
Journal of th $e$ Mathematical Society of Japan Vol. 6, No. 2, September, 1954

On some conjectures concerning
pseudo-convex domains.
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The famous problem of E. E. Levi [24], asking whether every
pseudo.convex domain is a domain of regularity or not, still awaits a
complete solution, though there are a number of deep results concerning
this problem.1) For this, the theory of pluri-subharmonic functions due
to P. Lelong $([20]-[23])$ , K. Oka ([26]), H. J. Bremermann ([10]) and
G. O. Thorin ([35]) seems to give a powerful method. This theory
allows us in particular to restate the problem of Levi in several forms,
in which it may probably be easier to resolve.

In the first and the second chapters of the present paper, we shall
give, for later use, a brief sketch of definitions and the main results
of the theory of pluri-subharmonic functions and of the domains convex
with respect to these functions, respectively. Then, we shall show in
the third chapter, that there exist some intimate relations among the
conjectures concerning the pseudo.convex domains and the pluri.sub.
harmonic functions, as considered by several authors.2)

For the sake of simplicity, we treat only the domains univalent
and finite (not necessarily bounded) in the space $\mathfrak{C}^{n}$ of $n$ complex
variables $(z_{1},\cdots, z_{n})$ . A point or a vector $(z_{1},\cdots, z_{n})$ in our space $\mathfrak{C}^{n}$ is
sometimes denoted merely by $(z_{j})$ or by $z$ .

1) After completion of this manuscript, the author has been told that Prof. K. Oka
solved the problem of Levi affirmatively in its original form. His results will soon appear
in his paper [28]. However, it may not be meaningless to consider the relations of this
problem to other famous conjectures, and after Oka’s results, we obtain some results,
seems to be new, as $4d$ and $4e$ in Chapter III.

2) For example, $Behnke\cdot Stein[5]$ , H. Cartan [13], [14], and Thullen [38].
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I. Pluri-subharmonic functions.
\S 1. Definitions of pluri-subharmonic functions.

DEFINITION 1. A real-valued function $V(z)$ in a domain $D$ of our
space $\mathfrak{C}^{n}$ is called $pluri\cdot subharmonic$ $($briefly $p$. $s$ . $h.)^{3)}$ if the following
three conditions $(P1)-(P3)$ hold:

(P1) $-\infty\leq-V<\infty$ , and $ V\not\equiv-\infty$ .
(P2) $V$ is upper semi-continuous in $D$ .
(P3) On any analytic plane of real dimension 2, $z_{j}=z_{j}^{0}+a_{j}t$ ,

$(j=1,\cdots, n)$ where $t$ is a complex parameter and $(a_{j})\neq(0)$ , the function
$V(z^{0}+a\cdot t)$ is a subharmonic function of $t$ or the constant $-\infty$ .

The condition (P3) is clearly equivalent to the following (P4) and
(P5):

(P4) If we fix for any $i$ , the $(n-1)$ variables $z_{k}=z_{k}^{0}(k\neq j)$ , the
function

$V(z_{1}^{0},\cdots, z_{j-1}^{0}, z_{j}, z_{j+1}^{0},\cdots, z_{n}^{0})$

is a subharmonic function of $z_{j}$ or the constant $-\infty$ .
(P5) After changing the coordinates by a unitary transformation,

the same properties still hold.
P. Lelong ([201) proved that under the conditions (P1) and (P4),

the condition (P2) may be replaced by a weaker condition:
(P2) $V$ is bounded from above in any compact subset of $D$ .
But the proof being somewhat complicated, we adopt a priori the

condition (P2) in the definition.
If a polycylinder $S:|z_{j}-z_{j}^{0}|\leqq r_{j}$ is contained in $D$, we can inte $\cdot$

grate $V$ on $S$ or on its edge $C:|z_{j}-z_{j}^{0}|=r_{j}$ , provided that we admit
the value $-\infty$ for the integral, and from (P4) we have

(P4’) $V(z^{0})\leqq L(V, z^{0}, r)\equiv(2_{\pi})^{n}1\int_{0}^{2\kappa}\ldots\int_{0}^{2\iota}V(z_{j}^{0}+r_{j}e^{i\theta}j)d\theta_{1}\cdots d\theta_{n}$ ,

(P4”) $ V(z^{0})\leqq A(V, z^{0}, r)\equiv_{\pi^{n}r_{1}^{2}\cdots r^{2_{l}},}^{1}\int\cdots\int_{S}V(z_{j})d\omega$ ,

where $ d\omega$ is the volume element of $S$. Conversely, under (P1) and

3) This name is due to Lelong. Oka and Bremermann called it “ $pseudo\cdot convex$

function ‘’.
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(P2), the condition (P4) may be replaced by (P4’) or $(P4^{r/})$ . Also we
have the following, integrating (P4‘) over $\sum r_{J}^{2}=r^{2}$ :

PROPOSITION 1. A $p$ . $s.h$ . function is subharmonic with respect to
$2n$ real variables $x_{1},\cdots,$ $x_{n},$ $y_{1},\cdots,y_{n}$ where we put $z_{j}=x_{j}+iy_{j}$ .

$CoROLLARY$ . For a $p$ . $s$ . $h$ . function $V(z)$ , the set $\{z|V(z)=-\infty\}$

is of outer capacity $0$ for the Newton potential in the 2n.dimensional
real space. (H. Cartan [12]).

PROPOSITION 2. If $f(z)\mp 0$ is holomorphic and $|f(z)|$ is one-valued
in $D,$ $\log|f(z)|$ is p. s. $h$ . in $D$ . A positive constant multiple of p. s. $h.$ ,
the sum and the maximum of a finite number of $p$ . $s$ . $h$ . functions are
also $p$ . $s$ . $h$ . The limit of a decreasing sequence of $p$ . $s.h$ . function is
$p$ . $s$ . $h$ . or the constant $-\infty$ .

PROPOSITION 3. If a family of $p$ . $s$ . $h$ . functions $\{V_{\nu}\}_{\nu}$ is uniformly
bounded from above in every compact subset of $D$, and $V\equiv\sup_{\nu}V_{\nu}$ is
continuous in $D$ , then $V$ itself is also $p$ . $s$ . $h$ . in $D$ .

PROPOSITION 4. Let $p$ be a preassigned positive integer or $+\infty$ .
For any compact subset of $D$, a $p$ . s. h. function $V(z)$ is the limit of a
decreasing sequence of $p$ . $s$ . $h$ . functions continuously $p\cdot times$ differenti-
able ( $i$ . $e.$ , of the differentiable class $C^{p}$).

In fact, when $ p<\infty$ , this is proved similarly as the case of sub.
harmonic functions, repeating the process of integral mean (T. Rad\’o
[30], p. 11). If $ p=\infty$ , this can be provee by the method of regularisa.
tion by functions converging to “ Dirac’s $\delta$ “. (See Lelong [23], pp.
183-184).

DEFINITION 2. Let $D\subset B$ and let $U$ and $V$ be p. s. $h$ . in $D$ and
$B$ respectively. If $U(z)\equiv V(z)$ in $D,$ $V$ is called a $p$ . $s$ . $h$.-continuation
of $U$ into $B$. Of course, the $p$ . $s$ . $h$ . continuation is not unique in
general.

\S 2. Condition of Levi-Krzoska.

When the function $V$ has continuous derivatives up to the second
order, the condition (P3) is equivalent to the following:

(P3‘) The Hermitian form $\sum^{n}$ $\underline{\partial}^{2}V--\xi_{j}\overline{\xi}_{k}$ is positive semi.definite.
$j.k=1\partial Z_{j}\partial\overline{z}_{k}$

However, when the function $V$ is not differentiable in the ordinary
sense, we can replace the derivatives in the sense of the “ distribution”
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of L. Schwartz ([34]) and (P3) is always equivalent to the condition:
$(P3^{\prime\prime})$ For every pair of complex constants $(\xi_{1},\cdots, \xi_{n})$ , the Hermitian

from $\sum_{j.k\leftarrow 1}^{n}\frac{\partial^{2}V}{\partial z_{j}\partial\overline{z}_{k}}\xi_{j}\overline{\xi}_{k}$ given by the derivatives as distributions, is

always a non.negative measure.
DEFINITION 3. We shall say that a $p$ . $s$ . $h$ . function $V$ is strictly

$pluri\cdot subharmonic$ (briefly $s.p$. $s$ . $h.$ ) if the Hermitian form given in
$(P3^{\prime\prime})$ is a strictly positive measure unless $(\xi_{j})=(0)$ . When $V$ is of
class $C^{2}$ , this condition is equivalent to the fact the Hermitian form in
(P3‘) is strictly positive.definite.

Adding $e\sum_{j=1}^{n}|z_{j}|^{2}$ to $V(z)$ and letting $e\rightarrow+O$, we have, from Pro-

position 4,
PROPOSITION 4 bis. In any compact subset of $D$ , a $p$ . $s$. $h$ . function

$V$ is the limit of a decreasing sequence of $s$ . $p$ . $s$ . $h$ . functions of class
$C^{\infty}$ .

PROPOSITION 5. By an analytic transformation, a $p$ . $s.h$ . function
is mapped into a $p$ . $s$ . $h$ . function. Also on a complex-analytic variety
$z_{j}=\varphi j(t_{1},\cdots, t_{q})(j=1,\cdots, n)$ the function $V(\varphi(t))$ is $p$ . $s$ . $h$ . with respect to
the variables $t_{1},\cdots,$ $t_{q}$ or the constant $-\infty$ .

DEFINITION 4. A real-valued function $\Phi(z)$ of class $C^{3}$ is said to
satisfy the condition of Levi-Krzoska at a point $\prime z^{0}$ if for any pair of
complex numbers $\xi_{1},\cdots,$ $\xi_{n}$ of which at least one is not zero, satisfying

$\sum_{j=1}^{n}(\frac{\partial\Phi}{\partial Z_{j}})_{r_{z^{o}})}\xi_{j}=0$ ,

we have

$\sum_{j,k=1}^{n}(\frac{\partial^{2}\Phi}{\partial z_{j}\partial\overline{z}_{k}})_{(z^{0})}\xi_{j}\overline{\xi}_{k}>0^{4)}$

In case of $n=2$ , this condition is equivalent to the condition of
Levi ([24]):

$\mathfrak{L}(\Phi)\equiv-\left|\begin{array}{lll}0 & \partial\Phi/\partial z_{l} & \partial\Phi/\partial Z_{2}\\\partial\Phi/\partial\overline{z}_{1} & \partial^{2}\Phi/\partial Z_{1}\partial\overline{Z}_{1} & \partial^{2}\Phi/\partial z_{2}\partial\overline{z}_{1}\\\partial\Phi/\partial\overline{z}_{2} & \partial^{2}\Phi/\partial z_{1}\partial\overline{z}_{2} & \partial^{2}\Phi/\partial Z_{2}\partial\overline{Z}_{2}\end{array}\right|>0$ .

4) J. Krzoska [18]. See also S. Bochner [71. pp. 228-231. For the condition of Levi,
see also Behnke-Thullen [6], p. 29.



On some conjectures concerning pseudo.convex domains. 181

PROPOSITION 6. A function $\Phi(z)$ of class $C^{3}$ is written into the
from $\Phi=U\cdot V$ in a neighborhood $N$ of $z^{0}$ , where $U$ and $V$ satisfy the
conditions that they are both of class $C^{3},$ $V$ is $p$ . $s$ . $h.,$ $0<U(<\infty)$ in
$N$ and $V(z^{0})=0$, if and only if $\Phi(z^{0})=0$ and $\Phi$ satisfies the condition of
Levi-Krzoska at $z^{05)}$

$CoROLLARY$ . If a function $\Phi(z)$ satisfies the condition of Levi.
Krzoska at $z^{0}$, there exists a complex-analytic variety of $(n-1)\cdot dimen-$

sion $\mathfrak{V}$ , which we may select as a quadratic veriety, passing the point
$z^{0}$ such that in a neighborhood of $z^{0}$, $\mathfrak{V}$ lies in the part $\{\Phi>\Phi(z^{0})\}$

except the point $z^{0}$.

\S 3. Hartogs functions.

According to M. Brelot [9], a function $V(z)$ in a plane region is
said to be quasi-subharmonic if there exists a subharmonic function
$U(z)$ such that $V\leqq U$ and equality holds except on a set of logarithmic
outer capacity $0$ .

DEFINITION 5. A function $V(z)$ in a domain $D$ of our space $\mathfrak{C}^{n}$ is
called quasi-pluri-subharmonic (briefly $q.p$ . $s$ . $h.$ ) if it satisfies the con.
ditions (P1), (P2‘) in \S 1 and (P3 bis) obtained by replacing the word
“ subharmonic” by “ quasi.subharmonic” in (P3).

PROPOSITION 2 bis. A $p$ . $s$ . $h$ . function is evidently $q$ . $p$ . $s$ . $h$ . The
properties obtained by replacing the word “

$p$ . $s$ . $h$ . “ in Proposition 2
by “

$q$ . $p$ . $s$ . $h$ . “ still hold. Also the supremum of a family of $q$ . $p$ . $s$ . $h$ .
functions uniformly bounded from above in any compact subset of $D$

is also $q.p$ . $s.h$ . in $D$ .
PROPOSITION 7. If $V$ is $q.p$ . $s$ . $h$ . in $D$ , the function

$V^{*}(z)\equiv\lim_{\zeta\rightarrow}\sup_{z}V(\zeta)$

is $p.s$ . $h$ . in $D^{6)}$

$CoROLLARY$ . (Generalization of Proposition 3). If a family of
$p$ . $s$ . $h$ . functions $\{V_{\nu}\}_{\nu}$ is uniformly bounded from above in any compact
subset of $D$, the function

$V\equiv\sup_{\nu}*V_{\nu}\equiv(\sup_{\nu}V_{\nu})^{*}$

5) Lelong [23], p. 190. For $n=2$ , Oka [26], p. 48.
6) Lelong [20], p. 334. Another proof is given in Bremermann [10], p. 29, but the

latter proof seems to be somewhat incomplete, because it is not evident $a$ $pr\dot{v}ori$ that
” the set $\{z|V(z)=V^{*}(z)\}$ lies dense in $D$ ”.
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is p. s. $h$ . in $D$. Especially if $\{\nu\}=\{1,2,\cdots\}$ , we have

$V\equiv\lim_{\nu\rightarrow}\sup_{\infty}*V_{\nu}\equiv(\lim_{\nu\rightarrow}\sup_{\infty}V_{\nu})^{*}=\lim_{l\rightarrow\infty}(\sup_{v\geq l}*V_{\nu})$

and the function $V$ is $p$ . $s$ . $h.$ . unless $ V\equiv-\infty$ .
Now, following S. Bochner and W. T. Martin ([8], Chap. VII), we

introduce the notion of Hartogs functions as follows :
DEFINITION 6. Take a family of functions $\mathfrak{F}$ in a domain $D$, and

consider the following conditions:
(HO) If a function $f(z)\not\equiv O$ is one-valued and holomorphic in $D$ ,

then $\log|f(z)|\in \mathfrak{F}$ .
(H1) If $\varphi,$

$\psi\in \mathfrak{F}$ and $c$ is a non.negative constant, we have $\varphi+\psi\in \mathfrak{F}$

and $c\varphi\in \mathfrak{F}$ .
(H2) If $\{\varphi_{m}\}_{m}\in \mathfrak{F}$ is a decreasing sequence, we have,

$\varphi\equiv\lim_{m\rightarrow\infty}\varphi_{m}\in \mathfrak{F}$ , unless $\varphi\equiv-\infty$ .
(H3) If $\{\varphi_{\nu}\}_{v}$ is a subfamily of $\circ \mathfrak{F}$ uniformly bounded from above

in any compact subset of $D$ , we have $\sup_{\nu}\varphi_{v}\equiv\varphi\in \mathfrak{F}$ .
(H4) $\varphi\in \mathfrak{F}$ implies $\varphi^{*}\in \mathfrak{F}$ .
(H5) If $\{\varphi_{\nu}\}_{\nu}$ is a subfamily of $\mathfrak{F}$ uniformly bounded from above

in any compact subset of $D$ , we have $\sup_{\nu}*\varphi_{\nu}\equiv\varphi\in \mathfrak{F}$ .
Then, a function belonging to any family $\mathfrak{F}$ satisfying the condi-

tions (HO), (H1), (H2), (H3) and (H4) or (HO), (H1), (H2) and (H5) is
called a Hartogs function or a modified Hartogs function, respectively,
Evidently the former notion is wider than the latter.

The above propositions show that a Hartogs function or a modified
Hartogs function is $q.p$ . $s$ . $h$ . or $p$ . $s$ . $h.$ , respectively. Are the converses
of these facts true ? This seems to be one of the most important pro-
blems in the theory of pluri-subharmonic functions; we shall discuss it
in III.

The application of the Riesz decomposition (Lelong [21]) of a $p$ . $s$ . $h$ .
function as an ordinary subharmonic function (cf. Proposition 1) seems
to be so limited for our present theory that we shall omit here.

7) It seems to me that in the recent papers, they are using the word “ Hartogs

functions ” as the synonym of the ” pluri $\cdot$ subharmonic functions”, but here, we must
distinguish these two terminologies.
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II. Domains convex with respect to p.s.h. functions.

\S 4. P-convex domains.

Hereafter the notation $A((B$ mean that $\overline{A}$, the closure of $A$ , is
contained in the open kernel of $B$. We shall say that a domain $D$ is
the limit of an exhaustion of domains $D_{m}$ if $D_{m}$ are all bounded,
$D_{m}((D_{m+1}((D$ and $\cup D_{m}=D$ .

$m$

As an analogy of the regular-convexity,8) we shall introduce the
following notion due to Lelong [231:

DEFINITION 7. A domain $D$ in our space $\mathfrak{C}^{n}$ is called convex with
respect to pluri-subharmonic functions (briefly P.convex), if for every
compact subset $\Delta$ of $D$ there exist two sets $\Delta^{\prime}$ and $G$ such that
$\Delta\subset\Delta^{\prime}((D$ and $G$ is dense in $D-\Delta^{\prime}$ , and that for every point $p$ of $G$

there exists a function $V_{p}p$ . $s$ . $h$ . in $D$ satisfying $V_{p}(p)>\sup_{z\epsilon\Delta}V_{p}(z)$ .
We shall denote by $(C_{0})$ the family of all P-convex domains.

From the regular.convexity of a domain of regularity,8) it is evident
that every domain of regularity is always P-convex. The converse of
this fact is a problem which we shall discuss in III. Also, the image
of a P-convex domain by an analytic transformation and the intersec-
tion of a finite number of P.convex domains are again P-convex.

DEFINITION 8. A domain $D$ is locally P-convex or Cartan pseudo-
convex9) if for every boundary-point $p$ of $D$ , there exists a hypersphere
$B$ whose center is at $p$ , such that $D\cap B$ is P-convex or a domain of
regularity, respectively. We denote by $(C_{0}^{l})$ the family of all locally
P-convex domains. It is evident that a Cartan pseudo-convex domain
is locally P.convex.

DEFINITION 9. A domain $D$ is said to belong to the class $(\Gamma_{0})$ if
there exists a function $Vp.s.h$ . in $D$ such that, for every constant
$\alpha$ , the set $\{V<\alpha\}$ is bounded and $((D$.

DEFINITION 10. Denote by $d(z)$ or $d^{\prime}(z)$ the minimal distance from
a point $z$ to the boundary of a domain $D$, taking the distance of two

points $(\zeta^{(1)})$ and $(\zeta^{(2)})$ as $\sqrt{\sum^{n}|\zeta_{j}^{(1)}-\zeta_{j^{2)}}^{(}|^{2}}j=1$ or $\max_{1\leqq j\leq n}|\zeta_{j}^{(1)}-\zeta_{j}^{(2)}|$ , respective-

8) Cartan.Thullen [151. See also, H. Cartan [11] and Behnke-Stein [4].
9) The latter may be called “ domain of locally-regularity ”, but instead of this, the

terminology ”Cartan pseudo-convex” is ordinarily used.
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ly. Also for a unit vector $a=(a_{1},\cdots, a_{n})(i. e.,\sum_{j=1}^{n}|a_{j}|^{2}=1)$ , the minimal

distance from $z$ to the boundary of $D$ along an analytic plane parallel
to $z_{j}=a_{j}\cdot t$, where $t$ is a complex parameter, is denoted by $d_{a}(z)$ . A
domain $D$ is said to belong to the class (I’), $(l^{7/})$ or $(l_{1}^{7})$ if the function
$-\log d(z),$ $-\log d^{\prime}(z)$ or $-\log d_{a}(z)$ for every unit.vector a are $p$ . $s.h$ .
in $D$ , respectively. Also we write De $(I_{*}^{7})$ or $D\in(I_{*}^{v^{\prime}})$ if $-\log d(z)$ or
$-\log d^{\prime}(z)$ is $p$ . $s$ . $h$ . in a boundary-strip $\{z|d(z)<\in\}$ of $D$ , respectively.

PROPOSITION 8. We have the relations of inclusion as follows:
$\subset(J^{v})\subset(I_{*}^{v})_{\sim}^{\prime}$

$(I_{1}^{7})$ $(J_{0})\subset(C_{0})\subset(C_{0}^{l})$ .
$\subset(I^{\tau\prime})\subset(\Gamma_{*}^{\prime})\subset$

PROOF. $(I_{1}^{\gamma})\subset(\Gamma),$ $(I^{v/})$ follows from Proposition 3, for $d(z)=\inf_{a}d_{a}(z)$

and $d^{\prime}(z)=\inf_{}c_{a}\cdot d_{a}(z),$ $(c_{a}>0)$ . $(I_{*}),$ $(I_{*}^{\prime}’)\subset(I_{0}^{\gamma})$ is proved by putting

$V(z)=\max[-\log\frac{e}{2\Gamma n}$ , $-\log d(z)$ (or $d^{\prime}(z)$ ), $\sum_{j- 1}^{n}|z_{j}|^{2}]^{1.0)}$ The remaining

relations are obvious from their definitions.
$CoROLLARY$. When $n=1$ , every domain belongs to (I’), and then

is P.convex.
DEFINITION 11. A domain $D$ is said to belong to the class $(C_{1}^{\alpha})$ ,

if it is a componsnt of the set $\{V<0\}$ where $V$ is a $p$ . $s$ . $h$ . function
in a domain $B$ such that $D((B$. Especially, when $V$ is $s.p$ . $s.h$ . and
of class $C^{\infty}$ in $B$ , we write $D\in(C_{1}^{\gamma})$ . A domain which is the limit of
an exhaustion of domains of class $(C_{I}^{\alpha})$ or $(C_{1}^{\gamma})$ is denoted by $D\in(C_{1})$

or $D\in(C_{1^{*}})$ , respectively.
By Proposition 4 bis, we have
PR0POSiTION 9. $(C_{1})=(C_{1^{*}})$ holds.
Also by a similar method as the approximation of a domain of

regularity by polyhedral domainsl1), we have:
PROPOSITION 10. $(C_{0})\subset(C_{1})$ holds.

\S 5. Oka pseudo-convex domains.

DEFINITION 12. Let $n$ functions $\varphi_{j}(u, t)$ be continuous on $\Delta$ \ddagger $|u|$

$\leqq 1,0\leqq t\leqq 1$ , holomorphic in $|u|<1$ when the parameter $t$ is fixed

10) When $D$ is bounded, that last term is unnecessary.
11) Weil [39]. See also $Behnke\cdot Stein[4]$ , and Lelong [23].
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in $[0,1]$ , and assume that $\partial\varphi_{j}/\partial u$ are not all zero at any point on $\Delta$ .
Then the set $Q(t)\equiv\{z_{j}=\varphi_{j}(u, t)||u|\leqq 1\}$ is called an analytic disc de-
pending on a parameter $t$, and $B(t)\equiv\{z_{j}=\varphi_{j}(u, t)||u|=1\}$ is called its
shell.

DEFINITION 13. A domain $D$ in our space $\mathfrak{C}^{n}$ is called $Oka$ pseudo-
convex if the generalized continuity theorem ( $e$ . $g.$ , Behnke-Sommer [2])

in the form of an analytic disc holds on the boundary of $D$ . More
precisely, for every analytic disc depending on a parameter $t$ such that
$\overline{Q(t)}\subset D(0<t)$ and $B(O)\subset D$, we have $Q(O)\subset D$ . We denote by $(C_{2})$ the
family of all the Oka pseudo.convex domains. (Oka [26]).

Since the set $\cup$ $[B(t)]\cup[(Q(1)]$ is compact, we have easily that
$0gl\ovalbox{\tt\small REJECT} I$

the limit of an exhaustion of Oka pseudo.convex domains is again Oka
pseudo.convex. Now, by the maximum principle on subharmonic func.
tions ( $e$ . $g.$ , Rad\’o [30], p. 6), we have

PROPOSITION 11. $(C_{1}^{\gamma})\subset(C_{2})$ and then $(C_{1})\subset(C_{2})$ hold. On the other
hand, H. J. Bremermann $[10]^{12)}$ proved the following important relation,
whose proof is omitted here:

PROPOSITION 12. $(C_{2})\subset(I_{1}^{7})$ holds.
Therefore, summing up the Propositions 8, 9, 10, 11 and 12, we

obtain:
THEOREM 1. The ten classes of domains $(C_{0}),$ $(C_{1}),$ $(C_{1}^{*}),$ $(C_{2}),$ $(\Gamma^{0})$ ,

$(\Gamma),$ $(I^{7/}),$ $(\Gamma_{*}),$ $(\Gamma_{*}^{\prime})$ and $(\Gamma_{1})$ are all identical with one another.
COROLLARY 1. A domain $D$ is P-convex if and only if it is the

limit of an exhaustion of P-convex domains. In reality, we can select
an exhaustion belonging to the class $(C_{1}^{\gamma})$ .

COROLLARY 2. An (unbounded) domain $D$ is Pconvex $lf$ and only
if for every hypersphere $B,$ $B\cap D$ is always P-convex.

In fact, the necessity is trivial because a hypersphere is $P\cdot con\dot{v}ex$ .
Conversely, taking $B$ sufficiently large, the last condition implies that
$-\log d(z)$ is $p$ . $s$ . $h$ . at every point $z$ of $D$ , which implies $D\in(\Gamma)$ .

Also from $(C_{0})=(I^{7})$ , we have (Lelong [231, p. 203):

THEOREM 2 (Continuation theorem). If two domain $D_{1},$ $D_{2}$ are
P-convex and $ D_{1}\cap D_{2}\neq\emptyset$ , but putting $G_{i}\equiv D_{i}-D_{1}\cap D_{2}(i=1,2),\overline{G_{1}}\cap\overline{G_{2}}$

$=\emptyset$ in the finite space, then $D_{1}\cup D_{2}$ is also P-convex.
$CoROLLARY$ . For two parallel hyperplanes $A,$ $B$ in $\mathfrak{C}^{n}$ we denote

12) pp. 50-54. See also Lelong [23], pp. 198-199.
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by $\mathfrak{S}(A;B)$ the one of two $half\cdot spaces$ separated by $A$ containing $B$ .
If $D\cap \mathfrak{S}(A;B)$ and $D\cap \mathfrak{S}(B;A)$ are P.convex, the domain $D$ itself is
P-convex.

Using this continuation theorem,
PROPOSITION 13. We have $(C_{0})=(C_{0})$ .
Also from $(C_{0})=(I_{1}^{7})$ we have the following two propositions:
PROPOSITION 14. When $n\geqq 3$ , a domain $D$ is $P\cdot convex$ if and

only if for every analytic hyperplane of real dimension $2n-2,$ $P$ :
$a_{1}z_{1}+\cdots+a_{n}z_{n}=c$, $c$ being a constant, each component of $P\cap D$ is
always P.convex in $\mathfrak{C}^{n-1}$ .

PROPOSITION 15. When $n\geqq 3$ , a domain $D$ is P-convex if and only
if for every analytic bi-plane of real dimension 4, $Q:z_{j}=z_{j}^{0}+au+bv$ ,
each component of $Q\cap D$ is always P-convex in $\mathfrak{C}^{2}$ .

Concerning the “ radius of regularity” we have
PROPOSITION 16. A Hartogs domain $\mathfrak{D}\equiv\{z\in D, |w|<\Phi(z)\}$ in the

space $\mathfrak{C}^{n+1}[z_{1},\cdots, z_{n}, w]$ is P-convex if and only if $D$ is P.convex in the
space $\mathfrak{C}^{n}(z)$ and $-\log\Phi(z)$ is $p$ . $s$ . $h$ . in $D$ .

In fact, if $\mathfrak{D}$ is P.convex, taking $a=(a_{1},\cdots, a_{n}, 0)$, we have $D\in(I_{1}^{7})$ ,
and taking $a=(0,\cdots, 0,1),$ $-\log\Phi(z)$ is $p$ . $s$ . $h$ . in $D$ . Conversely, putting

$\mathfrak{D}_{m}\equiv\{(z;w)|-\log d(z)<m, \log|w|<\log\Phi(z)-1/m\}$ ,

we have $\mathfrak{D}=\cup \mathfrak{D}_{m}$ and then the condition implies that $\mathfrak{D}\in(C_{1})$ .
$CoROLLARY$ . Let $Q(z)$ be the radius of regularity of a holomorphic

function $f(z_{1},\cdots, z_{n}; w)$ . Then $-\log Q(z)$ is $p$ . $s$ . $h$ .
This last statement was first given by Hartogs [16], \S 9 for $n=1^{13}$ ‘,

and has played a role of fundamental principle in the Rothstein’s
theory (W. Rothstein [31], [32]).

\S 6. Levi pseudo-convex domains.

DEFINITION 14. A domain $D$ is said to belong to the class $(C_{3}^{\alpha})$ ,
if for every boundary point $p$ of $D$, there exists a sphere $B$ with
center at $p$ and a function $\Phi_{p}$ satisfying the condition of Levi-Krzoska
in $B$ such that $D\cap B$ coincides with the set $B\cap\{\Phi_{p}<0\}$ .

DEFINITION 15. A domain $D$ is called Levi strongly pseudo-

13) See also Bochner-Martin [8], p. 143. Lelong gives a generalization of this corollary
using the continuation theorem. (Lelong [23], p. 206).
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convex14) if for every boundary point $p$ of $D$ , there exists an analytic
variety $\mathfrak{V}$ passing $p$ which lies entirely outside $D$ in some neighborhood
around $p$ , except the point $p$ itself. We denote the family of all Levi
strongly pseudo.convex domains by $(C_{4}^{\alpha})$ , and especially when the variety
$\mathfrak{V}$ can be chosen as a quadratic variety, we write $D_{\in}(C_{4}^{\beta})$ . We denote
by $(C_{3}),$ $(C_{4})$ or $(C_{4^{*}})$ the family of domains which are the limit of an
exhaustion of domains belonging to $(C_{3}^{\alpha}),$ $(C_{4}^{\alpha})$ or $(C_{4}^{\beta})$ , respectively.

From their definitions, it is evident that $(C_{1}^{\gamma})\subset(C_{3}^{\alpha})$ and $(C_{\iota}^{\beta})\subset(C_{4}^{\alpha})$ .
Also by Corollary to Proposition 6, we have $(C_{3}^{\alpha})\subset(C_{4}^{\beta})$ . Therefore the
inclusions $(C_{0})=(C_{1^{*}})\subset(C_{3})\subset(C_{4}^{*})\subset(C_{4})$ hold.

PROPOSITION 17. A domain $D$ belonging to $(C_{4}^{\beta})$ is Cartan pseudo-
convex.

In fact, for every boundary point $p$ of $D$ , there exists a sphere $B$

with center at $p$ , such that for every boundary point $q$ of $D$ in $B$ ,
there exists a quadratic function $f_{q}(z)$ vanishing at $q$ and having no
zero in $D\cap B$ . For a boundary point $q$ of $B$ in $D$ , there exists a
tangential analytic hyperplane $f_{q}(z)\equiv a_{1}z_{1}+\cdots+a_{n}z_{n}-c=0$ which does
not meet with $D\cap B$ . Hence every boundary point $q$ of $D\cap B$ possesses
a function $1/f_{q}(z)$ holomorphic in $D\cap B$ with a singularity at $q$ . There-
fore a well-known criterion of Thullen ([36], “ Satz 5 ”) tells that $D\cap B$

is a domain of regularity.
More generally, E. E. Levi [25] and J. Krzoska [18] have proved

that a Levi strongly pseudo-convex domain is of class $(C_{4}^{\beta})$ and so is
Cartan pseudo-convex. Hence using this, we have:

THEOREM 3. $(C_{4}^{\beta})=(C_{4}^{\alpha})\subset(C_{0})=(C_{3})=(C_{4})=(C_{4^{*}})$ holds.
This theorem is also proved by Lelong [23] showing the relation

$(C_{4}^{\alpha})\subset(\Gamma_{1})$ directly, without using the above results due to Levi and
Krzoska.

III. Relations among the conjectures.

\S 7. Conjectures on the pluri-subharmonic functions.

Concerning the Hartogs functions (\S 3), we shall consider:
CONJECTURE 1 (Conjecture of Bochner-Martin). The family of

14) A domain of this kind has been called by several names. In Behnke-Thullen
[6], it is called “ total pseudokonvex ”, in Bochner [7], “ $strongly\cdot convex$ “, and in Behnke-
Stein [4], [5], “ lokal analytisch konvex”.



188 S. HITOTUMATU

$p$ . $s$ . $h$ . functions will coincide with the family of modified Hartogs
functions.

CONJECTURE 1 bis. The family of $q.p$ . $s$ . $h$ . functions will coincide
with the family of Hartogs functions.

CONJECTURE 2. A $p$ . $s$ . $h$ . function $V(z)$ in $D$ will be represented
in the form

$V(z)=\lim_{m\rightarrow}\sup_{\infty}*(a_{m}\log|f_{m}(z)|)$

where all $a_{m}$ are non.negative constants and all $f_{m}(z)$ are one.valued
holomorphic functions in D. (Lelong [22], Bremermann [10]).

CONJECTURE 3. If a domain $B$ is an analytic completion of $D$,
$i$. $e.,$ $lf$ every function holomorphic in $D$ is automatically holomorphic
in $B$, then every pluri-subharmonic function in $D$ will have a $p$ . $s$ . $h.-$

continuation (cf. Definition 2) in B. (Lelong [22]).
THEOREM 4. The coniecture 2 implies the conieclure 1 and the

coniecture 1 implies the conjecture 3.
PROOF. The first part is evident from Corollary to Proposition 7.

Next, it is evident from their definitions that every modified Hartogs
function in $D$ has the continuation as a modified Hartogs function in
an arbitrary analytic completion of $D$ . Therefore the second part is
proved.

Lelong ([191) has proved that the coniecture 2 is true when $n=1$ ,
but unfortunately his method of demonstration of this fact depends
upon the Riesz decomposition of a subharmonic function into the sum
of a harmonic function ( $i$ . $e.$ , the real part of an analytic function)
and a logarithmic potential.15) Hence it is not applicable directly to
the case of $n\geqq 2$ . He also proved the following ;

PROPOSITION 18. When a $p$ . $s$ . $h$ . function $V(z)$ depends only on
$r_{j}\equiv|z_{j}|(j=1,\cdots, n)$ in a Reinhardt domain, it is a modified Hartogs
function. Moreover, $V(z)$ has the form

$\sup_{d\backslash }^{*}(c_{\nu}\log|a_{\nu}z_{1}^{m_{1}^{(\nu)}}\cdots z_{n}^{m_{n}^{(\nu)}}|)$

where $c_{\nu}$ are positive constants, and $m_{j}^{(\nu)}$ are positive integers.
A similar result holds for a $p$ . $s$ . $h$ . function depending only on

$x_{j}\equiv \mathfrak{R}z_{j}$ in a tube domain16).

$\overline{15)}$See Rad6[30], Chap. VI.
16) Lelong [20], \S VIII, and [22]. For the case of tube, see [22].
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PROPOSITION 19. The conjectures 1 and 1 bis are equivalent.
PROOF. Since the operation of upper $\cdot$ regularization $\varphi\rightarrow\varphi^{*}$ is com-

mutative with the operation (H1) and (H2), the conjecture 1 bis implies
the conjecture 1 because of Proposition 7. Conversely, as Brelot [9] has
remarked, a $q$ . $p$ . $s$ . $h$ . function $U(z)$ is represented in the form $\sup\{V(z)\}$ ,
$V(z)$ being $p$ . $s$ . $h$ . functions majorized by $U(z)$ in $D$ . Therefore the
conjecture 1 implies the conjecture 1 bis.

Next we consider the domain of regularity.
$CoN]ECTURE4a$ (Conjecture of Lelong). A P-convex domain will

be a domain of regularity, $i$. $e.$ , an $Oka$ pseudo-convex domain will be
a domain of regularity.

THEOREM 5. Conjecture 3 implies the conjecture $4a$ .
PROOF. If a domain $D$ is P.convex but is not a domain of regu-

larity, $D$ must have an analytic completion $B$ strictly greater than $D$

itself. Then every $p$ . $s$ . $h$ . function in $D$ will be continued in $B$ by the
conjecture 3. On the other hand, since $D\in(C_{0})=(I_{0}^{7})$ , there ex sts a
function $V(z)p$ . $s$ . $h$ . in $D$ which tends to $+\infty$ on every boundary point
of $D$ , and then such a function can be continued no longer, contradict-
ing the above statement.

\S 8. The problem of Levi.

Concerning this, we state four more conjectures.
$CoNJECTURE4b$ (Problem of Levi). Every Levi strongly pseudo-

convex domain will be a domain of regularity.
CONJECTURE $4c$ (Conjecture of Oka). The continuation theorem of

$Oka$ which has been proved for $n=2$ , holds still for any number of
variables.17) More precisely, if, for two parallel hyperplanes $A$ and $B$ ,
the domain $D\cap \mathfrak{S}(A;B)$ and $D\cap \mathfrak{S}(B;A)$ are both domains of re-
gularity, then the domain $D$ itself will be a domain of regularity.

$CoN]ECTURE4d$ . When $n\geqq 3$ , a domain $D$ is a domain of re-
gularity if and only if for every analytic hyperplane of real dimension

17) For $n=2$ , see Oka [26]. The author once said that this conjecture is true
(Hitotumatu [17]), but the proof was incomplete. After W. Saxer [33], H. J. Bremermann
obtained the same result. (His results was published quite recently in Math. Ann.).
Recently Oka [27] applied the theory of ideals of analytic functions to this problem.
(For the theory of ideals see for example, H. Cartan [14]).
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$2n-2,$ $P;a_{1}z_{1}+\cdots+a_{n}z_{n}=c$, every component of $P\cap D$ is always a
domain of regularity in the space $\mathfrak{C}^{n-1}$ .

$CoNJECTURE4e$ . When $n\geqq 3$ , a domain $D$ is a domain of regu.
larity $lf$ and only if for every analytic bi-plane of real dimension 4,
$Q;z_{j}=z_{j}^{0}+au+bv$ , every component of $Q\cap D$ is always a domain of
regularity in the space $\mathfrak{C}^{2}$ .

In the last two conjectures, the necessity is trivial, and the con-
jectures concern only on the sufficiency part.

THEOREM 6. The five coniectures $4a,$ $4b,$ $4c,$ $4d$ and $4e$ are
equivalent with one another.

PROOF. $4a$ implies the other four, because of Theorem 3, Corollary
to Theorem 2, Proposition 14 and Proposition 15 respectively.

$4b$ implies $4a$ . By Theorem 3, a P-convex domain is the limit of
an exhaustion consisting of Levi strongly pseudo.convex domains $D_{m}$ ,
and so $D_{m}$ is the limit of an exhaustion of domains of regularity pro-
vided that the conjecture $4b$ holds. Then using a $well\cdot known$ theorem
of Behnke-Stein [3], the domain $D$ itself is a domain of regularity.

$4c$ implies $4a$ . If conjecture $4c$ is true, every Cartan pseudo.convex
domain is a domain of regularity. Now a P.convex domain $D$ is the
limit of an exhaustion of domains $D_{m}$ belonging to $(C_{4}^{\beta})$ , and $D$ are
Cartan pseudo-convex by Proposition 17. Therefore, using $agai^{m}n$ the
theorem of Behnke-Stein, $D$ is a domain of regularity.

$4e$ implies $4a$ . Since Oka [26] has proved that the conjecture $4c$

is true for $n=2$ , the conjecture $4a$ is valid for $n=2$ . Hence if $D$ is
$P\cdot convex$ in $\mathfrak{C}^{n}$ , for every analytic bi.plane $Q,$ $D\cap Q$ being P-convex
in $\mathfrak{C}^{2}$, all $D\cap Q$ are domains of regularity, which implies that the
original domain $D$ itself is a domain of regularity provided that the
conjecture $4e$ is true.

$4d$ implies $4e$ . For $n=3,4d$ is the same thing to $4e$. Therefore
we use the induction on the number of variables $n$ , and assume that
$4e$ holds for $n-1$ . Let $Q\cap D$ be a domain of regularity for any
analytic bi.planes $Q$ . For any analytic hyperplane $P$, we can select
$Q$ contained in $P$, and then the domain $D\cap Q=(D\cap P)\cap Q$ is always
a domain of regularity in $\mathfrak{C}^{2^{\$}}$. Hence by the assumption of induction,
$D\cap P$ is a domain of regularity in $\mathfrak{C}^{n-1}$ which implies that $D$ is also
a domain of regularily in $\mathfrak{C}^{n}$ provided that the conjecture $4d$ holds.

Thus our theorem is completely proved.
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We shall write coniectute 4 for any one of the conjectures $4a-4e$ .

\S 9. Problems on the Hartogs domains.

CONJECTURE 5. A Hartogs domain $\mathfrak{D}=\{z\in D, |w|<R(z)\}$ in the
space $\mathfrak{C}^{n+1}[z;w]$ is a domain of regularity $lf$ and only if $D$ is a domain
of regularity in $\mathfrak{C}^{\prime t}[z]$ and $-\log R(z)$ is $p$ . $s$ . $h$ . in $D$.

The necessity of this statement is so easily proved, that the signi-
ficance of the conjecture is only for its sufficiency part. This conjecture
is true for $n=1$ . (Bremermann [10]).

More generally, we put the following but somewhat artifical one:
CONJECTURE 6. For a P-convex domain $D$ there exists a $p$ . $s$ . $h$ .

function $V(z)$ in $D$ such that the Hartogs domain $\mathfrak{D}\equiv\{z\in D,$ $|w|<$

$\exp(-V(z))\}$ is a domain of regularity in the space $\mathfrak{C}^{n+1}[z;w]$ .
THEOREM 7. The coniecture 6 is equivalent to the conjecture 4

and implies the conjecture 5.
PROOF. By Proposition 16, it is easy to see that the conjecture

$4a$ for $(n+1)$ variables implies the conjecture 5.
Also, if the conjecture $4a$ is true for $n$ and $n+1$ variables, the

conjecture 6 holds for any $p.s$ . $h$ . function $V(z)$ in $D$ .
Conversely, when the conjecture 6 is true, a P-convex domain $D$

is a section of a domain of regularity $\mathfrak{D}$ in the space $\mathfrak{C}^{n+1}$ by a hyper-
plane $w=0$ , and $D$ is then a domain of regularity.

THEOREM 8. The conjecture 5 is equivalent to the coniecture 2
restricted only on the domains of regularity.

PROOF. By one $\cdot of$ the important results of Cartan $\cdot$ Thullen [15],
a Hartogs domain of regularity is a convergence region of a suitably

chosen Hartogs series $\sum_{m\Leftarrow 0}^{\infty}f_{m}(z)w^{m}$ . When $D$ is a domain of regularity

and $V(z)$ is $p$ . $s$ . $h$ . in’ $D$ ,

$\mathfrak{D}\equiv\{(z;w)|z\in D, |w^{t}|<\exp(-V(z))\}$

being the convergence region of $\sum_{m=0}^{\infty}f_{m}(z)w^{m}$ provided that the $con$ .

jecture 5 holds. Therefore we have by the formula of convergence
radius,18)

18) Hartogs [16]. See also Rothstein [31].



192 S. HITOTUMATU

$V(z)=\lim_{m}\sup_{\rightarrow\infty}*(\frac{1}{m}\log|f_{m}(z)|)$ .

Conversely, let $D$ be a domain of regularity and let a function
$V(z)p$ . $s$. $h$ . in $D$ have the form

$V(z)=\lim\sup^{*}(a_{m}\log|f_{m}(z)|)$ , $(a_{m}>0)$ .

First we show that a domain $\mathfrak{G}\equiv\{z\in G,$ $|w|<\exp(-\frac{r}{s}\log|\varphi(z)|)\}$ is

a domain of regularity, where $G$ is a domain of regularity in $\mathfrak{C}^{n},$ $\varphi(z)$

is holomorphic in $G$ and $r,$ $s$ are positive integers. In fact, for a
boundary point $p$ of $\mathfrak{G}$ whose projection on $G$ lying on the boundary
of $G$ , we give a function $\chi(z)$ having the boundary of $G$ as its natural
boundary. For a boundary point $p=(z_{0}; w_{0})$ of $\mathfrak{G}$ with $|w_{0}|^{s}|\varphi(z_{0})|^{r}=1$ ,
we give a function

$1/[w^{s}\cdot\varphi(z)^{\gamma}-e^{i\theta}]$

where $e^{i\theta}\equiv w_{0}^{s}\cdot\varphi(z_{0})^{r}$ . Therefore, by the criterion of Thullen ([36]), $\mathfrak{G}$

is a domain of regularity. Next we show that if $\varphi(z)$ is holomorphic
and bounded in $G$ , the domain

$\tilde{\mathfrak{G}}\equiv\{z\in G, |w|<\exp(-a\log|\varphi(z)|)\}$ , $(a>0)$

is also a domain of regularity. For, if $|\varphi|<M$ in $G$ , we have
$\tilde{\mathfrak{G}}=\bigcap_{b}\mathfrak{G}_{b}$ ; $\mathfrak{G}_{b}\equiv\{z\in G, M^{a- b}|w|<\exp(-b\log|\varphi(z)|)\}$ ,

where $b$ runs over all the positive rational numbers greater than $a$ ,
and since $\mathfrak{G}_{b}$ are domain of regularity, so is their intersection $\tilde{\mathfrak{G}}$ .

Now a domain of regularity $D$ is the limit of an exhaustion of
domains of regularity $D_{k}$ (in reality, an exhaustion of polyhedral do-
mains) and since $V(z)=\lim_{m\rightarrow}\sup_{\infty}*(a_{m}\log|f_{m}(z) )$ we have $\exp(-V(z))$

$=\lim_{l\rightarrow\infty}[\inf_{m\geq l}\exp(-a_{m}\log|f_{m}(z)|)]_{*}^{19)}$ We have already proved that the

domains
$\mathfrak{D}_{k.m}\equiv\{zeD_{k}, |w|<\exp(-a_{m}\log|f_{m}(z)|)\}$

are all domains of regularity, since $f(z)$ is holomorphic and bounded in
$D_{k}$ . Therefore the domain

19) $\Psi_{*}(z)$ means the “ lower regularization “
$\lim\inf\Psi(\zeta)$ .

$\zeta\rightarrow z$
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$\tilde{\mathfrak{G}}_{k,l}\equiv\{z\in D_{k}, |w|<[\inf_{m\geq l}\exp(-a_{m}\log|f_{m}(z)|]_{*}\}=\bigcap_{m\geq l}\mathfrak{D}_{k.m}$

being also a domain of regularity, and choosing a suitable subsequence
$\mathfrak{D}_{j}\equiv\tilde{\mathfrak{D}}_{k_{j}.l_{j}}$ from $\{\tilde{\mathfrak{D}}_{k,l}\},$ $\mathfrak{D}$ is the limit of an exhaustion $\mathfrak{D}_{j}$ consisting
of domains of regularity. Hence $\mathfrak{D}$ itself is a domain of regularity,
which proves our assertion.

$CoROLLARY$ . If the coniecture 3 is true, the coniecture 2 holds for
the domains with univalent envelope of regularity. $2\ovalbox{\tt\small REJECT}$ )

PROOF. Since the conjecture 3 implies 5 by Theorems 6 and 7,
a function $V(z)$ p. s. h. in a domain of regularity has the form
$\lim_{m\rightarrow}\sup_{\infty}*(a_{m}\log|f_{m}|)$ . If the envelope of regularity $B$ of $D$ is univalent,

a $p.s.h$ . function in $D$ is continued into $B$ provided that the conjecture
3 is true, and so has the form as in the conjecture 2. Contracting
it to the original domain $D$ , we have our assertion.

It seems to us that this Corollary is true for an arbitrary domain,
$i$ . $e.$ , the above additional assumption for the domain to have univalent
envelope of regularity will not be necessary.

THEOREM 9. For a Reinhardt domain, the conjeclzrre $4a$ is true.21)

PROOF. If a Reinhardt domain $\mathfrak{D}$ in the space $\mathfrak{C}^{n+1}[z;w]$ is P-
convex, $\mathfrak{D}$ has the form as a Hartogs domain $\{z\in D, |w|<R(z)\}$ where
$D$ is a Reinhardt P-convex domain in $\mathfrak{C}^{n}[z]$ and $R(z)$ depends only on
$|z_{j}|$ . A $p$ . $s$ . $h$ . function $-\log R(z)$ has then the form

$\sup_{v}^{*}(a_{\nu}\log|c_{\nu}z_{1}^{m_{1}^{(v)}}\cdots z_{n}^{m_{n}^{(\nu)}}|)$

by Proposition 18. Now for $n=2$ , the conjecture $4a$ is true by the
results of Oka [26]. Then using the induction of $n$ , we may assume
that our statement has been proved for $\mathfrak{C}^{n}$ , and so $D$ is a domain of
regularity. Then an analogous process in the demonstration of Theorem
8 shows that the domain

20) The envelope of regularity means the maximum analytic completion (Regulari $\cdot$

tatshulle).
21) This was first given by Almer [1]. Thullen [37] proved that, for a Reinhardt

domain, the three properties “ $pseudo\cdot convex$ ”, $*$ domain of regularity ‘’ and “ domain of
meromorphy ” coincide with each other.
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$\mathfrak{D}=\{zeD, |w|<R(z)\equiv\exp[-(-\log R(z))]\}$

is a domain of regularity which proves our assertion for $(n+1)$ varia.
bles.

Department of Mathematics,
Saint Paul’s University, Tokyo.
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