The boundary distortion on conformal mapping.

By Masatsugu TSUJI

(Received Feb. 6, 1954)

CONTENTS

- 1. Main theorems.
- 2. Some lemmas.
- 3. Proof of main theorems.
- 4. Extension of Valiron's theorem.
- 5. Kellogg's theorem.

1. Main Theorems.

1. Let D de a domain on the $w=\xi+i\eta$ -plane, which is bounded by a Jordan curve C, which passes through w=0 and touches the real axis at w=0 and its inner normal at w=0 coincides with the positive η -axis. We map D conformally on the upper half $\Im z>0$ of the z=x+iy-plane by w=w(z), w(0)=0. There are many researches concerning the existence of $\lim_{z\to 0}\frac{w(z)}{z}$. Among others, we state the following theorems.

THEOREM 1. (Carathéodory)¹⁾. If there are two circles K_1 , K_2 , which touch the real axis at w=0, such that K_1 lies in D and K_2 lies outside of D, then

$$\lim_{z\to 0}\frac{w(z)}{z}=\lim_{z\to 0}w'(z)=\gamma, \qquad 0<\gamma<\infty,$$

exists uniformly, when $z\rightarrow 0$ in any Stolz domain, whose vertex is at z=0.

THEOREM 2. (Besonoff-Lavrentieff)²⁾. If in a neighbourhood of w=0, (i) C lies between two curves:

$$H: \eta = |\xi|^{1+\alpha}$$
 and $\overline{H}: \eta = -|\xi|^{1+\alpha}$ $(0 < \alpha < 1)$

¹⁾ C. Carathéodory: Über die Winkelderivierte von beschränkten analytischen Funktionen. Sitzber. der Berl. Akad. 1929.

²⁾ P. Besonoff et M. Lavrentieff: Sur l'existence de la derivée limite. Bull. Soc. Math. 58 (1930).

and (ii) C is rectifiable and is represented by $w=w(s)=\xi(s)+i\eta(s)$, where s is the arc length, measured from w=0, such that

$$\lim_{s\to 0}\frac{\xi(s)}{s}=1,$$

then $\lim_{z\to 0} \frac{w(z)}{z} = \gamma$ (0 $<\gamma<\infty$) exists, when $z\to 0$ from the inside of $\Im z \ge 0$ and $\lim_{z\to 0} w'(z) = \gamma$ uniformly, when $z\to 0$ in any Stolz domain, whose vertex is at z=0.

2. In this paper, we shall prove a theorem, which contains the above two theorems as special cases.

Let C be represented by a parameter $t: w=w(t)=\xi(t)+i\eta(t)$, w(0)=0 $(|t|\leq 1)$, such that for a small $\delta>0$, $0< t\leq \delta$ corresponds to the part of C, which lies on the right of the imaginary axis. Let C meet the circle |w|=r (r>0) and M(r) be the set of t $(0< t\leq \delta)$, such that |w(t)|=r and put

$$\underline{t} = \underline{t}(r) = \inf_{t \in M(r)} t, \quad \bar{t} = \bar{t}(r) = \sup_{t \in M(r)} t,$$

$$r_1=r_1(r)=\min_{\underline{t}\leq t\leq \overline{t}}|w(t)|, \quad r_2=r_2(r)=\max_{\underline{t}\leq t\leq \overline{t}}|w(t)|,$$

$$r_1(r) \leq r \leq r_2(r)$$
.

If C satisfies the condition:

$$\lim_{r \to 0} \frac{r_1(r)}{r} = 1, \qquad \lim_{r \to 0} \frac{r_2(r)}{r} = 1 \tag{2}$$

W=0

and the similar relation on the left of the imaginary axis, then we say that C satisfies the condition (W) at w=0, since it is first introduced by Warschawski³⁾.

Similarly we define the condition (W^*) as follows.

Let $L: \Re w = \text{const.} = \xi \ (>0)$ be a line parallel to the imaginary axis and $M(\xi)$ be the set of $t \ (0 < t \le \delta)$, such that $\Re w(t) = \xi$ and put

³⁾ S. Warschawski: Über die Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung. Math. Zeits. 35 (1932).

$$\underline{t} = \underline{t}(\xi) = \inf_{t \in M(\xi)} t,$$

$$\overline{t} = \overline{t}(\xi) = \sup_{t \in M(\xi)} t,$$

$$\xi_1 = \xi_1(\xi) = \min_{\underline{t} \leq t \leq \overline{t}} \Re w(t),$$

$$\xi_2 = \xi_2(\xi) = \max_{\underline{t} \leq t \leq \overline{t}} \Re w(t),$$

$$\xi_1(\xi) \leq \xi \leq \xi_2(\xi).$$

$$\xi_1(\xi) \leq \xi \leq \xi_2(\xi).$$

$$\xi_2(\xi) = \xi_2(\xi).$$

$$\xi_1(\xi) \leq \xi \leq \xi_2(\xi).$$

$$\xi_2(\xi) = \xi_2(\xi).$$

$$\xi_1(\xi) \leq \xi \leq \xi_2(\xi).$$

If C satisfies the condition:

$$\lim_{\xi \to 0} \frac{\xi_1(\xi)}{\xi} = 1, \qquad \lim_{\xi \to 0} \frac{\xi_2(\xi)}{\xi} = 1 \tag{2*}$$

and the similar relation on the left of the imaginary axis, then we say that C satisfies the condition (W^*) at w=0.

Now we shall state our main theorems.

THEOREM 3. (i) If in a neighbourhood of w=0, C lies between two curves H and \overline{H} , each of which is symmetric to the imaginary axis and whose parts on the right of the imaginary axis are

$$H: \eta = h(\xi)$$
 and $\overline{H}: \eta = -h(\xi)$ $(0 \le \xi \le \delta)$, $h(0) = 0$,

where h(t) > 0 is a continuous increasing function of t > 0, such that

$$\int_0^{\delta} \frac{h(t)}{t^2} dt < \infty$$
 ,

then

$$\lim_{z\to 0}\frac{w(z)}{z}=\lim_{z\to 0}w'(z)=\gamma, \qquad 0<\gamma<\infty,$$

exists uniformly, when $z\rightarrow 0$ in any Stolz domain, whose vertex is at z=0. (ii) If C lies between the above two curves and further satisfies the condition (W) or the condition (W^*) at w=0, then

$$\lim_{z\to 0}\frac{w(z)}{z}=\gamma, \qquad 0<\gamma<\infty,$$

exists, when $z\rightarrow 0$ from the inside of $\Im z \geq 0$.

Theorem 1 is a special case of (i) and Theorem 2 is that of (ii). (ii) is due to Warschawski³⁾, though under a different enunciation. Warschawski's proof is very complicated. His fundamental lemma is proved simply by Wolf⁴⁾, under the hypothesis that D lies on the upper half-plane. By modifying his method, and by means of Green's functions, we shall prove our theorem simply.

The condition $\int_0^{\delta} \frac{h(t)}{t^2} dt < \infty$ is essential, since the following theorem holds.

THEOREM 4. Let D be a domain on the $w=\xi+i\eta$ -plane, which is bounded by a Jordan curve C, which passes through w=0 and touches the real axis at w=0 and its inner normal at w=0 coincides with the positive η -axis. We suppose that in a neighbourhood of w=0, C is represented by one of two forms:

(i)
$$\eta = h(\xi)$$
, or (ii) $\eta = -h(\xi)$ ($|\xi| \leq \delta$), $h(0) = 0$,

where h(t)>0 is a continuous function of t ($|t| \le \delta$), which is decreasing for t<0 and is increasing for t>0. If we map D conformally on $\Im z>0$ by w=w(z), w(0)=0, then

$$\lim_{z \to 0} \frac{w(z)}{z} = \gamma$$

exists, when $z \rightarrow 0$ from the inside of $\Im z \geq 0$, where

$$0 < \gamma \le \infty$$
 in case (i) and $0 \le \gamma < \infty$ in case (ii).

In each case, the necessary and sufficient condition that $0 < \gamma < \infty$ is

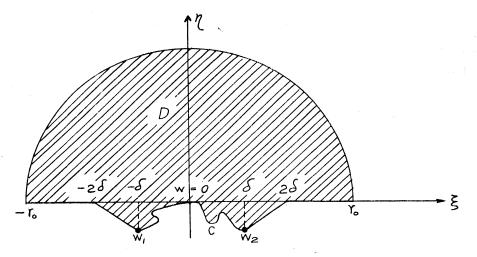
$$\int_{-\delta}^{\delta} \frac{h(t)}{t^2} dt < \infty.$$

We remark the following.

Let D_1 , D_2 be two domains, which have a common boundary in a neighbourhood of w=0. If Theorem 3 holds for D_1 , then it holds for D_2 . Hence we may assume that D is the following special domain. Let C be represented by a parameter t as before: w=w(t) ($|t| \le 1$). If

⁴⁾ J. Wolf: Sur la représentation conforme des bandes. Compositio Math. 1 (1935).

we make t increase from t=0, then C meets the line $\xi=\delta$ ($\delta>0$) at first at w_2 , so that the arc $0w_2$ lies between two lines $\xi=0$, $\xi=\delta$. Similarly we define w_1 on the left of the imaginary axis, such that the arc w_10 lies between two lines $\xi=-\delta$, $\xi=0$. By the above remark, we assume that the boundary of D consists of the following lines.



(i) the arc $w_10 w_2$, (ii) a rectilinear segment, which connects w_2 to $w=2\delta$, (iii) a segment on the real axis $2\delta \leq \xi \leq r_0$, (iv) a semi-circle $w=r_0e^{i\theta}$ $(0\leq \theta \leq \pi)$, (v) a segment on the real axis $-r_0\leq \xi \leq -2\delta$, (vi) a rectilinear segment, which connects $w=-2\delta$ to w_1 .

2. Some lemmas.

First we shall prove some lemmas. In this paper, $K_{\rho_0}(\varphi_0)$ denotes a sector, which is bounded by a circle of radius ρ_0 about the origin 0 and two lines through 0, each of which makes an angle $\varphi_0\left(\frac{\pi}{2}\right)$ with the positive imaginary axis.

LEMMA 1. Under the condition (i) of Theorem 3,

$$0 < A |z| \le |w(z)| \le B |z|$$
 , $z \in K_{
ho_0}(\varphi_0)$,

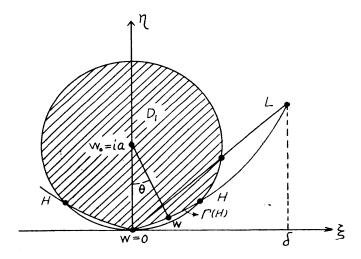
where A>0, B>0 are constants.

PROOF. (i) Proof of $|w(z)| \leq B|z|$, $z \in K_{\rho_0}(\varphi_0)$, if the part of C, which lies in a neighbourhood of w=0, lies below the curve H.

We take a ($0 < a < \delta$) so small that $w_0 = ia \in D$ and K: |z-ia| = a be a circle. Let D_1 be the common part of the inside of K and the domain defined by $\eta \ge h(\xi)$, which lies above the curve H and let I' be its boundary. Then $D_1 < D$. If H has no points in K, then we may take K instead of H, hence we assume that H has points in K and let $\Gamma(H)$ be the part of Γ , which belongs to H. Let $L: \arg w = \varepsilon$, $\varepsilon = \tan^{-1}(h(\delta)/\delta)$, be a line, which connects w = 0 to $w = \delta + ih(\delta)$ and let (ξ_0, η_0) be its intersection with K, then $\xi_0 = a \sin 2\varepsilon$. We take a so small that I'(H) lies below L. Let $G_{D_1}(w, ia)$ be the Green's function of D_1 , with ia as its pole, then

$$G_{D_1}(w, ia) = \log \frac{a}{r} - v(w), \qquad r = |w - ia|,$$
 (1)

where v(w) is harmonic in D_1 , such that $v = \log \frac{a}{r}$ on Γ .



Since $\Gamma(H)$ lies below L, if $w \in \Gamma(H)$, then $r \ge a \cos \varepsilon$. Since $\int_0^{\delta} \frac{h(t)dt}{t^2} < \infty$ and h(t) is increasing, $\lim_{t \to 0} \frac{h(t)}{t} = 0$, so that we take δ so small that $\cos \varepsilon \ge 1/2$, then

$$v(w) = \log \frac{a}{r} = \log \left(1 + \frac{a - r}{r} \right) \le \frac{a - r}{r} \le \frac{a - r}{a \cos \varepsilon} \le 2 \frac{a - r}{a}$$
on $\Gamma(H)$. (2)

Let $w=\xi+i\eta\in\Gamma(H)$ and θ be the angle between the vector w_0w $(w_0=ia)$ and the negative η -axis, then $\xi=r\sin\theta$, $\eta=a-r\cos\theta$, so that $a-r\cos\theta=h(r\sin\theta)$, $a-r\leq h(\xi)$, hence by (2),

$$v(w) \le \frac{2h(\xi)}{a}$$
 on $\Gamma(H)$. (3)

We consider

$$u(w) = \frac{1}{\pi} \int_{-a}^{a} h(t) \frac{\eta dt}{\eta^2 + (\xi - t)^2}, \quad w = \xi + i\eta.$$
 (4)

Then u(w) is harmonic in $\Im w > 0$. Let $w_1 = \xi_1 + i\eta_1 \in \Gamma(H)$, $\xi_1 > 0$, then since $\xi_1 \leq \xi_0 = a \sin 2\varepsilon$, $\eta_1 = h(\xi_1)$, we have $\xi_1 + \eta_1 < a$, if δ is small, so that

$$egin{aligned} u(w_1) & \geq rac{1}{\pi} \int_{\xi_1}^{\xi_1 + \eta_1} rac{h(t)\eta_1 dt}{\eta_1^2 + (\xi_1 - t)^2} \geq rac{1}{\pi} \int_{\xi_1}^{\xi_1 + \eta_1} rac{h(t)\eta_1 dt}{\eta_1^2 + \eta_1^2} = rac{1}{2\pi\eta_1} \int_{\xi_1}^{\xi_1 + \eta_1} h(t) dt \ & \geq rac{h(\xi_1)}{2\pi} \,, \end{aligned}$$

so that by (3),

$$u(w) \ge \frac{a}{4\pi} v(w)$$
 on $\Gamma(H)$.

A similar relation holds on the left of the imaginary axis. Since v=0 on $\Gamma-\Gamma(H)$ and u>0, we have $u\geq \frac{a}{4\pi}v$ on Γ , so that by the maximum principle,

$$u(w) \ge \frac{a}{4\pi} v(w)$$
 in D_1 . (5)

Let $w=\xi+i\eta=\rho e^{i\left(\frac{\pi}{2}-\varphi\right)}\in K_{\rho_0}(\varphi_0)$, $\eta=\rho\cos\varphi$, then by (4),

$$u(w) = \frac{\rho \cos \varphi}{\pi} \int_{-a}^{a} \frac{h(t)dt}{t^2 - 2t\rho \sin \varphi + \rho^2}.$$

Since $t^2 \cos^2 \varphi \leq t^2 - 2t\rho \sin \varphi + \rho^2$, we have

$$u(w) \leq \frac{\rho}{\pi \cos \varphi} \int_{-a}^{a} \frac{h(t)dt}{t^2} \leq \frac{2\rho}{\pi \cos \varphi_0} \int_{0}^{a} \frac{h(t)dt}{t^2},$$

so that by (5),

$$v(w) \leq \frac{8\rho}{a\cos\varphi_0} \int_0^a \frac{h(t)dt}{t^2} , \qquad w \in K_{\rho_0}(\varphi_0) . \tag{6}$$

Let $w \in K_{\rho_0}(\varphi_0)$ and $|w| = \rho$ is small and r = |w - ia|, then

$$\log \frac{a}{r} = \log \left(1 + \frac{a-r}{r}\right) \ge \text{const.} \frac{a-r}{a} \ge \text{const.} \frac{\rho}{a}$$
,

so that if a is small,

$$G_{D_1}(w, ia) = \log \frac{a}{r} - v(w) \ge \frac{\rho}{a} \left(\text{const.} - \frac{8}{\cos \varphi_0} \int_0^a \frac{h(t)dt}{t^2} \right)$$

 $\ge \text{const.} \frac{\rho}{a}.$

Hence

$$G_{D_1}(w, ia) \ge \text{const.} |w|, \qquad w \in K_{\rho_0}(\varphi_0).$$
 (7)

Let $G_D(w, ia)$ be the Green's function of D, then since $D_1 \subset D$,

$$G_D(w, ia) \ge G_{D_1}(w, ia) \ge \text{const.} |w|, \qquad w \in K_{\rho_0}(\varphi_0).$$
 (8)

Let by w=w(z), $w_0=ia$ correspond to z_0 , then

$$G_D(w,ia) = \log \left| \frac{z - \overline{z}_0}{z - z_0} \right| \leq \text{const.} |z|,$$

so that by (8),

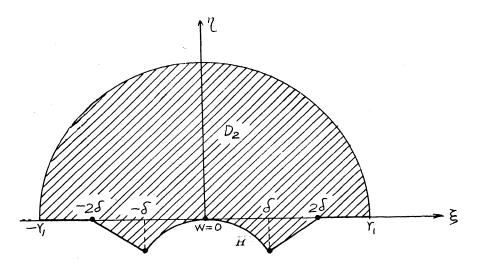
$$|w(z)| \leq B|z|, \qquad z \in K_{\rho_0}(\varphi_0), \qquad (9)$$

where B>0 is a constant.

(ii) Proof of $0 < A|z| \le |w(z)|$, $z \in K_{\rho_0}(\varphi_0)$, if the part of C, which lies in a neighbourhood of w=0, lies above the curve \overline{H} .

We consider a domain $D_2 > D$, which is symmetric to the imaginary axis and whose boundary C_2 consists of the following lines.

(i) The curve $\overline{H}: \eta = -h(\xi)$ $(0 \le \xi \le \delta)$, (ii) a rectilinear segment, which connects $w = \delta - ih(\delta)$ to $w = 2\delta$, (iii) a segment on the real axis $2\delta \le \xi \le r_1$ $(r_0 < r_1)$, where r_0 is defined before, (iv) a part of the circle $w = r_1 e^{i\theta}$ $(0 \le \theta \le \pi/2)$. By symmetry, we define the part of C_2 on the left of the imaginary axis. We map D_2 conformally on $\Im z > 0$ by



 $w=w_2(z)$, $w_2(0)=0$, such that three points w=0, $w=r_1e^{i\frac{\pi}{4}}=\frac{1+i}{\sqrt{2}}r_1$, $w=ir_1$ correspond to z=0, z=1, $z=\infty$ respectively, and let $w=\delta-ih(\delta)$, $w=2\delta$ correspond to $z=\alpha$, $z=\beta$ $(0<\alpha<\beta<1)$ respectively.

Let $\Delta \subset D_2$ be a half-disc: $|w| \leq r_1$, $\Im w \geq 0$ and $G_{\Delta}(w, ia)$ ($0 < a < r_1$) be its Green's function, then $G_{\Delta}(w, ia) \geq \text{const.} |w|$ in $K_{\rho_0}(\varphi_0)$.

Since $\Delta \subset D_2$, $G_{D_2}(w, ia) \ge G_{\Delta}(w, ia)$ and as before, $G_{D_2}(w, ia) \le$ const. |z|, so that

$$|w_2(z)| \leq K|z|, \qquad z \in K_{\rho_0}(\varphi_0), \qquad (1)$$

where K>0 is a constant, which is independent of δ , as seen from the proof. This is important in the sequel.

Let $z_0 = r$ $(0 < r \le \alpha)$ correspond to $w_0 = w_2(z_0) \in \overline{H}$. Now D_2 is contained in an angular domain: $\left| \arg \left(\frac{w}{i} \right) \right| \le \psi_0 \left(\psi_0 = \frac{\pi}{2} + \varepsilon \right)$, where $\varepsilon \to 0$ with $\delta \to 0$. We map D_2 on a domain contained in $|\zeta| < 1$ by

$$v = i \left(\frac{w}{i}\right)^{\frac{\pi}{2\psi_0}}, \quad v_0 = i \left(\frac{w_0}{i}\right)^{\frac{\pi}{2\psi_0}},$$

$$u = \frac{v}{|v_0|}, \quad u_0 = \frac{v_0}{|v_0|},$$

$$\zeta = \frac{u - i}{u + i}$$
(2)

and put

$$\zeta = \frac{u - i}{u + i} = \zeta(z). \tag{3}$$

Then u=1, i, -1 correspond to $\zeta=-i$, 0, i respectively and the semi-circle |u|=1, $\Im u \ge 0$ is mapped on the diameter of $|\zeta|=1$ through i, -i. Let

$$A(t) = \int_0^t \int_0^\pi |\zeta'(z_0 + te^{i\theta})|^2 t dt d\theta, \qquad z_0 = r,$$

$$L(t) = \int_0^\pi |\zeta'(z_0 + te^{i\theta})| t d\theta,$$

$$(4)$$

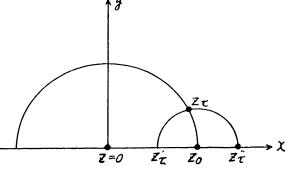
then since A(t) is the area of a domain in $|\zeta| < 1$, $A(t) \le \pi$ and by Schwarz's inequality, we have for $0 < \rho < 1$

$$\int_{\rho^2 r}^{\rho r} \frac{(L(t))^2}{t} dt \leq \int_0^{\rho r} \frac{(L(t))^2}{t} dt \leq \pi A(\rho r) \leq \pi^2.$$

Hence there exists τ ($\rho^2 r \leq \tau \leq \rho r$), such that $(L(\tau))^2 \log 1/\rho \leq \pi^2$, so that if we take ρ small, then

$$L(\tau) < \varepsilon < \frac{1}{6}$$
. (5)

Let z_{τ} be the common point of two circles |z|=r and $|z-z_{0}|=\tau$ and $z'_{\tau}=z_{0}-\tau$, $z''_{\tau}=z_{0}+\tau$ and $z'_{\tau}z''_{\tau}$ be the semi-circle: $|z-z_{0}|=\tau$, $\Im z \ge 0$ and w_{τ} , w'_{τ} , w''_{τ} , w''_{τ} , w''_{τ}



be the image of z_{τ} , z'_{τ} , z''_{τ} , z''_{τ} , z''_{τ} , on the w-plane respectively and similarly we define v_{τ} , v'_{τ} , etc. Since $u'_{\tau}u''_{\tau}$ meets |u|=1 at u_0 , $\zeta'_{\tau}\zeta''_{\tau}$ meets the imaginary axis and since by (5), its length is $<\varepsilon$, $\zeta'_{\tau}\zeta''_{\tau}$ lies outside of $|\zeta-1|=1-\varepsilon$. Since u=i $\frac{1+\zeta}{1-\zeta}$, we have for any z on $\widehat{z'_{\tau}z''_{\tau}}$,

$$\left|\frac{du}{dz}\right| = \frac{2}{|1-\zeta|^2} \left|\frac{d\zeta}{dz}\right| \leq \frac{2}{(1-\epsilon)^2} \left|\frac{d\zeta}{dz}\right|,$$

so that by (5),

$$\int_0^\pi\!\!|u'(z_0+\tau e^{i\theta})|\,\tau d\theta\! \leq \frac{2}{(1\!-\!\varepsilon)^2}\!\int_0^\pi\!\!|\,\zeta'(z_0+\tau e^{i\theta})|\,\tau d\theta\! <\!\frac{2\varepsilon}{(1\!-\!\varepsilon)^2}\! \leq \frac{1}{2}\;.$$

Since $u_{\tau}'u_{\tau}''$ meets |u|=1 and its length is $\leq 1/2$, the image of the half-disc $\Delta_{\tau}: |z-z_0| \leq \tau$, $\Im z \geq 0$ on the u-plane is contained in a ring domain: $\frac{1}{2} \leq |u| \leq \frac{3}{2}$, so that $\frac{|v_0|}{2} \leq |v| \leq \frac{3|v_0|}{2}$, hence

$$0 < A |w_0| \le |w| \le B |w_0|, \quad z \in \mathcal{L}_\tau, \tag{6}$$

where $A = (1/2)^{\frac{2\psi_0}{\pi}}$, $B = (3/2)^{\frac{2\psi_0}{\pi}}$.

Hence especially,

$$A |w_0| \leq |w_\tau|, \qquad w_\tau = w_2(z_\tau). \tag{7}$$

Since $\arg z_{\tau} \ge 2 \sin^{-1}(\rho^2/2)$, we have by (1), $|w_{\tau}| \le \text{const.} |z_{\tau}| = \text{const.} |z_0|$, so that by (7)

$$|w_0| = |w_2(z_0)| \le K|z_0|, \tag{8}$$

where K is a constant, independent of δ .

Now for any $\varepsilon > 0$, we take $\delta > 0$ so small that

$$\int_0^{\delta} \frac{dh(\xi)}{\xi} = \frac{h(\delta)}{\delta} + \int_0^{\delta} \frac{h(\xi)}{\xi^2} d\xi < \varepsilon.$$
 (9)

Let $0 < x \le \alpha$ and $w_2(x) = \xi_2(x) + i\eta_2(x) = \xi + i\eta = \xi - ih(\xi)$. We put $h(\xi) = h^*(x) = -\eta_2(x)$, then since by (8), $0 < \xi \le Kx$, we have by (9),

$$\int_0^{\infty} \frac{dh^*(x)}{x} \leq K \int_0^{\delta} \frac{dh(\xi)}{\xi} < K\varepsilon.$$
 (10)

Since

$$\int_0^{\alpha} \frac{dh^*(x)}{x} = \frac{h^*(\alpha)}{\alpha} + \int_0^{\alpha} \frac{h^*(x)dx}{x^2} \ge \int_0^{\alpha} \frac{h^*(x)dx}{x^2},$$

we have by (9), (10),

$$\int_0^\infty \frac{|\eta_2(x)| dx}{x^2} = \int_0^\infty \frac{h^*(x) dx}{x^2} < K\varepsilon, \qquad (11)$$

$$\int_{\alpha}^{\beta} \frac{|\eta_2(x)| dx}{x^2} \leq h(\delta) \int_{\alpha}^{\beta} \frac{dx}{x^2} \leq \frac{h(\delta)}{\alpha} \leq K \frac{h(\delta)}{\delta} < K\varepsilon, \quad (12)$$

so that

$$\int_0^\beta \frac{|\eta_2(x)| dx}{x^2} < 2K\varepsilon. \tag{13}$$

Let $w_2(z) = \xi_2(z) + i\eta_2(z)$, z = x + iy, then since D_2 is a bounded domain, $\eta_2(z)$ can be expressed by a Poisson integral with respect to $\eta_2(x)$, so that

$$\frac{\eta_2(iy)}{v} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta_2(t)dt}{v^2 + t^2} = \frac{2}{\pi} \int_{0}^{\infty} \frac{\eta_2(t)dt}{v^2 + t^2}.$$
 (14)

Since $\frac{|\eta_2(t)|}{y^2+t^2} \le \frac{|\eta_2(t)|}{t^2}$ and $\frac{|\eta_2(t)|}{t^2}$ is integrable by (13), we have by Lebesgue's theorem,

$$\lim_{y \to 0} \frac{\eta_2(iy)}{y} = \frac{2}{\pi} \int_0^{\infty} \frac{\eta_2(t)dt}{t^2} \,. \tag{15}$$

Since $\eta_2(t) \ge 0$ for $\beta \le t \le 1$ and $\eta_2(t) \ge \frac{r_1}{\sqrt{2}}$ for $1 \le t < \infty$, we have by (13),

$$\lim_{y\to 0} \frac{\eta_2(iy)}{y} \ge \frac{2}{\pi} \left(-\int_0^\beta \frac{|\eta_2(t)|dt}{t^2} + \frac{r_1}{\sqrt{2}} - \int_1^\infty \frac{dt}{t^2} \right)$$
$$\ge \frac{2}{\pi} \left(-2K\varepsilon + \frac{r_1}{\sqrt{2}} \right).$$

Since K is independent of δ , if we choose δ so small that $-2K\varepsilon + \frac{r_1}{\sqrt{2}} > 0$, then

$$\infty > \lim_{y \to 0} \frac{\eta_2(iy)}{y} > 0. \tag{16}$$

Since by Lindelöf's theorem, $\xi_2(iy)/\eta_2(iy) \rightarrow 0$, we have $\xi_2(iy)/y \rightarrow 0$, so that

$$\lim_{y\to 0}\frac{w_2(iy)}{iy}=\gamma_2, \qquad 0<\gamma_2<\infty. \tag{17}$$

Since by (1), $\frac{w_2(z)}{z}$ is bounded in $K_{\rho_0}(\varphi_0)$, we have by (17) and Montel's theorem,

$$\lim_{z\to 0}\frac{w_2(z)}{z}=\gamma_2, \qquad 0<\gamma_2<\infty, \qquad (18)$$

uniformly, when $z \rightarrow 0$ in $K_{\rho_0}(\varphi_0)$.

Hence'

$$0 < A_2|z| \leq |w_2(z)| \leq B_2|z|, \qquad z \in K_{\rho_0}(\varphi), \tag{19}$$

where $A_2 > 0$, $B_2 > 0$ are constants.

Let $G_{D_2}(w, ia)$ (a>0) be the Green's function of D_2 . If by $w=w_2(z)$ $w_0=ia$ corresponds to z_0 , then by (19)

$$G_{D_2}(w, ia) = \log \left| \frac{z - \overline{z}_0}{z - z_0} \right| \leq \text{const.} |z| \leq \text{const.} |w|.$$

Let $G_D(w, ia)$ be the Green's function of D, then since $D \subset D_2$, we have

$$G_D(w, ia) \leq G_{D_0}(w, ia) \leq \text{const.} |w|, \qquad w \in K_{\rho_0}(\varphi_0).$$
 (20)

If by w=w(z), $w_0=ia$ corresponds to z_0^* , then

$$G_D(w,ia) = \log \left| \frac{z - \overline{z_0}^*}{z - z_0^*} \right| \ge \mathrm{const.} \ |z| \ , \qquad z \in K_{
ho_0}(\varphi_0) \ ,$$

so that by (20),

$$0 < A|z| \leq |w(z)|, \qquad z \in K_{\rho_0}(\varphi_0), \qquad (21)$$

where A>0 is a constant. Hence the lemma is proved.

LEMMA 2. Let f(z) be regular and $\frac{f(z)}{z}$ be bounded in a sector $\Delta: 0 < |z| \le R$, $|\arg z| \le \theta_0$, then f'(z) is bounded in $0 < |z| \le R$, $|\arg z| \le \theta_1 < \theta_0$. If $\lim_{z \to 0} \frac{f(z)}{z} = \gamma$ uniformly for $|\arg z| \le \theta_0$, then $\lim_{z \to 0} f'(z) = \gamma$ uniformly for $|\arg z| \le \theta_0$.

PROOF. Let $\left|\frac{f(z)}{z}\right| \leq M$ in Δ and $\delta = \theta_0 - \theta_1$. Let $z = re^{i\theta} (|\theta| \leq \theta_1)$, then the circle $C: |\zeta - z| = r \sin \delta$ is contained in Δ , if r is small. Hence if $\zeta - z = r \sin \delta e^{i\varphi}$,

$$|f'(z)| \leq \frac{1}{2\pi} \int_{c} \frac{|f(\zeta)| |d\zeta|}{|\zeta-z|^2} \leq \frac{M}{2\pi} \int_{c} \frac{|\zeta| d\varphi}{r \sin \delta} \leq M \frac{(r+r \sin \delta)}{r \sin \delta},$$

so that

$$|f'(z)| \leq M \frac{(1+\sin\delta)}{\sin\delta}. \tag{1}$$

Next suppose that $\lim_{z\to 0} \frac{f(z)}{z} = \gamma$ uniformly for $|\arg z| \leq \theta_0$. We put $F(z) = \frac{f(z)}{z} - \gamma$, then $\lim_{z\to 0} F(z) = 0$ uniformly in $|\arg z| \leq \theta_0$ and $f'(z) = F(z) + zF'(z) + \gamma$. We take $r_0 > 0$ so small, that $|F(z)| < \varepsilon$, if $z \in \mathcal{A}$, $|z| = r \leq r_0$. Then

$$|F'(z)| \leq \frac{1}{2\pi} \int_{c} \frac{|F(\zeta)| |d\zeta|}{|\zeta-z|^2} < \frac{\epsilon}{r \sin \delta},$$

so that $\lim_{z\to 0} zF'(z)=0$ uniformly for $|\arg z| \leq \theta_1 < \theta_0$. Hence

$$\lim_{z \to 0} f'(z) = \gamma \tag{2}$$

uniformly for $|\arg z| \leq \theta_1 < \theta_0$.

3. Proof of Main Theorems.

- 1. Proof of Theorem 3.
- (i) Proof of the part (i).

Let $D_2 > D$ be the domain defined before. We map D on $\Im z > 0$ by w = w(z), w(0) = 0 and D_2 on $\Im \zeta > 0$ by $w = w_2(\zeta)$, $w_2(0) = 0$, then since $D \subset D_2$, D is mapped on a bounded domain Δ in $\Im \zeta > 0$. By Lemma 1 and (18), (19) of the proof of Lemma 1,

$$0 < A |z| \leq |w(z)| \leq B|z|, \qquad z \in K_{\rho_0}(\varphi_0), \qquad (1)$$

$$0 < A_2|\zeta| \le |w_2(\zeta)| \le B_2|\zeta|, \qquad \zeta \in K_{\rho_0}(\varphi_0), \tag{2}$$

$$\lim_{\zeta \to 0} \frac{w_2(\zeta)}{\zeta} = \gamma_2, \qquad 0 < \gamma_2 < \infty, \qquad \zeta \in K_{\rho_0}(\varphi_0). \tag{3}$$

Now Δ is mapped on $\Im z > 0$ by $\zeta = \zeta(z) = \zeta(z) + i\eta(z)$, $\zeta(0) = 0$, so that

$$\frac{\eta(iy)}{v} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)dt}{y^2 + t^2}, \quad z = x + iy.$$

Since $\eta(t) \geq 0$,

$$\lim_{y\to 0} \frac{\eta(iy)}{y} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)dt}{t^2} = \gamma_1, \quad 0 < \gamma_1 \leq \infty, \quad (4)$$

exists. Since by (1), (2),

$$\left|\frac{\zeta}{z}\right| = \left|\frac{\zeta}{w}\right| \cdot \left|\frac{w}{z}\right| \leq \frac{B}{A_2}, \quad z \in K_{\rho_0}(\varphi_0), \quad (5)$$

we have

$$\left| rac{\eta(iy)}{y} \right| \leq \left| rac{\xi(iy)}{iy} \right| \leq rac{B}{A_2}$$
 ,

so that $0 < \gamma_1 < \infty$. Since by Lindelöf's theorem, $\xi(iy)/\eta(iy) \to 0$, we have $\xi(iy)/y \to 0$, so that

$$\lim_{y\to 0} \frac{\zeta(iy)}{iy} = \gamma_1, \qquad 0 < \gamma_1 < \infty. \tag{6}$$

Since by (5), $\left|\frac{\zeta(z)}{z}\right|$ is bounded in $K_{\rho_0}(\varphi_0)$, we have by (6) and Montel's theorem,

$$\lim_{z\to 0}\frac{\zeta(z)}{z}=\gamma_1, \qquad 0<\gamma_1<\infty, \qquad (7)$$

uniformly, when $z\rightarrow 0$ in $K_{\rho_0}(\varphi_0)$.

Since
$$\frac{w(z)}{z} = \frac{w_2(\zeta)}{\zeta} \cdot \frac{\zeta(z)}{z}$$
, we have by (3), (7),

$$\lim_{z\to 0} \frac{w(z)}{z} = \gamma_2 \gamma_1 = \gamma, \quad 0 < \gamma < \infty, \quad z \in K_{\rho_0}(\varphi_0), \quad (8)$$

hence by Lemma 2, $\lim_{z\to 0} w'(z) = \gamma$ uniformly in $K_{\rho_0}(\varphi_1)$ ($\varphi_1 < \varphi_0$). Hence the part (i) is proved.

(ii) Proof of the part (ii).

First we assume that C satisfies the condition (W) at w=0. Let $z_0=r(r>0)$ be small and $w_0=w(z_0)$.

By (2) of the proof of (ii) of Lemma 1, we map D conformally on a domain contained in $|\zeta| < 1$. Then by (4) of the proof of (ii) of Lemma 1, there exists $\tau(\rho^2 r \leq \tau \leq \rho r)$, such that

$$L(\tau) = \int_0^{\pi} |\zeta'(z_0 + \tau e^{i\theta})| \tau d\theta < \varepsilon_1 < \frac{1}{4}. \tag{1}$$

With the same notation as before, if the arc $\widehat{\xi_{\tau}'\xi_{\tau}''}$ has common points with $|\xi-1| \leq 1/4$, then by $(1),\widehat{\xi_{\tau}'\xi_{\tau}''}$ lies in $|\xi-1| \leq 1/2$, hence for such ξ ,

 $|u|=\left|rac{1+\zeta}{1-\zeta}
ight|\geq rac{1}{|1-\zeta|}\geq 2$, so that $|u_{ au}'|\geq 2$, hence $|v_{ au}'|\geq 2|v_0|$, so that

$$|w'_{\tau}| \ge k|w_0|, \qquad k = 2^{\frac{2\psi_0}{\pi}} > 1,$$
 (2)

hence the image $\widehat{0w'_{\tau}}$ of the segment $\overline{0z'_{\tau}}$ meets the circle $|w|=|w_0|$ at

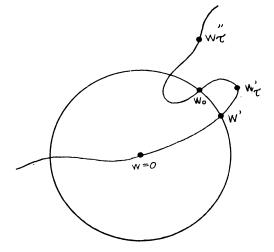
a point $w'(w' \neq w_0, |w'| = |w_0|)$. Since by the condition (W), $|w'_{\tau}| < k|w_0|$, if $|w_0|$ is small, which contradicts (2).

Hence $\widehat{\zeta_{\tau}'\zeta_{\tau}'}$ lies outside of $|\zeta-1|$ = 1/4, so that for any z on $\widehat{z_{\tau}'z_{\tau}'}$,

$$\left| \begin{array}{c} du \\ dz \end{array} \right| = \frac{2}{|1-\zeta|^2} \left| \begin{array}{c} d\zeta \\ dz \end{array} \right| \leq 32 \left| \begin{array}{c} d\zeta \\ dz \end{array} \right|,$$

hence by (1),

$$\int_{0}^{\pi} |u'(z_{0}+\tau e^{i\theta})|\tau d\theta < \varepsilon_{2}, \quad \varepsilon_{2}=32\varepsilon_{1}. \quad (3)$$



If $|u_{\tau}''| \leq 1$, then the image of the half-line $\overline{z_{\tau}''} = \max |u| = 1$ at a point $u''(|u''| = 1, u'' + u_0)$, hence by the condition (W), $|u_{\tau}''| > 1 - \epsilon_2$, if $|w_0|$ is small, so that by (3), $\widehat{u_{\tau}'} u_{\tau}''$ lies in a ring domain:

$$1-2\epsilon_2 \leq |u| \leq 1+\epsilon_2.$$

If $|u_{\tau}''| > 1$ and $|u_{\tau}'| \le 1$, then $u_{\tau}'u_{\tau}''$ has a common point with |u|=1, so that $u_{\tau}'u_{\tau}''$ lies in a ring domain: $1-\epsilon_2 \le |u| \le 1+\epsilon_2$. If $|u_{\tau}''| > 1$ and $|u_{\tau}'| > 1$, then the image $\widehat{ou_{\tau}}$ of the segment $\overline{0z_{\tau}'}$ meets |u|=1 at a point $u'(|u'|=1, u' \neq u_0)$, so that by the condition (W), $|u_{\tau}'| < 1+\epsilon_2$, if $|w_0|$ is small, hence $u_{\tau}'u_{\tau}''$ lies in a ring domain:

$$1-\epsilon_2 \leq |u| \leq 1+2\epsilon_2.$$

Hence in any case, $u_{\tau}'u_{\tau}''$ lies in a ring domain: $1-2\varepsilon_2 \leq |u| \leq 1+2\varepsilon_2$. By this and the condition (W), we can prove easily that if z_0 is small, then the image of the half-disc $\Delta_{\tau}: |z-z_0| \leq \tau$, $\Im z \geq 0$ lies in a ring

domain: $1-3\epsilon_2 \le |u| \le 1+3\epsilon_2$, hence for any $z \in \Delta_\tau$,

$$(1-\epsilon_3)|w_0| \le |w(z)| \le (1+\epsilon_3)|w_0|, \tag{4}$$

where $\epsilon_3 \rightarrow 0$ with $\epsilon_2 \rightarrow 0$. Hence especially,

$$(1-\epsilon_3)|w_0| \leq |w_\tau| \leq (1+\epsilon_3)|w_0|, \qquad w_\tau = w(z_\tau),$$

so that by (4),

$$(1-\varepsilon)|w_{\tau}| \le |w(z)| \le (1+\varepsilon)|w_{\tau}|, \qquad z \in \Delta_{\tau}, \tag{5}$$

where $\varepsilon \rightarrow 0$ with $\varepsilon_3 \rightarrow 0$.

Since $\arg z_{\tau} \ge 2 \sin^{-1}(\rho^2/2)$, we have by the part (i),

$$\lim_{z_{\tau}\to 0} \left| \frac{w_{\tau}}{z_{\tau}} \right| = \gamma , \qquad 0 < \gamma < \infty . \tag{6}$$

Since $\varepsilon > 0$ is arbitrary, we have by (5), (6) and the part (i), we have for any $z \in A_{\tau}$, $|z| = |z_{\tau}|$,

$$\lim_{z \to 0} \left| \frac{w(z)}{z} \right| = \gamma , \qquad 0 < \gamma < \infty , \tag{7}$$

when $z \to 0$ in $\Im z \ge 0$. Since by Lindelöf's theorem, $\lim_{z \to 0} \arg \frac{w(z)}{z} = 0$, we have

$$\lim_{z \to 0} \frac{w(z)}{z} = \gamma , \qquad 0 < \gamma < \infty , \qquad (8)$$

when $z \rightarrow 0$ in $\Im z \ge 0$.

Similarly we can prove (8), if C satisfies the condition (W^*) at w=0. Hence Theorem 3 is proved.

2. Proof of Theorem 4.

Let $w=w(z)=\xi(z)+i\eta(z)$, then

$$\frac{\eta(z)}{v} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)dt}{|z-t|^2} , \qquad z = x + iy . \tag{1}$$

First we consider the case (i), then we may assume that D lies on the upper half-plane, so that $\eta(t) \ge 0$, hence

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)}{t^2} dt = \gamma, \qquad 0 < \gamma \leq \infty, \qquad (2)$$

exists. If $z \in K_{\rho_0}(\varphi_0)$, then as we have proved before, $\frac{1}{|z-t|^2} \leq \frac{1}{t^2 \cos^2 \varphi_0}$, so that if $0 < \gamma < \infty$, then by Lebesgue's theorem,

$$\lim_{y \to 0} \frac{\eta(z)}{y} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)dt}{t^2} = \gamma.$$
 (3)

If $\gamma = \infty$, then by Fatou's lemma,

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)}{t^2} dt \leq \lim_{y \to 0} \frac{\eta(z)}{y}, \quad \text{so that} \quad \lim_{y \to 0} \frac{\eta(z)}{y} = \infty,$$

hence (3) holds in any case.

Let $w = \rho e^{i\varphi}$, $z = re^{i\theta} \in K_{\rho_0}(\varphi_0)$, then

$$\frac{w(z)}{z} = \frac{\eta(z)(i+\cot\varphi)}{y(i+\cot\theta)}.$$

Since by Lindelöf's theorem, $\lim_{z\to 0} (\varphi - \theta) = 0$, we have by (3),

$$\lim_{z\to 0} \frac{w(z)}{z} = \gamma, \quad 0 < \gamma \leq \infty, \quad z \in K_{\rho_0}(\varphi_0). \tag{4}$$

Now by (5) of the proof of the part (ii) of Theorem 3,

$$(1-\varepsilon)|w_{\tau}| \leq |w(z)| \leq (1+\varepsilon)|w_{\tau}|, \qquad z \in A_{\tau}, \tag{5}$$

where $\varepsilon \to 0$ with $z \to 0$. Since $z_{\tau} \in K_{\rho_0}(\varphi_0)$, $\lim_{z \to 0} \left| \frac{w_{\tau}}{z_{\tau}} \right| = \gamma$ and since $\varepsilon > 0$ is arbitrary, we have $\lim_{z \to 0} \left| \frac{w(z)}{z} \right| = \gamma$, $0 < \gamma \le \infty$, $\Im z \ge 0$. Since by Lindelöf's theorem, $\lim_{z \to 0} \arg \frac{w(z)}{z} = 0$, we have

$$\lim_{z\to 0} \frac{w(z)}{z} = \gamma, \quad 0 < \gamma \leq \infty, \quad \Im z \geq 0.$$
 (6)

Suppose that $0 < \gamma < \infty$, then

$$0 < A|z| \le |w(z)| \le B|z|, \quad \Im z \ge 0, \tag{7}$$

where A>0, B>0 are constants.

Let $w=-\delta$, $w=\delta$ correspond to $z=-\alpha$, $z=\beta$ $(\alpha>0$, $\beta>0)$ respectively. Let z=x $(0< x \le \beta)$ and $w(x)=\xi(x)+i\eta(x)=\xi+ih(\xi)$, $(h(\xi)=\eta(x))$, then since $0<\gamma<\infty$,

$$\int_0^{\beta} \frac{\eta(x)dx}{x^2} < \infty$$
, hence $\int_0^{\beta} \frac{d\eta(x)}{x} < \infty$.

Since by (7), $0 < x \le K\xi$ (K = const.), we have

$$\int_0^{\delta} \frac{dh(\xi)}{\xi} < \infty \text{ , hence } \int_0^{\delta} \frac{h(\xi)d\xi}{\xi^2} < \infty \text{ .}$$

Similarly we can prove that $\int_{-\delta}^{0} \frac{h(\xi)d\xi}{\xi^{2}} < \infty$.

Hence if $0 < \gamma < \infty$,

$$\int_{-\delta}^{\delta} \frac{h(t)dt}{t^2} < \infty . \tag{8}$$

If (8) holds, then by Theorem 3, $0 < \gamma < \infty$. Hence in the case (i), (8) is the necessary and sufficient condition that $0 < \gamma < \infty$.

Next we consider the case (ii). By taking account of $\frac{\eta(iy)}{y} > 0$, we can prove as the case (i), that

$$\lim_{z\to 0} \frac{w(z)}{z} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta(t)}{t^2} dt = \gamma, \quad 0 \le \gamma < \infty, \quad \Im z \ge 0.$$
 (9)

Since $\eta(t) \leq 0$ in a neighbourhood of t=0, we have from (9)

$$\int_{-\sigma}^{\beta} \frac{|\eta(t)|dt}{t^2} < \infty . \tag{10}$$

By means of (10), we can prove similarly as the case (i), (8) is the necessary and sufficient condition that $0 < \gamma < \infty$.

4. Extension of Valiron's theorem.

1. The following theorem, which is analogous to (i) of Theorem 3 is proved by Valiron⁶⁾, under the hypothesis that D lies on the upper half-plane.

⁶⁾ G. Valiron: Sur la derivée angulaire dans la représentaion conforme. Bull. Sci. Math. (1932).

THEOREM 5. Let D be a domain on the $w=\xi+i\eta=re^{i\theta}$ -plane, which is bounded by a Jordan curve C, which passes through w=0 and touches the real axis at w=0 and its inner normal at w=0 coincides with the positive η -axis. We suppose that in a neighbourhood of w=0, C lies between two curves H and \overline{H} , each of which is symmetric to the imaginary axis and whose part on the right of the imaginary axis is

 $H: \theta = \theta(r)$ and $\overline{H}: \theta = -\theta(r)$ $(0 \le r \le \delta)$, $\theta(0) = 0$, where $\theta(r) > 0$ is a continuous increasing function of r > 0, such that

$$\int_0^{\delta} \frac{\theta(r)dr}{r} < \infty.$$

If we map D conformally on $\Im z > 0$ by w = w(z), w(0) = 0, then

$$\lim_{z\to 0}\frac{w(z)}{z}=\gamma, \qquad 0<\gamma<\infty,$$

uniformly, when $z \rightarrow 0$ in any Stolz domain, whose vertex is at z=0.

PROOF. We take a $(0 < a < \delta)$, so small that $w_0 = ia \in D$ and K: |w-ia| = a be a circle. Let D_1 be the common part of the inside of K and the part of the w-plane, which lies above the curve H, and Γ be its boundary. We may assume that H has points in K and let $\Gamma(H)$ be the part of Γ , which belongs to H. Let $G_{D_1}(w, ia)$ be the Green's function of D_1 , then

$$G_{D_1}(w, ia) = \log \frac{a}{|w-ia|} - v(w), \qquad (1)$$

where v(w) is harmonic in D_1 and as in the proof of Lemma 1, if δ is small,

$$v(w) \le \frac{2(a-|w-ia|)}{a}$$
 on $\Gamma(H)$. (2)

Let $w=re^{i\theta}\in\Gamma(H)$, then $\theta=\theta(r)$, so that

$$\frac{a-|w-ia|}{a}=\frac{a-\sqrt{a^2-2ra\sin\theta(r)+r^2}}{a}\leq \frac{2r\sin\theta(r)}{a},$$

hence

$$v(w) \le \frac{4r \sin \theta(r)}{a}$$
 on $\Gamma(H)$. (3)

By taking a small, we may assume that the part of H, which lies on the right of the imaginary axis lies below a line L: $\arg w = \theta(\delta)$. Since the equation of K is $r=2a\sin\theta$, if $w=r_0e^{i\theta}$ be the common point of K and L, then $r_0=2a\sin\theta(\delta)$, so that if $w=re^{i\theta}\in \Gamma(H)$, then

$$r \leq 2a \sin \theta(\delta)$$
.

We extend the definition of $\theta(r)$ for $-\delta \leq r \leq 0$, by putting $\theta(-r) = -\theta(r)$ $(0 \leq r \leq \delta)$ and put

$$u(w) = \frac{1}{\pi} \int_{-a}^{a} t \sin \theta(t) \frac{\eta}{|w-t|^2} dt, \qquad w = \xi + i\eta,$$
 (4)

then u(w) is harmonic in $\Im w > 0$.

Let $w_1 = \xi_1 + i\eta_1 = r_1e^{i\theta_1} \in \Gamma(H)$, then $\theta_1 = \theta(r_1)$, $\eta_1 = r_1 \sin \theta_1$, so that

$$u(w_1) \ge \frac{r_1 \sin \theta_1}{\pi} \int_{r_1}^{r_1 + r_1 \sin \theta_1} \frac{t \sin \theta(t)}{|w_1 - t|^2} dt.$$
 (5)

We can prove easily that for $r_1 \le t \le r_1 + r_1 \sin \theta_1$, if r_1 is small, $|w_1 - t| \le 3r_1 \sin \theta_1$, so that

$$u(w_1) \geq \frac{r_1 \sin \theta_1}{9\pi r_1^2 \sin^2 \theta_1} \int_{r_1}^{r_1+r_1 \sin \theta_1} t \sin \theta(t) dt \geq \frac{r_1 \sin \theta(r_1)}{9\pi}.$$

Hence by (3),

$$u(w) \ge \frac{a}{36\pi} v(w)$$
 on $\Gamma(H)$, (6)

so that by the maximum principle, (6) holds in D_1 . As the proof of Lemma 1, if $w=\rho e^{i\left(\frac{\pi}{2}-\varphi\right)}\in K_{\rho_0}(\varphi_0)$, then

$$u(w) \leq \frac{2\rho}{\pi \cos \varphi_0} \int_0^a \frac{\sin \theta(t)}{t} dt,$$

so that

$$v(w) \leq \frac{72\rho}{a\cos\varphi_0} \int_0^a \frac{\sin\theta(t)dt}{t} , \qquad w \in K_{\rho_0}(\varphi_0) . \tag{7}$$

By means of (7), we can complete the proof by a suitable modification of the proof of Theorem 3.

2. If we assume only the existence of a tangent of C at w=0, then we have

THEOREM 6. Let D be a domain on the $w=\xi+i\eta$ -plane, which is bounded by a Jordan curve C, which passes through w=0 and touches the real axis at w=0 and its inner normal at w=0 coincides with the positive η -axis. If we map D conformally on $\Im z>0$ by w=w(z), w(0)=0, then for any $\varepsilon>0$,

$$0< A|z|^{1+arepsilon} \le |w(z)| \le B|z|^{1-arepsilon}$$
 , $0< A|z|^{arepsilon} \le |w'(z)| \le B|z|^{-arepsilon}$, $z \in K_{
ho_0}(arphi_0)$,

where A>0, B>0 are constants.

PROOF. By Lindelöf's theorem, the image of $K_{\rho_0}(\varphi_0)$ on the w-plane is contained in a sector $K_{\rho_1}(\varphi_1)$ ($\varphi_1=\varphi_0+\delta$, $\delta>0$), with w=0 as its vertex and is contained in D, where $\delta\to 0$ with $\rho_0\to 0$.

By

$$v=i\left(\frac{w}{i}\right)^{\frac{\pi}{2\varphi_1}}, \qquad \zeta=i\left(\frac{z}{i}\right)^{\frac{\pi}{2\varphi_0}},$$
 (1)

we map $\Delta = K_{\rho_1}(\varphi_1)$ on a half-disc $\Delta^* : |v| \leq \rho_1^{\frac{\pi}{2\varphi_1}}$, $\Im v > 0$ and $K = K_{\rho_0}(\varphi_0)$ on a half-disc $K^* : |\zeta| \leq \rho_0^{\frac{\pi}{2\varphi_0}}$, $\Im \zeta > 0$, then K^* is mapped on a domain $V \subset \Delta^*$. Let $v = ia \in V$ (a > 0) and G_V (v, ia), $G_{\Delta^*}(v, ia)$ be the Green's function of V and Δ^* respectively, then $G_V(v, ia) \leq G_{\Delta^*}(v, ia) \leq \text{const.} |v|$. Since V is mapped on K^* , we have as before, $G_V(v, ia) \geq \text{const.} |\zeta|$, $\zeta \in K_{\rho_0}(\varphi_0)$, so that $|\zeta| \leq \text{const.} |v|$, or $\text{const.} |z|^{1+\epsilon} \leq |w|$, $z \in K_{\rho_0}(\varphi_0)$

 $\left(\varepsilon = \frac{\delta}{\varphi_0}\right)$. If we interchange z and w, we have $|w| \leq \text{const.} |z|^{1-\epsilon}$, so that

$$0 < A|z|^{1+\varepsilon} \leq |w(z)| \leq B|z|^{1-\varepsilon}, \qquad z \in K_{\rho_0}(\varphi_0), \qquad (2)$$

where A>0, B>0 are constants. By (2), if we apply the similar consideration as Lemma 2 on w=w(z) and z=z(w), we have

$$0 < A|z|^{\varepsilon} \leq |w'(z)| \leq B|z|^{-\varepsilon}, \qquad z \in K_{\rho_0}(\varphi_0), \tag{3}$$

with suitable constants A > 0, B > 0.

REMARK. Hence a segment $z=re^{i\theta}$ $(0 < r \le \rho_0, 0 < \theta < \pi)$ is mapped on a rectifiable curve on the w-plane and vice versa a segment on the w-plane through w=0 is mapped on a rectifiable curve on the z-plane.

5. Kellogg's Theorem

1. Let D be a domain on the $w=\xi+i\eta$ -plane, which is bounded by a Jordan curve C, which has continuous tangents and is represented by $w=w(s)=\xi(s)+i\eta(s)$, where s is the arc length of C, measured from a fixed point, such that

$$|w'(s+h)-w'(s)| \le \kappa |h|^{\alpha}$$
, $\kappa = \text{const.}, 0 < \alpha < 1$. (1)

We map D conformally on |z| < 1 by w = f(z), then Kellogg⁷⁾ proved the following theorem.

THEOREM 7. f'(z) is continuous and ± 0 in $|z| \le 1$ and

$$|f'(e^{i(\theta+h)})-f'(e^{i\theta})| \leq \kappa_1 |h|^{\alpha}, \quad \kappa_1 = \text{const.}$$

Warschawski⁸⁾ gave a simple proof of this theorem. We shall simplify his proof a little by means of Green's functions.

PROOF. Let $z_0=e^{i\theta_0}$, $w_0=f(z_0)$. By a suitable linear transformation, we assume that $w_0=0$ and C touches the η -axis and the inner normal of C at w=0 coincides with the positive ξ -axis. Then we can prove easily that in a neighbourhood of w=0, C can be expressed in the form: $\xi=\xi(\eta)$ ($|\eta|\leq \delta_0$), such that

$$|\xi| \leq K|\eta|^{1+\alpha}$$
, $K = \text{const.}$ (1)

We can prove that K and δ_0 can be chosen independent of w_0 . Now we consider

$$w = \xi^* + i\eta^* = \varphi(\zeta) = \zeta - \zeta^{1+\beta} \qquad (\beta = \alpha/2). \tag{2}$$

Then we can prove easily that $\left|\frac{\varphi(\zeta_1)-\varphi(\zeta_2)}{\zeta_1-\zeta_2}\right|>0$, if $|\zeta_i|\leq \frac{1}{3}$, $\Re \zeta_i>0$ (i=1,2), so that $\varphi(\zeta)$ is regular and univalent in a half-disc: $|\zeta|\leq \frac{1}{3}$, $\Re \zeta>0$. If $\zeta=re^{i\theta}$, then

$$\xi^* = r \cos \theta - r^{1+\beta} \cos (1+\beta)\theta,$$

$$\eta^* = r \sin \theta - r^{1+\beta} \sin (1+\beta)\theta.$$

⁷⁾ O. D. Kellogg: Harmonic functions and Green's integrals. Trans. Amer. Math. Soc. 13 (1912).

⁸⁾ S. Warschawski: Über einen Satz von O. D. Kellogg. Göttinger Nachr. 1932.

Let $\Gamma: \left| \zeta - \frac{1}{6} \right| = \frac{1}{6}$ be a circle and Γ^* be its image on the w-plane. If ζ tends to $\zeta = 0$ on Γ , then since $\frac{1}{3} \cos \theta = r$,

$$\xi^* = 3r^2 - r^{1+\beta} \cos((1+\beta)\theta - r^{1+\beta}) \cos((1+\beta)\frac{\pi}{2}), \quad |\eta^*| \sim r,$$

so that

$$\xi^* \ge \text{const.} \, |\eta^*|^{1+\beta} \,. \tag{3}$$

Hence by (1), $\xi^* > \xi$ for the same η , so that the part of I^* , which lies in a small neighbourhood of w=0 belongs to D. Hence if a $\left(0 < a < \frac{1}{6}\right)$ is small, then the image K^* of the circle $K: |\zeta - a| = a$ and hence the image Δ^* of the disc $\Delta: |\zeta - a| \le a$ is contained in D. It can be easily proved that a can be chosen independently of w_0 . Let $w^* = \varphi(a) > 0$ and $G_{\Delta}(\zeta, a)$, $G_{\Delta^*}(w, w^*)$ be the Green's function of Δ and Δ^* respectively, then

$$G_{\Delta^*}(w,w^*)=G_{\Delta}(\zeta,a)=\log\frac{a}{|\zeta-a|}.$$

Let U^* be the sector: $|w| \leq \rho_0(\rho_0 < w^*)$, $|\arg w| \leq \varphi_0 < \frac{\pi}{2}$, which is contained in Δ^* and U be its image on the ζ -plane, then for any $\zeta \in U$,

$$\log \frac{a}{|\zeta - a|} \ge \text{const.} |\zeta|$$
.

Since $|\zeta| \sim |w|$, we have

$$G_{A^*}(w, w^*) \ge \text{const.} |w|, \qquad w \in U^*.$$
 (4)

Let $G_D(w, w^*)$: be the Green's function of D, then since $\Delta^* \subset D$,

$$G_D(w, w) \ge G_{A^*}(w, w) \ge \text{const.} |w|, \qquad w \in U^*.$$
 (5)

If $w^* = f(z^*)$, then

$$G_D(w, w^*) = \log \left| \frac{1 - \bar{z}^* z}{z - z^*} \right|.$$
 (6)

As Warschawski proved, the image of U^* in |z| < 1 contains a sector

$$V\colon |z-z_0| \leq
ho_1, \quad \left| \operatorname{arg}\left(rac{z_0-z}{z_0}
ight)
ight| \leq arphi_1 = arphi_0 - arepsilon$$

where $\varepsilon \to 0$ with $\rho_0 \to 0$ and ρ_1 , φ_1 are independent of w_0 . If $z \in V$, then

$$\log\left|\frac{1-\bar{z}^*z}{z-z^*}\right| \leq \text{const.} |z-z_0|,$$

so that by (6), (5),

$$|w|=|f(z)| \leq K|z-z_0|$$
, $K=\text{const.}$, $z \in V$.

Hence by Lemma 2, if $z_0 = e^{i\theta_0}$,

$$|f'(re^{i\theta_0})| \leq K_1$$
, $1-\rho_1 \leq r < 1$, $K_1 = \text{const.}$, (7)

where K and K_1 are independent of z_0 . From (7), by the maximum principle, we have

$$|f'(z)| \leq K_1 \quad \text{in} \quad |z| < 1. \tag{8}$$

This being established, we can complete the proof as Warschawski.

2. As an application of Kellogg's theorem, we shall prove the following theorem. Let D be a domain on the w-plane, which is bounded by a Jordan curve C, which passes through w=0. A part of C, which lies in a small neighbourhood of w=0 is divided by w=0 into two parts C_1 , C_2 . We assume that C_i (i=1,2) are analytic curves and make an inner angle $\alpha\pi$ ($0<\alpha\leq 2$) at w=0. We map D conformally on $\Im z>0$ by w=w(z), w(0)=0. Then

THEOREM 8. If $\rho > 0$ is small,

$$0 < A|z|^{\alpha} \le |w(z)| \le B|z|^{\alpha}$$
,

$$0 < A|z|^{\alpha-1} \le |w'(z)| \le B|z|^{\alpha-1}, \quad 0 < |z| \le \rho, \quad \Im z \ge 0$$

where A>0 B>0 are constants.

PROOF. We assume that C_1 touches the positive real axis. By $\zeta = w^{\frac{1}{\alpha}}$, we map D on a domain Δ on the ζ -plane and let C_i (i=1,2) become Γ_i , then Γ_i touches the real axis at $\zeta = 0$.

Now on C_1 , $w=w(\sigma)$, where σ is the arc length, measured from w=0, and let Γ_1 : $\zeta=\zeta(s)$, where s is the arc length, measured from $\zeta=0$. From

$$d\zeta = \frac{1}{\alpha} w^{\frac{1}{\alpha}-1} dw$$
, we have $ds = \frac{1}{\alpha} |w|^{\frac{1}{\alpha}-1} d\sigma$.

Hence, if we put $w(\sigma) = r(\sigma)e^{i\theta(\sigma)}$, then

$$\zeta'(s) = e^{i(\frac{1}{\alpha}-1)\theta(\sigma)} w'(\sigma)$$
,

so that

$$|\zeta'(s_1) - \zeta'(s_2)| \leq \text{const.} |\sigma_1 - \sigma_2|. \tag{1}$$

$$s = \frac{1}{\alpha} \int_0^{\sigma} |w|^{\frac{1}{\alpha}-1} d\sigma \sim \frac{1}{\alpha} \int_0^{\sigma} \int_0^{\frac{1}{\alpha}-1} d\sigma \sim \sigma^{\frac{1}{\alpha}} \sim |w|^{\frac{1}{\alpha}} \sim |\zeta|.$$

From $w=\zeta^{\alpha}$, we have $d\sigma=\alpha|\zeta|^{\alpha-1}ds \sim \alpha s^{\alpha-1}ds$, so that

$$|\sigma_1 - \sigma_2| \leq \text{const.} \left| \int_{s_1}^{s_2} s^{\alpha - 1} ds \right| \leq \text{const.} \left| s_1^{\alpha} - s_2^{\alpha} \right|.$$
 (2)

If $\alpha \ge 1$, then $|s_1^{\alpha} - s_2^{\alpha}| \le |s_1 - s_2|$ and if $0 < \alpha < 1$, then $|s_1^{\alpha} - s_2^{\alpha}| \le |s_1 - s_2|^{\alpha}$, so that in any case, $|\sigma_1 - \sigma_2| \le \text{const.} |s_1 - s_2|^{\beta}$, $(0 < \beta < 1)$, hence by (1), (2),

$$|\zeta'(s_1) - \zeta'(s_2)| \le \text{const.} |s_1 - s_2|^{\beta}, \quad 0 < \beta < 1.$$
 (3)

We map Δ conformally on $\Im z > 0$ by $\zeta = \zeta(z)$, $\zeta(0) = 0$, then by (3) and Kellogg's theorem,

$$0 < A_1 \le \left| \frac{\zeta(z)}{z} \right| \le B_1$$
, $0 < A_1 \le |\zeta'(z)| \le B_1$, $0 < |z| \le \rho$, $\Im z \ge 0$,

where $A_1 > 0$, $B_1 > 0$ are constants.

Since
$$\left|\frac{w}{z^{\alpha}}\right| = \frac{\zeta}{z} \left|^{\alpha}, \left|\frac{dw}{dz}\right| = \alpha |\zeta|^{\alpha-1} \left|\frac{d\zeta}{dz}\right|$$
, we have $0 < A|z|^{\alpha} \le |w| \le B|z|^{\alpha}, A|z|^{\alpha-1} \le \left|\frac{dw}{dz}\right| \le B|z|^{\alpha-1}, 0 < |z| \le \rho, \Im z \ge 0,$
(4)

where A>0, B>0 are constants.

THEOREM 9. Let D be a domain on the w-plane, which is bounded by a rectifiable Jordan curve C. We map D conformally on |z| < 1 by w=w(z). Then for almost all $e^{i\theta}$ on |z|=1,

$$\lim_{z\to e^{i\theta}}\frac{w(z)-w(e^{i\theta})}{z-e^{i\theta}}=\lim_{z\to e^{i\theta}}w'(z)=\gamma, \qquad 0<|\gamma|<\infty,$$

uniformly, when $z \rightarrow e^{i\theta}$ from the inside of a Stolz domain, whose vertex is at $e^{i\theta}$.

PROOF. By F. and M. Riesz's theorem⁹⁾, $w(e^{i\theta})$ is absolutely continuous on |z|=1 and $w'(e^{i\theta})=\frac{1}{ie^{i\theta}}\frac{\partial w(e^{i\theta})}{\partial \theta}$ exists almost everywhere on |z|=1 and is integrable, so that almost everywhere on |z|=1, $|w'(e^{i\theta})|<\infty$. Let a measurable set e on |z|=1 be mapped on a set E on C, then

$$mE = \int_{e} |w'(e^{i\theta})| d\theta , \qquad (1)$$

where mE is the measure of E. Since by F, and M. Riesz's theorem, a set of positive measure on |z|=1 corresponds to a set of positive measure on C, we see from (1), that $w'(e^{i\theta}) \neq 0$ almost everywhere, so that $0 < |w'(e^{i\theta})| < \infty$ almost everywhere on |z|=1.

For such $e^{i\theta}$, by Fatou's theorem¹⁰⁾,

$$i\rho e^{i\varphi}w'(z) = \frac{\partial}{\partial \varphi}w(\rho e^{i\varphi}) \rightarrow \frac{\partial}{\partial \theta}w(e^{i\theta}) = ie^{i\theta}w'(e^{i\theta})$$

uniformly, when $z=\rho e^{i\varphi}\rightarrow e^{i\theta}$ from the inside of a Stolz domain, whose vertex is at $e^{i\theta}$, so that

$$\lim_{z \to e^{i\theta}} w'(z) = w'(e^{i\theta}), \qquad 0 < |w'(e^{i\theta})| < \infty$$
 (2)

and hence

$$\lim_{z \to e^{i\theta}} \frac{w(z) - w(e^{i\theta})}{z - e^{i\theta}} = w'(e^{i\theta}) \tag{3}$$

uniformly, when $z \rightarrow e^{i\theta}$ from the inside of a Stolz domain, whose vertex is at $e^{i\theta}$.

Mathematical Institute, Tokyo University.

⁹⁾ F. and M. Riesz: Über die Randwerte einer analytischen Funktion. 4. congr. scand. math. à Stockholm (1916).

¹⁰⁾ P. Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906).