A metrical theorem on the singular set of a linear group of Schottky type.

By Masatsugu TSUJI

(Received Nov. 4, 1953)

Let G be a linear group of Schottky type on the ζ -plane, whose fundamental domain D_0 is bounded by $p \geq 2$ pairs of disjoint analytic Jordan curves C_i , C'_i $(i=1, 2, \dots, p)$, where C_i , C'_i are equivalent by G. The equivalents D_{ν} of D_0 cluster to a non-dense perfect set E, which is called the singular set of G. Myrberg¹⁾ proved that

cap. E > 0,

where cap. E denotes the logarithmic capacity of E, while, in another paper,²⁾ I have proved that every point of E is a regular point for Dirichlet problem. Since cap. E > 0, if we map the outside of E on |w| < 1 conformally, then E is mapped on a set of mesure 2π on |w|=1. We shall prove

THEOREM. Let E_1 be the sub-set of E, which lies in C_1 and every point of which is contained in infinitely many equivalents of C_1 . Then

cap. $E_1 > 0$,

and E_1 is mapped on a set of positive measure on |w|=1.

PROOF. Since the proof is the same, we assume that p=2.

First we shall prove that cap. $E_1 > 0$. Let S_1, S_2 be two generators of G, such that $C_1 = S_1(C'_1)$. $C_2 = S_2(C'_2)$. If we apply S_1 to D_0 , then D_0 becomes D_1 , which lies in $C_1 = K_1$ and is bounded by K_1 and three other closed curves C_{11}, C_{12}, C_{13} , which are equivalent to C_1 or C_2 . Let C_{11} be equivalent to C_1 and we write $C_{11} = K_{11}$. C_{12}, C_{13} are equivalent to C_2 . We choose one of them, C_{12} , say. Let D_{12} be the equivalent of

¹⁾ P. J. Myrberg: Die Kapazität der singulären Menge der linearen Gruppe. Ann. Fenn. Ser. A 10 (1941).

^{2).} M. Tsuji: On the capacity of general Cantor sets. Journ. of Math. Soc. Japan 5 (1953).

 D_0 , which lies in C_{12} and is bounded by C_{12} and three other closed curves C_{121} , C_{122} , C_{123} , which are equivalent to C_1 or C_2 . Let C_{121} be equivalent to C_1 and we write $C_{121}=K_{12}$. Hence, inside of K_1 , we have two equivalents K_{11} , K_{12} of C_1 .

Similarly we define $K_{1i_1\cdots i_n}$ $(i_1,\cdots,i_n=1,2)$, which are equivalent to C_1 , such that if we denote the inside of $K_{1i_1\cdots i_n}$ by $\Delta_{1i_1\cdots i_n}$, then

$$\Delta_{1i_1\cdots i_n} < \Delta_{1i_1\cdots i_{n-1}} \qquad (i_n = 1, 2).$$

We put

$$M = \prod_{n=1}^{\infty} \left(\sum_{i_1, \cdots, i_n}^{1, 2} \mathcal{A}_{1i_1 \cdots i_n} \right).$$
(1)

By Koebe's distortion theorem, we can prove easily³⁾

$$\delta(\underline{A}_{1i_1\cdots i_n}) \geq a \,\delta(\underline{A}_{1i_1\cdots i_{n-1}}) \tag{2}$$

and the mutual distance of

$$\Delta_{1i_{1}\cdots i_{n-1},1}$$
 and $\Delta_{1i_{1}\cdots i_{n-1},2}$ is $\geq b \ \delta(\Delta_{1i_{1}\cdots i_{n-1}})$, (3)

where $\delta(A)$ is the diameter of A and a>0, b>0 are constants, which are independent of n. Hence cap. M>0 by a theorem proved by the author⁴). Since $M < E_1$, we have

cap.
$$E_1 > 0$$
. (4)

Next we shall prove that E_1 is mapped on a set of positive measure on |w|=1.

If we identify the equivalent points on C_i, C'_i , then D_0 becomes a closed Riemann surface F, whose genus is p=2. We consider F spread over the z-plane. C_i, C'_i correspond to the both shores γ_i^+, γ_i^- of a ring cut γ_i (i=1,2) of F. If we cut F by γ_1, γ_2 , then F becomes a surface F_0 , whose boundary consists of $\gamma_1^+, \gamma_1^-, \gamma_2^-$. We write

$$\gamma^{(1)} = \gamma_1^+, \quad \gamma^{(2)} = \gamma_1^-, \quad \gamma^{(3)} = \gamma_2^+, \quad \gamma^{(4)} = \gamma_2^-.$$
 (5)

In the following, F_j , F_{ji_1} ,... are the same samples as F_0 . Along $\gamma^{(j)}$ (j=1,2,3,4), we connect F_j to F_0 . Along three remaining boundary

^{3), 4)} M. Tsuji. 1. c. 2).

A metrical theorem on the singular set of a linear group

closed curves of F_j , we connect F_{ji_1} $(i_1=1, 2, 3)$ to F_j . Similarly we define $F_{ji_1\cdots i_n}$ $(j=1, 2, 3, 4; i_1, \cdots i_n=1, 2, 3)$ and put

$$F^{(\infty)} = F_0 + \sum_j F_j + \sum_{j,i_1} F_{ji_1} + \dots + \sum_{j,i_1,\cdots,i_n} F_{ji_1\cdots i_n} + \dots, \qquad (6)$$

then $F^{(\infty)}$ is of planar character and is mapped on the outside of E. If $\gamma^{(k)}$ (k=1,2,3,4) belongs to the boundary of $F_{ji_1\cdots i_n}$, but does not belong to the boundary of $F_{ji_1\cdots i_{n-1}}$, then we denote it by $\gamma^{(k)}_{ji_1\cdots i_n}$.

Let Φ be a sub-surface of $F^{(\infty)}$, such that

$$\Phi = F_1 + \sum_{i_1} F_{1i_1} + \dots + \sum_{i_1, \cdots, i_n} F_{1i_1 \cdots i_n} + \dots , \qquad (7)$$

and put

$$\Phi_{n} = F_{1} + \sum_{i_{1}} F_{1i_{1}} + \dots + \sum_{i_{1}, \cdots, i_{n}} F_{1i_{1}\cdots i_{n}}.$$
(8)

Let $\gamma^{(1)} + \Gamma_n$ be the boundary of Φ_n , then Γ_n consists of 3^n closed curves, each of which is γ_1 or γ_2 . Let Γ'_n be the sum of those, which are γ_1 and Γ''_n be that of those, which are γ_2 , then $\Gamma_n = \Gamma'_n + \Gamma''_n$. Let $u_n(z)$ be the harmonic measure of Γ'_n with respect to Φ_n , such that $u_n(z)$ is harmonic in Φ_n ,

$$u_n=1 \text{ on } \Gamma'_n, u_n=0 \text{ on } \gamma^{(1)} \text{ and on } \Gamma''_n.$$
 (9)

We shall prove that $u_n(z)$ does not tend to zero with $n \to \infty$.

Let $v_n(z)$ be the conjugate harmonic function of $u_n(z)$ and put

$$d_n = \int_{\gamma^{(1)}} dv_n > 0.$$
 (10)

We remark that at least one of the boundary curves $\gamma_{1i_1\cdots i_n}^{(k)}$ of $F_{1i_1\cdots i_n}$ belongs to Γ'_n .

Let $F_{1i_1\cdots i_n}$ connect to $F_{1i_1\cdots i_{n-1}}$ along $\gamma = \gamma_{1i_1\cdots i_{n-1}}^{(k)}$. We draw a ring cut γ' in $F_{1i_1\cdots i_{n-1}}$, which lies in a small neighbourhood of γ , such that γ, γ' bound a ring domain \varDelta in $F_{1i_1\cdots i_{n-1}}$. We add \varDelta to $F_{1i_1\cdots i_n}$ and put

$$\widetilde{F}_{1i_1\cdots i_n} = \varDelta + F_{1i_1\cdots i_n}.$$

Let $\omega(z)$ be harmonic in $\widetilde{F}_{1i_1\cdots i_n}$, such that

M. Tsuji

$$\omega = \begin{cases} 0 \quad \text{on } \gamma' \text{ and on } \gamma_{1i_1\cdots i_n}^{(k)} \in \Gamma_n'', \\ 1 \quad \text{on } \gamma_{1i_1\cdots i_n}^{(k)} \in \Gamma_n', \end{cases}$$
(11)

then

 $\omega(z) > \alpha > 0$ on γ ,

where $\alpha > 0$ is a constant. Since $u_n(z) > 0$ on γ' , we have by the maximum principle,

$$u_n(z) \ge \omega(z) > \alpha > 0 \text{ on } \gamma.$$
 (12)

Hence the connected part $\Phi_n(\tau)$ of Φ_n , for which $u_n(z) \leq \tau$ ($\leq \alpha$) and contains $\gamma^{(1)}$ on its boundary does not contain γ , so that if we denote the niveau curve: $u_n(z) = \tau$ ($0 \leq \tau \leq 1$) by C_{τ} , then if $\tau \leq \alpha$,

$$\int_{C_{\tau}} dv_n = \int_{\gamma^{(1)}} dv_n = d_n \quad (\tau \leq \alpha) .$$
(13)

Let $L(\tau)$ be the length of C_{τ} measured on the z-sphere and $A(\tau)$ be the spherical area of $\Phi_n(\tau)$:

$$L(\tau) = \int_{C_{\tau}} \frac{|z'| dv_n}{1+|z|^2}, \quad z' = \frac{dz}{d\zeta}, \quad \zeta = u_n + iv_n,$$
$$A(\tau) = \int_0^{\tau} \int_{C_{\tau}} \left(\frac{|z'|}{1+|z|^2}\right)^2 d\tau \, dv_n, \quad S(\tau) = A(\tau)/|F|,$$

|F| being the spherical area of F, then

$$L(\tau)^2 \leq \int_{C_{\tau}} dv_n \int_{C_{\tau}} \left(\frac{|z'|}{1+|z|^2} \right)^2 dv_n \leq d_n \frac{dA(\tau)}{d\tau} \quad (\tau \leq \alpha) \,. \tag{14}$$

Now C_{τ} consists of a finite number $\nu(\tau)$ of disjoint closed curves, each of which is not homotop null, so that each curve has a length $\geq a > 0$, where *a* is a constant, which depends on *F* only, hence

$$L(\tau) \ge a \nu(\tau) . \tag{15}$$

Let $\rho(\tau)$ be the Euler's characteristic of $\Phi_n(\tau)$, then since $\Phi_n(\tau)$ $(0 \le \tau \le \alpha)$ is of planar character and the boundary of $\Phi_n(\tau)$ consists of C_{τ} and $\gamma^{(1)}$,

$$\rho(\tau) \leq \nu(\tau) \leq L(\tau)/a . \tag{16}$$

Now $\Phi_n(\tau)$ is a covering surface of F and 2(p-1)=2 is the Euler's

118

characteristic of F, so that by Ahlfors' fundamental theorem on covering surfaces⁵⁾:

$$\rho^{+}(\tau) \geq 2 S(\tau) - h L(\tau) , \qquad (17)$$

where h > 0 is a constant, which depends on F only.

Hence from (16), (17), we have

$$A(\tau) \leq k L(\tau) , \qquad (18)$$

where k > 0 is a constant, so that from (14),

$$A(au)^2 \leq k^2 \, d_n \, rac{dA(au)}{d au} \quad (au \leq lpha)$$
 ,

hence

$$\frac{\alpha}{2} \leq k^2 d_n \int_{\frac{\alpha}{2}}^{\alpha} \frac{dA(\tau)}{A(\tau)^2} \leq k^2 d_n / A\left(\frac{\alpha}{2}\right), \text{ or }$$
$$\frac{\alpha}{2} A\left(\frac{\alpha}{2}\right) \leq k^2 d_n.$$

If $u_n(z) \to 0$, then $d_n \to 0$, so that $A\left(\frac{\alpha}{2}\right) \to 0$, which is absurd. Hence $u_n(z)$ does not tend to zero with $n \to \infty$.

Let γ be a ring cut of Φ , which lies in $\Phi - F_1$. If we cut Φ along γ , then Φ breaks up into two parts. We denote that part, which does not contain F_1 , by $\Phi[\gamma]$.

With this notation, we put

$$\widetilde{\phi}_{n} = \phi_{n} + \sum_{\gamma_{1i_{1}\cdots i_{n}}^{(k)} \in \Gamma_{n}^{'}} \phi \left[\gamma_{1i_{1}\cdots i_{n}}^{(k)}\right].$$
(19)

Let Λ_n be the compact boundary of $\widetilde{\Phi}_n$ and $\widetilde{u}_n(z)$ be the harmonic measure of the ideal boundary of $\widetilde{\Phi}_n$ with respect to $\widetilde{\Phi}_n$, such that $\widetilde{u}_n(z)$ is harmonic in $\widetilde{\Phi}_n$, $\widetilde{u}_n=0$ on Λ_n , $u_n=1$ on the ideal boundary of $\widetilde{\Phi}_n^{\dagger}$, then since cap. $E_1 > 0$, we see easily that $\widetilde{u}_n(z) \equiv 0$, so that $0 < \widetilde{u}_n(z) < 1$ in $\widetilde{\Phi}_n$.

We shall prove that $\tilde{u}_n(z)$ does not tend to zero with $n \to \infty$. Let $\gamma = \gamma_{1i_1 \cdots i_n}^{(k)} \in \Gamma'_n$. We draw a ring cut γ' in $F_{1i_1 \cdots i_n}$, which lies in a small

⁵⁾ L. Ahlfors: Zur Theorie der Überlagerungsflächen. Acta Math. 65 (1935).

M. Tsuji

neighbourhood of γ , such that γ, γ' bound a ring domain \varDelta in $F_{1i_1 \cdots i_n}$. Let $\omega(z)$ be the harmonic measure of the ideal boundary of $\Phi[\gamma']$ with respect to $\Phi[\gamma']$, such that $\omega(z)$ is harmonic in $\Phi[\gamma']$, $\omega=0$ on γ' , $\omega=1$ on the ideal boundary of $\Phi[\gamma']$, then

$$\omega(z) > \alpha > 0$$
 on γ ,

where $\alpha > 0$ is a constant. Since $\tilde{u}_n(z) > 0$ on γ' , we have by the maximum principle,

$$\widetilde{u}_n(z) \ge \omega(z) > lpha > 0$$
 on γ ,

so that

 $\widetilde{u}_n(z) \geq \alpha u_n(z)$ on γ ,

hence by the maximum principle,

$$\widetilde{u}_n(z) \ge \alpha \ u_n(z) \qquad \text{in } \ \Phi_n \,.$$
 (20)

Since $u_n(z)$ does not tend to zero, $\tilde{u}_n(z)$ does not tend to zero with $n \rightarrow \infty$, so that

$$\widetilde{u}_n(z_0) \geq \eta > 0 \quad (n=1, 2, \cdots),$$
(21)

where z_0 is a fixed point of F_1 .

We map $\tilde{\Phi}_n$ on $|\tau| < 1$ conformally, such that z_0 becomes $\tau = 0$ and put $U_n(\tau) = \tilde{u}_n(z)$, then

$$U_n(0) \ge \eta > (n=1, 2, \cdots).$$
(22)

Since the compact boundary of $\tilde{\phi}_n$ is mapped on a set of arcs on $|\tau|=1$, on which $U_n(\tau)=0$, if we denote the complement of this set by e_n , then

$$me_n \geq 2\pi U_n(0) \geq 2\pi \eta > 0$$
 (n=1, 2,...). (23)

We map $F^{(\infty)}$ on |w| < 1 conformally, such that z_0 becomes w=0. Then $|\tau| < 1$ is mapped on a domains Δ_n in |w| < 1. Let M_n be the image of e_n on |w|=1, then by an extension of Löwner's theorem⁶, we have $mM_n \ge me_n$, so that

$$mM_n \geq 2\pi\eta > 0$$
 $(n=1,2,\cdots)$.

⁶⁾ Y. Kawakami: On an extension of Löwner's lemma. Jap. Journ. Math. 17 (1941). M. Tsuji: On an extension of Löwner's theorem. Proc. Imp. Acad. 18 (1942).

Hence if we put $M = \overline{\lim_{n \to \infty}} M_n$, then

$$mM \ge 2\pi\eta > 0. \tag{24}$$

We see easily that M is a sub-set of the image of E_1 on |w|=1, hence E_1 is mapped on a set of positive measure on |w|=1.

Hence our theorem is proved.

Mathematical Institute, Tokyo University.