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On some matrix operators.
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0. Introduction.

Let K be an arbitrary field of any characteristic x(K) (=0 or p).
We denote by gl(K, n) the set of all matrices of degree » over K and
by GL(K, n) the set of all non-singular matrices in g(K,#n). I, and
O, mean the unit matrix and zero matrix of degree z respectively.

Besides ordinary operations on matrices, we consider the following
three operators. For A=(ai;egl(K,n) and Begl(K,m) we consider
the direct sum:

. A O
A+B=( )egI(K,n+m),
O B

the Kronecker product:

anB, apB, -+, a1,B

A®B=( ) e gU( K, nm),

anlB, anZB,' ) annB
and the Kronecker sum: A®B=A®I,,+1,®B e gl(K, nm).

These operations —'k, ®, @ are non-commutative but associative.
Now we define two set-theoretical sums :

R=RK)= gl(K,n), S=&(K)=\ GL(K, ).

For an element A in R, we denote by d(A) its degree.
Now let L be a Lie algebra over K and R;s py, p2,-- the set of
representations of L. Between the elements of R, the operations such

as pl-l'-pz, p1®p, are defined in the well-known way. We can also speak
of the degree d(p) of p, and of the transform T p T of p by an
element T in GL(K, d(p)).

Harish-Chandra has considered a mapping ¢ of R, into R,
satisfying the following conditions: .
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I' d(¢(p))=d(p) for every p in Ry, -

Il &Tp T VH=T&p) T for every p in Ry and for every T in
GL(K, d(p)),
I &(py+ p2)=&(p1) +E(p2) for every pi, p, in Ry,
IV &(p@p2)=8(p)@E(p2) for every py, p2 in Ry
He called such a mapping ¢ a representatlon of Ry, and denoted the
set of all representations of ERO by L. Then L becomes a Lie algebra
over K with respect to the following operations: if &, &€ L, a,a e K,
then _
(@ &1+ a: &) (p)=a1 - tip)+a: - &p),

[&1, &2] (P)=L&:p), &P)]1=251(p) ,é’z(P)"—fz(P)vé‘i(P) .
Harish-Chandra has proved the following result analogous to Tannaka
duality theorem: “If K is algebraically closed and x(K)=0, and if L
is semi-simple, then L 1is isomorphic with I under the mapping
X—¢x(X e L) defined as follows: &x(p)=p(X) for every pe Ry”.
However, if L is not semi-simple, the problem to determine the struc-
ture of L from that of L seems to be difficult. In this note we shall
treat this problem in the simplest case, namely in case where L is a
one-dimensional Lie algebra over K. We shall solve it completely,
when K is algebraically closed (Theorem 1). It will turn out that L
is an infinite dimensional abelian Lie algebra (Corollary to Theorem 1).
Incidentally we shall obtain a characterization of the “replica” of
matrices introduced by C. Chevalley (Theorem 2). From now on,
let L be a one-dimensional Lie algebra over K. Let X be a base of
L over K. Then the set R, of all representations of L can be identified
with R by the one-to-one correspondence p*5p(X) (pe Ro). Obviously,
this correspondence preserves d(p), +, ® and transforms. Thus, every
element in L can be defined as a mapping (or an operator) of % into
R satisfying the following conditions. «

I. d¢(A)=d(A) for every A in R. |
I. §TATYW=T¢A) T for every A in gﬁ and for every T in
 GL(K,dA)). |
I ¢(A+B)=¢(A)+¢(B) for every A B in R.
IV. ¢(A®B)=¢(A)®¢(B) for every A,B in R.
We call such an operator a sum-sum (abbr. s-s) operator. Replacing



78 N. IwAHORI

the last condition by one of the following ones, we define three other
kinds of ‘operators.
IV, ¢ A®B)=¢(A)® ¢(B) for every A,B in R (sum-product (s-p)

operator.)

1IVs, d(A®B)=t(A)®¢(B) for every A, B in R (product-sum (p-s)
operator.)

IV, t(A®B)={(A)®t(B) for every A, B in R (product product (p-p)
operator.)

The determination of p-p operators means to determine the dual
of dual in the sense of Tannaka of the infinite cyclic group. We shall
show that an analogous method to the one used in §2 to determine
s-s operators allows us also to determine s-p, p-s and p-p operator.
(§ 3, Theorem 3-8)

The writer is grateful to Prof. S. Iyanaga for his suggestions and
remarks during the preparation of this note.

1. Preliminaries.

In this section we shall prove some lemmas which we shall need
later. In what follows, K is supposed as algebraically closed (except
in Appendix) .

LEMMA 1. For every matrix A in gl(K, n) there exist two matrices
S, N in g(K, n) such that

A=S+N, SN=NS,
S : a semi-simple matrix® (or an s-matrix),

N : a nilpotent matrix (or an n-malrix) .

S and N are determined by A uniquely, and can be expressed as poly-
nomials in A without constant terms.

ProoF. Though this is a well known fact, we shall give here a
proof which is valid whenever A has only separable eigen-values over
K.

Let A be the associative subalgebra of gl(K,#n) generated by A.
By Wedderburn’s theorem 2 can be decomposed -into the direct sum

‘1) A matrix is called semi-simple if its minimum polynomial has only simple roots.
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of the radical N and a semi-simple subalgebra £: A=N+K. There-
fore A can be written as

"A=S+N, Sef, Neh.

It is easily verified that SN=NS and also that S, N are respectively
s-matrix -and #z-matrix. S and N, being in 2, can be expressed as
polynomials in A without constant term. -

-+ Now let S; and N, be respectively s-matrix and #-matrix such that

A:S1+N1, SlNl-:NlSl.

Then, S, N; are commutative with A. So they commute.with
S, N. Therefore S—S, and N—N, are respectively s-matrix and #»-
matrix. On the other hand

S—— Sl-:Nl—N,

so that we have S=S, and N=N..

We shall write S=A%®, N=A", and call them the semi-simple and

the nilpotent part of A respectively (or the s-part and z-part of A).
In parallelism to [Lemma 1, we have the following

LEMMA 2. For every matrix A in GL(K, n) there exist two matrix
S, U in GL(K,n) such that

A=SU=US,

S: an s-matrix, U : a malvix of which all eigen-values are equal
to 12 (or an u-matrix), ‘

PrROOF. Take S as A® and U as AA® L. Then S and U satisfy
above conditions. Uniqueness is shown similarly as in Lemma 1.
We shall write U=A™ and call it the »-part of A. v

"Now let T be an arbitrary non-empty set in gl(K, #n). We denote
the commutator algebra of € in gl(K, n) by Z(2): Z(Z)={A; AeglK,n),
AX=XA for every XeZ}, then we have

LEMMA 3. If we put T,=GL(K, n)"Z(X), then

AT)=ZZT)).

PROOF. Obviously we have Z(3,)>Z(Z(2)). Now let C be a matrix
belonging to Z(Z,). Let A, A, (A,=1,) be a base of Z(T) over K,

2) A matrix U is a u-matrix if and only if U—1I is an n-matrix. (n=d(U)). .
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and let &,---,& be independent variables over K. We denote by

Vi i€, &) the (7,7) component of the matrix C(g‘l, &; A,-)~(i; & A;)C,

and by @(&;,-, &) the determinant of i £; A;. Suppose that C¢ Z(Z(2)).

Then there exist A4,---, A, iIn K and mdlces 1,7, such that ¥ j(x;,---,2,)==0,

so that we have _,(él, -, &)F0.
On the other hand, since ¢(1,0, -, 0)=det. In=l=0, we have @(&,--,

£)30. Now K being an infinite field, there exist u,---, u#, in K such
that
Vi iy s ) @1y, ) F 0.

Then B=Zr} pi Ai is in ; and BC=CB. This contradicts the faét

Ce Z(Z)).
REMARK. Lemmas 1-3 hold for any mﬁmte perfect field K.

2. Determination of s-s operators.

Let ¢ be an s-s operator from R in R. From condition II, we
see in particular that TAT '=A implies T ¢(A) T 1=¢(A).
In other words, ¢(A)e Z(GL(K, n)"Z(A)). Therefore by Lemma 3,

we have A e Z(Z(A)).
Now as is well-known,® , Z(Z(A)) coincides with the set of all

polynomials in A. So we have
(A =ap In+a, A+ +a, A* (n=d(A)),
a;e K 0Zi<n).

Here a; may depend on A. ,
Now let NV, M be two n-matrices of degree 7, m respectively. Let

7, s be their respective indices : N*~'5=0,,, Ms'==0,,, N’=0,,; Ms=0,,.
Then we have

(N)=SIwi N, M= 5 M

(N M)= ’zj M(NEMY — ((=Max (7,5)),

3) See for example, Wedderburn, Lectures on matrices, p. 106. Theorem 2.
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and from condition III follow identities
r—-1 ot . s-1 T 2 | .
Z;II,'N‘:E?\“'N’, Z,UJ,'M':ZR;M'.
1= i=0 i =0

From the linear independence of I,, N,--, N*~! and of I,, M, - Ms
we have vi=N; = (O_<J£M1n (r,s)—1). '

In other words, there exists a sequence ¢, ¢;,---, of elements in K,
such that for any #z-matrix N in R

g(N)‘zi ¢; N (finite series!).

(cp, €1,-+ depend only on the niapping ¢). As is easily seen, the choice
of ¢, c,--+ 1S unique.
Now, putting

Ea I)=g(a) I_1 ’

we define the mapping g from K to K. From III it follows that for a
diagonal matrix D=(x\; 3i;), we have

E(D)=(g:) 8;5) -

We remark here that the determinations of ¢, ¢;,--- and of the mapp-
ing g are derived only from conditions I, II, IIl. The condition 1V,
will specify now the ¢’s and g.

Now applying ¢ on both sides of a I1}®8 I,=(a+B) I}, we obtaln

gla+B)=g(a)+2(8).

So g is a homomorphism of the additive group of K into itself. Con-
sequently if %, is the prime field of K, g is a k,-linear mapping from
K into itself.

Now, let us seek conditions which w111 characterlze the sequence
¢;. For the above nm-matrices N, M, we have from IV,, (N®M is also
an z-matrix!)

iZ;‘,)c,-(N@M)‘z( gc,- N")@(iz:;c,- M") ,
that is L

icz( ) Mo @ Mi+=3 6 (N @ L+ 1,0 M)

=0 k-

From the linear independence of Ni® M-’ (Ogigf—l,'ogjgs—l;),
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we have =0, ¢ })=0, @<i<Min. (r,5)—1, 1<k<i—1).
If x(K)=0, then all ¢’s except ¢, are zero, and we have
EN)=cN (c=c).

To treat the case of x(K)=p, we prove the following

LEMMA 4. Let p be a prime number and I a positive integer.
Then

i) the greatest common dz'vz'sqr of (i), (é),, ( l-ll) is

: {1, if lis not a power of a prime number,
b, if I=pe. ,
Let i, 7, t be three integers such that 0<:<j, 0t<ip. Then

) 0, mod. p, if t is not a multiple of p,

i1) (jp+1)! = G+
t(gp—ip+t)! (sp—1)! J o D, if t=tD.
PTG—it ) =gy * mod-p» F 1=tD

PRrROOF. i) If / is not a power of a prime number ¢, then let By
be the first non-vanishing coefficient in the g-adic expression of /=
Bot+Brig+ - +B,q" (0<8;,=qg—1, 0<i<7»). Then we have f<# or
f=r, Bs>1. On the other hand, as is easily seen

(&)= (5) mod.a.
So we have (qlf>E<Bf+"”{B’qr_f>, mod. ¢ and l§qf§l—1.

Therefore we get the first part of i). _
Next if /=p¢(e=1), then let 7 be an arbitrary integer such that
1>=i=p—1. The p-exponent of p¢! is then given by

S ﬁ—: el ... :,ée,?',,l
v};‘lpvj P+t 1"

Similarly the p-exponents of (ip¢7!)! and of (( p—i)pe‘l)! are given by

17;_1:11 , (p—19) p;i;1 respectively. So the p-exponent of (z‘lie‘l)

is equal to 1, and the G.C. M. of ({), <é>,,< l—ll) has alsb the same

:
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p-exponent 1. As was shown above, the G.C. M. of (i),, ( l—fl> can-

not be divided by any other prime number.. Therefore we get the
second part of i).
ii) Let t=¢p+q, 0<qg<p. Then

o+ O)I=p7 G+ )y, tl=p" | |
(Fp—ip+1=p7 ¢ (j—i+t) oy (ip—8)!=p""* " i—t' =1 ay,

where «ay, ay, a3, 0y are integers such that «;F0 mod.p. (1i4).
so we have '

_ (p+1)! _p G a g
t(jp—ip+)!(ip—1)! Y1 G—i+8)G—¢—-1)! azasay
' (mod. p) .
Next let ¢{=t'p, then by similar calculation as‘above,
_ (Gp+d)! _ (+8)! (mod. p).

t(ip—ip+ )1 @p—t)!  H1G—i+t) G—1)!
Now let us return to the determination of s-s operator in case
x(K)=p. By [Lemma 4, (i) and ¢ (,’e)=o (1<k<i—1), we have

¢;i=0 (if 7 is not a power of p),
EN)=c N+ cpN?+cpa N?*+--- (N : n-matrix) .

Now let A be any matrix in gl(K,#n). Transform A by a suitable
matrix 7 into Jordan’s normal form: ‘

TAT“lzi +(a; Id;+N)), di=d(N;), N;: n-matrix.
Since al;+ N=al ®N, we have |
THAT =3 +(gla) LOLN)
=37+ (gla)a; + END) -

On the other hand, we have TA‘S’T*:é—i— a; I, TA"’?T“I::z}:]1 +N;,

as is easily seen. Therefore we have
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T{A)T =T AT+ T (AD)T !,
that is ‘
§A)=EAP)+E(AP).
We shall call (C) the condition

;=0 for all /&1 in case x(K)=0,

(€)
{c,-=0 for all 79p* in case X(K)=p

for the sequence ¢, ¢, - of elements in K, and any such sequence
satisfying this condition a C-sequence.

We have seen that for any s-s operator ¢, there correspond an
endomorphism g of the additive group of K, and a C-sequence ¢, ¢, -,
which in turn determine ¢ uniquely. We shall say that ¢ has as its
invariants g and the C-sequence ¢, ¢;,  -.

Conversely, let g be any endomorphism of the additive group of
K, and ¢y, c),--- be any C-sequence. Let us show that there exists an
s-s operator ¢ which has g and ¢, ¢;,--- as its invariants.

First let S be any s-matrix of degree #n. We transform S into the
diagonal form

TST-IZ-—(C(,- 8;}) ,
and then we define

US)=T"(gla;) 8;;) T

Now we must show that &(S) is thus well defined. Let T3 be a
matrix such that ”

T,STi'=(ay, 85),

where (py,:-, P») is a permutation of (1,---,#). Then we must show
that .

T-Y(g(c)8: ;) T=Ti"(glets,)8i ) T -
To show this, take a permutation matrix P such that
(ap, 8;5)=Fa; 8;;)P71.

Then we have
S=T"Na; 8; ) T=T7'P«a; 8; ;)P™'T,
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that is, TT71P commutes with («; 8;;). On the other hand, as ( ga;)s; j)
is a polynomial in («;8;;), TT{P commutes with (g(a,-)s,- ,-):
T(g(@,)8:;) T=Ti*P(gla)8:;) P Ti=Tr*(g(5,)8:5) T
This is Whaf we had to show.
Next we define for any #z-matrix N,

{N)=3)¢; N,

i=0
and for any matrix A, we define

§(A)=((AD) +5(A™).

Now let us show that the mapping ¢ defined above satisfies the
conditions I-IV,. I is obvious. II follows immediately for s-matrix
and z-matrix from the definition. For general matrices it follows from
the fact that (TAT )®=TA®T !, (TAT )Y®=TA®T1 and the de-
finition of & I follows immediately if A and B are both s-matrices
or both n-matrices. For general case, we have

((ATB)=t(A+ BO)+ {AP+ B”)={£(A)+(B?))

+{¢(A+ {(B™)} =E(A)+¢(B) .

To show IV, remark that (A®B)Y®=A®®B?, (A®BY"=AP®B,
So we have only to show IV,, under the assumption that A,B are
both s-matrices or both #z-matrices.

Let A, B be both s-matrices. Choose matrices T3, 7T, so that
T\ATi'=(«a; 8;;), T-BTs*=(B;38;;), and put T3=T1® T3, then we have

T{A®BTy'=3 +(a; [L®B,; I)=3) +(a; + B8] .

2, 7

Now from the additiveness of g and from the definition of ¢, we have
TH(A®B)T=] + (glon) + £(8,)) Tr=gle)0:;)® (£(8:)8:5)

=(T e AT )@ (T2 ¢B)T:') = Ts(6(A)®E¢(B)) T5™ .
Next let 4, B be both n-matrices. Then we have

fA®B)=3] ((A® L+ L,O By =HAOUB).
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Thus we have proved the following

THEOREM 1. Let K be any algebraically closed field. For any s-s
operator ¢ from R(K) into R(K), there correspond uniquely an endo-
morphism g of the additive group K and a C-sequence ¢, ¢, which
we have called the invariants of t.
They are connected with ¢ as follows :

EA)=EAD)+¢(A™),

where
EAS)= T"‘(g(a,-) 3:';‘) T with («a; 8;;)=TA®T™?,

£ A(n))___i; ¢ A™i

Conversely, for any endomorphism g of the additive group K and
for any C-sequence c,, c,--- there is one and only one s-s operator
having them as invariants.

COROLLARY. Let L be a 1-dimensional Lie algebra over an alge-
braically closed field K. Then L is an infinite dimensional abelian Lie
algebra over K. ’

ProoF. As was shown in the introduction, L is isomorphic to the
Lie algebra consisting of s-s operators. If ¢, & are any two s-s
operators, we have [&(A), &(A)]=0 for every A in R since &;(A) is a
polynomial in A4, i=1,2. Thus, L is abelian. Now the set F of all
endomorphism of the additive group K becomes a linear space over K in
the natural way. As can be seen easily, dim F/K=o. From this, we

can conclude that L is infinite dimensional over K, q. e.d.

Now we give here some properties of s-s operators:

THEOREM 2. Let ¢ be any s-s operator from R into R. Then:
«) If AB=BA, then t(A+B)=¢(A)+¢(B).

B) &(—tA)=—%(A), where tA denotes the transposed matrix of A. .
v) A matrix B is a replica® of a matrix A if and only if theve exists
an s-s operator ¢ such that ¢(A)=B.

PROOF. «) From AB=BA follows easily that (A+ B)®=A®+B*,
(A+BP=A®+ B™, and that the four matrices A®, A®”, B, B™
commute with each other. Consequently there is a matrix 7 such that
TA®T '=(«a; §;;), TB®T 1=(B; 3;;), and we have

4) Cf. C. Chevalley
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E(A+B)=t(A® + B®)+ ((A™+ B®)
= T—l(g(ai“l‘ﬂi)sij) T+ ¢(A™ + BP)
=(A®)+ L{BD)+ L(A™+B™) .
On the other hand, we have by the property of the C-sequence ¢, ¢, -,

HAD + B(n)):i] (AP + B(n))i:io c; AMi io ¢; B™i
Thus, we have
t(A+B)=¢(A)+¢(B).

B) From «a) and ¢(0,)=0,, we have ¢(—A)=—¢&(A). Now, as *A and
A have the same elementary divisors, there is a matrix 7 such that
TAT*=!'A. On the other hand ¢(A) is a polynomial in A:

(A)=3] a; A (r=a(4),
so we have '
(A =E(TATH=THAT =3 a TAT Y =3] a; LAI=4(A) .
Thus we have ,
G—tA)=—t(A)=—4(4).

v) Let B=¢(A). Take a matrix T such that TA®T '=(«; §;;). Let
g and ¢, ¢;,--- be the invariants of ¢. Then we have by Theorem 1,

TBOT'=(gla;) &) ,
B(n):i ¢ A(n)i .
i=0

Now, as g is an endomorphism of the additive group K, it follows that
for any integers me, -, m, (nzd(A)) such that ﬁla,- m;=0, we have
Z‘,”lm,- gla;)=0. From this we can conclude easily that B® is a replica

of A®®. By the above formula for B®, and the ‘property of ¢,c¢, -,
B™ is a replica of A, So it follows that® B is a replica of A.
Conversely, let B be a replica of A. Take a matrix T such that
TA®T*=(«; 8;;). As B is a polynomial in A¥, we have then T'B®T"!
=(B; 8;;). As is known,” any linear relation between the a;’s with

5) See §4.
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integral coeffients, ém; a; =0, holds also for the gB;: Zn}m, B;=0, so
. = =1

there is a kj-linear mapping g’ from the k-module generated by ay, -+, ay,
into the ky-module generated by B, -, 8, such that g(a;)=8; 1<i< n).
Then we can extend g’ to a kg -linear mapping g from the ZXy,-module

K into itself.
Next, as is known,”® there exsists a C-sequence ¢, ¢;,--- in K such

that
B(”):i ¢ Ami ,

=0
and that only a finite number of the ¢/’s are non-vanishing. We now

construct an s-s operator ¢ having g and ¢, ¢;--- as invariants.

Then as can be seen easily, we have ¢(A)=B.
REMARK. If B is a replica of A, there are infinitely many s.s.

operators ¢ such that ¢(A)=B.

3. Determination of s-p, p-s and p-p operators.

For s-p, p-s and p-p operators almost the same discussion as in
§2 applies. First, for given ¢ satisfying also I, II, III, we define ele-
ments ¢; (0<i< ) in K and a mapping from K into K by the
formulas: C

C(N)zf_c_o,(‘] ¢; Ni (for any z-matrix N in R),
a l)=gla) (for any element a in K).

Now, let ¢ be an s.p. operator, then condition IV, implies as in §2
that ‘

aer= (1)  0<ii<e),

gla+B)=g(a) g(B) (for every a, B in K).

Then a simple calculation shows that :
X(K)=0: ¢=0(0<i<o) thatis, ¢WN)=0, (n=dN)),
or ¢,=1, ¢;=cj/t! that is, &WN)=expa N,

XK)=p: =0 (0<i<c) thatis, ¢N)=0, (n=dN)),
or =1, ;=0 (i>1) that is, ¢N)=I, (n=d{N)).
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Next, consider the mapping g. From the above formula we have
g(a)=0 (for every «a in K) or g{a)==0 (for every « in K). In the latter
case, g is a homomorphism of the additive group K into the multiplica-
tive group K* of K. However, if x(K)=p, we have for every « in K,

g(a)ﬁ*g(ﬁa)' 1, so that gla)=1.

Thus we have the following theorem by a similar discussion as in
Theorem 1.

THEOREM 3. Let & be an s-p opervator from R into R. Then we
have
i) x(K)=p: t(A)=0, for every matrix A in R, n=d(A),

or LA)=I, for every matrix A in R, n=d(A),

x(K)=0: t(A)=0, for every matrix A in R, n=d(A4),
or i) ¢ has as invarviants a homomorphism g from K into K* and an
element ¢ in K. They are connected with & as follows :

EA)=EA®) E(A™)  for every A in R,
where ’ ' | |
L A)=T(gla;) 8;;) T ‘with (a; 8;;)=TA®T™
HAP)=exp cAP .

Conversely, for every homomorphism g from K into K* and for
every element c in K, there is one and only one s-p operator from R
into N having them as mwmants

The s-p operator ¢, &(A)=0, (for every A in R, n=d(A)) is called
singular. Other s-p operators W111 be called non-singular, i.e. those
which map R into &.

THEOREM 4. Awn s-p operator ¢ has the followmg properties :

) If AB=BA, then t{(A+B)=¢(A)¢(B).
B) If ¢ is non-singular, then {(—tA)=1t£(A)™. :

These are proved as in the proof of Theorem 2. - (We shall discuss
on an analogy of ) in the next section.)

Now, let ¢ be a p-s operator, from R into R. Then condition
1V, gives as in § 2 that

=0 (0<i< ), that is, ¢&(N)=0, for every m- matrlx N in R,
n= d(N ).

gap)=gla)+g(B)  (for every a, 8 in K).
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In particular, we have g(0)=g(1)=0. Furthermore, if x(K)=p,
then every element « in algebraically closed field K can be written as
a=vy? so we have

g(a)=pg(v)=0.

Now let A be any matrix of degree » in R and N be any #-matrix
of degree m in R. Then, N® A being an »-matrix, we have

Opin=t(N®A)=,UN)BYA)=0pn+ I, ®t(A).
Hence we have

This shows that every p-s operator ¢ from R into R is a trivial
one: ¢(A)=0, (for every A in R). So we shall consider p-s opera-

tors from S= \7 GL(K,n) into R. Let ¢ be such an operatbr. For

n~-1
every n-matrix N of degree n, we define ¢ as
EN)=¢(I,+N).

Then ¢ is a mapping defined on the set of all #-matrices in R with
values in R, and as is seen easily, ¢ satisfies the conditions I, II, III in
§1. Then ¢ determines the elements d;(0<i< ) in K such that

&N )=Z~0 d; Ni (for every n-matrix N in R).

Now, as ¢ satisfies 1V;, we have for any #z-matrix N and M,
EN®L,+ I, @M+ N®M)=F{N)®YM)  (n=d(N), m=d(M)),

from which we have

53 dise dyes} (V@ MO+ N9 @ MO+ 52 {35 i ds ) (N 0 M)

OSi<J'<°°{I—0
=i)d,. (Ni® I, +I,® Mi),

where
di =7+ (F—i+ D! —1D)!.

Comparing the coefficients of N‘® Mi in both sides of the equality,
we have (since the indices of NV and M can be preassigned to be any
positive integer)

d=0,
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and also that
’-Zodijtdj.;.tzo (1<Z<]<°°)-

In particular, putting =1, we obtain
jd;+(7+1)dj.=0 (1<i<<w).
In case x(K)=0, we have

dj=(—1)*1ad/j A<j<<x),
and
&I,+N)=d,log (I,+N).®

In case x(K)=p, we haye ‘_
d;=0, if j¥O0mod. p.

Hence we have

Ay (NI, 4+ I, M+ N® M)iﬁzg di (N3 ® Iy 4 I, ® Miv) .

=1

Therefore, putting d;,=e¢; (1=1,2,-), ’
‘ gl}e,-(NF®I,,,+I,,®M’>+NP®MP)":§£6,-(NI"®Im+I,,®M1"'). :
Thus we have as above

Sdines=0  (1<i<i<w).

Then, as above, we obtain
e;=0, if 7% 0 mod. p.
Proceeding similarly, we have
d;=0 (z2=0,1,2,---).

Now, for any matrix A in S, we have ¢(A)=¢A®)+¢{(A®) as in
§2. Thus, we have the following
THEOREM 5. i) Let & be a p-s operator from R into R. Then

t(A)=0, for every A in N, n=d(A).

6) 1If N is an n-matrix of degree #», then log (I, + N) is defined as

= N
log (In +N)= X (—1)i =
‘s:

(finite series).
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ii) Let ¢ be a p-s operator from S into R. Then,

In case x(K)=p: ¢(A)=0, for every A in R, n=d(A).

In case x(K)=0: ¢ has as invariants a homomorphism g from the
multiplicative group K* into the additive group K and an element d
in K. They are connected with ¢ as follows : .

| EA)=EAD)+E(AD) for every A in &,
where ¢ A)=T(g(a:)8:3)T™" with (a; 8 ;)=TA®T!,
HA®)=dlog A% .

Conversely, for any homomorphism from K* into K and an ele-
ment d in K, there is one and only one p-s operator from S into R
having them as invariants.

THEOREM 6. Let ¢ be a p-s operator from S into R. Then,

«) if AB=BA then ((AB)={(A)+¢(B).
B) LA Y)Y=—(A) for every matlrix A in S.

Proof is almost the same as that of m

Next, let us consider p-p operators from R into R. The condition
IV, implies as in §2 that )

glaB)=gla)g(B) for every «,8 in K,

d=c;, ¢c;=0 (=Fj) (04 j< ).
Thus we have ¢;=0 (0<i< o) or ¢;=1 for some ¢ and all other c;’s
are zero. We are thus in one of the following two cases:
Case A) &WN)=O0, for every n-matrix N in R, n=d(N).
Case B) ¢(IN)=N¢ for every zm-matrix N in R.
Ad case A). For every matrix A in R there are matrices T, N, A4,
such that ' '

A=T(N+Ay)T™,

N: an z-matrix, A,: a non-singular matrix. .
(Consider for example Jordan’s normal form of A.) N and A, are
uniquely determined by A upto similar matrices. Then we have

HA=T(tWN)+ LAY T (m=dD)).

Accordingly ¢ is determined completely by its contraction on &-
Conversely, let ¢ be any p-p operator from & into R. Define ¢
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for A in R by §(A):T(O,,,-i'-§(A0))T“'1, where A is decomposed as’
above : A=T(NJ'rA0)T'1. Then we may verify as in the proof of
Theorem 1 that ¢ is uniquely defined and satisfies the conditions I-III
and 1V,. Thus for case A) our problem is reduced to determine p-p
operators from & into MR. ‘

Ad case B). Take an n-matrix N such that NiZ=0,, (m=d(N)).
Then for any matrix A in R, we have ’

EIN®A)=(N®AY=LN)®¢(A)
or |
Ni®A=N®EA).
So we have
¢(A)y=Ai, gla)=a' (for every a in K).

Now, returning to case A), let us consider a p-p operator ¢ from &
into R. Define ¢ as

EN)=¢(I,+ N) (N: ahy n-matrix of degree #).

Then as in the case of p-s operators, ¢ determines, the elements d; (0 <
< ) such that

&N )=§2; d; N¢ (for every m-matrix N).

As ¢ satisfies 1V, we have for any #z-matrices N ahd M,
EN®L,+ [, M+NSM)=LN)RSEM)  (n=d(N), m=d(M)).

From this follows, as in the case of p-s operators,
(1) : didj:,i.::]dijt djie (0<i<j< ).
Putting i=0, we have ;
| dod;=d; (0<j<< ).
Hence we have dy=1 or d;=0 (0<i< ). In the latter case we have
‘ §In+N)=0y.
Accordingly,

g(l):O ’

and hence g(a)=0 (for all « in K).
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Then, by the formula ¢(A)=¢&A®)¢(A™), we have

| HA)=0, forallAin & (n=d4)).
Now let us suppose that dy=1. Putting /=1 in (1) we have
(2) dd;=j-d;+(J+1)d;; (1<j<<).

Hence, if x(K)=0,

dy=d(d—1)(di—i+1/1=(%),
C(I,.+N)=In+<‘111) N+<g1)N2+... .

Now put log(Z,+ N)=M. Then a simple calculation shows
C(In’*’N):eXD a .
Next let x(K)=p. From the above relations (2) we have

dip+1 120-0 dip+1
d;p+2 0230 -)[dipse
a =|9930 ’ (0<i< o).
: 000-p—1 :
dip+p-1 000-p—1/ \disscs-1>

Hence, if d,¢(1,2,--,p—1),” then
| d,=0 for all 2, k0 (mod.p),
and we have

eI+ 1v)=z”0 dipNiz .
If die(1,2,--,p—1) we have (regarding d; as a positive integar)
dip+1=dip(61il> > dip+z=dip(gl>,“' ’ dip+(.p-1)=dip(pa_r£1> (0 < i<°°)-
Hence it follows that . | |
d . .
ent N)={ Lt (P) N+ ()2 (4 e PSERE

=(Iy+ N)* 3} dip N2 .

7) (1,2,-, p—1) means the set of non zero elements of the prime field of K.
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Now let us define for any element x in K (x(K)=p) and for any
n-matrix U of degree =

In if x¢(192}’p—1)
U=={

the power of U where the exponent x is regarded as a positive
integer if xe(1, 2,---, p—1).
Then the above result can be written in the form:

¢+ N)=(I, +N)a iﬂ dip Nit .

Now by Lemma 4, ii), e;=d;, (0<i< ) satisfy the relations (1),
hence we have similarly as above

i d,‘p Ni=(1n+Np)d1>i d{pﬁ N"f’g .

Take an integer f such that p becomes larger than the index of
N, then we have

c(In+N)=(In+N)d1(In+Np)d""'"(In+pr)dpf,
which can be written as

¢, +N)= 1[([ + N?¥)api (finite product!).

i=0
Thus we have the following

THEOREM 7. Any p-p operator ¢ from R mto R is either one of
the following types :

i) &(A)=0, for every matrvix A in R, n=d(A).

ii) ¢(A)=A¢ for every matrix A in R, where i is a non-negative
integer independent of A.
ili) & has as invarviants a mapping g from K into K such that

@) 20)=0, glaB)=glx)gB),  gla)=F0  (for a=:0).

and an element d in K, (x(K )= 0) or a sequence of elements d; in K
(0<i<< o) (x(K)= p) vespectively.
They are connected with ¢ as follows :

HA)=E(AD) E(A®) if A is non-singular,
where -
| §A9) =T (gla) 8:;)T  with (a; 8:;)=TA®T,
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exp (dlog A®) (x(K)=0)

é-(A(u)) :{ - )

LL(L+NoY (x(K)=p), where A®)=I,+N, n=d(4).
And for the general matvix A=T(N + AT (N: n-matrix, Ay: non-
singular)

(A)=T(0,+¢A))T! (m=d(N)).

Conversely, for any given invariants consisting of g and d ( x(K )=0)
or d; (x(K )= p), there is one and only one p-p operator ¢ having them
as invariants.

We shall call the p-p operators belonging to ii) or iii) in
7, 1. e. those which have the property

§S)<S

non-singular.
THEOREM 8. Let & be a p-p operator from R into R.
a) If AB=BA, then ((AB)=¢(A)¢(B).
B) If ¢ is non-singular and A is in S, then (A V)=t (A)™.

4. On the concept of replica.

As was stated in v), the concept of replica introduced
by C. Chevalley [2] is in a close relation with s-s operators, so that it
may be called s-s-replica. We shall now define other kinds of replicas,
which we shall call s-p-, p-s- and p-p-replicas, and which are in the
same relation to the corresponding operators as s-s-replicas to S-8-
operators. :

In the following, K need not be algebraically closed.

Let M be an n-dimensional vector space over K. We denote by
gl(M) the set of all linear endomorphisms of M over K, and by GL(M)
the set of non-singular ones in gl(M). Let M* be the dual space of M.
We write (x, £) for the inner product of vectors xeM and éeM*. We
shall denote by M, ; the set of (7,s)-tensors, i.e. the tensor product

MR --QMSSM*X---& M* .

”~

r S

For every Aegl(M), the transposed of A is denoted by *‘A(egl(M*)),
and A, .egl(M, ;) is defined by .
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A, =AD - DAD(—!A)D(—A)D D (—'A).

r s

For every AeGL(M) we define A, by
A(r,s):@"(@A@(té—l)@"'@(114:)-

Let x®& be an element in MXM* (xeM, EeM™*). Then define
an element A in gl(M) by Ay=(y,&)x for every ¥y in M. It is easy
to see that this mapping x®&-—>A is a linear isomorphism from M M*

onto gl(M). We identify them under this isomorphism, then we have
easily

A (X)=AX—XA=[A, X] (Aegl(M) Xegl(M))
A p(X)=AXA™ (AeGL(M), Xegl(M)).

DEFINITON. Let A, B be in gl(M) or in GL(M)®» We shall say that
B is an s-s-replica of A (in symbol: A—B) if ¥eM, ,, A, ;X=0
S-p
implies B, ;X=0,
B is an s-p-replica of A (A——»B) if XeM, ,, A, X=0 implies

B(f s)% %
B is a p-s-replica of A (A—B) if XeM, ,, A, oX=% implies
D-s
B, %=0, and
B is a p-p-replica of A (A—B) if XeM, , A, X=X implies
D-p
B(r,s)%:%°
where the implication must hold for all integers #», s>0, »+ s >0.

In the following we discuss in detail only on the p-p-replica.

For simplicity, we write — for —. Now we have
p-D

PROPOSITION. 1°) (A¢,9)w 0 =A¢u+sw, ro+sw -
2°) — is a reflexive and transitive relation.
3°) If A—B, then A, .5— B s for every v,s (>0, r+s>0).
4°) The set of all p-p-replicas of A: {A},,={B;A—B} is a sub-
group of GL(M).
5%) (A0 =(Awx,0)®) (A®)p,0=(Acs,)™.
6°) Let N be a subspace of M such that AN<N. We denote by

8) "We do not define A¢, s) for a singular matrix A.
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Ay, Apn the linear endomorphisms induced by A on N and M/N
respectively. Then

(AN)(S) = (A(S))N; (AM/N)(S) = (A(S))M/N ’

(AN)®=(A")y, (A n)=(A) sy -

All this is easy to prove.

PROPOSITION 2. 1°) A—A®, A—>A® for every A in GL(M).
20) If AB———BA, then (AB)(s):A(s)B(s), (AB)(“):A(")B(").
3°) If A—B, then B is a polynomial in A without constant term.

Proor. 1°) Let xeM, Ax=x. Then (A—1I1,)x=0. As (A—1I,)*®
is a polynomial in A— I, without constant term, we have (A—I,,)°x=0,
hence, A'®x=x. Therefore from Prop. 1, 5°) we have A—A®. Then
AW=AA®"! is in {A},., by Prop. 1, 4°). 2°) is obvious. 3°) AXA™
=X implies BXB'=X, hence B—Z{Z(A)}. Therefore B is a poly-
nomial in A. As A is non-singular,: 7, is a linear combination of A,
Az---, A, (n:d(A)).

PrROPOSITION 3. If A is an s-matrix (u-matrix) and A— B, then
B is also an s-matrix (u-matrix). )

Proor. If A is an s-matrix, then from Prop. 2, 3°) B is also an
s-matrix. If A is a w-matrix, put A=1I1,+ N, (N: n-matrix), then from
Prop. 2, 3°) there are f+1 elements.a, ay, -, @y in K such that

B=ayI,+a N+ ---+ar N.

Take a vector xeM such that x40, Nx=0. Then Ax=x implies
that Bx=x. Hence ay=1 and B is a u-matrix.

ProposITION 4. A— B holds if and only if both A®— B® and
A®— B® pold.

PrROOF. Suppose A®— B and A®— B®, Then from Prop. 1, 4°),
Prop. 2, 1°) we have A— B. Conversely, let A—B. We shall show
first that A“x=x implies B¥x=x. Let N be the subspace of M
defined by N={«'; x’e M, A®x'=x'}. Then we have AN N, hence
Any=A% — By. Therefore By is a u-matrix by Prop. 3. Hence we
have B% =1y, thatis, B®x=x. From this and Prop. 1, 3°), 5°), it
follows that AS, o, X=X implies B ,,X=%, that is A®—B®, Similarly
we have A% -— B®, ' ' ‘

PROPOSITION 5. Taking a base in M, let A=(«a; 8;;), B=(8;8:;)-
Then for A— B, it is necessary and sufficient that for every set.of



On some matrix operators 929

integers my,---, my, such that Ha’”z =1, we have H,@”’z =1.

PrROOF. As is seen easily, we have, for A=« I{1’+aZI§2 4 a (P,

A(r;s)“z Z Z(au a;'ll"'a;sl)liil)@“'OI(' )Qt[{h)@...@t[{is).

ii=l i,=1j1-1 jg=1

Then the very definition of A— B gives us the result.

PROPOSITION 6. Let N be an n-matrix. Then for A=I1,+N—B
it is necessary and sufficient that
i) #f x(K)=0, there exists an element ¢ in. K such that B= =exp (c
log (I, + N))
i) if x(K)=p, there exist element f+1 c,c, -, ¢cr in K such that

B=_1‘i1 (I,+N?')ei |

"PROOF. Sufficiency. i) x(K)=0. Put log (l,+N)=M. Then we
have (I,+ N),,.,,=exp M, ; and A, ,X=Z% holds if and only if M, 535 0.
Thus we have I,+ N—B.

i) x(K)= p. Sufficiency is obvious from I,+ N ——’+I,,+Nf’i .

Necessity. Let I,+N—B. Then Bisa polynofnial in N: B——-g ¢ Ni.
Similarly, (/,+ N)@ p— Be,, implies that B®B is a polynOmial in
L+ NY® I+ N)—TIpp: B@Bzg (NI, + I[,ON+NONY .

As B is a #-matrix we have ¢,(=d,=1. Let the index of N be ». Then
the same calculation as in §3 shows that

i .
CiCj:Zdijtdj+t (0<i<}<7’—1)

Putting i=0, we have c¢,c;=d;, hence c;=d;. Therefore the above
equations become of the same type as (1), hence our conclusion follows.
From the above propositions and analogous propositions on S- p
and p-s-replicas, which are proved similary, follows the
THEOREM 9. 1) A—»B holds if and only if there exists a mnon-

singular p-p operator ¢ such that ¢(A)=B.
ii) A—»B holds if and only if there exzsts a non- smgular s- p opemtor

¢ such that ¢(A)=B.
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iii) If x(K)=0, then A——»B holds if and only if there exists a p-s

operator t from S into *J\ such that ¢(A)=B.
REMARK. If x(K)=p, then ¢(A)=B implies A—B. But the con-
D-S

verse is not true. In fact, take an element « in K which is not a root
of unity and an element 80 in K. Then we have al,— @81, but
p-s

there exists no p-s operator ¢ such that &(a I))=81,.

Appendix.

In this appendix we shall examine the case in which K is not
algebraically closed.

When K is not algebraically closed, s-matrices are not necessarily
transformed into the diagonal form, and above discussions in §2, 3 do
not apply. We did not succeed in complete determination of s-s, s-p,
p-s and p-p operators in this case, but some remarks about this case
will be given below. '

Let K be any infinite perfect field and K be its algebraic closure.
We shall discuss only s-s operators because other operators can be
treated almost similarly, Let ¢ be an s-s operator from R(k) into
R(k). k being perfect, A and A belong to N(k) with A. As was
remarked in §1, 2 we have the following

PrROPOSITION 7. i) If AeR(k), then £(A) is a polynomzal in A
with coefficients in k.

il) ¢ determines an endomorphism g of the additive group K and
a C-sequence ¢y, c,--- in k. They are connected with ¢ as follows :

Hal)=gla)l, for every a in k,
C(N)zéc,-N" for every n-matvix N in R(E).

(We shall call g and cy,c, - the invariants of ¢).

Furthermore we have

iii) ¢(A)®=t(A®) for every matrix A in R(R).

PROOF OF iii). We shall denote elements in R(K) by A,B, .
Take a matrix P such that

PAP'=(a, I+ N)+ - +(a,Id +N,),
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N;: n-matrix of degree d;.

Now there are polynomlals £, h such that ¢€(A)=£AA), L(A®)= h(A(")
Then we have

PrAYP =fla)) I+ -+ fla) I, ,
Py AP 1=h(ay) I+ +h(a,) I, .

. On the other hand, there is a polynomlal @ such that §(A+ B‘s’)-
P(AYA®), hence (P4P) ( ;(A+A‘s>))‘s) (P+ P)t = play) Iy + -+
Pl Iy +pla) Lo+ + @) I, Since &(A FAO)O=¢(AYO+ E(A®)
we have

fa)=@la)=ma:) (1<i<7).

‘Hence we have ¢(A®=¢(A)*.

Now we shall need the following

LEMMA 5. For every s-s operator & from ‘R(k) into N(k) there
is one and only one s-s operator ¢ from R(K) into R(K) such that

¢(A)=t(A) for every s-matrix A or n-matrix A in R(K) .

PROOF. Let ¢ have the invariants g and ¢, ¢;,---.  Let us define
the invariants g and ¢,c, - of £. Put ¢;=c¢; (i=0,1,---).

Next let us define g. First, for « in & we put gla)=g(a). If o
is in K but not in %, denote the set of distinct k-conjugates of w by
. . @]y *"y Wy (0)1-:&)),
and define a matrix T(w)=T(w, -, w,)=(&;) in R(K) of degree n as
follows :
({lj=w10p D 0n, (™ means that »; should be omitted.)

&= E(l’l N W RRRT T

S |

Euoy j=w1F+ -+ ot o,
“En’j:]. .
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Now let us denote the minimum equation over k2 for « by
x+ax" '+ ---+a,=0. Then a simple calculation shows that

0 O ('—zl)”an
@] N o _1 §
T(w) Ne) = . ’
@n 0 @
0 _1 "“al

where det T(("):i,g- (w0; —w7)=0.

Thus we have established that for given w,, ‘-, w, there are matrices
P in R(K) and £ in R(K) such that (w;8;;)=PLP L

Now, &(£2) being a polynomial in 2, P;‘(Q)P 1 is also a d1agona1

matrix : Pg(2) P=(n;8;;).
We define g by glw)=n (1<i<n).

In general, if o, -, w, are in K and if there are matrices Pe R(K),
£2¢eR(k) such that (w;8; j):ﬁ!zf"l holds, we define g as above (g(m,-)a,- j)
=P¢(2)P-l. We must now show that the definition of g(w) is in-
dependent on w,, -, w,, P and 2.

First we show that it does not depend on Pand 2. If

(0; L )=P2P'=QW@ (2, WeR(R)),

then £ and W are similar in K, hence similar in 2 Thus there is

a matrix T in R(k) such that W=T92T"1. Then, ﬁ'léT being com-
mutative with £ it is also commutative with &(£2) (by prop. 7, i)

Pe(Q)P1=QT¢(2)T'Q". On the other hand we have &(W)=T¢(2)T,

so that we have ﬁg(g)ﬁ"lzéé‘(W)é‘l which was to show.
Next let us show that g(w) does not depend on w,, -, w, Let
w;=06, and

(") (8 )=PeP', 0eRk), (2(w)si;)=PL2)P, d2)=n,

%) (6:5)=Q6Q7, 0eR(E), (2/05:,)=02(0)@, dl6)=m.

Then we have

(wi 8:5)+ (6; 8i7)=(P+ Q) (2+ 6) (P+ @),
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(2wi)di;) + (8(6:) 8: ;= (P+ Q) t(2+ ) (P+Q) ™.
Now, &(2+ 0)=¢(2)+ &(6) implies that

&i(w)) =§3(w1) =§3(91) =§2(91) ’

which was to show.
Next let us show that g is additive. From (*), (**) we have

(0i81))®(60:8,)) =53+ (wi+0,) h=(P Q) (2@ 6) (P2 Q).
Now &(2+6)=¢(2)®¢(6) implies that |

w1+ 6,)=2(w,) + 2(6,) .

Thus -the invariants.g and ¢,c, - are defined. Let ¢ be an s-s
operator having them as invariants. Then it is easy to verify that ¢
is a desired s.s. operators. The construction of g shows also that ¢

is unique. (Remark that E is not necessarily an extension of ¢).
Now using this lemma we shall prove the following
THEOREM 10. Let ¢ be an s-s operator from R(E) into R(k).
Then the following conditions are equivalent to each other.
1) ¢ can be extended to an s-s operator ¢ from N(K) into R(K).
2) For any A, B in R(k) such that AB=BA, we have ((A)+¢(B)
=¢(A+ B).
3) ¢(A)=¢(A®)+E(A™) for every A in R(k).
4) LA)P=t(AP) for every A in R(E).
5) A——)C(A) for every A in R(E).

6) For every A in N(k) there are elements g, 1, - }, d, in k such that
&( A)(n):,go Q; AP
PROOF. By Lemma 5 and Proposition 7, iii), implications
1)—>2)—3)—4)—>5)—6).

are obvious. By proposition 7, iii) we have moreover 4)—3), and by
Lemma 5, 3)—1). So it is sufficient to show 6)—4). This is shown
as follows. Remark that the mapping A — &(A)™ is also an s-s operator
from R(k) into R(k). Then the same discussion as in the proof of
Theorem 1 shows that there are elements V0,71, in 2 which are in-
dependent on A, satisfying
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C(A)‘”)=i.; vy A™i for every matrix A in R(k).

Hence we have ,=0 and
:(A)(n)=§(A(n))(n)= C(A(”)) .

REMARK. Perhaps the conditions in [Theorem 10 are satisfied by
every s-s operator from R(k) in R(k), but we can neither prove nor
disprove it.

Finally, ¢ being an s-s operator from R(K) into R(K), we give
a condition that & maps R(k) into R(k). Let the invariants of ¢ be g
and ¢, ¢;--- and G be the Galois group of K/k. Then we have

THEOREM 11. It is necessary and sufficient for &(N(k))<R(k)
that c,, ¢, - belong to k and O'(g(co)) =g(o'(w)) for every o in K and
for every o in G.

PRrROOF. Necessity. Obviously ¢, ¢;,--- must belong to 2. Next let
weK. Denote the all distinct k-conjugates of o by w, -, o,(0;=v),
and by x*+ax" '+ ---+a,=0 the minimum equation for «» over &.
Then

0 0 (—1)y*an»
, —-10 :
T(wlv"" wn) (wisij) T(ml’"" wn)_lz —1.'. =A€§R(k) .
~',0 a
0 —1 —a,
Let 0eG and o’(wl,'--,w,,)=(a)p1,---,wpn). We denote by (a‘) the per-

mutation (pll ;)z) and define a matrix P, by

0
P(o'):(eﬁn"') eﬁn) ’ “= ( 1

) (z (¢-th unit vector).
0

Then we have
o T(w)= T(wpp"', ﬁ’p,,) P, P(a)(wp,- 8i5) P(;ﬁ'—_(wi 8:5) -

Now, ¢(A)="T(w)(g(w)8:;) T(w)'eR(k) implies that o¢(A)=¢(A), hence
we have

P(a)(o'(g(“’i)aij) Pgi= (g(w,')b‘;_;) ,
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that is o(g(w))) =&(ws)=g(a(w)).

Sufficiency. If we follow the above discussion in the converse direc-
tion, we see that for every s-matrix A in NR(k) having irreducible
minimum equation over k2, we have ¢(A)eR(k). However, every s-
matrix B in R(k) can be expressed as a direct sum of such matrices
A, hence ¢(B)eR(k). Now, if N is any z-matrix in R(%), we have

C(N)=g ¢; Ni e R(E) .

Thus for every matrix A in R(%k) we have
E(A)=t(A®)+ L(AP) e N(E) .
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