A metrical theorem on the singular set of a linear group of Schottky type.

By Masatsugu Tsujı

(Received Nov. 4, 1953)
Let G be a linear group of Schottky type on the ζ-plane, whose fundamental domain D_{0} is bounded by $p(\geq 2)$ pairs of disjoint analytic Jordan curves $C_{i}, C_{i}^{\prime}(i=1,2, \cdots, p)$, where C_{i}, C_{i}^{\prime} are equivalent by G. The equivalents D_{ν} of D_{0} cluster to a non-dense perfect set E, which is called the singular set of G. Myrberg ${ }^{1)}$ proved that

$$
\text { cap. } E>0 \text {, }
$$

where cap. E denotes the logarithmic capacity of E, while, in another paper, ${ }^{2)}$ I have proved that every point of E is a regular point for Dirichlet problem. Since cap. $E>0$, if we map the outside of E on $|w|<1$ conformally, then E is mapped on a set of mesure 2π on $|w|=1$. We shall prove

Theorem. Let E_{1} be the sub-set of E, which lies in C_{1} and every point of which is contained in infinitely many equivalents of C_{1}. Then

$$
\text { cap. } E_{1}>0,
$$

and E_{1} is mapped on a set of positive measure on $|w|=1$.
Proof. Since the proof is the same, we assume that $p=2$.
First we shall prove that cap. $E_{1}>0$. Let S_{1}, S_{2} be two generators of G, such that $C_{1}=S_{1}\left(C_{1}^{\prime}\right) . \quad C_{2}=S_{2}\left(C_{2}^{\prime}\right)$. If we apply S_{1} to D_{0}, then D_{0} becomes D_{1}, which lies in $C_{1}=K_{1}$ and is bounded by K_{1} and three other closed curves C_{11}, C_{12}, C_{13}, which are equivalent to C_{1} or C_{2}. Let C_{11} be equivalent to C_{1} and we write $C_{11}=K_{11}, ~ C_{12}, C_{13}$ are equivalent to C_{2}. We choose one of them, C_{12}, say. Let D_{12} be the equivalent of

[^0]D_{0}, which lies in C_{12} and is bounded by C_{12} and three other closed curves $C_{121}, C_{122}, C_{123}$, which are equivalent to C_{1} or C_{2}. Let C_{121} be equivalent to C_{1} and we write $C_{121}=K_{12}$. Hence, inside of K_{1}, we have two equivalents K_{11}, K_{12} of C_{1}.

Similarly we define $K_{1 i_{1} \cdots i_{n}}\left(i_{1}, \cdots, i_{n}=1,2\right)$, which are equivalent to C_{1}, such that if we denote the inside of $K_{1 i_{1} \cdots i_{n}}$ by $\Delta_{1 i_{1} \cdots i_{n}}$, then

$$
\Delta_{1 i_{1} \cdots i_{n}} \subset \Delta_{1 i_{1} \cdots i_{n-1}} \quad\left(i_{n}=1,2\right)
$$

We put

$$
\begin{equation*}
M=\prod_{n=1}^{\infty}\left(\sum_{i_{1} \cdots, i_{n}}^{1,2} \Delta_{1 i 1 \cdots i_{n}}\right) . \tag{1}
\end{equation*}
$$

By Koebe's distortion theorem, we can prove easily ${ }^{3)}$

$$
\begin{equation*}
\delta\left(\Delta_{1 i_{1} \cdots i_{n}}\right) \geqq a \delta\left(\Delta_{1 i_{1} \cdots i_{n-1}}\right) \tag{2}
\end{equation*}
$$

and the mutual distance of

$$
\begin{equation*}
\Delta_{1 i_{1} \cdots i_{n-1}, 1} \text { and } \Delta_{1 i_{1} \cdots i_{n-1}, 2} \text { is } \geqq b \delta\left(\Delta_{1 i_{1} \cdots i_{n-1}}\right), \tag{3}
\end{equation*}
$$

where $\delta(\Delta)$ is the diameter of Δ and $a>0, b>0$ are constants, which are independent of n. Hence cap. $M>0$ by a theorem proved by the author ${ }^{4}$. Since $M \subset E_{1}$, we have

$$
\begin{equation*}
\text { cap. } E_{1}>0 \tag{4}
\end{equation*}
$$

Next we shall prove that E_{1} is mapped on a set of positive measure on $|w|=1$.

If we identify the equivalent points on C_{i}, C_{i}^{\prime}, then D_{0} becomes a closed Riemann surface F, whose genus is $p=2$. We consider F spread over the z-plane. C_{i}, C_{i}^{\prime} correspond to the both shores $\gamma_{i}^{+}, \gamma_{i}^{-}$ of a ring cut $\gamma_{i}(i=1,2)$ of F. If we cut F by γ_{1}, γ_{2}, then F becomes a surface F_{0}, whose boundary consists of $\gamma_{1}^{+}, \gamma_{1}^{-}, \gamma_{2}^{+}, \gamma_{2}^{-}$. We write

$$
\begin{equation*}
\gamma^{(1)}=\gamma_{1}^{+}, \quad \gamma^{(2)}=\gamma_{1}^{-}, \quad \gamma^{(3)}=\gamma_{2}^{+}, \quad \gamma^{(4)}=\gamma_{2}^{-} . \tag{5}
\end{equation*}
$$

In the following, $F_{j}, F_{j i_{1}}, \cdots$ are the same samples as F_{0}. Along $\gamma^{(j)}(j=1,2,3,4)$, we connect F_{j} to F_{0}. Along three remaining boundary

[^1]closed curves of F_{j}, we connect $F_{j i_{1}}\left(i_{1}=1,2,3\right)$ to F_{j}. Similarly we define $F_{j_{1} \cdots i_{n}}\left(j=1,2,3,4 ; i_{1}, \cdots i_{n}=1,2,3\right)$ and put
\[

$$
\begin{equation*}
F^{(\infty)}=F_{0}+\sum_{j} F_{j}+\sum_{j_{0} i_{1}} F_{j i_{1}}+\cdots+\sum_{j, i_{1}, \cdots, i_{n}} F_{j i_{1} \cdots i_{n}}+\cdots, \tag{6}
\end{equation*}
$$

\]

then $F^{(\infty)}$ is of planar character and is mapped on the outside of E. If $\gamma^{(k)}(k=1,2,3,4)$ belongs to the boundary of $F_{j_{1} \cdots i_{n}}$, but does not belong to the boundary of $F_{j i_{1} \cdots i_{n-1}}$, then we denote it by $\gamma_{j i_{1} \cdots i_{n}}^{(k)}$.

Let Φ be a sub-surface of $F^{(\infty)}$, such that

$$
\begin{equation*}
\Phi=F_{1}+\sum_{i_{1}} F_{1 i_{1}}+\cdots+\sum_{i_{1}, \cdots, i_{n}} F_{1 i 1 \cdots i_{n}}+\cdots \tag{7}
\end{equation*}
$$

and put

$$
\begin{equation*}
\Phi_{n}=F_{1}+\sum_{i_{1}} F_{1 i_{1}}+\cdots+\sum_{i_{1}, \cdots, i_{n}} F_{1 i_{1} \cdots i_{n}} \tag{8}
\end{equation*}
$$

Let $\gamma^{(1)}+\Gamma_{n}$ be the boundary of Φ_{n}, then Γ_{n} consists of 3^{n} closed curves, each of which is γ_{1} or γ_{2}. Let Γ_{n}^{\prime} be the sum of those, which are γ_{1} and $\Gamma_{n}^{\prime \prime}$ be that of those, which are γ_{2}, then $\Gamma_{n}=\Gamma_{n}^{\prime}+I_{n}^{\prime \prime \prime}$. Let $u_{n}(z)$ be the harmonic measure of Γ_{n}^{\prime} with respect to Φ_{n}, such that $u_{n}(z)$ is harmonic in Φ_{n},

$$
\begin{equation*}
u_{n}=1 \text { on } \Gamma_{n}^{\prime}, u_{n}=0 \text { on } \gamma^{(1)} \text { and on } \Gamma_{n}^{\prime \prime} . \tag{9}
\end{equation*}
$$

We shall prove that $u_{n}(z)$ does not tend to zero with $n \rightarrow \infty$.
Let $v_{n}(z)$ be the conjugate harmonic function of $u_{n}(z)$ and put

$$
\begin{equation*}
d_{n}=\int_{\gamma^{(1)}} d v_{n}>0 \tag{10}
\end{equation*}
$$

We remark that at least one of the boundary curves $\gamma_{1_{1} \cdots i_{n}}^{(k)}$ of $F_{1 i_{1 \cdots i_{n}}}$ belongs to Γ_{n}^{\prime}.

Let $F_{1 i_{1} \cdots i n}$ connect to $F_{1 i_{1} \cdots i_{n-1}}$ along $\gamma=\gamma_{1_{1} \cdots i_{n-1}}^{(k)}$. We draw a ring cut γ^{\prime} in $F_{1_{1} \cdots i_{n-1}}$, which lies in a small neighbourhood of γ, such that γ, γ^{\prime} bound a ring domain Δ in $F_{1 i_{1} \cdots i_{n-i}}$ We add Δ to $F_{1_{i_{1} \cdots i_{n}}}$ and put

$$
\widetilde{F}_{1 i_{1} \cdots i_{n}}=\Delta+F_{1 i_{1} \cdots i_{n}} .
$$

Let $\omega(z)$ be harmonic in $\tilde{F}_{1 i_{1} \cdots i_{n}}$, such that

$$
\omega=\left\{\begin{array}{l}
0 \text { on } \gamma^{\prime} \text { and on } \gamma_{i_{i 1}+i_{n}}^{(k)} \in \Gamma_{n}^{\prime \prime}, \tag{11}\\
1 \text { on } \gamma_{1 i 1 i \cdots i_{n}}^{(k)} \in \Gamma_{n}^{\prime},
\end{array}\right.
$$

then

$$
\omega(z)>\alpha>0 \quad \text { on } \quad \gamma
$$

where $\alpha>0$ is a constant. Since $u_{n}(z)>0$ on γ^{\prime}, we have by the maximum principle,

$$
\begin{equation*}
u_{n}(z) \geqq \omega(z)>\alpha>0 \text { on } \gamma . \tag{12}
\end{equation*}
$$

Hence the connected part $\Phi_{n}(\tau)$ of Φ_{n}, for which $u_{n}(z) \leqq \tau(\leqq \alpha)$ and contains $\gamma^{(1)}$ on its boundary does not contain γ, so that if we denote the niveau curve : $u_{n}(z)=\tau(0 \leqq \tau \leqq 1)$ by C_{τ}, then if $\tau \leqq \alpha$,

$$
\begin{equation*}
\int_{C_{\tau}} d v_{n}=\int_{\gamma^{(1)}} d v_{n}=d_{n} \quad(\tau \leqq \alpha) \tag{13}
\end{equation*}
$$

Let $L(\tau)$ be the length of C_{τ} measured on the z-sphere and $A(\tau)$ be the spherical area of $\Phi_{n}(\tau)$:

$$
\begin{aligned}
& L(\tau)=\int_{C_{\tau}} \frac{\left|z^{\prime}\right| d v_{n}}{1+|z|^{2}}, \quad z^{\prime}=\frac{d z}{d \zeta}, \zeta=u_{n}+i v_{n} \\
& A(\tau)=\int_{0}^{\tau} \int_{C_{\tau}}\left(\frac{\left|z^{\prime}\right|}{1+|z|^{2}}\right)^{2} d \tau d v_{n}, S(\tau)=A(\tau) /|F|
\end{aligned}
$$

$|F|$ being the spherical area of F, then

$$
\begin{equation*}
L(\tau)^{2} \leqq \int_{C_{\tau}} d v_{n} \int_{C_{\tau}}\left(\frac{\left|z^{\prime}\right|}{1+|z|^{2}}\right)^{2} d v_{n} \leqq d_{n} \frac{d A(\tau)}{d \tau} \quad(\tau \leqq \alpha) \tag{14}
\end{equation*}
$$

Now C_{τ} consists of a finite number $\nu(\tau)$ of disjoint closed curves, each of which is not homotop null, so that each curve has a length $\geqq a>0$, where a is a constant, which depends on F only, hence

$$
\begin{equation*}
L(\tau) \geqq a \nu(\tau) \tag{15}
\end{equation*}
$$

Let $\rho(\tau)$ be the Euler's characteristic of $\Phi_{n}(\tau)$, then since $\Phi_{n}(\tau)(0 \leqq \tau \leqq \alpha)$ is of planar character and the boundary of $\Phi_{n}(\tau)$ consists of C_{τ} and $\gamma^{(1)}$,

$$
\begin{equation*}
\rho(\tau) \leqq \nu(\tau) \leqq L(\tau) / a \tag{16}
\end{equation*}
$$

Now $\Phi_{n}(\tau)$ is a covering surface of F and $2(p-1)=2$ is the Euler's
characteristic of F, so that by Ahlfors' fundamental theorem on covering surfaces ${ }^{5)}$:

$$
\begin{equation*}
\rho^{+}(\tau) \geqq 2 S(\tau)-h L(\tau), \tag{17}
\end{equation*}
$$

where $h>0$ is a constant, which depends on F only.
Hence from (16), (17), we have

$$
\begin{equation*}
A(\tau) \leqq k L(\tau) \tag{18}
\end{equation*}
$$

where $k>0$ is a constant, so that from (14),

$$
A(\tau)^{2} \leqq k^{2} d_{n} \frac{d A(\tau)}{d \tau} \quad(\tau \leqq \alpha)
$$

hence

$$
\begin{gathered}
\frac{\alpha}{2} \leqq k^{2} d_{n} \int_{-\frac{\alpha}{2}}^{\alpha} \frac{d A(\tau)}{A(\tau)^{2}} \leqq k^{2} d_{n} / A\left(\frac{\alpha}{2}\right), \quad \text { or } \\
\frac{\alpha}{2} A\left(\frac{\alpha}{2}\right) \leqq k^{2} d_{n}
\end{gathered}
$$

If $u_{n}(z) \rightarrow 0$, then $d_{n} \rightarrow 0$, so that $A\left(\frac{\alpha}{2}\right) \rightarrow 0$, which is absurd. Hence $u_{n}(z)$ does not tend to zero with $n \rightarrow \infty$.

Let γ be a ring cut of Φ, which lies in $\Phi-F_{1}$. If we cut Φ along γ, then Φ breaks up into two parts. We denote that part, which does not contain F_{1}, by $\Phi[\gamma]$.

With this notation, we put

$$
\begin{equation*}
\widetilde{\Phi}_{n}=\Phi_{n}+\sum_{\gamma_{1 i_{1} \cdots i_{n}}^{\prime} \in T_{n}^{\prime}} \Phi\left[\gamma_{i_{1} \cdots i_{n}}^{(k)}\right] . \tag{19}
\end{equation*}
$$

Let Λ_{n} be the compact boundary of $\widetilde{\Phi}_{n}$ and $\tilde{u}_{n}(z)$ be the harmonic measure of the ideal boundary of $\widetilde{\Phi}_{n}$ with respect to $\widetilde{\Phi}_{n}$, such that $\widetilde{u}_{n}(z)$ is harmonic in $\tilde{\Phi}_{n}, \widetilde{u}_{n}=0$ on $\Lambda_{n}, u_{n}=1$ on the ideal boundary of $\widetilde{\Phi}_{n}^{3}$, then since cap. $E_{1}>0$, we see easily that $\widetilde{u}_{n}(z) \neq 0$, so that $0<\breve{u}_{n}(z)<1$ in $\widetilde{\Phi}_{n}$.

We shall prove that $\widetilde{u}_{n}(z)$ does not tend to zero with $n \rightarrow \infty$. Let $\gamma=\gamma_{1 i_{1} \cdots i_{n}}^{(k)} \in I_{n}^{\prime}$. We draw a ring cut γ^{\prime} in $F_{1 i_{1} \cdots i_{n}}$, which lies in a small

[^2]neighbourhood of γ, such that γ, γ^{\prime} bound a ring domain Δ in $F_{1 i_{1}-i_{n}}$. Let $\omega(z)$ be the harmonic measure of the ideal boundary of $\Phi\left[\gamma^{\prime}\right]$ with respect to $\Phi\left[\gamma^{\prime}\right]$, such that $\omega(z)$ is harmonic in $\Phi\left[\gamma^{\prime}\right], \omega=0$ on $\gamma^{\prime}, \omega=1$ on the ideal boundary of $\Phi\left[\gamma^{\prime}\right]$, then
$$
\omega(z)>\alpha>0 \text { on } \gamma,
$$
where $\alpha>0$ is a constant. Since $\widetilde{u}_{n}(z)>0$ on γ^{\prime}, we have by the maximum principle,
$$
\tilde{u}_{n}(z) \geqq \omega(z)>\alpha>0 \quad \text { on } \gamma,
$$
so that
$$
\widetilde{u}_{n}(z) \geqq \alpha u_{n}(z) \quad \text { on } \gamma,
$$
hence by the maximum principle,
\[

$$
\begin{equation*}
\tilde{u}_{n}(z) \geqq \alpha u_{n}(z) \quad \text { in } \Phi_{n} . \tag{20}
\end{equation*}
$$

\]

Since $u_{n}(z)$ does not tend to zero, $\widetilde{u}_{n}(z)$ does not tend to zero with $n \rightarrow \infty$, so that

$$
\begin{equation*}
\check{u}_{n}\left(z_{0}\right) \geqq \eta>0 \quad(n=1,2, \cdots), \tag{21}
\end{equation*}
$$

where z_{0} is a fixed point of F_{1}.
We map $\widetilde{\Phi}_{n}$ on $|\tau|<1$ conformally, such that z_{0} becomes $\tau=0$ and put $U_{n}(\tau)=\widetilde{u}_{n}(z)$, then

$$
\begin{equation*}
U_{n}(0) \geq \eta>(n=1,2, \cdots) . \tag{22}
\end{equation*}
$$

Since the compact boundary of $\widetilde{\Phi}_{n}$ is mapped on a set of arcs on $|\tau|=1$, on which $U_{n}(\tau)=0$, if we denote the complement of this set by e_{n}, then

$$
\begin{equation*}
m e_{n} \geqq 2 \pi U_{n}(0) \geqq 2 \pi \eta>0 \quad(n=1,2, \cdots) . \tag{23}
\end{equation*}
$$

We map $F^{(\infty)}$ on $|w|<1$ conformally, such that z_{0} becomes $w=0$. Then $|\tau|<1$ is mapped on a domains Δ_{n} in $|w|<1$. Let M_{n} be the image of e_{n} on $|w|=1$, then by an extension of Löwner's theorem ${ }^{6}$, we have $m M_{n} \geqq m e_{n}$, so that

$$
m M_{n} \geqq 2 \pi \eta>0 \quad(n=1,2, \cdots) .
$$

[^3]Hence if we put $M=\varlimsup_{n \rightarrow \infty} M_{n}$, then

$$
\begin{equation*}
m M \geq 2 \pi \eta>0 \tag{24}
\end{equation*}
$$

We see easily that M is a sub-set of the image of E_{1} on $|w|=1$, hence E_{1} is mapped on a set of positive measure on $|w|=1$.

Hence our theorem is proved.
Mathematical Institute, Tokyo University.

[^0]: 1) P. J. Myrberg: Die Kapazität der singulären Menge der linearen Gruppe. Ann. Fenn. Ser. A 10 (1941).
 2). M. Tsuji : On the capacity of general Cantor sets. Journ. of Math. Soc. Japan 5 (1953).
[^1]: 3), 4) M. Tsuji. 1. c. 2).

[^2]: 5) L. Ahlfors: Zur Theorie der Überlagerungsfä̈chen. Acta Math. 65 (1935).
[^3]: 6) Y. Kawakami: On an extension of Löwner's lemma. Jap. Journ. Math. 17 (1941). M. Tsuji: On an extension of Löwner's theorem. Proc. Imp. Acad. 18 (1942).
