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On the fundamental theorem of algebra.

By Kanesiroo ISEKI

(Received Jan. 14, 1954)

In this note we give an elementary proof for the fundamental
theorem of algebra that the complex number field $C$ is algebraically
closed, using a normed-ring-theoretic method.

For this purpose let $C[x]$ be the polynomial ring over $C$. We
define the absolute value of $f\in C[x]$ by $|f|=|a_{0}|+\cdots+|a_{m}|$ where
$f=a_{\theta}+\cdots+a_{m}x^{m}$ , so that $|f|\geqq 0$ always, and $|f|=0$ if and only if $f=0$.
(This symbol is clearly compatible with the usual absolute value when
$f\in C.)$ It follows easily that for $f,$ $g\in C[x]$ and $z\in C$

$|f+g|\leqq|f|+|g|$ , $|fg|\leqq|f|\cdot|g|$ , $|zf|=|z|\cdot|f1$

Suppose that $\phi\in C[x]$ is a fixed monic polynomial of degree $n\geqq 1$ .
We define an operator $\Phi$ for $f\in C[x]$ as follows. lf $f=0$ or $\deg f<n$ ,
we put $\Phi f=f$ ; if $m=\deg f\geqq n$ and $f=a_{0}+\cdots+a_{m}x^{m}$ , then we put
$\Phi f=f-a_{m}x^{m-n}\phi$ , so that $\deg\Phi f<\deg f$ for $\Phi f\neq 0$ in this latter case.
Then we clearly have always

$|\Phi f|\leqq|f|+|f|\cdot|\phi|=M|f|$ $(M=|\phi|+1)$ ,

and so $|\Phi^{n}f|\leqq M^{n}|f|$ .
Now let $\phi$ considered above be irreducible over $C$. To prove the

theorem, it then suffices to show that $n=1$ . The residue.classes of
$C[x]$ modulo $\phi$ form a field $E$, which contains $C$ as a subfield if we
identify each $zeC$ with the residue.class containing $z$ . Let $\theta\in E$ be the
residue.class represented by $x$ , then $\phi(\theta)=0$ and for each $\alpha\in E$ there
is a uniquely determined polynomial $f_{\alpha}\in C[x]$ such that $\alpha=f_{\alpha}(\theta)$ and
that the degree of $f_{\alpha}$ is $<n$ when $\alpha\neq 0$ .

This being so, we define $|\alpha|=|f_{\alpha}|$ for $\alpha\in E$, so that $|\alpha|\geqq 0$ always,
$|\alpha|=0$ if and only if $\alpha=0$ , and $|z\alpha|=|z|\cdot|\alpha|$ for $z\in C$. (This symbol
coincides with the usual absolute value when $\alpha\in C.$ ) If $\alpha,$ $\beta\in E$, it is
easily seen that $f_{\alpha+\beta}=f_{\alpha}+f_{\beta}$ , whence $|\alpha+\beta|\leqq|\alpha|+|\beta|$ . Further,
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$f_{\alpha\beta}\equiv f_{\alpha}f_{\beta}(mod \phi)$ and so $f_{\alpha\beta}=\Phi^{n}(f_{\alpha}f_{\beta})$ , since $f_{\alpha}f_{\beta}$ is not of degree higher
than $2n-2$ . Therefore

$|\alpha\beta|=|\Phi^{n}(f_{\alpha}f_{\beta})|\leqq M^{n}|f_{\alpha}f_{\beta}|\leqq M^{n}|f_{\alpha}|\cdot|f_{\beta}|=M^{n}|\alpha|\cdot|\beta|$ .
The field $E$ now becomes a normed field over C- if we define the

norm of $\alpha\in E$ by $||\alpha||=M^{n}|\alpha|$ . For it readily follows from what has
been said above that

1. $||\alpha||\geqq 0$ , $||\alpha||=0^{\leftarrow}\rightarrow\alpha=0$ ,

2. $||\alpha+\beta||\leqq||\alpha||+||\beta||$ ,

3. $||z\alpha||=|z|\cdot||\alpha||$ $(z\in C)$ ,

4. I $\alpha\beta||\leqq||\alpha||\cdot||\beta||$ .
But the fundamental theorem of normed rings (Mazur.Gelfand) asserts
that every normed field $K$ over $C$ coincides with $Ce$ , where $e$ is the
identity element of $K$ Hence $E=C$, $q.e.d$ .

REMARK. Kametani, Journ. Math. Soc. Jap. 4 (1952), pp. 96-99,
gave a neat proof for the Mazur-Gelfand theorem, which neither as.
sumes the completeness of $K$ nor uses any function-theoretic properties
of $C$ but the notion of continuity.
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