Journal of the Mathematical Society of Japan Vol. 6, No. 2, September, 1954

A remark on Hilbert's Nullstellensatz.

By Harley FLANDERS

(Received Nov. 13, 1953)

In [\[3\]](#page-1-0) Zariski gave a proof of the Nullstellensatz based on the following lemma.

Let k and K be fields such that $K=k[x_{1},\dots, x_{n}]$. Then K is a finite extension of k.

Besides the proof of this lemma that Zariski gave, there is another proof in Artin and Tate [\[1\]](#page-1-1) and a further proof is indicated in the exercises in Bourbaki [2, p. 87, exercise 4 and p. 106, exercise 12]. It is our purpose to give still another proof of this lemma.

Our proof is based on the following well-known results: (1) If σ is an integral domain with quotient field k, if $[K:k]=n$, and if O is the set of all elements of K which are integral over o , then O is an integral domain and each element of K can be written in the form A/a with A in O and a in o . (2) The field norm $N_{K/k}$ is multiplicative. (3) If A is in O and o is integrally closed, then $N_{K/k}A$ is in o.

Here is the proof. If each x_{j} is algebraic over k, we are finished. The case in which x_{1},\dots, x_{n} are independent transcendentals is clearly impossible since the polynomial ring $k[x_{1},..., x_{n}]$ is not a field. If neither of these cases prevails, then we may assume that x_{1},\dots,x_{r} form a transcendence basis of K over k for some r with $1 \leq r \leq n$, set $F{=}k\langle x_{1}, \cdots, x_{r}\rangle,$ and have K a finite extension of F_{\cdot} with say $[K\!:\!F]{=}m.$ Let $o=k[x_{1},..., x_{r}]$ which is isomorphic to the polynomial ring $k[X_{1},\dots, X_{r}]$ over k. By (1) above, there is an element $f=f(x_{1},\dots, x_{r})$ in *o* such that for each *j*, $j=r+1,\dots, n$, $z_{j}=fx_{j}$ is integral over *o*. We select a non-constant polynomial $g(X_{1},\dots, X_{r})$ which is relatively prime to $f(X_{1},\dots, X_{r})$ (for example $g(X)=X_{1}f(X)+1$) and consider $w=1/g(x_{1},\dots, x_{r})$. Since w is in $K=k[x_{1},\dots, x_{n}]$, there is a polynomial $H(X)$ in $k[X_{1},\dots, X_{n}]$ such that $w=H(x_{1},\dots, x_{n})$. Multiplying this last relation with a sufficiently high power of f yields a relation of the form $f^{s}w=H_{1}(x_{1},\dots,x_{r}, z_{r+1},\dots, z_{n})$, where $H_{1}(X_{1},\dots, X_{r}, Z_{r+1},\dots, Z_{n})$ is in

the polynomial ring $k[X_1, \dots, Z_{n}]$. By (1) again, the set of integral elements over σ is closed under addition and multiplication, hence $H_{1}(x_{1},\dots, z_{n})$ is integral over o ; we write $f^{s}w=y$, with y integral over *o*, or equivalently, $f^{s}=yg$. We now apply the norm $N_{K/F}$ to obtain $f^{ms}=hg^{m}$, where by (3), $h=N_{K/F}(y)$ is in $o=k[x_{1},\dots, x_{r}]$. . We thus have a polynomial equation

$$
[f(X_1,\cdots,X_r)]^{ms}=h(X_1,\cdots,X_r)[g(X_1,\cdots,X_r)]^m,
$$

which is impossible since $f(X)$ and $g(X)$ are relatively prime.

The crux of the above proof is the elimination of the algebraic quantities x_{r+1},\dots, x_n by the expedient formation of the norm. We may remark that the use of a transcendence basis can easily be replaced by induction on n .

References.

- [1] E. Artin and J.T. Tate, A note on finite ring extensions, Jour. Math. Soc. Japan 3, (1951), 74-77.
- [2] N. Bourbaki, Algèbre, Chapt. 5: Corps commutatifs, Paris, 1950.
- [3] O. Zariski, A new proof of Hilbert's Nullstellensatz, Bull. A. M. S, 53 (1947), 362-368. Especially Theorem H_{3}^{n} , p. 363.

The University of California, Berkeley.