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On groups of projective collineations
in a space of K-spreads.
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§0. Introduction.

In an affine space of paths:

dxi . dx7 dxk
0.1 = + I =0,
0.1) ds? *ds ds

(a, b, C, e, i,j, k,...=1, 2’...’ N)

an affine collineation is defined as a point transformation which carries
any path into a path and preserves the affine character of the para-
meter s on it. It was first shown by L.P. Eisenhart and M. S. Knebel-
man ([5], [6]) that a necessary and sufficient condition that an infinit-
esimal point transformation

(0.2) Xi=xi+E(x)dt
be an affine collineation is that & satisfy
(03) éi, 7s k+£‘a[,§'k,a—éi, alv_‘;‘k+ S_a’ jljfzk+ {_a’ k["}a:O ’

where the comma followed by an index denotes partial differentiation
with respect to xf.

But, if we denote the Lie derivative ([9], [15]) of a geometric object
£ with respect to the infinitesimal point transformation by Xe,
then condition can be rewritten in a very simple form

(0.4) XIp==¥, ;,,+Ri ;£ =0,

where the semi-colon followed by an index denotes covariant differenti-
ation with respect to /7%,

It is well known that the maximum order of a group of affine
collineations in an N-dimensional space of paths is N2+ N and if the
space admits a group of affine collineations of the maximum order, then
the space is necessarily affinely flat ([5], [15]).
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Now, in a space of paths, a projective collineations is defined as
a point transformation which carries any path into a path, the affine
parameter on it being not necessarily preserved. A necessary and
sufficient condition that be a projective collineation is that

(0.5) XTIy =8put+ 84y,
where ¢, is a certain covariant vector, or that
(0.6) X11%=0,

where 177} are T.Y. Thomas’ parameters of projective connexion :
IH=I%— /]V%!—T (855 + 8,1°3) .

Since the transformation law of /7% under a coordinate trans-
formation is more complicated than that of I'%;, the defining equation
of XIT% is more complicated than that of XI'%,. So, it seems to the
present authors that it is more convenient to use than to use
in the discussions of projective collineations.

It is well known that the maximum order of a group of projective
collineations in an N-dimensional space of paths is N2+ 2N and if the
space admits a group of projective collineations of the maximum order,
then the space is necessarily projectively flat, ([15]).

J. Douglas ([3]) developed the geometry of general space of paths,
the paths being defined by a system of differential equations of the form

d?xt . dx
0.7 I (x —)zo,
0.7) ds? ds
where the functions 7'¢ are homogeneous of the second degree in the
arguments dx’ .
'S

Affine and projective collineations in such a general space of paths
are defined in exactly the same way as above. The theory of affine
and projective collineations in a general space of paths was studied in
detail by M.S. Knebelman ([8]).

Subsequently, J. Douglas ([4]) developed also the geometry of a space
of K-spreads, K-spread being a K-dimensional subspace defined by a
completely integrable system of partial differential equations of the form
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(a, B, 7, s Ny gy vy - =1,2,---, K)

where the functions H%, are symmetric in 8 and v and form a so-called
homogeneous function system of pi with respect to lower indices, that
is, they satisfy generalized Euler relations

(0-9) f(Hl;Ew |Z):8gH>fv+ 8$H§A ’
the symbol |2 denoting partial differentiation with respect to pg.

It was shown by I Douglas ([4]) that the components of the affine
connexion are given by

L | 2yi , i
(08) X v Ha(x0)=0, (pi=2%)

(010) riy= -I—{(*Igl—l)— H;, 1813

Now, an affine collineation in a space of K-spreads is defined as
a point transformation which carries any K-spread into a K-spread,
the parameters at corresponding points being related by affine trans-
formations. ' :

A necessary and sufficient condition that a point transformation

(0.11) X=fi(x)
be an affine collineation is that
(0'12) [—jév(’?y ﬁ):HBlY(i’ 1_;) ’

where Hi, (%, D) denote the components of H{, in the coordinate system
(%) when we regard as a coordinate transformation and

Ht — _G_Z\jfL a

Da P be,

from which, a necessary and sufficient condition that an infinitesimal
point transformation be an affine collineation is that

(0.13) XIi,=0,
‘where
(0.14) XI'ip=§ ; p+&al%, 4 Em , poli| 8—E %+ E I+ 8 15,

The theory of affine collineations in a space of K-spreads was
studied by E.T. Davies ((2]) and Buchin Su ([12], [13]).



134 K. YaNo and H. HIRAMATU

A projective collineation in a space of K-spreads is defined as a
point transformation which carries any K-spread into a K-spread, the
parameters at corresponding points being not necessarily related by
affine transformations.

A necessary and sufficient condition that a point transformation
be a projective collineation is that

(0.15) Hi(%, p)=Hi(%, p) + DiGe%, D),

where G§, are a certain function system of p: with respect to three
indices «, 8 and v ([4]), from which, a necessary and sufficient condi-
tion that be a projective collineation is that

(0.16) XTIy =8+ 8ip; + Dip% ,
where
1 1
= G: Y ’ Yy = ———— Gd A 'y-
PR R(K1) Pt TKK+1) al51k

If we introduce, following T.Y. Thomas and J. Douglas, the quan-
tities
1,,,,

(0.17) I3 =Iig— 7N+1(89F2k+821’$,-)
1 ; 1 1
— (e A— ey — - e i),
N-&® (431 Na1 TR Ny T )
then condition is rewritten in a form
XIT=0.

But, as we remarked already, the transformation law of 7} under
a coordinate transformation is rather complicated and consequently the
defining equation of X /77 is more complicated than that of X77%,.

Theory of projective collineations in a space of K-spreads was
studied by R.S. Clark ([1]) and Buchin Su ([11], [14]).

Now, to study the projective geometry of K-spreads, almost all the
authors have used the quantities 77% defined by [(0.17). '

These quantities give a geometric object which is invariant under
the so-called projective change of 71'%,. But they are not components
of an affine connexion and their transformation law are rather com-
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plicated. Consequently we cannot apply the theory of covariant diff-
erentiation in its original beautiful form.

If we translate such a theory in terms of the method of moving
frames of E. Cartan, then we can find that to use 7%, means to use
the semi-natural frames of reference and to use /7% means to use the
natural frames of reference.

In a recent paper ([16]), we have shown how to construct the pro-
jective geometry of K-spreads using only the semi-natural frames of
E. Cartan. In this theory, all the geometric objects have very simple
transformation laws under coordinate transformations. ,

Thus, we believe that, when we study the projective collineations
in a space of K-spreads, it is also preferable to use the semi-natural
frames of reference. The main purpose of the present paper is to study
groups of projective collineations in a space of K-spreads in the light
of work cited above.

§1. Projective geometry of K-spreads.

Let us consider an N-dimensional space of K-spreads referred to
a coordinate system (x¢), the K-spreads being given by a completely
integrable system of partial differential equations

6227; i . [ J— axi,
(1.1) uPon” + Hiy(x, p)=0, (pw uw)

where H{, are symmetric in lower indices 8 and v and form a homo-
geneous function system with respect to these indices. It is well known
that the functions difined by

o 1 .
1.2 I, =~ Hi|*%|}
( ) jk K( K + 1) " I] k |
are components of an affine connection and if we use these functions,
then the differential equations of the K-spreads can be written as
| 8°x¢
ou'ou’

When the functions H/(x, p) are such that are completely
integrable, then a system of K-spreads is uniquely determined. But,
when a system of K-spreads is given, a system of functions H(, is not

1] pE =0,
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uniquely determined. J. Douglas ([4]) has shown that if H} and H}/,
give the same system of K-spreads, then they should be related by the
equations of the form

(1.3) - HL=H}i+pCh,
and consequently I_";k and 1'% by
(1.4) Ty = Iy + 8ing + 840+ DA,
where
1 1
C2\?, @ — 1 celey,
'Y,J jk K(K+1) B'YIJ’k

MR

These are so-called projective changes of Hj}, and I, respectively.

We have shown ([16]) that the projective geometry of K-spreads
is equivalent to the theory of a space of elements (x¢,p.) with normal
projective connexion whose family of K-dimensional totally geodesic
subspaces is given by The components 7%,, 1% and I7%, of
this normal projective connexion referred to a semi-natural frame of
reference are given by

(=g pi— b (NIt 1140),
o l [ 1 2] o
(1.5) 17‘}k=-N+1-17‘.§j|k— N+1 I'z;jl%,

i i 1 i \
\]Iijij— ‘N._Kpu[ljk l2—

1 ,
g THIEHIUID ],
where
(1.6) I o= (1%, — IT | 5 T4 05) — (115, o — 1151 3 18, E)
+ 115,115 — 115,17, .

It is easily verified that the functions /7%, are components of a
tensor and the functions /7%, are components of an affine connexion.

Under a projective change of I'%,, the functions 7%, Y%,
and /7%, are transformed into 77%,, 77% and 7%, respectively follow-
ing the formulae :
% =1% +7j s — NIl —Ang , 0% =1% +27;12,

(1.7) | {
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Now, if we define the covariant derivative of a tensor, say, of T},
by

(1.8) Tip, =T — T\ a1 po+ T % Iy —Th 114 — T, 1T, '

then the curvature tensors of the projective connexion are given by
the following formulae:

(1.9)  Pp=Sjn,1—Sji;r+ %1%, pl, (Sjp=1%, — 1% 115, D5)
(1.10) P u=S;pl7— 1%, » + %115, |7 08,

(1.11) PY%,,**=0,

(1.12)  Pijp=1II° ju;+ S ;48— S 18} —85(Ski— Si) ,

(113) Py =1I0%,|p— 85115 — &, 11% , 4
where P’;,; and P?;,, are homogeneous functions of degree zero with
respect to P, and P, and Pij;,” both form homogeneous function

system with respect to the upper index «.
We remark here that they satisfy the relations:

P pi=0, P pi=0, Pijp*=Pip;”,
(1.14)
Pao)® =P 0" = P% " = P%j3,=0.

It will be easily seen that the covariant derivative of pi, is identic-
ally zero: pi.,=0.

By a Straightforward calculation, we get the following 'fo‘r‘mulae\:‘
L15). T vom— T mr=To 11 g1yy— Tl e 1% 1,
— T 1ol % — T | 31 Py D
(1.16) Tiju; dlm—Ti el o i=T 018 5o— T ar 1% 5, ‘
~ T jallfs 5= T s |S11%, 1 DR,
(L17) (T jags m+ T4 | 30T 1 )+ (IL i+ Ty 8 D % D)
+ (T o 17+ 115 | 21T %y p) =0,
(L18) I jml = (1154 \ 51— 1% | 5115, % PB)— (IT 5,1 5, 1 —Hi-zlﬁﬂzklﬁ‘;,b’é)ff

We shall' deduce here some formulae which are useful in‘tfie foli&ﬁ-’
ing discussions. First of all, from (1.13), (1.18) and
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Piju =TI jry| sn+ Sjel e 85— S il 5 8% — 84 Skilye—Stel5e) »
we find
Pl =P e 1+ P8 — 85P %" — P 31" PPy DE— PP 1 1135, DR
— P 1% e P18 4 8P ™ + PP 1P POy PR+ P 5 P11, PR
In this equation, we put 7=/, contract and take account of (1.14)
and of P¢;,,*=Pi,;”, then we get

(119) Pojklm: - Nl—ﬁ]_ [Pajklm;a"‘chkaBPabclw [)g] ’

from which we can see that P%,” is symmetric in 7 and 2 and con-
sequently we have

(1'20) Pijkli:zzpijkmm;l+Pojkmwsj_—Pi.ikaBPablmmplg_Pijklﬂngc:npg—(k’ l);
where —(k,7/) means that we subtract the expressions which are ob-

tained by interchanging the indices 2 and 7 in the foregoing terms.
In (1.20), putting /=m and contracting, we find

(1.21) P2t 8=P%p" — P jra”® Po%.c" Dt — P ;P 1152p%— (R, 1) .
Next, we substitute (1.12) and (1.13) into (1.17) and take account
of Pi;;° p2=0, then we obtain, by the use of (1.9),
Pi st m+ PP jed® Pooin® DB~ PP jrm” S1 DR+ P jii® Sorm DR
+ P, 8+ 85P%;+cyc(k, I, m)=0,

where + (k,/, m) means that we add the terms obtained by a cyclic

change of the indices k, / and m in the foregoing terms.
In this equations, putting ¢=j7, contracting and taking account of

Pe,,,=0 and of P?,,=0, we find
(1.22) P%im~+ Pl + P =0,
and consequently
(1.23)  Pijprm+t Pijna”Pooim D5 — PP jom” Sei 08+ P jit® Sbm.ig
+ P%;,,8¢,+cyc(k, I, m)=0,

from which, by the contraction with respect to 7 and m,
(1.24)  Pajpy, o+ (N—2)P°jpi+ P€ ja” P?y1c D5 — P€ j1a” P 5

+ P j1” Spe p5—P¢ j11” Spc D8=0.
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§ 2. Lie derivatives.

In our space of K-spreads, we consider an infinitesimal point trans-
formation :

(2.1) . : X =xi+E(x)dt,
where &i(x) is a contravariant vector whose components are functions

of a point and d¢ is an infinitesimal.
We define the Lie differential D2 of a geometric object £ by

(2.2) | D2 =9(%, p)— 2%, p)

and Lie derivative X2 by

(2.3) xeo=1lm P2
a0t

where 2(%, p) are components of £ in the coordinate system (%) when
we regard as a coordinate transformation.

The Lie derivative being thus defined, the Lie derivatives of a
scalar f, tensor 7%;, and projective connexion I7¢; are given respec-
tively by

(2.4) Xf=taf ,+E2 P51 13,
(2.5) XTijn=8Tijp, o+ 8% PET jula—8. T+ 8% j T+ 89T ja,
(2 6) X”'Jk_‘f‘ 7; k+£'a bpb r k]w+11‘_1kl§1

It should be remarked that these Lie derivatives are all tensors
and the Lie derivative of pi is zero: Xpi=0.

By a straightforward calculation, we get the following formulae

2.7) X(T¥je; 0—(XT ji), =T j( X 115)) — T o X 11%;)
— T ; (X 1T%)— T | (X 1T3) D3,

(2.8) X(T¥ ;) —(XTi)1}=0,
(2.9) (XII%w),—(XIT%) , p=X1I jpy+ 115415 (XIIM) Pi— 1| (X 1T5,) pt,
(2.10) (X17%) |} — X(11%,1})=0.

Now, when we consider 7 infinitesimal point transformations
(2.11) ¥ =x+Ey(x)dt (A4,B,C,---=1,2,--,7),
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then by a straightforward calculation, we obtain
(2.12) (XpXO)f=(XpXc—XXp)f=(Xptd)f.a +(XpE2) .s 5 12,
(213) (XpXO) T jp=(XpEO T js; ot (X5t 5 D2T ji | 2— (X 5EL) , o T s
+ (XBg'aC);jTiak‘*" (XBE?:);kTija ’

(2.14) . (XpX)MT5=(XpE0); j 2+ (XpEE) ;5 PLITGL| 5+ ITF ;4 ( X pEL) .

From these equations, we have

THEOREM 2.1. If we apply the operations (XgXco)=XgXc—Xc X5
to arbitrary scalar, tensor and affine connexion, them we get the Lie
derivatives of these quantities with rvespect to the vectors Xgti.

If » infinitesimal transformations are those of an #»-parameter
group of transformations, then we have

(2-15) (XBXc)f= CBCAXAf:
or
(2-16) XB§‘ 2*: CBCAEA ’

where Cz? are constants of structure of the group.
Thus, substituting into (2.12), (2.13) and (2.14), we find

(2.17) (XpX0) f=CpAXaf,
(2.18) (XBXC) Tijk = CBCAXA Tijk ’
(2.19) (XBXC)]I.I;'k: CBCAXAﬂi'k ’

and consequently we have
THEOREM 2.2. If Xy ave v infinitesimal operators of an r-para-

meter group ,of transformations, then (2.17) are wvalid not only for a
scalar but also for arbitrary temsor and affine connexion.

§ 3. Projective collineations.
In our space of K-spreads, we consider a point transformation
(3.1) Xi=%(xl, x%,---, xV) |o%/ox]==0.
By this transformation, the solutions of

ain .
O Hi(x, p)=0
P o Hxp)



On groups of projeclive collineations in a space of K-spreads. 141

are transformed into the solutions of

' aZEl' L ax'
3.2 ———+H: (X, p)=0 o=
(3:2) O+ HL%, D) (5 =),

On the otherhand, if we regard (3.1) as a coordinate transforma-
tion, then the original system of partial differential equations are
written also in the form

o xi
3.3 L = 0,
(3.3) | O%+ Hi, )=

where H: (%, D) are components of H/, in the new coordinate system
(x). | \ ,
Now, if the system of K-spreads defined by (3.2) and that defined
by [3.3) coincide, then we call (3.1) a projective collmeat1ons in our
space of K-spreads.

This is the usual definition of projective collineation. But, in this
paper, we shall adopt another definition of projective collineation. The
system of partial differential equations gives a normal projective con-
nexion with respect to which the solutions of are totally geodesic
and the system gives another projective connexion with respect
to which the solutions of (3.3) are totally geodesic. If these projective

connexions are prOJectlvely equlvalent that is, if we have equations of
the form

(3-4) ﬂ'jk(x p) ]I k(x p) 8 F’k(‘fyﬁ)—ka;.z:u‘j(x)ﬁ)’v

then, we call (3.1) a projective collineations in our space of K-spreads,

where u (%, D) are some functions of *¢ and P, homogeneous of degree
zero with respect to 2%.

Now, we consider an infinitesimal point transformatlon
3. 5) : xi=x+E(x)dt .

A necessary and sufficient condition that be a projective col-
lineation is that we have

(3.6) | XIT =8+ 850 S,

where A; are homogeneous functions of degree zero W1th respect to
b, and are components of a covariant vector.

If we eliminate A; from [3.6), we obtain
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(3.7) XI=0,  mi=mh— - s8Iz,

Conversely, if we have then X77%, should have the form
- Thus we have

THEOREM 3.1 In order that an infinitesimal point iransformation
(3.5) be a projective collineation, it is necessary and sufficient that we
have (3.6) or (3.7).

Now, we suppose that the point transformation is a projective
collineation and that we have chosen a coordinate system in which the
vector & has the components &i, then becomes 17} ,=0, and
consequently 77%; do not depend on x'.

Conversely, if we suppose that, in a coordinate system, the func-
tions 77;{ do not depend on x!, then for a point transformation
¥ =xi+8it we have IT3(%, p)—I13}(X, p)=0, and consequently the space
admits a one-parameter group of projective collineations generated by
the infinitesimal transformation xi{=x+ 8idt.

We suppose again that the point transformation is a projective
collineation and that we have chosen a coordinate system in which the
vector & . has the components x, then becomes 773 ,xa+ IT%=
and consequently 777 are homogeneous functions of the degree —1
of xi.

Conversely, if we suppose that, in a coordinate system, the func-
tions 773f are homogeneous of degree —1 of «xi, then, for a point
transformation X=xt, we have IT3i(%, p)—II% (%X, p)=0 and consequent-
ly -the space admits a one-parameter group of projective collineations
generated by the infinitesimal transformation x‘=xi(1+dt). Thus we
obtain

THEOREM 3.2. If the space admits an infinitesimal projective col-
lLineations, then the space adwits also a one-parameter group of pro-
Jective ,collineations generated by the infinitesimal projective collineation.

THEOREM 3.3. In order that the space admil a one-parameter group
of projective collineations, it is necessary and sufficient that therve exist
a coordinate system in which IT% =0 or I} x*+ II%=0.

Now, we suppose that the space admits 7 infinitesimal projective
collineations

Xi=gxi+E4(x)dt,
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then, we have
XAﬂf‘jk =8§7\.Ak +827\,AJ‘ ’
from which, we have

THEOREM 3.4. If &, define r infinitesimal projective collineations,
then c4¢y defines also an infinitesimal projective collineation, where C’s
are constants.

Now, in general, we have, from [Theorem 2.1
(XX ) 15,=(XBED) ; j; at (X BEE) ;s DaIlin| 6+ 1T jr( X BEC) -

On the other hand, if X 4f define projective collineations, then we have

chli-k=8§7x5k+8,§)\.cj ’
from which,

(XX o) Tip=8Xpncr— Xcnpr) + Si(Xphei— XA 5j) -

Thus we have

THEOREM 3.5. If &, define » infinitesimal projective collineations,
then Xgti define also infinitesimal projective collineations.

If X 4f are » generators of an 7-parameter group of transformations,
then this group consists of transformations which belongs to a one-
parameter group of transformations generated by ¢?X,f and of those
which are product of these transformations. Thus we have

THEOREM 3.6. If each of r genervators of an r-parameter group
of transformations is the generator of one-parameter group of projective
collineations, then every transformation of this group is a projective
collineation.

Moreover, by the second fundamental theorem of Lie and
3.6, we obtain

THEOREM 3.7. If Xuf are complete set of generators of one-
parameter group of projective collineations, then these ave generators
of an r-parameter group of projective collineations.

§4. Integrability conditions.
In this section, we shall examine the conditions that equations

(4.1) XITip =8, ;. 4+ 89 s POII% 4| 5+ I17 jE = 85Np + 83N 5
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admit solutions & and 2, & being functions of x' only and A; being
homogeneous functions of degree zero of pi.
From (2.9) and [4.1), we find
(4.2) Ay e=XSjp+ 1IN, P2
by virtus of
Pe g = 53— %= 11%=0.
From (2.10) and [(4.1), we find

(4.3) Al = Ni | XUIE 1) =X11%.

Thus, we may consider a system of linear partial differential equa-
tions

{'i; ].:fl‘j )
Elz=0,
(4.4) | Esie= 8% Dallly |G — 11 8 + 8n g+ 85,

&ijlzzfaﬂilil% ’
Ny e =XSjp+ 1T%N 08,
le‘;’,f:XJ]g-Z .

If these equations admit solutions & and Aj, then & do not contain
P, and A; are homogeneous functions of degree zero of pi, because we
have

(A ;19 pE=(X11%) ph=X (113 p§)=0 .
Now, from (2.9) and we find
(4.5) XPijp=—P' ju" N D5+ Py Mo D5 .
From (2.10) and [(4.1), we obtain
(4.6) XPi 2 =0.
Next, substituting and into
Nirlf AT = N IT G | P — 115,17 DEN G
taking account of
(X1) p=X(I1% )+ OGN+ TN NG5+ 1T [fNa PE

_ 0
1% |5=1%17
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and o /
XPijklm:Xﬂg'klf—SgXﬂ —'3' X]]M_

we find :

(4.7) X.Pojklu: — NP2 " .

Applying the formula (2.7) to the tensor Sj;, we find
X(Sje;1)—(XSjn) ;1= —SarX 115~ S ;. X115 —S ;| 2 X 115, b,
from which, combined with and [(4.2),
Nkt — 2% g Pe— T3 X S o Po— TG IT SN Df 05— X(Sir; 1)

' =SSN+ Sunj + S X 1%+ SjeliNe D% .
Subtracting, from this equation, the equation obtained from this by
interchanging %, and !/, and taking account of (1.15), we find
X(Sr:1—Sj1;0)+ XIT% 1% Pﬁ '

= NPy — (Srlf — 1%, )N Do+ (St 15— II5% ;. )Na DS
+ I1% X Spp 87— X Spi85— 8L\ P+ SFIT YN, D) DS
.or :
X(Sjr;1—Si0)+ (X 115) 1%, D]
= —NaP i — (S lf — 1% 1+ IGIIG 1} DENG DS
; + (S, 3= 1%+ G115 % bhNa DS
A IT% X Sy5¢ — X S587— 8% X Sp — XSis) |
+ (113,17 — 83113 — ST 3N p— (115 k — 8¢I1%—SFIT PN PE1 D2 .
Adding 752X 7% p? to this equation and taking account of (1.9), (1.10),
(1.12), (1.13) and [4.5), we get
(4.8) XP = —NoP%jp;— P’ "Na Do+ P j1x" N0 D5 .

Thus, the mtegrab]hty conditions of the system of partial differential
equations [(4.4) are given by [4.5), (4.6}, (4.7), [(4.8) and equations obtained
from these by successive covariant differentiations with respect to x?
and successive partial differentiation with respect to pi.

First of all, we shall show that conditions and are ob-
tained from [(4.5), and their successive derivatives.
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Applying the operstor X to both members of (1.19) and taking
account of

X(Pe % 0)=(XP% ") o+ Pe )" X 112, — P, * X 115, — P2, X 115,
—Pa " X 115, — P 3, | 8X 115, f
=(XP?j1") ; o+ (N—2aP% 1" — NP2 1" § DB — P2 j1s™ | Ens DR
=(XP%p"); o+ (N—DNP% )",
we find
(4.9) XPjr” +NalP% 1"

=— Nl—l [(XP211°) ; a— XP° j3o° P, B~ P° jia® XPye,” ]
which shows that condition are obtained from [(4.6) and its covariant

derivatives.
Next, we apply formula (2.7) to the tensor P2, then we obtain,

using (1.21),
X(Pa sy, 0)=(XP?j11) ; o+ (N—=2)NaP% jjy— P jiy [ 05 DB
=(XP%); ot (N—=2)NaP? jjy— (P, — P° ji " Py, P P2 — Pe ju,* T pUIN 2 D
+ (P — P€ j1a" Poyrc® P — P juu” 11 pEINa D5
Applying the operator X to both members of (1.24) and using the above
relation, we find

(XPaj1y) . o+ (N—2)NaP?jiy— (P3P — P° j3g" Poy, P po— PC i 115 oYM PR
+ (P — Pe j1" Poyic® pl— Pe 1132 poYNa D3
+(N—2)XPjp;+ XP° j1a’ P DR+ P° jnad” X P PR
+ X P° j1i®Spe DE+ PC i’ X Spe D§— X P° j1a° PPy DY
— P¢ 1o’ X P2y pf— XP° j14°Spe ph— P° j1° X Spe p5=0.
Adding this equation and the eguation
(P2 105 DE— P2 ji®Np DB) . a=P?jri’; o\c D3+ P2 j1i® X SpaDf
— PPl D5 PR — (R, 1) = —(N—1)P%;°\. 15
+ PC 1" Pyet® DN g DA+ P2 1P X Sy, D5
+ Py PN P2 D — (K, D)
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obtained by the use of [(1.19), we get
(4.10) (XP2 1+ P2 jpPrg 05— P2 in® Mg D) . 4
+(N—2) (XP°jr1+NaP?jr+ PP jpPha DG — PN a DF)
+ P jd (X Pyt Poyic™Ng Do — PPyei™Na D3) D3
— P° 1 (XP?yro+ Poypc® Mg D5 — P% o Mg D2) D}
+ X P 31" Poy1c 0+ X P 1Sy pf — X P 1P PPoro 0 — X P° 1t Spc D= 0.

This equation shows that condition are obtained from [4.5),
and covariant derivatives of

Thus, as integrability conditions of [4.4), we have only to consider
(4.5), and their successive derivatives.

We first consider successive derivatives of [4.5), and we shall show
that equation

(4.11) (X P o+ Pi "N D5 — PP ™2 P2 15=0
obtained form by partial differentiation with respect to p% does not
give new conditions. Indeed, applying the operator X to both members
of (1.20) and using X/77%,=2x;5, we find
X(P j1115) = X(P% j1® )+ XPj1n81— XP? 112" P1n® pL— P 1" XP%1,° p5
— X P " 115, pE— P i\ |5 05— (R, 1)
Substituting into this the equation
X(P? o)) — X(P? 51t 1) = (X PP j1n®) 1+ NP j1n" 01— P A
— P P lPne PE— (R, 1)
=(XP j2r®) . 1+ NP jin”8i— P jiPhy— P " 50N PE— (R, 1),
we find
X(Pjpa 18+ P onp 05— Piji” |51 g D5+ PN 18 DL — P "N |5 DL
+ P"_,-klwhbSSSf,—— Pij,k“XbSﬁBf’,
=(XP j1s") . 1+ (XP%1n® + N o P?j1n®)8 — X P 10" Pos1s" D
k — P 51" X P?1® pE— X Pi 5,2 11%, p5—(k, 1)
or ‘
(XPi jpi+ P Mo DE— P ™ N DB 15,
(4.12) Z(Xpijknﬁ);l+(XP0jknB+ KaP”jknB)sf—XPijka“P”bznﬁ j24
— P 1" X P%1" p5— X P " 1%, p5— (R, 1),
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which shows that is obtained from [4.6), and covariant

derivatives of [(4.6), and consequently that [4.11) is obtained from
and covariant derivatives of (4.6).

From we get
(XPi g+ P ™\ D5— P jip™Np D) ., =0,

but we can show by a similar method that the partial derivative of this
equation with respect to p% does not give new conditions. From the
above equation we obtain

(Xpijkl+ pjklwxb pg—PiJlkwxb pg) ;my ;mgzo ’

but we can show by a similar method that the partial derivative of
this equation with respect to p: does not give new conditions.
Repeating this process, we obtain

(4.13)  (XP jrs+ P g Do P jit" Np D) iomy sy 35 m, =0, (t=1,2,-).

t

We next consider successive derivatives of [4.6). Equation (1.16)
shows that, conditions obtained from applying first the covariant
differentiation and next the partial differentiation and those obtained
applying first the partial differentiation and next the covariant differ-
entiation are equivalent.

Thus we shall consider first conditions obtained from (4.6) applying
successively only the partial differentiations.

Differentiating partially successively, we obtain

(4.14) (XP )l gl =0, (s=1,2,--).

But, by virtue of the homogeneity property of P¥;,* with respect
to pi, the final equation of [(4.14) contains the preceding equations, and
consequently equation (4.14) can be written as

(4.15) (XPi ™) %1 %] %=0.

Thus the conditions obtained from by successive differentia-
tions are

(4.16) [XP ™) %1% 1% ) s sy =0 £=0,1, 2,

Thus we obtain .
THEOREM 4.1. In order that (4.1) admit solutions & (x) which are
independent of p., and A ;(x, D) which arve homogeneous functions of
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degree zero of pi, it is mecessary and sufficient that
{ (XP g+ P N 02— P g™ 6 D2) s mas 5 my =04
(XP VBB 1) o mas s m, =0
(9, t=0,1,2,--)

are algebraically consistent in &, &.; and ;.

Since these equations are linear homogeneous in &, &.; and Ay,
we get from this, " .

THEOREM 4.2. In order that the space of K-spreads admit r»
linearly independent infinitesimal projective collineations, it is necessary
and sufficient that (4.17) contain N(N+2)—r linearly independent equa-
tions and others be consequences of others. |

If we denote such 7 linearly independent infinitesimal projective
collineations by

Xl =i+ Ep(x)dt (A=1,2,-7),

then, any & satisfying is a linear combination of &, with con-
stants coefficients. But, from [Theorem 2.1 and 3.1, we know that
Xpé: also satisfy and consequently, Xz& should be linear
combinations of &, with constant coefficients. Thus, from
3.7, we have

THEOREM 4.3. In order that the space of K-spreads admit an r-
parameter group of projective collineations, it is necessary and sufficient
that (4.17) contain N(N+2)—» linearly indepent equations and the
others be consquences of these.

If are completely integrable, then and should be
identities in &, & ; and A, and consequently we must have F =0
and P;,,*=0. Thus we have '

THEOREM 4.4. In order that an N-dimensional space of K-spreads
admit a group of projective collineations of the maximum order N(N+ 2),
it is necessary and sufficient that the space be projectively flat.

(4.17)

University of Tokyo and University of Kumamoto.
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