}}>$

$...<d_{\sigma_{S}}><c_{i}>,$ $\pm<e_{\tau_{1}}>\cdots<e_{\tau,}><d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>$ occurs at most
once among $<b>s$ . Further, if $<d_{\sigma_{1}}>\cdots<d_{\sigma s}>(or-<d_{\sigma_{1}}>\cdots<d_{\sigma s}>$ ,
$\pm<e_{\tau_{1}}>\cdots<e_{\tau}r><d_{\sigma_{1}}>\cdots<d_{\sigma}>)s$ occurs $4\cdot times$ among $<b>s$, that
is, if for some $k_{1},$ $k_{2},$ $k_{3},$ $k_{4}<b_{\lambda(k_{1})}>=<b_{\lambda(k_{2})}>=<b_{\lambda(ka)}>=<b_{\lambda(k_{4})}>$

$=<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ (or $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>,$ $\pm<e_{\tau_{1}}>\cdots<e_{\tau,}><d_{\sigma_{1}}>\cdots$

$<d_{\sigma_{S}}>)$ , then $(b_{\lambda(k_{1})}, b_{\lambda^{\prime}k_{2})}, b_{\lambda(k_{3)}}, b_{\lambda(k_{4})})\sim(d_{\sigma_{1}}\cdots d_{\sigma_{S}}, *, *, d_{\sigma_{1}}\cdots d_{\sigma s})\sim(1,1,1,1)$

(or $-(1,1,1,1),$ $\pm(e_{\tau_{1}}\cdots e_{\tau}*,$ $\neq,$ $e_{\tau_{1}}\cdots e_{\tau,})$ )
$r’$

Hence, on transforming $f$ to

6) $(a_{1}, \cdots, a_{n})$ stands for the quadratic form $\underline{\backslash \urcorner}a;x_{i^{2}}$ . Equivalence of quadratic forms
$(a_{1}\ldots., a_{n}),$ $(b_{1}, b_{n})$ (or congruence of the corresponding matrices) will be indicated by
$(a_{1}, \cdots, a_{n})\sim(b_{1}, b_{n})$ .
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a congruent form, we can assume that each of $\pm<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ ,
$\pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ occurs at most $3\cdot times$ among $<b>s$ .
Finally if $<e_{\tau_{1}}>\cdots<e_{\tau}r>$ (or $-<e_{\tau_{1}}>\cdots<e_{\tau_{\gamma}}>$ ) occurs 8-times among
$<b>s$ , that is, for some $k_{1},$

$\cdots,$ $k_{8}(\neq)<b_{\lambda(k_{1})}>=\cdots=<b_{\lambda(k\epsilon)}>=<e_{\tau_{1}}>$

$<e_{\tau_{f}}>(or=-<e_{\tau_{1}}>\cdots<e_{\tau}r>)$ , then $(b_{\lambda(k_{1})}, \cdots, b_{\lambda(k_{3})})\sim(e_{\tau_{1}}\cdots e_{\tau_{f}},$
$\cdots,$ $ e_{\tau_{1}}\cdots$

$e_{\tau}r)\sim(1,1, \cdots. 1)$ (or $-(1,1,$ $\cdots,$
$1)$ ). Hence, again on transforming $f$ to

a congruent form, we can assume that each of $\pm<e_{\tau_{1}}>\cdots<e_{\tau}r>$ occurs
at most $7\cdot times$ among $<b>s$ . If both $<1>$ and $-<1>$ or both
$<c_{i}>$ and $-<c_{i}>$ or both $<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ and $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ or
both $<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>$ and $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>or$ both $<e_{\tau_{1}}>$

$...<e_{\tau}r>$ and $-<e_{\tau_{1}}>\cdots<e_{\tau,}>$ or both $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><c_{i}>$ and
$-<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><c_{i}>$ or both $<e_{\tau_{1}}>\cdots<e_{\tau_{1}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ and
$-<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma s}>or$ both $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$

$<c_{i}>and-<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>occur$ among $<b>s$ ,
then $f$ represents $0$ . 0therwise, 1 (or $-1$ ) occurs at least $(B+2^{3t^{-}3}$

$+2^{2t-2}+2^{t}-6)-(2^{3t-3}+2^{2t^{-}2}+2^{t}-7)=B+1$ times among $<b>s$ . Indeed,
. since $<c_{i}>$ or $-<c_{i}>,$ $<d_{\sigma_{1}}>\cdots<d_{\sigma}s><c_{i}>$ or $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$

$<c_{i}>,$ $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><c_{j}>$ or $-<c_{\tau_{1}}>\cdots<e_{\tau}r><c_{i}>$ and $<e_{\tau_{1}}>\cdots$

$<e_{\tau}r><d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>$ or $-<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma}s><c_{i}>$

are occurs at most once among $<b_{\lambda}>s$ and the total number of $<c_{i}>$ ,
$<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>$ , $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><c_{i}>,$ $<e_{\tau_{1}}>\cdots<e_{\tau_{f}}><d_{\sigma_{1}}>\cdots$

$<d_{\sigma_{S}}><c_{i}>$ is $(2^{t}-1)+(2^{t-1}-1)(2^{t}-1)+(2^{t2}--1)(2^{t}-1)+(2^{t-2}-1)(2^{t-1}$

$-1)(2^{t}-1)=(2^{t}-1)2^{2t^{-}3}$ , there are at most $(2^{t}-1)2^{2t-3}$ among $<b_{\lambda}>s$

where are one of $\pm<c_{i}>,$ $\pm<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}><c_{i}>,$ $\pm<e_{\tau_{1}}>\cdots<e_{\tau,}>$

$<c_{i}>,$ $\pm<e_{\tau_{1}}>\cdots<e_{\tau_{f}}><d_{\sigma_{1}}>\cdots<d_{\sigma}s><c_{i}>$ . Similarly, since $<d_{\sigma_{1}}>$

$.<d_{\sigma}s>$ or $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ and $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma}s>$ or
$-<e_{\tau_{1}}>\cdots<e_{\tau_{f}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ occur at most 3 times among $<b_{\lambda}>s$

and the total number of $<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ and $<e_{\tau_{1}}>\cdots<e_{\tau}r><d_{\sigma_{1}}>\cdots$

$<d_{\sigma}s>$ is $(2^{\ell-1}-1)+(2^{t^{-}2}-1)(2^{t-1}-1)=(2^{\ell-1}-1)2^{t-2}$, there are at most
$3(2^{t1}--1)2^{t-2}$ among $<b_{\lambda}>s$ which are one of $\pm<d_{\sigma_{1}}>\cdots<d_{\sigma_{S}}>$ and
$\pm<e_{\tau_{1}}>\cdots<e_{\tau,}><d_{\sigma_{1}}>\cdots<d_{\sigma}s>and$ since $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}>$ or $-<e_{\tau_{1}}>$

$...<e_{\tau_{f}}>$ occurs at most $7\cdot times$ in $<b_{\lambda}>s$ and the total number of
$<e_{\tau_{1}}>\cdots<e_{\tau}r>$ is $2^{t-2}-1$ , there are at most $7(2^{t-2}-1)$ among $<b_{\lambda}>s$

which are one of $\pm<e_{\tau_{1}}>\cdots<e_{\tau}r>$ . Hence, at least $(B+2^{3t-3}+2^{2t-2}$

$+2^{t}-6)-\{(2^{t}-1)2^{2t-3}+3(2^{t}-1-1)2^{t2}-+7(2^{\iota- 2}-1)\}=B+1$ among $<b>s$

are 1 or $-1$ . By definition of $B,$ $f$ represents $0$ .
(4) is obtained simpler that (5) by using $H_{t}$ instead of $H$.
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From our proposition we deduce easily the following
THEOREM.

(1) If $B\leqq 4$ , then $A\geqq C$.
(2) If $B>4$ , then $A>C$.
(3) If $2^{4}>B\geqq 2^{3}$, then $\frac{23}{32}A>C$.
(4) If $2^{t+1}>B\geqq 2^{t},$ $t>3$ , then

$(\frac{1}{2}+\frac{2^{2t-2}+2^{t+1}+2^{t}-14}{2^{3t2}-})A>C$ .

PROOF. (1), (2) are obtained easily from (1), (2), (3) and (4) (or (5))
of propesition 4. Also, (3) and (4) is obtained easily from (4) and (5)
respectively, since $B$ is at most $2^{t+1}-8$ .

Mathematical Institute, Nagoya University.
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