On a conjecture of Kaplansky on quadratic forms

By Tosirô Tsuzuku

(Received April 20, 1654)

In his recent paper ${ }^{1)}$ Kaplansky took up some problems on quadratic forms over a not formally real field of characteristic different from two. Among others he made the following conjecture: Let F be a field of characteristic different from two which is not formally real, and let the multiplicative group of non-zero elements of F modulo squares be pricisely of order n. Then every quadratic form in $n+1$ variables over F represents zero (non-trivally). He affirmed this conjecture in the following two special caces: (1) $n \leqq 8$, (2) -1 is a sum of four or less squares in F. In the present paper we shall show on modifying and refining Kaplansky's methods that his conjecture is true; in fact we shall prove a more finer statement.

The writer wishes to express his gratitude to Prof. T. Nakayama and Mr. T. Ono for their valuable suggestions.

Let F^{\prime} be a field of characteristic different from two which is not formally real (that is, -1 is a sum of squares in F). We shall fix this field throughout this paper. After Kaplansky, we define three invariants of F as follows :
(a) A is the order of the multiplicative group of non-zero elements of F moduls squares. A may be infinite; if it is finite it is evidently a power of 2 .
(b) B is the smallest integer n such that -1 is a sum of n squares in F.
(c) C is the smallest integer n such that every quadratic form in $n+1$ variables over F is a null form (i.e. a form which represents zero non-trivially).

On the value of B, we have the following

1) I. Kaplansky, "Quadratic forms" J. Math. Soc. Japan, vol. 5 (1953) pp. 200-207. We refer of this paper as K. Q.

Proposition 1. (Kaplansky) $B=1,2,4$ or a multiple of $8^{2)}$ About the relationship of A and B, we prove the following Proposition 2.3' If $B>1$, then

$$
A \geq\left[\frac{B}{B}\right]+\left[\frac{B}{B-1}\right]+\left[\frac{B}{B-2}\right]+\cdots+\left[\frac{B}{3}\right]+\left[\frac{B}{2}\right]+1
$$

([*] means the integral part of $*$).
Proof. Set $-1=a_{1}^{2}+a_{2}^{2}+\cdots+a_{B}^{2}$ with B minimal. Let σ and δ be any two partial sums of this expresion of -1 , say $\sigma=a_{\sigma_{1}}^{2}+\cdots+a_{\sigma_{i}}^{2}$ and $\delta=a_{\delta_{1}}^{2}+\cdots+a_{\delta_{j}}^{2}$.
1° If $i \neq j$, then σ and δ must be in different classes of non-zero elements modulo squares, for otherwise the representation of -1 could be shortened.
2° If $1<i=j$ and $\{\sigma\} \cap\{\delta\}=\emptyset$ where $\{\sigma\}$ and $\{\delta\}$ denote the sets of indices $\sigma_{1}, \cdots, \sigma_{i}$ and $\delta_{1}, \cdots, \delta_{j}$ respectively, then σ and δ must be in different classes of non-zero elements modulo squares. Indeed, if σ and δ are in the same class of non-zero elements modulo squares, then we may write $\sigma=\delta \cdot a^{2}, a \in F$. Hence we get $\sigma+\delta=\delta\left(1+a^{2}\right)$. Here, by the assumption $\{\sigma\} \cap\{\delta\}=\emptyset, \sigma+\delta$ is a partial sum of $2 i$ squares in the above expression of -1 . On the other hand, $\delta\left(1+a^{2}\right)$ is the sum of i or $i+1$ squares according as i is even or odd. Since $2 i>i+1$ by our assumption $i>1,-1$ is expressed as sum of $B-1$ or less squares.

From 1° and 2° we get our proposition easily.
As an immediate consequence of this proposition we have
Corollary 3. If $A>2$, then $B<A^{4)}$
As for the relations of A, B and C, we prove the following Proposition 4. ${ }^{5)}$
(1) $C \leqq A B$ for any B.
(2) $C \leqq A B / 2$ if $B \geq 2$.
(3) $C \leq A B / 4$ if $B \geq 4$.
(4) $C \leqq A\left(B+2^{2 t-1}+2^{t}-2\right) / 2^{2 t}$ if $2^{t+1}>B \geq 2^{t}, t>2$.
(5) $C \leq A\left(B+2^{3 t-3}+2^{2 t-2}+2^{t}-6\right) / 2^{3 t-1}$ if $2^{t^{t+1}}>B \geq 2^{t}, t>3$.
2) The proof of this proposition is in K. Q.
3) This proposition is a refinement of Theorem 4 in K. Q.
4) This is Theorem 4 in K.Q.
5) This is a refinement of Theorem 5 in K. Q.

Proof. (1), (2) and (3) are proved in K. Q. So we shall prove (5), and indicate the modifications needed in proving (4) (which is easier than (5)).

Let F^{*} be the multiplicative group of non-zero elements in F . We denote by G the group $F^{*} /\left(F^{*}\right)^{2}$ and by $\langle a\rangle$ the element of G represented by $a \in F^{*}$. By definition G is a group of order A. If $2^{t+1}>$ $B \geqq 2^{t}$, then we may construct in a similar way as in the proof of proposition 2 a subgroup H_{0} of G of order 2^{t} such that each element. of H_{0} is the sum of at most two squares. In fact, write $-1=a_{1}^{2}+\cdots$ $+a_{B}^{2}$ with B minimal. (We shall fix this expression of -1 throughout the present proof.) Then $\frac{B}{2}\left(\geq 2^{t-1}\right)$ elements $\left.\left\langle a_{1}^{2}+a_{2}^{2}\right\rangle,<a_{3}^{2}+a_{3}^{2}\right\rangle$, $\left.\cdots,<a_{B-1}^{2}+a_{B}^{2}\right\rangle$ of G are different from each other (and from $<1>$), and therefore the order of the subgroup of G which is generated by these elements is at least 2^{t}. Each element of this subgroup is a sum of at most two squares (because a sum of two squares times a sum of two squares is a sum of two squares). Thus we have a subgroup H_{0} of order 2^{t} such that each elements is a sum of at most two squares. By $\langle 1\rangle,\left\langle c_{1}\right\rangle,\left\langle c_{2}\right\rangle, \cdots,\left\langle c_{2} t-1\right\rangle$ we denote all the elements of H_{0}. Let H_{1} be the subgroup of G generated by H_{0} and $<-1>$. Since $<-1\rangle$ is not in H_{0}, the order of H_{1} is 2^{t+1}. Now, we consider the partial sum $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ of the above fixed expression of -1 and denote it by d_{1}. Since $\left\langle d_{1}\right\rangle$ is not in H_{1}, the order of the subgroup H_{2} of G generated by H_{1} and $\left\langle d_{1}\right\rangle$ is $2^{t^{+2}}$. Similarly if we put d_{2} $=a_{5}^{2}+a_{6}^{2}+a_{7}^{2}+a_{8}^{2}$, then $\left\langle d_{2}\right\rangle$ is not in H_{2}. For, if $\left.H_{2} \ni<d_{2}\right\rangle$, then $\left.\left.\left\langle d_{2}\right\rangle= \pm<1\right\rangle, \pm<c_{i}\right\rangle$ or $\left.\left.\pm<d_{1}\right\rangle<c_{i}\right\rangle$ and in each case we would obtain a shorten expression of -1 (as a sum of squares); observe that a sum of four squares times a sum of four squares is again a sum of four squares. Thus we obtain the subgroup H_{3} of order 2^{t+3} of G which is generated by H_{2} and $\left\langle d_{2}\right\rangle$. Furthermore, on observing $B \geq 2^{t}>8$ by assumption, we consider $a_{9}^{2}+a_{1}^{2}+a_{11}^{2}+a_{12}^{2}$. Generally we cannot say that $\left\langle a_{3}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle$ is outside of H_{3}. But either $\left.<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle$ or $\left.<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}\right\rangle$ is not in H_{3}. For, firstly, the above argument shows that $\left.<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle$ and $<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}$ $\left.+a_{16}^{2}\right\rangle$ are different from $\pm\langle 1\rangle, \pm\left\langle c_{i}\right\rangle, \pm\left\langle d_{j}\right\rangle, \pm\left\langle d_{j}\right\rangle\left\langle c_{i}\right\rangle$, $1 \geq i \geq 2^{t}-1, j=1$, 2. Further, $\left\langle a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle$ can not be equal to $\left.\left.-<d_{1}\right\rangle<d_{2}\right\rangle$ or $\left.\left.\left.-<d_{2}\right\rangle<d_{2}\right\rangle<c_{i}\right\rangle$ and $\left.<a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}\right\rangle$ can not
be equal to $\left.-<d_{1}\right\rangle\left\langle d_{2}\right\rangle$ or $-\left\langle d_{1}\right\rangle\left\langle d_{2}\right\rangle\left\langle c_{j}\right\rangle$, for in either case -1 would be a sum of less than eight squares. Therefore if both $\left.<a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle$ and $\left\langle a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}\right\rangle$ were in H_{3}, we should have $\left\langle a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle=\left\langle d_{1}\right\rangle\left\langle d_{2}\right\rangle$ or $\left\langle d_{1}\right\rangle\left\langle d_{2}\right\rangle\left\langle c_{i}\right\rangle$ and $\left\langle a_{13}^{2}\right.$ $\left.+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}\right\rangle=\left\langle d_{1}\right\rangle\left\langle d_{2}\right\rangle$ or $\left\langle d_{1}\right\rangle\left\langle d_{2}\right\rangle\left\langle c_{j}\right\rangle$. In either case $\left.<a_{9}^{2}+a_{10}^{2}+\cdots+a_{15}^{2}+a_{16}^{2}\right\rangle=\left\langle d_{1}\right\rangle\left\langle d_{2}\right\rangle<$ a sum of at most 4 squares $>$ $=<$ a sum of at most 4 -squares $>$ and the expression of -1 could be shortend. Thus either $\left\langle a_{9}^{2}+a_{10}^{2}+a_{11}^{2}+a_{12}^{2}\right\rangle$ or $\left\langle a_{13}^{2}+a_{14}^{2}+a_{15}^{2}+a_{16}^{2}\right\rangle$ is not in H_{3}. Denote it by d_{3} and let H_{4} be the subgroup of G which is generated by H_{4} and $<d_{3}>$. The order of H_{4} is 2^{t+4}.

Now, for a natural number k with $B \geq 4 k$, assume that we have a subgroup H_{k+1} of order 2^{t+k+1} of G generated by $H_{1},\left\langle d_{1}\right\rangle, \cdots,\left\langle d_{k}\right\rangle$, where each d_{i} is a partial sum of four terms in our expresion of -1 and different d_{i} have no common term. We may suppose $-1=d_{1}+d_{2}$ $+\cdots+d_{k}+a_{4 k+1}^{2}+\cdots+a_{B}^{2}$ by enumerating a_{i} suitably. If here $B \geq 4 k$ $+4\left(2^{k}-k\right)=2^{k+2}$, then we see, in the same way as above, that for at least one of $a_{4 k+1}^{2}+\cdots+a_{4 k+4}^{2}, a_{4 k+5}^{2}+\cdots+a_{4 k+8}^{2}, \cdots, a_{3 k+4\left(2^{k}-k-1\right)+1}^{2}+\cdots+a_{\left.4 k+42^{k}-k\right)}^{2}$ its class modulo squares is outside of H_{k+1}. For, otherwise each of those $2^{k}-k$ classes would be either a product of at least two $\langle d\rangle$'s or a product of at least two $\langle d\rangle$'s and one $\left\langle c_{i}\right\rangle$. But the number of the products of at least two $<d>$'s is $\binom{k}{k}+\binom{k}{k-1}+\cdots+\binom{k}{2}=2^{k}$ $-k-1$. Therefore, there should exist two among our classes, say $\left.<a_{4 r+1}^{2}+\cdots+a_{4 r+1}^{2}\right\rangle$ and $<a_{4 s+1}^{2}+\cdots+a_{4 s+4}^{2}>(r \neq s)$, such that $<a_{4 t+1}^{2}+\cdots$ $\left.\left.+a_{i r+4}^{2}\right\rangle=\left\langle d_{i 1}\right\rangle \cdots<d_{i_{k}}\right\rangle$ or $\left.\left.\left\langle d_{i_{1}}\right\rangle \cdots<d_{i_{k}}\right\rangle\left\langle c_{i}\right\rangle,<a_{i s+1}^{2}+\cdots+a_{s s+4}^{2}\right\rangle$ $\left.=\left\langle d_{i_{1}}\right\rangle \cdots<d_{i_{k}}\right\rangle$ or $\left.\left\langle d_{i_{1}}\right\rangle \cdots<d_{i_{k}}\right\rangle\left\langle c_{j}\right\rangle$, with a common set $d_{i_{1}}, \cdots$, $d_{i_{\kappa}}$. Then
$<a_{\mathrm{sr}+1}^{2}+\cdots+a_{\mathrm{sr}+4}^{2}+a_{\mathrm{ss}+1}^{2}+\cdots+a_{\mathrm{ss}+4}^{2}>$
$=<d_{i_{1}}>\cdots<d_{i_{k}}><$ the sum of at most four squares $>$
$=<$ the sum of at most four squares $>$
and the expression of -1 could be shortend. Therefore at least one of our classes is not in H_{k+1}. Denoting the corresponding sum of four elements by d_{k+1}, we get a subgroup H_{k+2} of order 2^{t+k+2} of G which is generated by H_{k+1} and $\left\langle d_{k+1}\right\rangle$. In this way, for the maximum k such that $B / 4 \geq k+2^{k}-k=2^{k}$, we can form a subgroup $H_{k+2}=\left\{H_{1},\left\langle d_{1}\right\rangle\right.$, $\left.\cdots,\left\langle d_{k+1}\right\rangle\right\}$ of order $2^{l+k^{+2}}$ of G. If $2^{i+1}>B \geq 2^{t}$, then $k=t-2$. Thus we can form the subgroup $H_{t}=\left\{H_{1},\left\langle d_{1}\right\rangle, \cdots,\left\langle d_{t-1}\right\rangle\right\}$ of order $2^{2 t}$ of
G. Obviously, each element of H_{t} is a sum of at most 4 squares.

Next, on considering the partial sums of eight squares in our fixed expression of -1 instead of the sum of four squares, we can form in a similar manner as above a subgroup $H=\left\{H_{t},\left\langle e_{1}\right\rangle, \cdots,\left\langle e_{t-2}\right\rangle\right\}$ of order $2^{2 t+t-2}=2^{3 t-2}$ of G where each e_{σ} is a partial sum $a_{\sigma_{1}}^{2}+a_{\sigma_{2}}^{2}+\cdots$ $+a_{\sigma 8}^{2}$ of eight term in our fixed expression of -1 and for $\sigma \neq \tau e_{\sigma}$ and $\boldsymbol{e}_{\boldsymbol{\tau}}$ have no common term; we omit details. Denote the elements of H by $\left.\left.\quad \pm<1>, \pm<c_{i}\right\rangle, \pm<d_{j_{1}}>\cdots<d_{j_{s}}>, \pm<d_{j_{1}}>\cdots<d_{j_{s}}\right\rangle<c_{i}>$,
$\left.\left.\left.\left.\pm\left\langle e_{k_{1}}\right\rangle \cdots<e_{k_{r}}\right\rangle, \pm<e_{k_{1}}\right\rangle \cdots<e_{k_{r}}\right\rangle<c_{i}\right\rangle$,
$\pm<e_{k_{1}}>\cdots<e_{k_{r}}><d_{j_{1}}>\cdots<d_{j_{s}}>$ and
$\pm<e_{k_{1}}>\cdots<e_{k_{r}}><d_{j_{1}}>\cdots<d_{j_{s}}><c_{i}>$ where $i=1, \cdots, 2^{t}-1,1 \leq$ $s \leqq t-1,1 \leqq r \leqq t-2$.

Now let there be given a quadratic form $f=\sum b_{i} x_{i}^{2}$ in $A\left(B+2^{3 t-3}\right.$ $\left.+2^{2 t-2}+2^{t}-6\right) / 2^{3 t-2}$ variables. If we map the coefficents b_{i} of f into G / H of order $A / 2^{3 t-2}$ by natural mapping $b_{i} \rightarrow\left\langle b_{i}\right\rangle \bmod H$, at least $B+2^{3 t-2}+2^{2 t-2}+2^{t}-6$ of the b 's must be mapped into a same class, in G / H. After multiplying by a suitable constant, we may assume that $B+2^{3 t-3}+2^{2 t-2}+2^{t}-6$ of b 's are actually in H. We denote these element by $\quad b_{\lambda(i)}, i=1, \cdots, B+2^{3 t-3}+2^{2 t-2}+2^{t}-6$. Now if $\left\langle c_{i}\right\rangle$ (or $\left.-<c_{i}\right\rangle$, $\left.\left.\left.\left.\pm<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}><c_{i}\right\rangle, \pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><c_{i}\right\rangle, \pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}\right\rangle<d_{\sigma_{1}}\right\rangle$ $\left.\cdots<d_{\sigma_{s}}\right\rangle\left\langle c_{i}\right\rangle$) occurs twice among $\left.<b\right\rangle$'s that is, if for some k_{1}, k_{2} (キ) $\left\langle b_{\lambda\left(k_{1}\right)}\right\rangle=\left\langle b_{\lambda\left(k_{2}\right)}\right\rangle=\left\langle c_{i}\right\rangle$ (or $\left.\left.\left.-<c_{i}\right\rangle, \pm\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle<c_{i}\right\rangle$, $\left.\pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><c_{i}>, \pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}><c_{i}>\right)$, the $\left.\left(b_{\lambda\left(k_{1}\right)}, b_{\lambda\left(k_{2}\right)}\right)\right)^{6)} \sim\left(c_{i}, c_{i}\right) \sim(1,1) \quad\left(\right.$ or $-(1,1), \pm\left(d_{\sigma_{1}} \cdots d_{\sigma_{s}}, d_{\sigma_{1}} \cdots d_{\sigma_{s}}\right),\left(e_{\tau_{1}} \cdots e_{\tau_{r}}\right.$, $\left.e_{\tau_{1}} \cdots e_{\tau_{r}}\right),\left(e_{\tau_{1}} \cdots e_{\tau_{r}} \cdot d_{\sigma_{1}} \cdots d_{\sigma_{s}}, e_{\tau_{1}} \cdots e_{\tau_{r}} \cdot d_{\sigma_{1}} \cdots d_{\sigma_{s}}\right)$. Hence, on transforming f to a congruent form, we can assume that each of $\left.\left.\pm<c_{i}\right\rangle, \pm<d_{\sigma_{1}}\right\rangle$ $\left.\cdots<d_{\sigma_{s}}><c_{i}>, \pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}\right\rangle<c_{i}>$ occurs at most once among $$'s. Further, if $<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ (or $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$, $\pm\left\langle e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>\right.$) occurs 4-times among $$'s, that is, if for some $k_{1}, k_{2}, k_{3}, k_{4}\left\langle b_{\lambda\left(k_{1}\right)}\right\rangle=\left\langle b_{\lambda\left(k_{2}\right)}\right\rangle=\left\langle b_{\lambda\left(k_{3}\right)}\right\rangle=\left\langle b_{\lambda\left(k_{4}\right)}\right\rangle$ $=<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ (or $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>, \pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots$ $<d_{\sigma_{s}}>$), then $\left(b_{\lambda\left(k_{1}\right)}, b_{\left.\lambda^{\prime} k_{2}\right)}, b_{\lambda\left(k_{3}\right)}, b_{\lambda\left(k_{4}\right)}\right) \sim\left(d_{\sigma_{1}} \cdots d_{\sigma_{s}}, *, *, d_{\sigma_{1}} \cdots d_{\sigma_{s}}\right) \sim(1,1,1,1)$ (or $-(1,1,1,1), \pm\left(e_{\tau_{1}} \cdots e_{\tau_{r}}, *, *, e_{\tau_{1}} \cdots e_{\tau_{r}}\right)$). Hence, on transforming f to

[^0]a congruent form, we can assume that each of $\left.\pm<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}\right\rangle$, $\pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ occurs at most 3 .times among $$'s. Finally if $\left.\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle$ (or $\left.-\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle$) occurs 8 -times among $\langle b\rangle$'s, that is, for some $k_{1}, \cdots, k_{8}(\neq)\left\langle b_{\lambda\left(k_{1}\right)}\right\rangle=\cdots=\left\langle b_{\lambda(k s)}\right\rangle=\left\langle e_{\tau_{1}}\right\rangle$ $\cdots<e_{\tau_{r}}>$ (or $=-\left\langle e_{\tau_{1}}>\cdots<e_{\tau_{r}}>\right)$, then $\left(b_{\lambda\left(k_{1},\right.}, \cdots, b_{\lambda\left(k_{3}\right)}\right) \sim\left(e_{\tau_{1}} \cdots e_{\tau_{r}}, \cdots, e_{\tau_{1}} \cdots\right.$ $\left.e_{r_{r}}\right) \sim(1,1, \cdots, 1)$ (or $-(1,1, \cdots, 1)$). Hence, again on transforming f to a congruent form, we can assume that each of $\left.\pm\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle$ occurs at most 7 -times among $\langle b\rangle$'s. If both $<1\rangle$ and $-<1\rangle$ or both $<c_{i}>$ and $\left.-<c_{i}\right\rangle$ or both $\left.\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle$ and $\left.-\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle$ or both $\left.\left.<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}\right\rangle<c_{i}\right\rangle$ and $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}><c_{i}>$ or both $<e_{r_{1}}>$ $\left.\cdots<e_{\tau_{r}}\right\rangle$ and $\left.-\left\langle e_{\tau_{1}}\right\rangle \cdots<e_{\tau_{r}}\right\rangle$ or both $\left.\left.\left\langle e_{\tau_{1}}\right\rangle \cdots<e_{\tau_{r}}\right\rangle<c_{i}\right\rangle$ and $-<e_{r_{1}}>\cdots<e_{r_{r}}><c_{i}>$ or both $<e_{r_{1}}>\cdots<e_{r_{1}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ and $\left.\left.-\left\langle e_{\tau_{1}}\right\rangle \cdots<e_{\tau_{r}}\right\rangle<d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}>$ or both $\left\langle e_{\tau_{1}}>\cdots<e_{\tau_{r}}\right\rangle\left\langle d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}\right\rangle$ $<c_{i}>$ and $-\left\langle e_{\tau_{1}}>\cdots<e_{\tau_{r}}\right\rangle\left\langle d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}><c_{i}>\right.$ occur among $$'s, then f represents 0 . Otherwise, 1 (or -1) occurs at least ($B+2^{3 t-3}$ $\left.+2^{2 t-2}+2^{t}-6\right)-\left(2^{3 t-3}+2^{2 t-2}+2^{t}-7\right)=B+1$ times among $\langle b\rangle$'s. Indeed, since $\left\langle c_{i}\right\rangle$ or $\left.\left.\left.-<c_{i}\right\rangle,\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle<c_{i}\right\rangle$ or $\left.-\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle$ $\left.\left.<c_{i}\right\rangle,\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle\left\langle c_{i_{1}}\right\rangle$ or $\left.\left.-\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle<c_{i}\right\rangle$ and $\left.<e_{r_{1}}\right\rangle \cdots$ $\left.\left\langle e_{r_{r}}\right\rangle\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle\left\langle c_{i}\right\rangle$ or $\left.\left.\left.-\left\langle e_{\tau_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle<c_{i}\right\rangle$ are occurs at most once among $\left\langle b_{\lambda}\right\rangle$'s and the total number of $\left\langle c_{i}\right\rangle$, $\left.\left.\left.<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}><c_{i}>,\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}><c_{i}\right\rangle,<e_{r_{1}}>\cdots<e_{r_{r}}\right\rangle<d_{\sigma_{1}}\right\rangle \cdots$ $\left.<d_{\sigma_{s}}\right\rangle<c_{i}>$ is $\left(2^{t}-1\right)+\left(2^{t-1}-1\right)\left(2^{t}-1\right)+\left(2^{t-2}-1\right)\left(2^{t}-1\right)+\left(2^{t-2}-1\right)\left(2^{t-1}\right.$ $-1)\left(2^{t}-1\right)=\left(2^{t}-1\right) 2^{2 t-3}$, there are at most $\left(2^{t}-1\right) 2^{2 t-3}$ among $\left\langle b_{\lambda}\right\rangle$'s where are one of $\left.\left.\left.\left.\pm\left\langle c_{i}\right\rangle, \pm\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle<c_{i}\right\rangle, \pm<e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle$ $<c_{i}>, \pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}><c_{i}>$. Similarly, since $<d_{\sigma_{1}}>$ $\cdots<d_{\sigma_{s}}>$ or $-<d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ and $<e_{r_{1}}>\cdots<e_{t_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ or $-<e_{t_{1}}>\cdots<e_{r_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ occur at most 3 times among $<b_{\lambda}>$'s and the total number of $\left.\left\langle d_{\sigma_{1}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle$ and $\left.<e_{r_{1}}>\cdots<e_{\tau_{r}}\right\rangle<d_{\sigma_{1}}>\cdots$ $\left\langle d_{\sigma_{s}}\right\rangle$ is $\left(2^{t-1}-1\right)+\left(2^{t-2}-1\right)\left(2^{t-1}-1\right)=\left(2^{t-1}-1\right) 2^{t^{-2}}$, there are at most $3\left(2^{t-1}-1\right) 2^{t-2}$ among $\left\langle b_{\lambda}\right\rangle$'s which are one of $\left.\pm\left\langle d_{\sigma_{\sigma_{i}}}\right\rangle \cdots<d_{\sigma_{s}}\right\rangle$ and $\pm<e_{\tau_{1}}>\cdots<e_{\tau_{r}}><d_{\sigma_{1}}>\cdots<d_{\sigma_{s}}>$ and since $<e_{\tau_{1}}>\cdots<e_{\tau_{r}}>$ or $-<e_{\tau_{1}}>$ $\left.\cdots<e_{T_{r}}\right\rangle$ occurs at most 7 -times in $\left\langle b_{\lambda}\right\rangle$'s and the total number of $\left.<e_{\tau_{1}}>\cdots<e_{r_{r}}\right\rangle$ is $2^{t-2}-1$, there are at most $7\left(2^{t-2}-1\right)$ among $<b_{\lambda}>$'s which are one of $\left.\pm\left\langle e_{r_{1}}\right\rangle \cdots<e_{r_{r}}\right\rangle$. Hence, at least ($B+2^{3 t-3}+2^{2 t-2}$ $\left.+2^{t}-6\right)-\left\{\left(2^{t}-1\right) 2^{2 t-3}+3\left(2^{t-1}-1\right) 2^{t-2}+7\left(2^{t-2}-1\right)\right\}=B+1$ among $$'s are 1 or -1 . By definition of B, f represents 0 .
(4) is obtained simpler that (5) by using H_{t} instead of H.

From our proposition we deduce easily the following Theorem.
(1) If $B \leqq 4$, then $A \geqq C$.
(2) If $B>4$, then $A>C$.
(3) If $2^{4}>B \geq 2^{3}$, then $\frac{23}{32} A>C$.
(4) If $2^{t+1}>B \geqq 2^{t}, t>3$, then

$$
\left(\frac{1}{2}+\frac{2^{2 t-2}+2^{t+1}+2^{t}-14}{2^{3 t-2}}\right) A>C .
$$

Proof. (1), (2) are obtained easily from (1), (2), (3) and (4) (or (5)) of propesition 4. Also, (3) and (4) is obtained easily from (4) and (5) respectively, since B is at most $2^{t+1}-8$.

Mathematical Institute, Nagoya University.

[^0]: 6) (a_{1}, \cdots, a_{n}) stands for the quadratic form $\Sigma a_{i} x_{i}{ }^{2}$. Equivalence of quadratic forms (a_{1}, \cdots, a_{n}) , b_{1}, \cdots, b_{n}) (or congruence of the corresponding matrices) will be indicated by $\left(a_{1}, \cdots, a_{n}\right) \sim\left(b_{1}, \cdots, b_{n}\right)$.
