Characterization of topological spaces by some continuous functions.

By Tetsuo Kandô

(Received Sept. 25, 1953)

Introduction.

Let *E* be a Banach space and *X* a T_1 -space. We shall consider a function F(x) from *X* into the space 2^E of all subsets of *E* and assume it to be *lower semi-continuous* in the following sense: the set $\{x \in X | F(x) \cap U \neq \emptyset\}$ is open in *X* for every open subset *U* of *E*. Under these circumstances, E. A. Michael [5] has recently announced the following two theorems:

THEOREM I. A necessary and sufficient condition for X to be paracompact and normal is the following:

(A) If E is an arbitrary Banach space and if a lower semicontinuous function $F: X \rightarrow 2^E$ is such that F(x) is a non-empty convex closed subset of E for every $x \in X$, then there exists a continuous function $f: X \rightarrow E$ such that $f(x) \in F(x)$ for every $x \in X$.

THEOREM II. A necessary and sufficient condition for X to be a normal space is the following :

(B) If E is a separable Banach space and if a lower semicontinuous function $F: X \rightarrow 2^E$ is such that F(x) is a non-empty convex compact subset of E for every $x \in X$, then there exists a continuous function $f: X \rightarrow E$ such that $f(x) \in F(x)$ for every $x \in X$.

These two theorems suggest the following problem: what types of topological spaces will be characterized if we replace the conditions imposed upon the space E and upon the function F by other suitable ones? We shall give in this paper the characterization of the next two types of topological spaces: (1) a countably paracompact⁽¹⁾ normal space which is recently introduced by C. H. Dowker [3], and (2) a normal space in which every point-finite covering⁽²⁾ has a locally finite refinement. (We shall call such a space to be *point-finitely paracom*-

pact.) Our main purpose is to prove the following two theorems:

THEOREM III. A necessary and sufficient condition for X to be countably paracompact and normal is the following:

(C) If E is a separable Banach space and if a lower semicontinuous function $F(x): X \rightarrow 2^E$ is such that F(x) is a non-empty convex closed subset of E for every $x \in X$, then there exists a continuous function $f: X \rightarrow E$ such that $f(x) \in F(x)$ for every $x \in X$.

THEOREM IV. A necessary and sufficient condition for X to be point-finitely paracompact and normal is the following:

(D) If E is an arbitrary Banach space and if a lower semicontinuous function $F: X \rightarrow 2^E$ is such that F(x) is a non-empty convex compact subset of E for every $x \in X$, then there exists a continuous function $f: X \rightarrow E$ such that $f(x) \in F(x)$ for every $x \in X$.

These theorems can be proved along the same line as Michael's theorems (I) and (II), whose proofs we shall include in this paper for the sake of completeness.⁽³⁾

1. Preliminary lemmas.

LEMMA 1. Let $\varphi(x)$ be a continuous function from a topological space X into a Banach space E, and a function $F: X \rightarrow 2^E$ be lower semi-continuous. Then the function $G(x) = \overline{F(x)} \cap S(\varphi(x); r)^{(4)}$ is also lower semi-continuous, where r is any positive number.

PROOF. Let U be any open subset of E, and denote by H the set $\{x \in X | G(x) \cap U \neq \emptyset\}$. We must prove that the set H is open in X. Let x_0 be any point of H. Then $G(x_0) \cap U = \overline{F(x_0)} \cap S(\varphi(x_0); r) \cap U \neq \emptyset$. Since U is open, we have $F(x_0) \cap S(\varphi(x_0); r) \cap U \neq \emptyset$. Choose a point b in $F(x_0) \cap S(\varphi(x_0); r) \cap U$ and form a sphere Σ about b so small as to have $\Sigma \leq S(\varphi(x_0); r) \cap U$. Then we have $\Sigma \leq S(\varphi(x); r)$ if $\varphi(x)$ is sufficiently near to $\varphi(x_0)$, hence by continuity of φ , there exists an open neighborhood V of x_0 such that $y \in V$ implies $S(\varphi(y); r) > \Sigma$. Then $W = V \cap \{y | F(y \cap \Sigma \neq \emptyset\}$ is an open set containing x_0 , and $y \in W$ implies

$$G(y) \cap U > F(y) \cap S(\varphi(y); r) \cap \sum = F(y) \cap \sum \neq \emptyset$$

and $y \in H$. Therefore W < H and H is an open set in X.

LEMMA 2. A countable covering of a normal space is a normal

covering if and only if it has a countable star-finite refinement. Any point-finite countable covering of a normal space has a countable starfinite refinement.

See K. Morita [6; Theorem 6 and Corollary of Theorem 5].

LEMMA 3. If a family of sets $\{G_{\alpha} | \alpha \in \Omega\}$ in X is locally finite, then we have $\overline{\bigcup_{\alpha \in \Omega} G_{\alpha}} = \bigcup_{\alpha \in \Omega} \overline{G_{\alpha}}$.

LEMMA 4. Let $\{U_{\alpha} | \alpha \in \Omega\}$ be a locally finite covering of a normal space X. Then there exists a family of continuous real-valued non-negative functions $\{\varphi_{\alpha} | \alpha \in \Omega\}$ such that

(i) $\sum_{\alpha \in \Omega} \varphi_{\alpha}(x) = 1$ for every $x \in X$;

(ii) $x \notin U_{\alpha}$ implies $\varphi_{\alpha}(x) = 0$.

This family of functions $\{\varphi_{\alpha}\}$ is called "*partition of unity*" subordinated to the covering $\{U_{\alpha}\}$. See C. H. Dowker [2].

LEMMA 5. Let $\mathfrak{U} = \{U_{\alpha} | \alpha \in \Omega\}$ be a covering of a space X and suppose that there exists a family $\{\varphi_{\alpha} | \alpha \in \Omega\}$ of real-valued non-negative continuous functions such that:

(i) the family $\{\varphi_{\alpha}\}$ is equicontinuous, i.e., given $x_0 \in X$ and $\varepsilon > 0$, there exists a neighborhood V of x_0 such that $|\varphi_{\alpha}(x) - \varphi_{\alpha}(x_0)| < \varepsilon$ for every $x \in V$ and for all $\alpha \in \Omega$;

(ii) $\sum_{\alpha \in \Omega} \varphi_{\alpha}(x) = 1$ for all $x \in X$;

(iii) $\varphi_{\alpha}(x) > 0$ implies $x \in U_{\alpha}$.

Then the covering \mathfrak{U} has a locally finite refinement.

PROOF. For every positive integer *n* we define the open sets $U_{\alpha}^{n} = \{x \in X | \varphi_{\alpha}(x) > 1/n\}$ and $X_{n} = \bigcup_{\alpha \in \Omega} U_{\alpha}^{n}$. Then clearly $\overline{U}_{\alpha}^{n} < U_{\alpha}^{n+1}$. (1) The family of sets $\{U_{\alpha}^{n} | \alpha \in \Omega\}$ is locally finite for a fixed *n*. In fact, let x_{0} be any point of *X*. Then there exist at most a finite number of indices $\alpha_{1}, \dots, \alpha_{s}$ such that $\varphi_{\alpha_{i}}(x_{0}) > 1/(n+1)$ for $i=1,\dots,s$ by (ii). From (i) we can find a neighborhood *V* of x_{0} such that $y \in V$ implies $|\varphi_{\alpha}(y) - \varphi_{\alpha}(x_{0})| < 1/n - 1/(n+1)$ for every $\alpha \in \Omega$. If $\beta \neq \alpha_{1}, \dots, \alpha_{s}$, then $\varphi_{\beta}(y) < \varphi_{\beta}(x_{0}) + (1/n - 1/(n+1)) \leq 1/(n+1) + (1/n - 1/(n+1)) = 1/n$, therefore, $V \cap U_{\beta}^{n} = \emptyset$.

By virtue of the property (1), we have at once

(2) $\overline{X}_n = \bigcup_{\alpha} \overline{U}_{\alpha}^n$ by Lemma 3;

$$(3) X_n < \overline{X}_n < X_{n+1}.$$

The condition (ii) and the definition of X_n imply

T. KANDÔ

 $(4) \qquad \qquad \mathbf{U}_n X_n = X.$

Now, let $Y_n = X_n - \overline{X}_{n-2}$ (where $X_{-1} = X_0 = \emptyset$). Each Y_n is clearly open and $\bigcup_n Y_n = X$; moreover,

(5)
$$Y_m \cap Y_n = \emptyset$$
 if $|m-n| \ge 2$.

Finally, define a covering $\mathfrak{V} = \{V_{m,\alpha} | m=1, 2, \dots; \alpha \in \mathcal{Q}\}$, where $V_{m,\alpha} = Y_m \cap U_{\alpha}^m$. Then by virtue of properties (1) and (5), we can conclude that V is a locally finite refinement of U. This completes the proof.

2. Proof of necessity.

The essential part of this section lies in the proof of the following LEMMA 6. Let F be a lower semi-continuous function from X into 2^E and ϵ a prescribed positive number. Then there exists a continuous function f from X into E such that $f(x) \in S(F(x); \epsilon)^{(4)}$ for every $x \in X$, if any one of the following conditions is satisfied:

(I) X is a paracompact normal space, E is an arbitrary Banach space, and F(x) is a non-empty convex closed subset of E for every $x \in X$.

(II) X is a normal space, E is a separable Banach space, and F(x) is a non-empty convex compact subset of E for every $x \in X$.

(III) X is a countably paracompact normal space, E is a separable Banach space, and F(x) is a non-empty convex closed subset of E for every $x \in X$.

(IV) X is a point-finitely paracompact normal space, E is an arbitrary Banach space, and F(x) is a non-empty convex compact subset of E for every $x \in X$.

PROOF. Case (I): Construct the covering $\mathfrak{S} = \{S_b | b \in E\}$ of E, where each S_b is an open sphere $S(b; \epsilon)^{(4)}$. Then by virtue of lower semi-continuity of F, the sets $U_b = \{x \in X | F(x) \cap S_b \neq \emptyset\}$ are all open in X and form a covering \mathfrak{U} of X. X being paracompact, \mathfrak{U} has a locally finite refinement $\mathfrak{V} = \{V_{\alpha} | \alpha \in \mathcal{Q}\}$. Let $\{\varphi_{\alpha} | \alpha \in \mathcal{Q}\}$ be the partition of unity subordinated to \mathfrak{V} (Lemma 4). To each α , we choose an element bsuch that $V_{\alpha} < \{x \in X | F(x) \cap S_{b_{\alpha}} \neq \emptyset\}$ and define $f: X \to E$ by

(6)
$$f(x) = \sum_{\alpha} \varphi_{\alpha}(x) b_{\alpha}.$$

48

Given any point $x \in X$, there exists a neighborbood W meeting only with a finite number of elements of \mathfrak{B} . Then (6) being a finite sum in W, f(x) is continuous there, hence in X. Next, let $\alpha_1, \dots, \alpha_s$ be the indices α such that $\varphi_{\alpha}(x) \neq 0$. Then $F(x) \cap S_{b_{\alpha_i}} \neq \emptyset$. Choose an element c_{α_i} from each $F(x) \cap S_{b_{\alpha_i}}$. Then $||b_{\alpha_i} - c_{\alpha_i}|| < \epsilon$, and

$$||f(x) - \sum_{i=1}^{s} \varphi_{\alpha_{i}}(x) c_{\alpha_{i}}|| = ||\sum \varphi_{\alpha_{i}}(x) b_{\alpha_{i}} - \sum \varphi_{\alpha_{i}}(x) c||$$
$$\leq \sum \varphi_{\alpha_{i}}(x) ||b_{\alpha_{i}} - c_{\alpha_{i}}|| < \varepsilon \sum \varphi_{\alpha}(x) = \varepsilon$$

and $\sum \varphi_{\alpha_i}(x) c_{\alpha_i} \in F(x)$ by convexity of the set F(x). Consequently, $f(x) \in S(F(x); \epsilon)$.

Case (II): Let $B = \{b_n | n = 1, 2, \dots\}$ be a countable dense subset of *E* and construct the open spheres $S_n = S(b_n; \epsilon)$. Then $\mathfrak{S}_1 = \{S_n | n = 1, 2, \dots\}$ is a countable covering of *E*. *E* being a metric space, it is paracompact (see A. H. Stone [7]), and so \mathfrak{S}_1 has a countable locally finite refinement $\mathfrak{T} = \{T_n | n = 1, 2, \dots\}$. Let $U_n = \{x \in X | F(x) \cap T_n \neq \emptyset\}$. Then $\{U_n\}$ is a point-finite covering of *X*, for, given $x \in X$, F(x) is compact, hence at most a finite number of T_n , say T_{n_1}, \dots, T_{n_s} , intersect with F(x). Then $x \in U_i$ only for $i = n_1, \dots, n_s$. Since *X* is a normal space, the pointfinite countable covering $\{U_n\}$ has a locally finite refinement \mathfrak{B} by Lemma 2, and the proof may be accomplished precisely by the same way as above.

Case (III): Let \mathfrak{S}_1 be the same as in case (II). Then the open sets $U_n = \{x \in X | F(x) \cap S_n \neq \emptyset\}$ form a countable covering of X. By countable paracompactness of X, there exists a locally finite refinement $\mathfrak{V} = \{V_{\alpha} | \alpha \in \Omega\}$ of this covering. The desired function f may be constructed by the same way as above.

Case (IV): Since *E* is paracompact, the covering \mathfrak{S} of *E* constructed in the proof of Case (I) has a locally finite refinement $\mathfrak{B} = \{V_{\alpha} \mid \alpha \in \mathcal{Q}\}$. Let $U_{\alpha} = \{x \in X \mid F(x) \cap V_{\alpha} \neq \emptyset\}$. Then the covering $\mathfrak{U} = \{U_{\alpha} \mid \alpha \in \mathcal{Q}\}$ is as above a point-finite covering of *X*. By virtue of point-finite paracompactness of *X*, this covering has a locally finite refinement. From this point, we can proceed as above.

PROOF OF NECESSITY. By virtue of the above lemma, we can inductively define a sequence $\{f_n\}$ of continuous functions from X to

E with the properties (i) $f_n(x) \in S(F(x); 1/2^n)$, and (ii) $||f_n(x) - f_{n+1}(x)|| < 1/2^n$ for every $x \in X$. In fact, apply Lemma 6 to F(x) for $\varepsilon = 1/2$, and we have a function f_1 satisfying (i). Suppose that we have defined the function $f_n(x)$ with the properties (i) and (ii). Then the function $G(x) = \overline{F(x)} \cap S(f_n(x); 1/2^n)$ is lower semi-continuous by Lemma 1 and satisfies the same conditions as F(x). Thus applying Lemma 6 to G(x) instead of F(x), we have a continuous function f_{n+1} such that $f_{n+1}(x) \in S(G(x); 1/2^{n+1})$. This f_{n+1} is easily seen to satisfy (i) and (ii), and our induction is completed.

The sequence $\{f_n(x)\}$ is obviously a Cauchy sequence and converges uniformly to a continuous function $f: X \to E$ by (ii). From (i) and the closedness of the set F(x); we have readily $f(x) \in F(x)$, which completes the proof.

3. Proof of sufficiency.

LEMMA 7. Let $\mathfrak{U} = \{U_{\alpha} | \alpha \in \Omega\}$ be any covering of a space X and $E = E(\mathfrak{U})$ be a Banach space formed of all $b = \sum \lambda_{\alpha} b_{\alpha}$ such that $||b|| = \sum_{\alpha} |\lambda_{\alpha}| < \infty$.⁽⁵⁾ Define a function $F = F_{\mathfrak{U}}$ as follows: F(x) is formed of all $b = \sum \lambda_{\alpha} b_{\alpha} \in E$ such that ||b|| = 1 and that $x \notin U_{\alpha}$ implies $\lambda_{\alpha} = 0$. Then (i) each F(x) is a non-empty convex closed subset of E, and (ii) the function $F: X \rightarrow 2^{E}$ is lower semi-continuous.

PROOF. (i) is obvious. To prove (ii), it suffices to show that the set $G = \{x \in X | F(x) \land S \neq 0\}$ is open in X for every open sphere $S = S(b_0; r)$. Let $x_0 \in G$. Then there exists an element $b = \sum \lambda_{\sigma} b_{\sigma} \in F(x)$ such that $\rho = ||b - b_0|| < r$. Since $||b|| = \sum |\lambda_{\sigma}| = 1$, at most countably infinite λ_{σ} 's, say $\lambda_{\sigma_1}, \lambda_{\sigma_2}, \cdots$, are not equal to zero. Choose *n* so large as to have $1 - L_n < (r - \rho)/2$, where $L_n = \sum_{i=1}^n |\lambda_{\sigma_i}|$. Then $x_0 \in U_{\sigma_i}$ since $\lambda_{\sigma i} \neq 0$, and $V = \bigwedge_{i=1}^n U_{\sigma_i}$ is a neighborhood of x_0 . Let $y \in V$. Then $b' = 1/L_n \sum_{i=1}^n \lambda_{\sigma_i} = K(y)$, and

$$||b'-b_0|| \leq ||b'-\sum_{i=1}^n \lambda_{\sigma_i} b_{\sigma_i}||+||\sum_{i=1}^n \lambda_{\sigma_i} b_{\sigma_i}-b||+||b-b_0||$$

= $\sum_{i=1}^n |\lambda_{\sigma_i}/L_n-\lambda_{\sigma_i}|+\sum_{i=n+1}^\infty |\lambda_{\sigma_i}|+\rho$
= $(1-L_n)+(1-L_n)+\rho < 2 \cdot (r-\rho)/2+\rho=r.$

Consequently $b' \in F(y) \cap S$ and $y \in G$, whence $V \leq G$. This completes the proof of the lemma.

Our proof is now divided into the following four cases:

(I) In case the condition (B) holds. In this case, we choose E as the space R of all real numbers. Let M and N be disjoint non-void closed subsets of X and define $F(x): X \rightarrow R$ as follows: $F(x) = \{0\}$ if $x \in M$, $=\{1\}$ if $x \in N$, and =I the closed interval [0, 1], otherwise. Then the function F(x) is easily seen to satisfy the assumption in (B), and therefore a continuous function $f: X \rightarrow R$ is obtained so that $f(x) \in F(x)$, i. e., f(x)=0 if $x \in M$, and =1 if $x \in N$, and always $0 \leq f(x) \leq 1$. This shows that X is a normal space.

(II) In case the condition (A) holds. In this case the condition (B) is also satisfied, which implies that X is normal. It suffices therefore to show that every covering $\mathfrak{U} = \{U_{\alpha} | \alpha \in \mathcal{Q}\}$ of X has a locally finite refinement. To this end, let us construct a Banach space $E = E(\mathfrak{U})$ and a function $F = F_{\mathfrak{U}}$ as in Lemma 7. The condition (A) implies the existence of a continuous function $f: X \to E$ such that $f(x) = \sum_{\alpha} \lambda_{\alpha}(x) b_{\alpha} \in F(x)$ for every $x \in X$. Define $\varphi_{\alpha}(x) = |\lambda_{\alpha}(x)|$. Then $\{\varphi_{\alpha}\}$ is easily seen to satisfy the hypotheses of Lemma 5 and we can conclude the existence of a locally finite refinement of \mathfrak{U} .

(III) In case the condition (C) holds. The condition (B) implies as above that X is normal. Let $\mathfrak{U} = \{U_n\}$ be any countable covering of X and construct a Banach space $E = E(\mathfrak{U})$ and a function $F = F_{\mathfrak{U}}$ as in Lemma 7. In this case the space E is clearly separable and the condition (C) implies the existence of a locally finite refinement of \mathfrak{U} as above.

(IV) In case the condition (D) holds. Let $\mathfrak{U} = \{U_{\alpha} | \alpha \in \Omega\}$ be any point-finite covering of X and construct $E = E(\mathfrak{U})$ and $F(x) = F_{\mathfrak{U}}(x)$ as in Lemma 7. Then each set F(x) is compact. Indeed, given any point $x \in X$, let U_{α_i} $(1 \le i \le n)$ be the elements of \mathfrak{U} containing x. By point-finiteness of the covering \mathfrak{U} , n is finite and the set F(x) is homeomorphic to the compact set in the Euclidean *n*-space defined by the equation $|x_1| + |x_2| + \cdots + |x_n| = 1$, hence F(x) is compact. From this point, we can proceed in the same way as above.

4. Some applications.

As is stated in E. A. Michael [5], the above theorems may be applied to obtain Arens' theorem [1] which asserts the extensibility of continuous Banach space-valued function f defined on a closed subset A of a paracompact normal space X to the whole space, or to obtain the inserting theorem of a continuous function between lower and upper semi-continuous real-valued functions defined on a normal space (cf. H. Tong [8]). Some similar result may be obtained for other class of topological spaces.

COROLLARY 1. Let A be a closed subset of a countably paracompact normal space X and E be a separable Banach space. Then every continuous function $f: A \rightarrow E$ may be extended to a continuous function $X \rightarrow E$.

PROOF. Let F(x) be defined as follows: $F(x) = \{f(x)\}$ if $x \in A$ and = E otherwise. Then F(x) is easily seen to be semi-continuous and Theorem III is applied to obtain the desired extension of f.

COROLLARY 2. Let A be a compact subset of a point-finitely paracompact normal space X. Then every continuous function from A into any Banach space E may be extended to a continuous function $X \rightarrow E$.

COROLLARY 3. Let A be a compact subset of a normal space X. Then every continuous function from A into a separable Banach space E may be extended continuously all over the space X.

Corollary 2 and 3 may be proved analogously as Corollary 1.

5. An example of a point-finitely paracompact space.

Finally, we shall give an example of a point-finitely paracompact space which is not paracompact. Let X be the set of all countable transfinite ordinals and the neighborhood of its point $x_0 \in X$ be the set of the form $\{x | y \le x \le x_0\}$. Then the space X is well known to be completely normal and locally compact but not compact.

LEMMA 8. Let $f: X \to X$ be a mapping such that f(x) < x for sufficiently large $x \in X$. Then there is an element $c \in X$ such that, for every $x \in X$, there exists an element $y \ge x$ satisfying f(y) < c. See N. Bourbaki [10, Chap. I, § 10, ex. 21)].

PROOF. If the lemma were not true, we could inductively define a sequence $\{z_n\}$ such that $y \ge z_{n+1}$ implies $f(y) \ge z_n$. Clearly $z_1 < z_2 < \cdots$. Let z_0 be the ordinal which follows immediately after $\{z_n\}$. Then $z_0 \in X$ and $z_0 \ge z_{n+1}$, hence $z_0 > f(z_0) \ge z_n$ for every n, which contradicts the definition of z_0 .

From this lemma, we see that X is point-finitely paracompact. More precisely, we have the following

THEOREM. Every point-finite covering of the space X has a finite subcovering.

PROOF. Let $\mathfrak{U} = \{U_a | a \in A\}$ be a point-finite covering of X. Define a mapping $f: X \to X$ as follows: $f(\alpha) = 1$ if $\alpha = 1$. In case $\alpha > 1$, let $\{U_b | b \in B\}$ be the collection of all U_a 's $(a \in A)$ containing α . By virtue of point-finiteness of \mathfrak{U} , B is a finite set and the set $V = \cap \{U_b | b \in B\}$ is an open set containing α . Put $f(\alpha) = \beta$, where β is the smallest β such that $\{\gamma | \beta < \gamma \leq \alpha\} < V$. Let c be the ordinal obtained by the above lemma and U_1, U_2, \dots, U_s be the elements of \mathfrak{U} which contain c. For any $\alpha > c$, there exists an ordinal $\beta \geq c$ such that $f(\beta) < c < \alpha \leq \beta$. Then the neighborhood $\{\gamma | f(\beta) < \gamma \leq \beta\}$ is contained in some $U_a \in \mathfrak{U}$. Since c is contained in U_a , U_a must be one of the U_i 's, $1 \leq i \leq s$, and $\alpha \in U_1 \cup U_2 \cup \dots \cup U_s$. The segment $\{\alpha | \alpha \leq c\}$ of X is easily seen to be compact and is covered by some finite number of U_a . Consequently, X is covered by finite number of U_a , and the proof is complete.

COROLLARY. The space X is not paracompact.

In fact, let \mathfrak{U} be a covering of X which has no finite subcoverings (such a covering may be easily constructed.) Then the above theorem shows that \mathfrak{U} has no locally finite refinements.

Department of the General Education, Nagoya University.

Bibliography.

- R. Arens, Extension of functions on fully normal spaces, Pacific J. Math., 2 (1952), pp. 11-22.
- [2] C.H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math., 69 (1947), pp. 200-242.
- [3] ———. On countably paracompact spaces, Canadian J. Math., 3 (1951), pp. 219–224.
- [4] S. Lefschetz, Algebraic Topology, New York, 1942.
- [5] E. A. Michael, An existence theorem for continuous functions, Bull. Amer. Math. Soc., 59 (1953), p. 180, Abstract 262.

T. KANDÔ

- [6] K. Morita, Star-finite coverings and the star-finite property, Math. Japonicae, 1 (1948), pp. 60-68.
- [7] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc., 54 (1948), pp. 977-982.
- [8] H. Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. J., 19 (1952), pp. 289-292.
- [9] J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940.
- [10] N. Bourbaki, Topologie générale, Chap. I, II (2nd ed.), Paris, 1950.

Notes.

(1) According to C. H. Dowker [3], a topological space is called countably paracompact, if every countable covering has a locally finite refinement. In this paper we use the term "covering" as "open covering", and locally finite = neighborhood-finite in the sense of S. Lefschetz [4].

- (2) See S. Lefschetz [4, p. 13].
- (3) Michael's original proof is not yet known to us.

(4) We denote by $S(b_0; r)$ the open sphere of radius r about b_0 in the Banach space E i.e., the set $\{b \mid ||b-b_0|| < r, b \in E\}$ and by $S(A; \varepsilon)$ the open ε -neighborhood of $A \leq E$, i.e., the set $\{b \mid ||b-a|| < \varepsilon$ for some $a \in A\}$.

(5) We assume that the vectors $\{b_{\alpha}\}$ are linearly independent; therefore the space E is an (l^1) -space not necessarily of countable dimension.

Added in proof: Corollary 3 in §4 is valid for an arbitrary Banach space E. In fact, let H be the closed linear subspace of E spanned by f(A). f(A) being compact metric, hence separable, H is a separable Banach space, and the given function f may be considered as a function from A into H.