Journal of the Mathematical Society of Japan

On a conjecture of Kaplansky on quadratic forms

By Tosirô TSUZUKU

(Received April 20, 1654)

In his recent paper¹⁾ Kaplansky took up some problems on quadratic forms over a not formally real field of characteristic different from two. Among others he made the following conjecture: Let Fbe a field of characteristic different from two which is not formally real, and let the multiplicative group of non-zero elements of F modulo squares be pricisely of order n. Then every quadratic form in n+1variables over F represents zero (non-trivally). He affirmed this conjecture in the following two special caces: (1) $n \leq 8$, (2) -1 is a sum of four or less squares in F. In the present paper we shall show on modifying and refining Kaplansky's methods that his conjecture is true; in fact we shall prove a more finer statement.

The writer wishes to express his gratitude to Prof. T. Nakayama and Mr. T. Ono for their valuable suggestions.

Let F be a field of characteristic different from two which is not formally real (that is, -1 is a sum of squares in F). We shall fix this field throughout this paper. After Kaplansky, we define three invariants of F as follows:

(a) A is the order of the multiplicative group of non-zero elements of F moduls squares. A may be infinite; if it is finite it is evidently a power of 2.

(b) B is the smallest integer n such that -1 is a sum of n squares in F.

(c) C is the smallest integer n such that every quadratic form in n+1 variables over F is a null form (i.e. a form which represents zero non-trivially).

On the value of B, we have the following

¹⁾ I. Kaplansky, "Quadratic forms" J. Math. Soc. Japan, vol. 5 (1953) pp. 200-207. We refer of this paper as K.Q.

PROPOSITION 1. (Kaplansky) B=1,2,4 or a multiple of 8^{2} About the relationship of A and B, we prove the following PROPOSITION 2.³ If B>1, then

$$A \ge \left[\frac{B}{B}\right] + \left[\frac{B}{B-1}\right] + \left[\frac{B}{B-2}\right] + \dots + \left[\frac{B}{3}\right] + \left[\frac{B}{2}\right] + 1$$

([*] means the integral part of *).

PROOF. Set $-1=a_1^2+a_2^2+\cdots+a_B^2$ with B minimal. Let σ and δ be any two partial sums of this expression of -1, say $\sigma = a_{\sigma_1}^2 + \cdots + a_{\sigma_i}^2$ and $\delta = a_{\delta_1}^2 + \cdots + a_{\delta_i}^2$.

1° If $i \neq j$, then σ and δ must be in different classes of non-zero elements modulo squares, for otherwise the representation of -1 could be shortened.

2° If 1 < i = j and $\{\sigma\} \land \{\delta\} = \emptyset$ where $\{\sigma\}$ and $\{\delta\}$ denote the sets of indices $\sigma_1, \dots, \sigma_i$ and $\delta_1, \dots, \delta_j$ respectively, then σ and δ must be in different classes of non-zero elements modulo squares. Indeed, if σ and δ are in the same class of non-zero elements modulo squares, then we may write $\sigma = \delta \cdot a^2$, $a \in F$. Hence we get $\sigma + \delta = \delta(1 + a^2)$. Here, by the assumption $\{\sigma\} \land \{\delta\} = \emptyset$, $\sigma + \delta$ is a partial sum of 2i squares in the above expression of -1. On the other hand, $\delta(1 + a^2)$ is the sum of i or $i \neq 1$ squares according as i is even or odd. Since 2i > i + 1 by our assumption i > 1, -1 is expressed as sum of B-1 or less squares.

From 1° and 2° we get our proposition easily.

As an immediate consequence of this proposition we have COROLLARY 3. If A > 2, then $B < A^{49}$

As for the relations of A, B and C, we prove the following PROPOSITION 4.5^{5}

- (1) $C \leq AB$ for any B.
- (2) $C \leq AB/2$ if $B \geq 2$.
- (3) $C \leq AB/4$ if $B \geq 4$.
- (4) $C \leq A(B+2^{2t-1}+2^t-2)/2^{2t}$ if $2^{t+1} > B \geq 2^t$, t > 2.
- (5) $C \leq A(B+2^{3t-3}+2^{2t-2}+2^t-6)/2^{3t-1}$ if $2^{t+1} > B \geq 2^t$, t > 3.

- 4) This is Theorem 4 in K.Q.
- 5) This is a refinement of Theorem 5 in K.Q.

326

²⁾ The proof of this proposition is in K.Q.

³⁾ This proposition is a refinement of Theorem 4 in K.Q.

PROOF. (1), (2) and (3) are proved in K.Q. So we shall prove (5), and indicate the modifications needed in proving (4) (which is easier than (5)).

Let F^* be the multiplicative group of non-zero elements in F. We denote by G the group $F^*/(F^*)^2$ and by $\langle a \rangle$ the element of G represented by $a \in F^*$. By definition G is a group of order A. If $2^{t+1} >$ $B \ge 2^{i}$, then we may construct in a similar way as in the proof of proposition 2 a subgroup H_0 of G of order 2^t such that each element. of H_0 is the sum of at most two squares. In fact, write $-1=a_1^2+\cdots$ $+a_B^2$ with B minimal. (We shall fix this expression of -1 throughout the present proof.) Then $\frac{B}{2}$ ($\geq 2^{t-1}$) elements $\langle a_1^2 + a_2^2 \rangle$, $\langle a_3^2 + a_4^2 \rangle$, ..., $\langle a_{B-1}^2 + a_B^2 \rangle$ of G are different from each other (and from $\langle 1 \rangle$), and therefore the order of the subgroup of G which is generated by these elements is at least 2^t . Each element of this subgroup is a sum of at most two squares (because a sum of two squares times a sum of two squares is a sum of two squares). Thus we have a subgroup H_0 of order 2^{t} such that each elements is a sum of at most two squares. By <1>, $<c_1>$, $<c_2>$, \cdots , $<c_{2^{t-1}}>$ we denote all the elements of H_0 . Let H_1 be the subgroup of G generated by H_0 and <-1>. Since <-1> is not in H_0 , the order of H_1 is 2^{t+1} . Now, we consider the partial sum $a_1^2 + a_2^2 + a_3^2 + a_4^2$ of the above fixed expression of -1 and denote it by d_1 . Since $\langle d_1 \rangle$ is not in H_1 , the order of the subgroup H_2 of G generated by H_1 and $\langle d_1 \rangle$ is 2^{t+2} . Similarly if we put d_2 $=a_5^2+a_6^2+a_7^2+a_8^2$, then $<\!\!d_2\!\!>$ is not in H_2 . For, if $H_2 \ni <\!\!d_2\!\!>$, then $\langle d_2 \rangle = \pm \langle 1 \rangle$, $\pm \langle c_i \rangle$ or $\pm \langle d_1 \rangle \langle c_i \rangle$ and in each case we would obtain a shorten expression of -1 (as a sum of squares); observe that a sum of four squares times a sum of four squares is again a sum of four squares. Thus we obtain the subgroup H_3 of order 2^{t+3} of G which is generated by H_2 and $\langle d_2 \rangle$. Furthermore, on observing $B \ge 2^i > 8$ by assumption, we consider $a_9^2 + a_{11}^2 + a_{11}^2 + a_{12}^2$. Generally we cannot say that $\langle a_3^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 \rangle$ is outside of H_3 . But either $<\!a_9^2+a_{10}^2+a_{11}^2+a_{12}^2>$ or $<\!a_{13}^2+a_{14}^2+a_{15}^2+a_{16}^2>$ is not in H_3 . For, firstly, the above argument shows that $<\!\!a_9^2\!+\!a_{10}^2\!+\!a_{11}^2\!+\!a_{12}^2\!>$ and $<\!\!a_{13}^2\!+\!a_{14}^2\!+\!a_{15}^2$ $+a_{16}^2$ are different from $\pm <1>$, $\pm <c_i>$, $\pm <d_j>$, $\pm <d_j><c_i>$, $1 \ge i \ge 2^i - 1$, j = 1, 2. Further, $\langle a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 \rangle$ can not be equal to $-< d_1 > < d_2 >$ or $-< d_2 > < d_2 > < c_i >$ and $< a_{13}^2 + a_{14}^2 + a_{15}^2 + a_{16}^2 >$ can not T. TSUZUKU

be equal to $-\langle d_1 \rangle \langle d_2 \rangle$ or $-\langle d_1 \rangle \langle d_2 \rangle \langle c_j \rangle$, for in either case -1 would be a sum of less than eight squares. Therefore if both $\langle a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 \rangle$ and $\langle a_{13}^2 + a_{14}^2 + a_{15}^2 + a_{16}^2 \rangle$ were in H_3 , we should have $\langle a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 \rangle = \langle d_1 \rangle \langle d_2 \rangle$ or $\langle d_1 \rangle \langle d_2 \rangle \langle c_i \rangle$ and $\langle a_{13}^2 + a_{14}^2 + a_{15}^2 + a_{16}^2 \rangle = \langle d_1 \rangle \langle d_2 \rangle$ or $\langle d_1 \rangle \langle d_2 \rangle \langle c_j \rangle$. In either case $\langle a_9^2 + a_{10}^2 + \cdots + a_{15}^2 + a_{16}^2 \rangle = \langle d_1 \rangle \langle d_2 \rangle \langle a$ sum of at most 4 squares \rangle = $\langle a$ sum of at most 4-squares \rangle and the expression of -1 could be shortend. Thus either $\langle a_9^2 + a_{10}^2 + a_{11}^2 + a_{12}^2 \rangle$ or $\langle a_{13}^2 + a_{14}^2 + a_{15}^2 + a_{16}^2 \rangle$ is not in H_3 . Denote it by d_3 and let H_4 be the subgroup of G which is generated by H_4 and $\langle d_3 \rangle$. The order of H_4 is 2^{t+4} .

Now, for a natural number k with $B \ge 4k$, assume that we have a subgroup H_{k+1} of order 2^{t+k+1} of G generated by $H_1, \langle d_1 \rangle, \dots, \langle d_k \rangle$, where each d_i is a partial sum of four terms in our expression of -1and different d_i have no common term. We may suppose $-1=d_1+d_2$ $+\cdots+d_k+a_{4k+1}^2+\cdots+a_B^2$ by enumerating a_i suitably. If here $B \ge 4k$ $+4(2^{k}-k)=2^{k+2}$, then we see, in the same way as above, that for at least one of $a_{4k+1}^2 + \dots + a_{4k+4}^2$, $a_{4k+5}^2 + \dots + a_{4k+8}^2$, \dots , $a_{4k+4(2^k-k-1)+1}^2 + \dots + a_{4k+4(2^k-k)}^2$ its class modulo squares is outside of H_{k+1} . For, otherwise each of those $2^{k}-k$ classes would be either a product of at least two $\langle d \rangle$'s or a product of at least two $\langle d \rangle$'s and one $\langle c_i \rangle$. But the number of the products of at least two $\langle d \rangle$'s is $\binom{k}{k} + \binom{k}{k-1} + \cdots + \binom{k}{2} = 2^k$ -k-1. Therefore, there should exist two among our classes, say $\langle a_{4r+1}^2 + \cdots + a_{4r+4}^2 \rangle$ and $\langle a_{4s+1}^2 + \cdots + a_{4s+4}^2 \rangle (r \neq s)$, such that $\langle a_{4r+1}^2 + \cdots + a_{4s+4}^2 \rangle (r \neq s)$ $+a_{i_{\ell}r+4}^2 \ge <\!\!d_{i_1}\!\!> \cdots <\!\!d_{i_{\kappa}}\!\!> or <\!\!d_{i_1}\!\!> \cdots <\!\!d_{i_{\kappa}}\!\!> <\!\!c_i\!\!>, <\!\!a_{4s+1}^2 + \cdots + a_{4s+4}^2$ $= \langle d_{i_1} \rangle \cdots \langle d_{i_k} \rangle$ or $\langle d_{i_1} \rangle \cdots \langle d_{i_k} \rangle \langle c_j \rangle$, with a common set d_{i_1}, \cdots, d_{i_k} $d_{i_{\kappa}}$. Then

$$\langle a_{4r+1}^2 + \cdots + a_{4r+4}^2 + a_{4s+1}^2 + \cdots + a_{4s+4}^2 \rangle$$

$$= \langle d_{i_1} \rangle \cdots \langle d_{i_{\kappa}} \rangle \langle \text{the sum of at most four squares} \rangle$$

$$= \langle \text{the sum of at most four squares} \rangle$$

and the expression of -1 could be shortend. Therefore at least one of our classes is not in H_{k+1} . Denoting the corresponding sum of four elements by d_{k+1} , we get a subgroup H_{k+2} of order 2^{t+k+2} of G which is generated by H_{k+1} and $\langle d_{k+1} \rangle$. In this way, for the maximum ksuch that $B/4 \ge k+2^k-k=2^k$, we can form a subgroup $H_{k+2} = \{H_1, \langle d_1 \rangle, \dots, \langle d_{k+1} \rangle\}$ of order 2^{t+k+2} of G. If $2^{t+1} \ge B \ge 2^t$, then k=t-2. Thus we can form the subgroup $H_t = \{H_1, \langle d_1 \rangle, \dots, \langle d_{t-1} \rangle\}$ of order 2^{2t} of

328

G. Obviously, each element of H_t is a sum of at most 4 squares.

Next, on considering the partial sums of eight squares in our fixed expression of -1 instead of the sum of four squares, we can form in a similar manner as above a subgroup $H=\{H_t, \langle e_1 \rangle, \dots, \langle e_{t-2} \rangle\}$ of order $2^{2t+t-2}=2^{3t-2}$ of G where each e_{σ} is a partial sum $a_{\sigma_1}^2+a_{\sigma_2}^2+\dots$ $+a_{\sigma_8}^2$ of eight term in our fixed expression of -1 and for $\sigma \neq \tau \ e_{\sigma}$ and e_{τ} have no common term; we omit details. Denote the elements of Hby $\pm \langle 1 \rangle, \pm \langle c_i \rangle, \pm \langle d_{j_1} \rangle \cdots \langle d_{j_i} \rangle, \pm \langle d_{j_1} \rangle \cdots \langle d_{j_i} \rangle \langle c_i \rangle$,

$$\begin{array}{l} \pm < e_{k_1} > \cdots < e_{k_r} >, \pm < e_{k_1} > \cdots < e_{k_r} > < c_i >, \\ \pm < e_{k_1} > \cdots < e_{k_r} > < d_{j_1} > \cdots < d_{j_s} > \text{ and } \\ \pm < e_{k_1} > \cdots < e_{k_r} > < d_{j_1} > \cdots < d_{j_s} > < c_i > \text{ where } i = 1, \dots, 2^t - 1, 1 \leq s_i > \\ \end{array}$$

 $s \leq t-1, 1 \leq r \leq t-2.$

Now let there be given a quadratic form $f = \sum b_i x_i^2$ in $A(B+2^{3t-3})$ $+2^{2t-2}+2^t-6)/2^{3t-2}$ variables. If we map the coefficients b_i of f into G/H of order $A/2^{3i-2}$ by natural mapping $b_i \rightarrow \langle b_i \rangle$ mod H, at least $B+2^{3t-2}+2^{2t-2}+2^t-6$ of the b's must be mapped into a same class, in G/H. After multiplying by a suitable constant, we may assume that $B+2^{3t-3}+2^{2t-2}+2^t-6$ of b's are actually in H. We denote these element by $b_{\lambda(i)}, i=1, \dots, B+2^{3t-3}+2^{2t-2}+2^t-6.$ Now if $\langle c_i \rangle$ (or $-\langle c_i \rangle$, $\pm < d_{\sigma_1} > \cdots < d_{\sigma_s} > < c_i >, \pm < e_{\tau_1} > \cdots < e_{\tau_r} > < c_i >, \pm < e_{\tau_1} > \cdots < e_{\tau_r} > < d_{\sigma_1} >$ $\cdots < d_{\sigma_s} > < c_i >$) occurs twice among < b >'s that is, if for some k_1, k_2 $\pm < e_{\tau_1} > \cdots < e_{\tau_r} > < c_i >, \ \pm < e_{\tau_1} > \cdots < e_{\tau_r} > < d_{\sigma_1} > \cdots < d_{\sigma_s} > < c_i >),$ the $(b_{\lambda(k_1)}, b_{\lambda(k_2)})^{6} \sim (c_i, c_i) \sim (1, 1) \text{ (or } -(1, 1), \pm (d_{\sigma_1} \cdots d_{\sigma_s}, d_{\sigma_1} \cdots d_{\sigma_s}), (e_{\tau_1} \cdots e_{\tau_r}, d_{\sigma_r})$ $e_{\tau_1} \cdots e_{\tau_r}$), $(e_{\tau_1} \cdots e_{\tau_r} \cdot d_{\sigma_1} \cdots d_{\sigma_s}, e_{\tau_1} \cdots e_{\tau_r} \cdot d_{\sigma_1} \cdots d_{\sigma_s})$. Hence, on transforming f to a congruent form, we can assume that each of $\pm \langle c_i \rangle$, $\pm \langle d_{\sigma_1} \rangle$ $\cdots < d_{\sigma_s} > < c_i >, \pm < e_{\tau_1} > \cdots < e_{\tau_r} > < d_{\sigma_s} > < c_i > \text{ occurs at most}$ once among $<\!b>$'s. Further, if $<\!d_{\sigma_1}\!>\cdots<\!d_{\sigma_s}\!>$ (or $-<\!d_{\sigma_1}\!>\cdots<\!d_{\sigma_s}\!>$, $\pm \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ occurs 4-times among $\langle b \rangle$'s, that is, if for some $k_1, k_2, k_3, k_4 < b_{\lambda(k_1)} > = < b_{\lambda(k_2)} > = < b_{\lambda(k_3)} > = < b_{\lambda(k_4)} >$ $= < d_{\sigma_1} > \cdots < d_{\sigma_s} >$ (or $- < d_{\sigma_1} > \cdots < d_{\sigma_s} >$, $\pm < e_{\tau_1} > \cdots < e_{\tau_r} > < d_{\sigma_1} > \cdots$ $\langle d_{\sigma_s} \rangle$), then $(b_{\lambda(k_1)}, b_{\lambda(k_2)}, b_{\lambda(k_3)}, b_{\lambda(k_4)}) \sim (d_{\sigma_1} \cdots d_{\sigma_s}, *, *, d_{\sigma_1} \cdots d_{\sigma_s}) \sim (1, 1, 1, 1)$ (or -(1, 1, 1, 1), $\pm (e_{\tau_1} \cdots e_{\tau_r}, *, *, e_{\tau_1} \cdots e_{\tau_r})$). Hence, on transforming f to

⁶⁾ (a_1, \dots, a_n) stands for the quadratic form $\sum a_i x_i^2$. Equivalence of quadratic forms $(a_1, \dots, a_n), (b_1, \dots, b_n)$ (or congruence of the corresponding matrices) will be indicated by $(a_1, \dots, a_n) \sim (b_1, \dots, b_n)$.

T. TSUZUKU

a congruent form, we can assume that each of $\pm \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_n} \rangle$, $\pm \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ occurs at most 3 times among $\langle b \rangle$'s. Finally if $\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle$ (or $-\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle$) occurs 8-times among $<\!\!b\!\!>$'s, that is, for some $k_1, \dots, k_8(\pm) <\!\!b_{\lambda(k_1)} >= \dots = <\!\!b_{\lambda(k_8)} >= <\!\!e_{\tau_1} >$ $\cdots < e_{\tau_r} > (\text{or} = - < e_{\tau_1} > \cdots < e_{\tau_r} >)$, then $(b_{\lambda(k_1)}, \cdots, b_{\lambda(k_3)}) \sim (e_{\tau_1} \cdots e_{\tau_r}, \cdots, e_{\tau_1} \cdots e_{\tau_r})$ e_{τ_r} \sim (1, 1, ..., 1) (or -(1, 1, ..., 1)). Hence, again on transforming f to a congruent form, we can assume that each of $\pm \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle$ occurs at most 7-times among $\langle b \rangle$'s. If both $\langle 1 \rangle$ and $-\langle 1 \rangle$ or both $<\!\!c_i\!\!>$ and $-<\!\!c_i\!\!>$ or both $<\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!>$ and $-<\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!>$ or both $\langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle \langle c_i \rangle$ and $-\langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle \langle c_i \rangle$ or both $\langle e_{\tau_1} \rangle$ $\cdots < e_{\tau_r} >$ and $- < e_{\tau_1} > \cdots < e_{\tau_r} >$ or both $< e_{\tau_1} > \cdots < e_{\tau_r} > < c_i >$ and $-\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle c_i \rangle$ or both $\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_1} \rangle \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ and $-\!<\!\!e_{\tau_1}\!\!>\!\cdots\!<\!\!e_{\tau_r}\!\!>\!\!<\!\!d_{\sigma_1}\!\!>\!\cdots\!<\!\!d_{\sigma_s}\!\!>$ or both $<\!\!e_{\tau_1}\!\!>\!\cdots\!<\!\!e_{\tau_r}\!\!>\!\!<\!\!d_{\sigma_1}\!\!>\!\cdots\!<\!\!d_{\sigma_s}\!\!>$ $\langle c_i \rangle$ and $-\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle \langle c_i \rangle$ occur among $\langle b \rangle$'s, then f represents 0. Otherwise, 1 (or -1) occurs at least $(B+2^{3t-3})$ $+2^{2t-2}+2^{t}-6)-(2^{3t-3}+2^{2t-2}+2^{t}-7)=B+1$ times among 's. Indeed, since $<\!\!c_i\!\!>$ or $-<\!\!c_i\!\!>$, $<\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!><\!\!c_i\!\!>$ or $-<\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!>$ $\langle c_i \rangle, \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle c_i \rangle$ or $-\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle c_i \rangle$ and $\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle c_i \rangle$ $<\!\!e_{\tau_r}\!\!>\!\!<\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!>\!\!<\!\!c_i\!\!>$ or $-\!<\!\!e_{\tau_1}\!\!>\cdots<\!\!e_{\tau_r}\!\!>\!\!<\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!>\!\!<\!\!c_i\!\!>$ are occurs at most once among $\langle b_{\lambda} \rangle$'s and the total number of $\langle c_i \rangle$, $<\!\!d_{\sigma_1}\!\!>\!\cdots\!<\!\!d_{\sigma_s}\!\!>\!\!<\!\!c_i\!\!>, <\!\!e_{\tau_1}\!\!>\!\cdots\!<\!\!e_{\tau_r}\!\!>\!\!<\!\!c_i\!\!>, <\!\!e_{\tau_1}\!\!>\!\cdots\!<\!\!e_{\tau_r}\!\!>\!\!<\!\!d_{\sigma_1}\!\!>\!\cdots$ $< d_{\sigma_s} > < c_i >$ is $(2^t - 1) + (2^{t-1} - 1)(2^t - 1) + (2^{t-2} - 1)(2^t - 1) + (2^{t-2} - 1)(2^{t-1})(2^{t-1} - 1)(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1})(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^{t-1})(2^{t-1})(2^{t-1}) + (2^{t-2} - 1)(2^{t-1})(2^$ $(2^{t}-1)(2^{t}-1)=(2^{t}-1)(2^{t}-3)$, there are at most $(2^{t}-1)(2^{t}-3)$ among $\langle b_{\lambda} \rangle$'s where are one of $\pm \langle c_i \rangle, \pm \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle \langle c_i \rangle, \pm \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle$ $<\!\!c_i\!\!>$, $\pm<\!\!e_{\tau_1}\!\!>\cdots<\!\!e_{\tau_r}\!\!><\!\!d_{\sigma_1}\!\!>\cdots<\!\!d_{\sigma_s}\!\!><\!\!c_i\!\!>$. Similarly, since $<\!\!d_{\sigma_1}\!\!>$ $\cdots < d_{\sigma_s} > \text{ or } - < d_{\sigma_1} > \cdots < d_{\sigma_s} > \text{ and } < e_{\tau_1} > \cdots < e_{\tau_r} > < d_{\sigma_1} > \cdots < d_{\sigma_s} > \text{ or }$ $-\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ occur at most 3 times among $\langle b_{\lambda} \rangle$'s and the total number of $\langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ and $\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle d_{\sigma_1} \rangle \cdots$ $\langle d_{\sigma_s} \rangle$ is $(2^{t-1}-1)+(2^{t-2}-1)(2^{t-1}-1)=(2^{t-1}-1)2^{t-2}$, there are at most $3(2^{t-1}-1)2^{t-2}$ among $\langle b_{\lambda} \rangle$'s which are one of $\pm \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ and $\pm \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle \langle d_{\sigma_1} \rangle \cdots \langle d_{\sigma_s} \rangle$ and since $\langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle$ or $-\langle e_{\tau_1} \rangle$ $\cdots < e_{\tau r}$ occurs at most 7-times in $< b_{\lambda}$'s and the total number of $<\!e_{\tau_1}\!>\cdots<\!e_{\tau_r}\!>$ is $2^{t-2}-1$, there are at most $7(2^{t-2}-1)$ among $<\!b_{\lambda}\!>$'s which are one of $\pm \langle e_{\tau_1} \rangle \cdots \langle e_{\tau_r} \rangle$. Hence, at least $(B+2^{3t-3}+2^{2t-2})$ $+2^{t}-6)-\{(2^{t}-1)2^{2^{t}-3}+3(2^{t-1}-1)2^{t-2}+7(2^{t-2}-1)\}=B+1 \text{ among } \langle b \rangle$'s are 1 or -1. By definition of B, f represents 0.

(4) is obtained simpler that (5) by using H_t instead of H.

From our proposition we deduce easily the following THEOREM.

(1) If
$$B \leq 4$$
, then $A \geq C$.

(2) If B>4, then A>C.

(3) If
$$2^4 > B \ge 2^3$$
, then $\frac{23}{32} A > C$.

(4) If
$$2^{t+1} > B \ge 2^t$$
, $t > 3$, then
 $\left(\frac{1}{2} + \frac{2^{2t-2} + 2^{t+1} + 2^t - 14}{2^{3t-2}}\right) A > C$.

PROOF. (1), (2) are obtained easily from (1), (2), (3) and (4) (or (5)) of propesition 4. Also, (3) and (4) is obtained easily from (4) and (5) respectively, since B is at most $2^{t+1}-8$.

Mathematical Institute, Nagoya University

.

.