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1. Main Theorems.

1. Let D de a domain on the w=£&+in-plane, which is bounded
by a Jordan curve C, which passes through w=0 and touches the real
axis at w=0 and its inner normal at w=0 coincides with the positive
n-axis. We map D conformally on the upper half 3z2_>0 of the z=x+iy-
plane by w=w(z), w(0)=0. There are many researches concerning the

w(z)

existence of lim — Among others, we state the following theorems.
20

THEOREM 1. (Carathéodory)V. If there are two circles K,, K,
which touch the real axis at w=0, such that K, lies in D and K, lies
outside of D, then

w .
limb(:l=hn;1w'(2)='¥, 0y,

z20

exists uniformly, when z—0 in any Stolz domain, whose vertex is at
z=0.

THEOREM 2. (Besonoff-Lavrentieff)?. If in a neighbourhood of
w=0, (i) C lies between two curves :

H: n=|E** and H:n=—[¢"" (0<a<1)

1) C. Carathéodory: T1ber die Winkelderivierte von beschridnkten analytischen
Funktionen. Sitzber. der Berl. Akad. 1929.

2) P. Besonoff et M. Lavrentieff: Sur I'existence de la derivée limite. Bull. Soc.
Math. 58 (1930).
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and (ii) C is rectifiable and is represented by w=w(s)=£&(s)+in(s), where
s is the arc length, measured from w=0, such that

. &(s)
& Th
. w(z) . ..
then hng =Y (0<y <o) exists, when z—0 from the inside of

u$z2=>0 and 1in01 w'(z)=+v wuniformly, when z—0 in any Stolz domain,

whose vertex is at z=0.

2. In this paper, we shall prove a theorem, which contains the
above two theorems as special cases.

Let C be represented by a parameter ¢: w=w(t)=£&(t)+in(t), w(0)=0
(]21=<1), such that for a small § >0, 0<t<8 corresponds to the
part of C, which lies on the right of the imaginary axis. Let C meet
the circle |w|=7» (»>>0) and M(r) be the set of ¢ (0< #<3), such that
|w(t)]=7 and put c

t=tr)= inf t,  t=Hr)= sup ¢, .

- - te M(7) teM(r) l

n=r(r)=Min lw(®)l, 7r=7r(r)= Max |u(?), “
nN=<r=<nrr. Z

If C satisfies the condition :

im -7 Z1. fim A7 oy 2)

-0 r 70 v

and the similar relation on the left of the imaginary axis, then we say
that C satisfies the condition (W) at w=0, since it is first introduced
by Warschawski?®.

Similarly we define the condition (W™*) as follows.

Let L: Rw=const.=¢ (>0) be a line parallel to the imaginary axis
and M(&) be the set of ¢ (0<t<$), such that Nw(¢f)=¢ and put

3) S. Warschawski: Uber die Randverhalten der Ableitung der Abbildungsfunktion
bei konformer Abbildung. Math. Zeits. 35 (1932).
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t—H&)= inf ¢, )
»" - te M(E)
F— (&)= C
t=1U¢) tesnl}(% s g /
£1=£(6)= Min Ru(d), <
tst=<i >
&=&(8)= Il\gta;tf Ruw(t), \ P2 ;
BB <E<H®). (1% W :
g, ¥ 2
If C satisfies the condition :
lim *é(éi =1, lim E—Z({i =1 (2*)
E-0 E £-0 f‘

and the similar relation on the left of the imaginary axis, then we say
that C satisfies the condition (W*) at w=0.

Now we shall state our main theorems.

THEOREM 3. (i) If in a neighbourhood of w=0, C lies between
two curves H and H, each of which is symmetric to the imaginary axis
and whose parts on the right of the imaginary axis are

H: n=nE) and H:n=—hE) (0E38), A(0)=0,

where h(t) >0 is a continuous increasing function of t>0, such that

[ g < o,

o B
then
w(z ) .
tim -7 —lmwa=y, 0<y<w,
exists uniformly, when z—0 in any Stolz domain, whose vertex is at
2=0. (ii) If C lies between the above two curves and further satisfies
the condition (W) or the condition (W*) at w=0, then

w(2) _

=7, 0y,

20 V4
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exists, when z—0 from the inside of 3z2=>0.

is a special case of (i) and is that of (ii).
(i) is due to Warschawski®, though under a different enunciation.
Warschawski’s proof is very complicated. His fundamental lemma is
proved simply by Wolf¥, under the hypothesis that D lies on the
upper half-plane. By modifying his method, and by means of Green’s
functions, we shall prove our theorem simply.

The condition SZ—-h—;? dt < o is essential, since the following

theorem holds.

THEOREM 4. Let D be a domain on the w=E&+in-plane, which is
bounded by a Jordan curve C, which passes through w=0 and touches
the real axis at w=0 and its inner normal at w=0 coincides with the
positive n-axis. We suppose that in a neighbourhood of w=0, C is

represented by one of two forms:
(i) »=nE), or (i) »=—nE) (E1Z8), h0)=0,

where h(t) >0 is a continuous function of t (|t|<8), which is decreas-
ing for t<0 and is increasing for t=>0. If we map D conformally on
Jz>0 by w=w(z), w(0)=0, then

. w(z2)
lim —.— =
z-0 2

exists, when z—0 from the inside of 320, where
0<y<o in case (i) and 0<y< > in case (ii).

In each case, the necessary and sufficient condition that 0<y<

js ht) gt < oo .

-5 t2

is

We remark the following.

Let D,, D, be two domains, which have a common boundary in
a neighbourhood of w=0. If holds for D, then it holds for
D,. Hence we may assume that D is the following special domain.
Let C be represented by a parameter ¢ as before: w=w(t) (|t|<1). If

4) J. Wolf: Sur la représentation conforme des bandes. Compositio Math. 1 (1935).
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we make ¢ increase from #=0, then C meets the line £=¢ (6>0) at

N\
first at w,, so that the arc Ow, lies between two lines £=0, £=8. Simi-
larly we define w; on the left of the imaginary axis, such that the

VAN
arc w,0 lies between two lines £€=—38, £€=0. By the above remark,
we assume that the boundary of D consists of the following lines.

A )Z

\@//\z’j/é ] ;

Wz

(i) the arc 1;;:0\ w,, (ii) a rectilinear segment, which connects w, to
w=28, (iii) a segment on the real axis 28 <&<7,, (iv) a semi-circle
w=re?® (00 7), (v) a segment on the real axis —7, <& —286, (vi) a
rectilinear segment, which connects w=—23 to w;.

2. Some lemmas.

First we shall prove some lemmas. In this paper, Kpo(goo)' denotes
a sector, which is bounded by a circle of radius p, about the origin

0 and two lines through 0, each of which makes an angle ¢, (<—Z>

with the positive imaginary axis.
LeEMMA 1. Under the condition (i) of Theorvem 3,

0 Alz|<|w(z)|<Blz|, zeKy (o),

where A>0, B_>0 are constants.
Proor. (i) Proof of lw(2)| < Blzl, zeK,(®o), if the part of C,
which lies in a neighbourhood of w=0, lies below the curve H.
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We take a (0<a<(38) so small that wy,=iaeD and K: |z—ia|=a be
a circle. Let D, be the common part of the inside of K and the
domain defined by »=>A(¢), which lies above the curve H and let I’
be its boundary. Then D,<D. If H has no points in K, then we may
take K instead of H, hence we assume that H has points in K and
let I'(H) be the part of I°, which belongs to H. Let L: arg w=¢,
e= tan~1(A(8)/8), be a line, which connects w=0 to w=35+:/(8) and let
(&, mo) be its intersection with K, then &=asin 2. We take a so small
that 7’(H) lies below L. Let Gp(w, ia) be the Green’s function of Dy,
with za as its pole, then

Gp,(w, ia)= log % —o(w), r=|lw—ial, (1

where v(w) is harmonic in D;, such that »= log —‘:— on I.

L

:
|
|
:
-

Since I'(H) lies below L, if welI'(H), then r—=acose. Since

S:-h(';%<oo and h(¢) is increasing, lim L(tt)— =0, so that we take
130
8 so small that cose=>1/2, then
a a—r a—r a—r a—r
v(w)= log r log<1+ r )““: ‘v T acose a

on I'(H). (2)
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—
Let w=E&+ineI’(H) and 0 be the angle between the vector wyw
(wy=1ia) and the negative n-axis, then é¢=#sin 8, n=a—»cos#f, so that

a—v cos 0=h(rsin 0), a—r=<h(¢), hence by (2),

v<w)g—2%@ on I'(H). 3)
We consider
— 1 ( ndt —fag
utw)= 0t e, wetrin. 0

Then «(w) is harmonic in Jw >0. Let w,=&+inel’(H), & >0, then
since & < &,=asin 2¢, n,=nh(¢,), we have & +7,<a, if & is small, so that

1 Séﬁm h(t)mdt 1 jéﬂm h(t)mdt i 1 rﬁm
> 4Rt > L =
wws) = 6t MHE—tE T m a9t 2, elh(t)dt
< (&)
== 27r b

so that by (3),

u(w) = 4“ v(w) on I'(H).

A similar relation holds on the left of the imaginary axis. Since v=0

on I'—I'(H) and #_>0, we have u#> -2 v on I, so that by the
w
maximum principle,

u(w)._,>:—f~ v(w) in D;. (5)

Let w-——{——l?inzpe"(fg'”w)eK,,o(gpo), n=p cos @, then by (4),

w(w)= MY‘ o h(t?dt .
wT : —a tz.__ztp sin ¢+P2

Since # cos? p < 1*—2fp sin ¢+ p?, we have

ww) < p S“ h(t)dt < 2p j“ h(t)dt
TCOS@ J_, PP TCOS @y Jy PP

»
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so that by (5),

8p e h(t)dt
< K, (o,
v(w) < 2c0s 7, jo o we oo P0) - (6)

Let weK, (@,) and |w|=p is small and »=|w—ial, then

log % = log <1+ ifi’—) > const. -2=7 > const. -2,
r r a a

so that if @ is small,

N a 8 a h(t)dt
= e > P —__ %6 _|\"nat
Gp(w, ia)= log , v(w) > a (const. cos 7, jo 2 )
> const. 2.
a
Hence
Gp,(w, ia) = const. |w] , we K, (). (7)

Let Gp(w, ia) be the Green’s function of D, then since D, < D,
Gp(w, ia) = Gp,(w, ia) = const. |w], weK, (p,) . (8)
Let by w=w(z), w,=ia correspond to z,, then

Gp(w, ia)= log<i——2"— < const. [z],
2—2
so that by (8),
lw(z)| < Blz], ze K, (9)), 9)

where B>0 is a constant.

(il) Proof of 0 Alz|Z|w(2)l, ze K, (po), if the part of C, which
lies in a neighbourhood of w=0, lies above the curve H.

We consider a domain D, > D, which is symmetric to the imaginary
axis and whose boundary C, consists of the following lines.

(i) The curve H: n=—h(¢) (0<¢<8), (ii) a rectilinear segment,
which connects w=8—ih(8) to w=28, (iii) a segment on the real axis
28 <E<r (r,<7), where 7, is defined before, (iv) a part of the circle
w=re°® (0<0<x/2). By symmetry, we define the part of C, on the
left of the imaginary axis. We map D, conformally on §z_>0 by
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P

“23’
_ ¢
—Y, =0 A

w=wy(2), wx(0)=0, such that three points w=0, w-—-rleiT: }/JL’ 71s
'wzirl correspond to z=0, 2=1, 2= o respectively, and let w=35—1h(3),
w=28 correspond to z=a, z=8 (0a<B<1) respectively.-

Let 4<D; be a half-disc: |w|<7», Jw=0 and G (w, ia) (0<a<r)
be its Green’s function, then G (w,ia)=> const.|w| in K, (o).

Since 4 < D,, Gp,(w,ia) = G (w,ia) and as before, Gp,(w,ia) =<
const. | z{, so that

lwl2) | < Klzl, zeKo o), (1)

where K >0 is a constant, which is independent of 8, as seen from
the proof. This is important in the sequel.

Let z,=7 (0<7=<a) correspond to w,=ws(z)e H. Now D, is con-

tained in an angular domain: |arg (_w_) < (‘1’0= —g—— +e ) , where
z .

e—0 with §—0. We map D, on a domain contained in |¢|<1 by

w [ Wy \zor
v-z( : >2¢'0’ 00:z< 2_0 )2«1/0,

, (2)

u:
° | 9]

u—1i
uti
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and put

¢= Z‘;j =£(2). 3)

Then u#=1, i, —1 correspond to ¢=—i¢, 0,7 respectively and the semi-
circle [#|=1, Jx=0 is mapped on the diameter of |¢|=1 through i, —:.
Let

A()= j: jox 2o+ 1) PtdtdO,  z=r, (4)

L(t) = jj ¢z +te®) | td6 ,

then since A(?) is the area of a domain in |¢|<{1, A@)<= and by
Schwarz’s inequality, we have for 0<p<{1

r 2
~rr—([‘t(—t))z—dt < r —(—litt)—)— dt < wA(pr)<=2.
o2y 0
Hence there exists 7 (p7 <7=<{pr), such that (L(v))*log 1/p <= so
that if we take p small, then Iy

L) <e<< —é‘ : (5)

Let z, be the common point of
two circles |z]=7 and |z—z)|=7 Ze
and z,=z,—1, 2z, =2,+7 and z.z.
be the semi-circle: [z—z)|=mT, X
SN : N
= z
Sz=0 and w,, w,, w/, ww! ¢=0 ‘L It
~~
be the image of z., z., 2., z.z) on the w-plane respectively and similary
we define v., v., v., viv, etc. Since u,u; meets |u|=1 at u, ¢.&.
N\
meets the imaginary axis and since by (5), its length is <le, &. &) lies
1+¢

outside of [{—1|=1—e. Since w=i - , we have for any z on
~~ 1—-
2,27,

du l _ 2 d¢ 2 d¢

dz [1—¢P | dz |T (1—e@ | dz |’

so that by (5),
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W) i 2 o i 2e 1
| T aor-re) a0 < = [Tttt re) Irdo < Ty <5

7N\
Since u,u; meets |#]=1 and its length is <{1/2, the image of the
half-disc 4,: |z—2z| < 7, I2=0 on the #-plane is contained in a ring

domain : —;gmlg—;’—, so that —'—%’L:{_lvlg 3'2”°L, hence

O<AIWOI§IWI§B}W0], ZGA-,-, (6)

where A=(1/2)"=", B=(3/2) ="
Hence especially,

A|w0|§|w7|, wT‘:WZ(ZT)' (7)

Since argz,=>2 sin! (p¥/2), we have by (1), |w,| < const. | z,|=const. | 2],
so that by (7)
lwo | =1wx20) | < K | 2], (8)

where K is a constant, independent of &.
Now for any ¢>>0, we take §>0 so small that

' dn(E) _ 3) 8 &) e .
jo & s +S0 & <. ©)

Let 0<x<<a and wyx)=§&x)+in(x)=¢&+in=E—in(f). We put
(&)= h*(x)= —nyx), then since by (8), 0<¢<Kx, we have by (9),

j“_dﬁ*_@_ < st_ﬂi‘f_)_ < Ke. (10)
0 x o ¢

Since

[r i) ) (* B [ K@
0 x a 0 X2 —Jo x? ’

we have by (9), [(10),

[ e o [ wrge

~-<Ke, (11)

[ lnz(J;)ZIdx <ne)|° L3 ghifl_ < K-hgl <Ke, (12)
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so that

[ A2l e (13)
0 x?

Let wy(2)=¢&,(2)+in,2), z=x+1iy, then since D, is a bounded domain,
n,2) can be expressed by a Poisson integral with respect to 7,(x), so
that

niy) _ 1 r n(t)dt _ 2 j‘” nat)dt (14)
y Ve w Jo B

Since L:{f_(:ll < ! ’hg)l and —@I— is integrable by we have
by Lebesgue’s theorem,

. nx(2y) _2 = nyt)dt 15
lim === =7 Jo#tz . (15)
Since 7,(#) =0 for B<t<1 and ()= 7”12:-,— for 1<t< o, we have
by
im ) S 2 ( _(PlufDlat , n  (Tdt
hm = g‘rr< Sn S R t2>

= %(—2Ke+ 7;12__> .

Since K is independent of 8, if we choose & so small that —2Ke+~17’;:>0,
then

oo Tim 4%)
-0 y

Since by Lindelof’s theorem, &x(iy)/n(iy)—0, we have & (iy)/y—0, so
that

->0. (16)

. wiliy)
lim 52 =y, 0<yp<lco. (17)
0 y

Since by (1), _woz) is bounded in K, (), we have by and
2

Montel’s theorem,
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. wy2)
lim " =,  0<p<lw, (18)
uniformly, when z—0 in K, (@,).
Hence'
0<lA:lz|l < lwi(2)| < Bylzl, ze K, (o), (19)

where A4,>>0, B,>>0 are constants.

Let Gp,(w,ia) (@>>0) be the Green’s function of D,. If by w=w,z2)
wy=ia corresponds to z, then by

Gp(w, ia)= log | 2%

< const. |z] < const. jw].

Z2—2y

Let Gp(w, ia) be the Green’s function of D, then since D < D,, we have

Gp(w, ia) < Gp(w, ia) < const. |w], we K, () . (20)
If by w=w(z), wy=ia corresponds to z;, then
Gplw, ia)= log _z‘_;z};_ >const. |z], zeKi(py),
so that by [(20), 0
0<lAlz| < lw(2)|,  zeK, (o), (21)

where A>>0 is a constant. Hence the lemma is proved.

LEMMA 2. Let f(2) be regular and i(:—)— be bounded in a sector
4: 0<|z|< R, |largz| <6, then f'(z) is bounded in 0<|z| <R,
larg 2| < 6,<6,. If lzlgl f(:) =g uniformly for \argz|=<6,, then
lzigr(}f’(z):y uniformly for |argz| < 6,<6,.

Proor. Let 'Jf(zfl

< M in 4 and §=6,—6,. Let z=7r¢* (10| < 6y),

then the circle C: |¢—z|=#sin 8 is contained in 4, if » is small. Hence
if £¢—z=7siné&e*, ’

, 1 (1ADlldel ~ M ( |tldp gy (r+7sind)
r@ls , [MPLEL< o] s SM e

IA

so that
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1f(2) < p (LFsind) (1)
sin &
N . f2) .
ext suppose that 1193 2 = uniformly for |argz|<6,. We put

z
F(z)= ~f(z)»- —rv, then Hl’{)l F(z)=0 uniformly in |argz|<6, and

f(2)=F(z)+2zF'(z)+v. We take #»_>0 so small, that [F(2)|<e, if
z2ed, |z|l=r<7,. Then

P L [IE0Nd] o e

rd, |[E—zf rsind ’

so that ]il‘f)l zF'(z)=0 uniformly for |arg z| <6,<6,. Hence
lim f/(2)= @)

uniformly for |argz| <6,<6,.

3. Proof of Main Theorems.

1. PROOF of THEOREM 3.

(i) Proof of the part (i).

Let D, > D be the domain defined beforee We map D on Jz >0
by w=w(z), w(0)=0 and D, on J¢ >0 by w=w,¢), w(0)=0, then
since D< D,, D is mapped on a bounded domain 4 in J¢>0. By
Lemma 1 and (18), (19) of the proof of Lemma 1,

0<<AlzI Z |w(2)| = Blz], ze K, (p) , (1)
0< Al ¢l Z lwi&)| < Bsl¢l, te K, (90), (2)
im M =y, 0<n<e,  teKumw). @
Now 4 is mapped on Jz >0 by &=z)=¢(2)+in(z), .§(0)=O, so that
@y) _ 1 (= 2(@)dt —xti
5 - S_wy2+t2 . 2=x+1y.

Since 7(t) =0,
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L onley) 1 (" a(dt _ .
5)1-1;{)1 ¥ - S_“ £ =1, 0<'Yl§ ’ (4)
exists. Since by (1), (2),
C =\ C l' w _<_, B ’ ZEK;JD(¢0), (5)
z Az
we have
n(zy) <‘ £(y) ‘
= Az

so that 0<y,<e. Since by Lindelof’'s theorem, &(iy)/n(iy)—0, we
have &(iy)/y—0, so that

lim ¢(iy)
¥+0 1y

=1, 0<m<eo. (6)

Since by (5), £’ | is bounded in K, (@,), we have by (6) and Montel’s
z

theorem,

¢(z)

lim =%, O<f‘yl<00 ’ (7)

220

uniformly, when z2—0 in K, (o).

Since -Wf:L - _wz(ﬂ : _fgl , we have by (3), (7),
lzi—l;l()l » W(ZZ) T=YY1ITY O<'Y< o, zeKPo(¢0) ’ (8)

hence by Lemma 2, lim w'(z)=v uniformly in K, (o) (¢,<%,). Hence

220

the part (i) is proved.

(ii) Proof of the part (ii).

First we assume that C satisfies the condition (W) at w=0. Let
2o=7 (#_>0) be small and w,=w(z).

By (2) of the proof of (ii) of [Lemma 1, we map D conformally on
a domain contained in |[¢]<1. Then by (4) of the proof of (ii) of
Lemma 1, there exists 7 (p?»<+=<pr), such that

L= (180 +re)rds <er < - (1)
0
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. . . D, .
With the same notation as before, if the arc ¢.¢, has common points

~~
with |¢—1]<1/4, then by (1),t.¢ lies in |¢—1|<1/2, hence for
such ¢,

|u|—’ =2, so that |«,;|>=2, hence |v.|=>2|w], so

1-¢ | Z e
that

2¢0
lwr | = klwy|,  k=2= >1, (2)

hence the image Of-u?, of the segment 0z, meets the circle |w|=|w,| at
a point w'(w' ZFw,, [w'|=|w,]). Since
by the condition (W), |w,|<klw,|, if
|w,| is small, which contradicts (2).
Hence £,t; lies outside of |¢—1]
=1/4, so that for any z on z;/?;’,

_ 2

J1—¢p
hence by (1),

‘ du
dz

d¢
<
:32! s

j(j u’(Zo"" 78“’) |'Td0<€2, €2=32€1 . (3)

If || <1, then the image of the half-line 2z c meets |z|=1 at a
point (| |=1, u"=u,), henCﬁ\by the condition (W), |u)| > 1—e,,

if |w,| is small, so that by (3), #;z. lies in a ring domain :
1—26,< |u| <1+-e,.
If |#7]>1 and |#,|<1, then ufz;, has a common point with
|z]=1, so that u/;; lies in a ring domam l—e<lul<1+4+e. If

|| >1 and |«.|>>1, then the image ou, of the segment 0z, meets
|#|=1 at a point #'(|«'|=1, uztzuo)/_fo that by the condition (W),

l2,]<1+e,, if |wp| is small, hence #,%; lies in a ring domain:
11— il < 14 2e,.
/'\
Hence in any case, #.#. lies in a ring domain: 1—2e,<|u| <1+ 2e,.

By this and the condition (W), we can prove easily that if z,is small,
then the image of the half-disc 4,: |z—2 < 7, 3220 lies in a ring
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domain: 1—3e; < |#| < 1+ 3¢, hence for any zed,,

(1—eglwol < lw(2)] < (1+e)l ol (4)

where e3—0 with ¢,—0. Hence especially,

(1—"€3)|wﬂl :_<—_—. I w'r' g (1+€3)| wol ’ w‘l‘:w(z'r) ’
so that by (4), :
(I=e)w.| < w@)| < (1+e)w.],  2e4,, (5)

where e—0 with ¢—0.
Since arg z, => 2 sin"1(p?/2), we have by the part (i),

W
2:

=y, 0y, (6)

lim

2.0

Since ¢ >0 is arbitrary, we have by (5), (6) and the part (i), we have
for any zed,, |z|=|z.l,

w(2)

2 1='y, 0y, (7)

lim
z=+0
) ) . . . w(z)
when z—0 in 3z>>0. Since by Lindelof’s theorem, lmol arg — =0,
we have
w(z
lzigol —i‘l* =y, 0<y<lo, (8)

when z—0 in §z2>0.

Similarly we can prove (8), if C satisfies the condition (W*) at
w=0. Hence is proved.

2. PROOF of THEOREM 4.

Let w=w(2)=§&(z)+in(z), then

"7;2) - 71r So_o_?z(ﬁitlz ,  z=x+iy. (1)

First we consider the case (i), then we may assume that D lies on
the upper half-plane, so that »(¢) =0, hence

—1-5“ M) =,  0<y< oo, (2)

A
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1 1 i
|z—t? = t2coste,’

exists. If ze K, (9,), then as we have proved before,
so that if 0<y< o, then by Lebesgue’s theorem,
e _ L[ it _, @)

—) g

lim
-0 J’ ™

If y= 0, then by Fatou’s lemma,

LD g <tim 22 o that fim 7P =,

™ —o b y=0 y ¥y-0 y

hence (3) holds in any case.
Let w=pe®, z=re?c K, (p,), then

w(z) _ n(2)i+ cot p)
z y(i+ cot 8)

Since by Lindelof’s theorem, lirr(} (p—86)=0, we have by (3),

lim *®) =y, 0<y< o, zeKo (o). 4)

230 V4

Now by (5) of the proof of the part (ii) of [Theorem 3,

A—e)lw.| =< lw()| < (1+e)lw.|, zed,, (5)
where e— 0 with z—0. Since z,eK, (#,), lim Wy =¢ and since
z-0 2:

e >0 is arbitrary, we have lim w(z)_ ‘ =g, 0<y< o, F2=>0. Since
20 2 ;

w(z)

by Lindelof’s theorem, lirgx arg - =0, we have

lim “2) =y, 0<y<e, 3220 (6)
Suppose that 0<ry < o, then
0<A|z| < |w(2)| < Blz], 32=0, (7)
where A>0, B_>0 are constants.
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Tet w=-—8, w=8 correspond to z=—a, z=8 (>0, 8B>0)
respectively. Let z=x (0<x<B) and w(x)=£&x)+in(x)=E&+ih(¢),
(h(&)=n7(x)), then since 0<y< oo,

j B—"(—x)wfi—< o, hence j’idn(x)& oo
. o x

0

Since by (7), 0<x< K¢ (K= const.), we have

> dh(¢) -, * hE)dt
So_*g‘< , hence L 2 <o,

Similarly we can prove that j

Hence if 0<y < o0,
*_ht)at
[ HOR e (®)
If (8) holds, then by [Theorem 3, 0<v< . Hence in the case (i), (8)

is the necessary and sufficient condition that 0<y<C .

0 n(é)d
HOE oo

Next we consider the case (ii). By taking account of -2 >0,
y
we can prove as the case (i), that

limﬂ(z)--:—l—rﬂdh% 0<y<oo, Jz=>0. (9

220 Z T J-e f2
Since 7(#)<<0 in a neighbourhood of #=0, we have from (9)
]
[0l e

By means of (10), we can prove similarly as the case (i), (8) is the
necessary and sufficient condition that <y < oo,

4. Extension of Valiron’s theorem.

1. The following theorem, which is analogous to (i) of [Theorem 3
is proved by Valiron®, under the hypothesis that D lies on the upper
half-plane.

6) G. Valiron: Sur la derivée angulaire dans la représentaion conforme. Bull. Sci.
Math. (1932).
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THEOREM 5. Let D be a domain on the w==E&+ in=re®*-plane, which
is bounded by a Jordan curve C, which passes through w=0 and
touches the real axis at w=0 and its inner normal at w=0 coincides
with the positive n-axis. We suppose that in a neighbourhood of w=0,
C lies between two curves H and H, each of which is symmetric to the
imaginary axis and whose part on the right of the imaginary axis is

H: 0=0(r) and H: 6=—6(r) (0<r=<3), 6(0)=0,
where 6(r) >0 is a continuous increasing function of r_>0, such that

e

< oo
If we map D conformally on Jz>>0 by w=w(z), w(0)=0, then

],if(? _w_iﬁ =7, 0<y<e,

uniformly, when z—0 in any Stolz domain, whose vertex is at z=0.

Proor. We take a (0<a<8), so small that w,=ieeD and
K:|w—ia|=a be a circle. Let D, be the common part of the inside of
K and the part of the w-plane, which lies above the curve H, and I’
be its boundary. We may assume that H has points in K and let
I'(H) be the part of I’, which belongs to H. Let Gp(w,ia) be the
Green’s function of D,, then

L a
lw—ial

where v(w) is harmonic in D; and as in the proof of Lemma 1, if &
is small, '

Gp,(w, ia)= log - —v(w), (1)

o)< 2(“";"""") on I'(H). 2)
Let w=re®c I'(H), then 6=6(r), so that
a—lw—ial _ a—vd—2rasin(n)+7~  27siné7r)
a a a ’

hence
ow)< ArED on r(H). (3)
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By taking ¢ small, we may assume that the part of H, which lies on
the right of the imaginary axis lies below a line L: arg w=46(8). Since
the equation of K is »=2asin@, if w=#»e¢® be the common point of
K and L, then »,=2asin 6(8), so that if w=7»e®cI’(H), then
r<_2a sin 6(3).
We extend the definition of 6(#) for —8§<»=<0, by putting 6(—7)
=—0(r) (0<r<38) and put

ww)= J_S"tsin o) — 1 dt, w=&+in, (4)
o s low—2 2

then #(w) is harmonic in Jw>0.

Let w,=&+in=re"eI’(H), then 6,=6(#,), n,=7.sin 6;, so that

3 rit+7r1sin6; M
(o) > 1SN 6L S tsin6(t) (5)
T 71 lw,—tJ?

We can prove easily that for »n<¢t<»+#siné, if » 1is small,
|lw;—t] < 37,sin 6;, so that

> _nsing (7insne _nsin6(ry)
w(w;) = 9mr?sin? 6, jrl ¢t sin 6(8)dt = 9o
Hence by (3),
uw(w)=—-%—v(w) on I'(H), (6)
367

so that by the maximum principle, (6) holds in D;. As the proof of
Lemma 1, if w=pe'? “)eK, (g, then

u(w)g 2P y: sin O(t) dt ,

7 COS ¢ t
so that
o)< — 12 [T SnOBd ek (g, (7)
acos g, Jo t

By means of (7), we can complete the proof by a suitable modification
of the proof of [Theorem 3.

2. If we assume only the existence of a tangent of C at w=0,
then we have
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THEOREM 6. Let D be a domain on the w==§&+in-plane, which is
bounded by a Jordan curve C, which passes through w=0 and touches
the real axis at w=0 and its inner normal at w=0 coincides with
the positive n-axis. If we map D conformally on JIz>0 by w=w(2),
w(0)=0, then for any >0,

0<lAlz|"* < |w(2)| < Blz|*®,
0<AlzZ |w' ()| < Blz|™®, zeK, (),

where A>0, B>0 are constants.

Proor. By Lindelof’s theorem, the image of K, (¢,) on the w-plane
is contained in a sector K,(®)) (@1=¢,+3, §>0), with w=0 as its
vertex and is contained in D, where §—0 with p;—0.

By
e Coh »

«®

we map 4=K, () on a half-disc 4*: lv] <p*, Sv>0 and K=K, () on

”

a half-disc K*: |¢|<pf”, J¢>>0, then K* is mapped on a domain
V< 4*. Let v=iaeV (a_>0) and Gy (v,ia), G (v,ia) be the Green’s
function of V and 4* respectively, then G (v, ia) < G * (v, ia) < const.|v|.
Since V is mapped on K*, we have as before, Gy (v, ia) = const.|¢|,
teK, (@), so that |¢|<const.|v|, or const.|z['""*<|w|, z2eK., ()

<€=L>. If we interchange z and w, we have |w| < const. |z]'"%, so
Po

that
0<lAlz['" < (w(2)| < Blz|'™%,  ze Ky (9, (2)

where A>>0, B>>0 are constants. By (2), if we apply the similar con-
sideration as Lemma 2 on w=w(z) and z=2z(w), we have

0 Alz]" < |w'(2)] < Blz|™,  zeK. (), 3)

with suitable constants A>0, B>0.

REMARK. Hence a segment z=7r¢* (0<r=<p,, 0<<0 <) is mapped
on a rectifiable curve on the w-plane and vice versa a segment on the
w-plane through w=0 is mapped on a rectifiable curve on the z-plane.
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5. Kellogg’s Theorem

1. Let D be a domain on the w=£&+iy-plane, which is bounded
by a Jordan curve C, which has continuous tangents and is represented
by w=w(s)=£&(s)+in(s), where s is the arc length of C, measured from
a fixed point, such that

lw'(s+h)—w'(s)| < klh|?, «=const., 0<a<1. (1)

We map D conformally on |z|<{1 by w=f(z), then Kellogg” proved
the following theorem.
THEOREM 7. f'(2) is continuous and <=0 in |2| <1 and

| (&)~ f'(e®)| < k)| B]*,  wky=const. .

Warschawski® gave a simple proof of this theorem. We shall
simplify his proof a little by means of Green’s functions.

Proor. Let z=e, w,=f(2,). By a suitable linear transformation,
we assume that w,=0 and C touches the 5-axis and the inner normal
of C at w=0 coincides with the positive &-axis. Then we can prove
easily that in a neighbourhood of w=0, C can be expressed in the
form: é=&n) (|9]1<8), such that

|l < Kln|*®,  K=const. . (1)

We can prove that K and &, can be chosen independent of w,. Now
we consider

w=&*+in*=p(§)=¢—¢P (B=a/2). (2)
Then we can prove easily that ﬂfg;?LCQ)_ >0, if |41 —:1))—,
17 62 .

RE;>0(i=1, 2), so that @(¢) is regular and univalent in a half-disc:
61= -1, ME>0. I t=re”, then
E*=ypcos—»r"Pcos(1+R)8,

n*=ysinf@—r"*sin(1+8)0.

7) O.D. Kellogg: Harmonic functions and Green’s integrals. Trans. Amer. Math.
Soc. 13 (1912).
8) S. Warschawski: Uber einen Satz von O.D. Kellogg. Gottinger Nachr, 1932.
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be a circle and I'* be its image on the

w-plane. If ¢ tends to &£=0 on I°, then since —;—cos 6=vr,
£ =3r—** cos (1+ B)9~r*# | cos (1+B) -;— y A7 |~r,
so that
£* > const. |n*|1*P. (3)

Hence by (1), £>>¢ for the same 7, so that the part of /'*, which
lies in a small neighbourhood of w=0 belongs to D. Hence if ¢

(0<a<-L-) is small, then the image K* of the circle K: |t—al=a

and hence the image 4* of the disc 4: |t —a| < a is contained in D.
It can be easily proved that @ can be chosen independently of wj,.
Let w*=@(@)>0 and G/¢,a), G»+(w,w*) be the Green’s function of
4 and 4* respectively, then

G +(w, w*)=G,(¢, a)=log — 2.
[¢—al

Let U* be the sector: |w| << py(py< w*), largwl§¢o<—7zr—, which is

contained in 4% and U be its image on the ¢-plane, then for any ¢eU,

log—% _ >const.|¢].
& —al

Since |¢|~|w]|, we have

G« (w, w*) = const. |w], weU*. 4)
Let Gp(w, w*):be the Green’s function of D, then since 4*<D,
Gp(w, w) = G +(w, w) = const. |w|, weU*. (5)

If w*=f(z*), then

3%,
Gp(w, w*)= log _1;_},3_ .

_z*

(6)

As Warschawski proved, the image of U* in |z| <1 contains a sector



The boundary distortion on conformal mapping 259

Vi lz—2z| Z p1y {arg< z"j»—) < ¢1=@y—e,
{ 0

where e— 0 with p;—0 and p;, @, are independent of w,. If zeV,
then

log —1;_2*% < const. | z2—z],
so that by (6), (5),
lwl=|fiz)| < K|z—z], K=const, zeV.
Hence by Lemma 2, if z,=e,
| f(re’®)| < K;, 1—p<7<1, K,=const., (7

where K and K, are independent of z,. From (7), by the maximum
‘principle, we have

) <K, in [|z|<T1. (8)

This being established, we can complete the proof as Warschawski.

2. As an application of Kellogg’s theorem, we shall prove the
following theorem. Let D be a domain on the w-plane, which is
bounded by a Jordan curve C, which passes through w=0. A part of
C, which lies in a small neighbourhood of w=0 is divided by w=0
into two parts C;, C,. We assume that C; (=1, 2) are analytic curves
and make an inner angle an (0<a<2) at w=0. We map D con-
formally on 3z >0 by w=w(z), w(0)=0. Then

THEOREM 8. If p>0 is small,

0<Alz|* < |lw(z)| < Blz|®,
0<Alz"' < |w(2)| < Blz|*™1, 0<|z|<Zp, JI2=0,

where A>0 B >0 are constants.

Proor. We assume that C; touches the positive real axis. By
1
¢=we, we map D on a domain 4 on the ¢-plane and let C; (=1, 2)

become I';, then I'; touches the real axis at ¢=0.

Now on C,, w=w(s), where o is the arc length, measured from
w=0, and let I';: ¢=¢&(s), where s is the arc length, measured from
¢=0. From
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1
d¢= A e taw , we have ds= 1 lwl* 'do.
a «

Hence, if we put w(e)=7(c)e®*“’, then

g(s)=e'ls "V (o),
so that
18/ (s1)—¢'(s2)| < const. |o1—a] . (1)

1 (7 1 4 1 o 1 3 -1 1
s= —g lw|® da~~—~j¢r“ do~a o ~|w|e~|t].
04 0 (04 0

From w=¢”, we have do=a|¢|* 'ds~ as* 'ds, so that

|oy—a,| < const. jsfs‘”‘lds | < const. | s¢—s2| . (2)

S1

If a=1, then [sf—s§|<|s;—s,] and if 0<a<{1l, then |[sf—s7|
|s;—sz|®, so that in any case, |o;—o, < const. |s;—s;}?, (0<CB8< 1), hence
by (1), (2),

1§'(s)—¢(s2)| < comst. | s,—s:#, 0<<B<1. (3)
We map 4 conformally on 3z2_>0 by ¢&=¢(z), £(0)=0, then by (3) and
Kellogg’s theorem,

o<A1gi£f—) <B, 0< A< ¢ <B,, 0< 2| <p, 32=0,

where A; >0, B,>0 are constants.
S lw | &
ince ' | = =

W W _ gt
z z |

dz
0 AlzI"< lw| <BlzI", AIzI“'1£;~Z:U

, we have

_dg
d

<Bjz|*7, 0<l|z| =Zp, J2=0,
(4)

where A >0, B_>0 are constants.

THEOREM 9. Let D be a domain on the w-plane, which is bounded
by a rectifiable Jordan curve C. We map D conformally on |z| <1 by
w=w(z). Then for almost all ¢ on |z| =1,

lim A=W i w(a)=y, 0<|y|<oo,

z+et® z—e" ) ze'
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uniformly, when z— e from the inside of a Stolz domain, whose vertex
is at e,
Proor. By F. and M. Riesz’s theorem?, w(e®®) is absolutely con-
’ i0
tinuous on |z|=1 and w'(¢®)= ,1,0 ow(e”)
e’
on |z|=1 and is integrable, so that almost everywhere on |z|=1,

|w/(e®)| < oo. Let a measurable set ¢ on |z|=1 be mapped on a set
E on C, then

exists almost everywhere

ME = j Jw(e)lde, (1)

where mFE is the measure of E. Since by F. and M. Riesz’s theorem,
a set of positive measure on |z|=1 corresponds to a set of positive
measure on C, we see from (1), that «'(¢®)5=0 almost everywhere, so
that 0<|w'(e?)| <« almost everywhere on |z|=1.

For such ¢, by Fatou’s theorem!?,

0

z'pei<pwl<z)_____ L'a 0

w(pe’®)— 96 w(e®)=iew' (¢”)

uniformly, when z=pe®—¢?* from the inside of a Stolz domain, whose
vertex is at ¢*, so that

limw/(@=w'(e), 0< |w/(e)| < 2)

and hence

lim -2 =) _ ()
z»et? z—é

3)

uniformly, when z—¢® from the inside of a Stolz domain, whose vertex
is at e®.

Mathematical Institute, Tokyo University.

9) F. and M. Riesz: Uber die Randwerte einer analytischen Funktion. 4. congr.
scand. math. & Stockholm (1916).

10) P. Fatou: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906).
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