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Introduction.

Let $E$ be a Banach space and $X$ a $T_{1}\cdot space$ . We shall consider a
function $F(x)$ from $X$ into the space $2^{E}$ of all subsets of $E$ and assume
it to be lower semi.continuous in the following sense: the set $\{x\in X$

$|F(x)\cap U\neq\aleph\}$ is open in $X$ for every open subset $U$ of $E$ . Under
these circumstances, E. A. Michael [5] has recently announced the
following two theorems:

THEOREM I. A necessary and sufficient condition for $X$ to be
paracompact and normal is the following:

(A) If $E$ is an arbitrary Banach space and if a lower semi-
continuous function $F:X\rightarrow 2^{E}$ is such that $F(x)$ is a non-empty convex
closed subset of $E$ for every $x\in X$ , then there exists a continuous func-
tion $f:X\rightarrow E$ such that $f(x)\in F(x)$ for every $x\in X$.

THEOREM II. A necessary and suffcient condition for $X$ to be a
normal space is the following:

(B) If $E$ is a separable Banach space and if a lower semi-
continuous function $F:X\rightarrow 2^{E}$ is such that $F(x)$ is a non-empty convex
compact subset of $E$ for every $x\in X$, then there exists a continuous
function $f:X\rightarrow E$ such that $f(x)\in F(x)$ for every $x\in X$.

These two theorems suggest the following problem: what types of
topological spaces will be characterized if we replace the conditions
imposed upon the space $E$ and upon the function $F$ by other suitable
ones ? We shall give in this paper the characterization of the next
two types of topological spaces: (1) a countably paracompact(1) normal
space which is recently introduced by C. H. Dowker [3], and (2) a
normal space in which every point-finite covering(2) has a locally finite
refinement. (We shall call such a space to be point.finitely paracom-
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pact.) Our main purpose is to prove the following two theorems:
THEOREM III. A necessary and sufficient condition for $X$ to be

countably paracompact and normal is the following:
(C) If $E$ is a separable Banqch space and $lf$ a lower semi-

continuous function $F(x):X\rightarrow 2^{E}$ is such that $F(x)$ is a non-empty
convex closed subset of $E$ for every $x\in X$, then there exists a continuous
function $f:X\rightarrow E$ such that $f(x)\in F(x)$ for every $x\in X$.

THEOREM 1V. A necessary and sufficient condition for $X$ to be
point-finitely paracompact and normal is the following:

(D) If $E$ is an arbitrary Banach space and if a lower semi-
continuous function $F:X\rightarrow 2^{E}$ is such that $F(x)$ is a non-empty convex
compact subset of $E$ for every $x\in X$, then there exists a continuous
function $f:X\rightarrow E$ such that $f(x)\in F(x)$ for every $xeX$.

These theorems can be proved along the same line as Michael’s
theorems (I) and (II), whose proofs we shall include in this paper for
the sake of completeness.(3)

1. Preliminary lemmas.

LEMMA 1. Let $\varphi(x)$ be a continuous function from a topological
space $X$ into a Banach space $E$ , and a function $F:X\rightarrow 2^{E}$ be lower
semi-continuous. Then the function $G(x)=\overline{F(x)\cap S(\varphi(x);r)}^{(4)}$ is also
lower semi-continuous, where $r$ is any positive number.

PROOF. Let $U$ be any open subset of $E$ , and denote by $H$ the set
$\{xeX|G(x)\cap U\neq\uparrow)_{\backslash }\}$ . We must prove that the set $H$ is open in $X$.
Let $x_{0}$ be any point of $H$ Then $G(x_{0})\cap U=\overline{F(x_{0})\cap S(\varphi(x_{0});r})\cap U\neq\Omega_{\backslash }$ .
Since $U$ is open, we have $F(x_{0})\cap S(\varphi(x_{0});r)\cap U\neq Q$ . Choose a point $b$

in $F(x_{0})\cap S(\varphi(x_{0});r)\cap U$ and form a sphere $\sum aboutb$ so small as to
have $\sum\subset S(\varphi(x_{0});r)\cap U$. Then we have $\sum\subset S(\varphi(x);r)$ if $\varphi(x)$ is
sufficiently near to $\varphi(x_{0})$ , hence by continuity of $\varphi$, there exists an
open neighborhood $V$ of $x_{0}$ such that $y\in V$ implies $ S(\varphi(y);r)\supset\sum$ .
Then $W=V\cap\{y|F(y\cap\sum\neq\beta)\}$ is an open set containing $x_{0}$ , and $yeW$
implies

$G(y)\cap U\supset F(y)\cap S(\varphi(y);r)\cap\sum=F(y)\cap\sum\neq\Omega_{\backslash }$

and $y\in H$ Therefore $W\subset H$ and $H$ is an open set in $X$.
LEMMA 2. A countable covering of a normal space is a normal
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covering $lf$ and only if it has a countable star-finite refinement. Any
point-finite countable covering of a normal space has a countable star-
finite refinement.

See K. Morita [6; Theorem 6 and Corollary of Theorem 5].
LEMMA 3. If a family of sets $\{G_{\alpha}|\alpha\in\Omega\}$ in $X$ is locally finite,

then we have $\overline{\bigcup_{\alpha\epsilon\Omega}G_{\alpha}}=\bigcup_{\alpha\epsilon\Omega}\overline{G}_{\alpha}$ .
LEMMA 4. Let $\{U_{\alpha}|\alpha\in\Omega\}$ be a locally finite covering of a normal

space X. Then there exists a family of continuous real-valued non-
negative functions $\{\varphi_{\alpha}|\alpha\in\Omega\}$ such that

(i) $\sum_{\alpha\epsilon\Omega}\varphi_{\alpha}(x)=1$ for every $x\in X$ ;
(ii) $x\not\in U_{\alpha}$ implies $\varphi_{\alpha}(x)=0$ .

This family of functions $\{\varphi_{\alpha}\}$ is called “ partition of unity” subordinated
to the covering $\{U_{\alpha}\}$ . See C. H. Dowker [2].

LEMMA 5. Let $\mathfrak{U}=\{U_{\alpha}|\alpha\in\Omega\}$ be a covering of a space $X$ and
suppose that there exists a family $\{\varphi_{\alpha}|\alpha\in\Omega\}$ of real-valued non-negative
continuous functions such that:

(i) the family $\{\varphi_{\alpha}\}$ is equicontinuous, $i$ . $e,$ , given $x_{0}\in X$ and $e>0$ ,
there exists a neighborhood $V$ of $x_{0}$ such that $|\varphi_{\alpha}(x)-\varphi_{\alpha}(x_{0})|<e$ for
every $x\in V$ and for all $\alpha\in\Omega$ ;

(ii) $\sum_{\alpha\epsilon\Omega}\varphi_{\alpha}(x)=1$ for all $x\in X$ ;
(iii) $\varphi_{\alpha}(x)>0$ implies $x\in U_{\alpha}$ .

Then the covering $\mathfrak{U}$ has a locally finite refinement.
PROOF. For every positive integer $n$ we define the open sets

$U_{\alpha}^{n}=\{x\in X|\varphi_{\alpha}(x)>1/n\}$ and $X_{n}=\bigcup_{\alpha\epsilon\Omega}U_{\alpha}^{n}$ . Then clearly $\overline{U}_{\alpha}^{n}\subset U_{\alpha}^{n+1}$ .
(1) The family of sets $\{U_{\alpha}^{n}|\alpha\in\Omega\}$ is locally finite for a fixed $n$ .
In fact, let $x_{0}$ be any point of $X$. Then there exist at most a finite
number of indices $\alpha_{1},\cdots,\alpha_{s}$ such that $\varphi_{\alpha_{i}}(x_{0})>1/(n+1)$ for $i=1,\cdots,s$ by
(ii). From (i) we can find a neighborhood $V$ of $x_{0}$ such that $y\in V$

implies $|\varphi_{\alpha}(y)-\varphi_{\alpha}(x_{0})|<1/n-1/(n+1)$ for every $\alpha\in\Omega$ . If $\beta\neq\alpha_{1},\cdots,\alpha_{s}$ ,
then $\varphi_{\beta}(y)<\varphi_{\beta}(x_{0})+(1/n-1/(n+1))\leqq 1/(n+1)+(1/n-1/(n+1))=1/n$ ,
therefore, $V\cap U_{\beta}^{n}=Q$ .

By virtue of the property (1), we have at once

(2) $X_{n}=\bigcup_{\alpha}\overline{U}_{\alpha}^{n}$ by Lemma 3;

(3) $X_{n}\subset\overline{X}_{n}\subset X_{n+1}$ .
The condition (ii) and the definition of $X_{n}$ imply
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(4) $\bigcup_{n}X_{n}=X$ .

Now, let $Y_{n}=X_{n}-\overline{X}_{n-2}$ (where $X_{-1}=X_{0}=Q$). Each $Y_{n}$ is clearly open
and $\bigcup_{n}Y_{n}=X$ ; moreover,

(5) $Y_{m}\cap Y_{n}=N$ if $|m-n|\geqq 2$ .
Finally, define a covering $\mathfrak{V}=\{V_{m.\alpha}|m=1,2,\cdots ; \alpha\in\Omega\}$ , where $V_{m,\alpha}$

$=Y_{m}\cap U_{\alpha}^{m}$ . Then by virtue of properties (1) and (5), we can conclude
that $V$ is a locally finite refinement of $U$. This completes the proof.

2. Proof of necessity.

The essential part of this section lies in the proof of the following
LEMMA 6. Let $F$ be a lower semi-continuous function from $X$

into $2^{E}$ and $e$ a prescribed positive number. Then there exists a $\omega n$ .
tinuous function $f$ from $X$ into $E$ such that $f(x)\in S(F(x);e)^{(4)}$ for every
$xeX$, if any one of the following conditions is satisfied:

(I) $X$ is a paracompact normal space, $E$ is an arbitrary Banach
space, and $F(x)$ is a non.empty convex closed subset of $E$ for every
$x\in X$.

(II) $X$ is a normal space, $E$ is a separa$ble$ Banach space, and
$F(x)$ is a non-empty convex compact subset of $E$ for every $x\in X$.

(III) $X$ is a countably paracompact normal space, $E$ is a separable
Banach space, and $F(x)$ is a non.empty convex closed subset of $E$ for
every $x\in X$.

(IV) $X$ is a point-finitely paracompact normal space, $E$ is an
arbitrary Banach space, and $F(x)$ is a non-empty convex compact subset
of $E$ for every $x\in X$.

PROOF. Case (I) : Construct the covering $\mathfrak{S}=\{S_{b}|beE\}$ of $E$,
where each $S_{b}$ is an open sphere $S(b;e)^{(4)}$ . Then by virtue of lower
semi.continuity of $F$, the sets $U_{b}=\{x\in X|F(x)\cap S_{b}\neq Q\}$ are all open in
$X$ and form a covering $\mathfrak{U}$ of X. $X$ being paracompact, $\mathfrak{U}$ has a locally
finite refinement $\mathfrak{V}=\{V_{\alpha}|\alpha\in\Omega\}$ . Let { $\varphi_{\alpha}|$ a $e\Omega$ } be the partition of unity
subordinated to $\mathfrak{V}$ (Lemma 4). To each $\alpha$ , we choose an element $b$

such that $V_{\alpha}\subset\{x\in X|F(x)\cap S_{b_{\alpha}}\neq Q\}$ and define $f:X\rightarrow E$ by

(6) $f(x)=\sum_{\alpha}\varphi_{\alpha}(x)b_{\alpha}$ .
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Given any point $x\in X$, there exists a neighborbood $W$ meeting only
with a finite number of elements of $\mathfrak{V}$ . Then (6) being a finite sum
in $W,$ $f(x)$ is continuous there, hence in $X$. Next, let $\alpha_{1},\cdots,$ $\alpha_{s}$ be the
indices $\alpha$ such that $\varphi_{\alpha}(x)\neq 0$ . Then $F(x)\cap S_{b_{a_{i}}}\neq Q$. Choose an element
$c_{\alpha_{j}}$ from each $F(x)\cap S_{b_{\alpha_{i}}}$ . Then $||b_{\alpha_{i}}-c_{\alpha_{i}}||<\epsilon$ , and

$||f(x)-\Sigma_{i=1}^{s}\varphi_{\alpha_{i}}(x)c_{\alpha_{i}}||=||\sum\varphi_{\alpha_{i}}(x)b_{\alpha_{i}}-\sum\varphi_{\alpha_{i}}(x)c||$

$\leqq\sum\varphi_{\alpha_{\oint}}(x)||b_{\alpha_{j}}-c_{\alpha_{i}}||<e\sum\varphi_{\alpha}(x)=e$

and $\sum\varphi_{\alpha_{i}}(x)c_{\alpha_{i}}\in F(x)$ by convexity of the set $F(x)$ . Consequently,.

$f(x)\in S(F(x);e)$ .
Case (II): Let $B=\{b_{n}|n=1,2,\cdots\}$ be a countable dense subset of

$E$ and construct the open spheres $S_{n}=S$( $b_{n}$ ; e). Then $0_{I}\sim=\{S_{n}|n=1,2,\cdots\}$

is a countable covering of E. $E$ being a metric space, it is para-
compact (see A. H. Stone [7]), and so $\mathfrak{S}_{1}$ has a countable locally finite.
refinement $\mathfrak{T}=\{T_{n}|n=1,2,\cdots\}$ . Let $U_{n}=\{x\in X|F(x)\cap T_{n}\neq Q\}$ . Then
$\{U_{n}\}$ is a point.finite covering of X. for, given $x\in X,$ $F(x)$ is compact,
hence at most a finite number of $T_{n}$, say $ T_{n_{1}},\cdots$ . $T_{n_{S}}$ , intersect with $F(x)$ .
Then $x\in U_{i}$ only for $i=n_{1},\cdots,$ $n_{s}$ . Since $X$ is a normal space, the point-
finite countable covering $\{U_{\alpha}\}$ has a locally finite refinement $\mathfrak{V}$ by
Lemma 2, and the proof may be accomplished precisely by the same $\cdot$

way as above.
Case (III): Let $\tilde{B}_{1}$ be the same as in case (II). Then the open sets

$U_{n}=\{x\in X|F(x)\cap S_{n}\neq Q\}$ form a countable covering of $X$. By count-
able paracompactness of $X$, there exists a locally finite refinement
$\mathfrak{V}=\{V_{\alpha}|\alpha e\Omega\}$ of this covering. The desired function $f$ may be con-
structed by the same way as above.

Case (IV): Since $E$ is paracompact, the covering $\mathfrak{S}$ of $E$ con-
structed in the proof of Case (I) has a locally finite refinement $\mathfrak{V}=\{V_{\alpha}|$

$\alpha\in\Omega\}$ . Let $U_{\alpha}=\{x\in X|F(x)\cap V_{\alpha}\neq Q\}$ . Then the covering $\mathfrak{U}=\{U_{\alpha}|\alpha\in\Omega\}$

is as above a point-finite covering of $X$. By virtue of point-finite para-
compactness of $X$, this covering has a locally finite refinement. From
this point, we can proceed as above.

PROOF OF NECESSITY. By virtue of the above lemma, we can
inductively define a sequence $\{f_{n}\}$ of continuous functions from $X$ to
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$E$ with the properties (i) $f_{n}(x)\in S(F(x);1/2^{n})$ , and (ii) $||f_{n}(x)-f_{n+1}(x)||$

$<1/2^{n}$ for every $xeX$. In fact, apply Lemma 6 to $F(x)$ for $e=1/2$ ,
and we have a function $f_{1}$ satisfying (i). Suppose that we have defined
the function $f_{n}(x)$ with the properties (i) and (ii). Then the function
$G(x)=F(x)\cap S(f_{n}(x);1/2^{n})$ is lower semi-continuous by Lemma 1 and
satisfies the same conditions as $F(x)$ . Thus applying Lemma 6 to $G(x)$

instead of $F(x)$ , we have a continuous function $f_{n+I}$ such that $f_{n+1}(x)$

$eS(G(x);1/2^{n+1})$ . This $f_{n+1}$ is easily seen to satisfy (i) and (ii), and our
induction is completed.

The sequence $\{f_{n}(x)\}$ is obviously a Cauchy sequence and converges
uniformly to a continuous function $f:X\rightarrow E$ by (ii). From (i) and
the closedness of the set $F(x)$ ; we have readily $f(x)\in F(x)$ , which com-
pletes the proof.

3. Proof of sufficiency.

LEMMA 7. Let $\mathfrak{U}=\{U_{\alpha}|\alpha\in\Omega\}$ be any covering of a space $X$ and
$E=E(\mathfrak{U})$ be a Banach space formed of all $b=\sum\lambda_{\alpha}b_{\alpha}$ such that $||b||$

$=\sum_{\alpha}|\lambda_{\alpha}|<\infty(5)$ Define a function $F=F_{u}$ as follows: $F(x)$ is formed
of all $b=\sum\lambda.b.\in E$ such that $||b||=1$ and that $x\not\in U_{\alpha}$ implies $\lambda_{\alpha}=0$ .
Then (i) each $F(x)$ is a non-empty convex closed subset of $E$, and (ii)
the function $F:X\rightarrow 2^{E}$ is lower semi-continuous.

PROOF. (i) is obvious. To prove (ii), it suffices to show that the
set $G=\{xeX|F(x)\cap S\neq 0\}$ is open in $X$ for every open sphere $S$

$=S(b_{0};r)$ . Let $x_{0}eG$. Then there exists an element $b=\sum\lambda_{\alpha}b_{\alpha}\in F(x)$

such that $\rho=||b-b_{0}||<r$. Since $||b||=\sum|\lambda_{a}|=1$ , at most countably
infinite $\lambda_{\alpha}S$ , say $\lambda_{a_{1}},$ $\lambda_{a_{2}},\cdots$ , are not equal to zero. Choose $n$ so large as
to have $1-L_{n}<(r-\rho)/2$ , where $L_{n}=\sum_{i=1^{1}}^{n}|\lambda_{\alpha_{i}}|$ . Then $x_{0}\in U_{\alpha_{i}}$ since $\lambda_{\alpha i}\neq 0$,

and $V=\bigcap_{i=1}^{n}U_{a_{i}}$ is a neighborhood of $x_{0}$ . Let $y\in V$. Then $b^{\prime}=1/L_{n}\sum_{i-1}^{n}$

$\lambda_{\alpha_{i}}^{p}b_{\alpha_{i}}\in F(y)$, and

$||b^{\prime}-b_{0}||\leqq||b^{l}-\sum_{i=1}^{n}\lambda_{a_{i}}b_{\alpha_{i}}||+||\sum_{i=1}^{n}\lambda_{\alpha_{i}}b_{\alpha_{i}}-b||+||b-b_{0}||$

$=\sum_{i=1}^{n}|\lambda_{a_{i}}/L_{n}-\lambda_{a_{i}}|+\sum_{z=n+1}^{\infty}|\lambda_{a_{i}}|+\rho$

$=(1-L_{n})+(1-L_{n})+\rho<2\cdot(r-\rho)/2+\rho=r$ .
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Consequently $b‘\in F(y)\cap S$ and $y_{\overline{c}}G$, whence $V\subset G$ . This completes the
proof of the lemma.

Our proof is now divided into the following four cases:
(I) In case the condition $(B)$ holds. $\ln$ this case, we choose $E$ as
the space $R$ of all real numbers. Let $M$ and $N$ be disjoint non-void
closed subsets of $X$ and define $F(x):X\rightarrow R$ as follows: $F(x)=\{0\}$ if
$x\in M,$ $=\{1\}$ if $x\in N$, and $=I$ the closed interval $[0,1]$, otherwise. Then
the function $F(x)$ is easily seen to satisfy the assumption in (B), and
therefore a continuous function $f:X\rightarrow R$ is obtained so that $f(x)\in F(x)_{\nu}$

i.e., $f(x)=0$ if $x\in M$, and $=1$ if $x\in N$, and always $0=<f(x)\leqq 1$ . This,

shows that $X$ is a normal space.
(II) In case the condition $(A)$ holds. In this case the condition $(B)\iota$

is also satisfied, which implies that $X$ is normal. It suffices therefore
to show that every covering $\mathfrak{U}=\{U_{\alpha}|\alpha\in\Omega\}$ of $X$ has a locally finite $\cdot$

refinement. To this end, let us construct a Banach space $E=E(\mathfrak{U})$

and a function $F=F_{1J}$ as in Lemma 7. The condition (A) implies the
existence of a continuous function $f:X\rightarrow E$ such that $f(x)=\sum_{a}\lambda_{\alpha}(x)b$.
$eF(x)$ for every $x\in X$. Define $\varphi_{\alpha}(x)=|\lambda_{\alpha}(x)|$ . Then $\{\varphi_{\alpha}\}$ is easily seen
to satisfy the hypotheses of Lemma 5 and we can conclude the exist-
ence of a locally finite refinement of $\mathfrak{U}$ .
(III) In case the condition $(C)$ holds. The condition (B) implies as
above that $X$ is normal. Let $\mathfrak{U}=\{U_{n}\}$ be any countable covering of
$X$ and construct a Banach space $E=E(\mathfrak{U})$ and a function $F=F_{\mathfrak{U}}$ as in
Lemma 7. In this case the space $E$ is clearly separable and the con-
dition (C) implies the existence of a locally finite refinement of $\mathfrak{U}$ as
above.
(IV) In case the condition $(D)$ holds. Let $\mathfrak{U}=\{U_{\alpha}|\alpha\in\Omega\}$ be any
point-finite covering of $X$ and construct $E=E(\mathfrak{U})$ and $F(x)=F_{\mathfrak{U}}(x)$ as
in Lemma 7. Then each set $F(x)$ is compact. lndeed, given any
point $x\in X$, let $U_{\alpha_{i}}(1\leqq i\leqq n)$ be the elements of $\mathfrak{U}$ containing $x$ . By
point-finiteness of the covering $\mathfrak{U},$ $n$ is finite and the set $F(x)$ is
homeomorphic to the compact set in the Euclidean n.space defined by
the equation $|x_{1}|+|x_{2}|+\cdots+|x_{n}|=1$ , hence $F(x)$ is compact. From this
point, we can proceed in the same way as above.
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4. Some applications.

As is stated in E. A. Michael [5], the above theorems may be ap-
plied to obtain Arens’ theorem [1] which asserts the extensibility of
continuous Banach space-valued function $f$ defined on a closed subset
$A$ of a paracompact normal space $X$ to the whole space, or to obtain
the inserting theorem of a continuous function between lower and
upper semi.continuous real-valued functions defined on a normal space
(cf. H. Tong [8]). Some similar result may be obtained for other class
of topological spaces.

COROLLARY 1. Let $A$ be a closed subset of a countably paracom-
pact normal space $X$ and $E$ be a separable Banach space. Then every
continuous function $f:A\rightarrow E$ may be extended to a continuous function
$X\rightarrow E$.

PROOF. Let $F(x)$ be defined as follows: $F(x)=\{f(x)\}$ if $x\in A$ and
$=E$ otherwise. Then $F(x)$ is easily seen to be semi-continuous and
Theorem III is applied to obtain the desired extension of $f$.

COROLLARY 2. Let $A$ be a compact subset of a point-finitely para-
compact normal space X. Then every continuous function from $A$ into
any Banach space $E$ may be extended to a continuous function $X\rightarrow E$.

COROLLARY 3. Let $A$ be a compact subset of a normal space $X$.
Then $ ever\gamma$ continuous function from $A$ into a separable Banach space
$E$ may be extended continuously all over the space $X$.

Corollary 2 and 3 may be proved analogously as Corollary 1.

5. An example of a point-finitely paracompact space.

Finally, we shall give an example of a point-finitely paracompact
space which is not paracompact. Let $X$ be the set of all countable
transfinite ordinals and the neighborhood of its point $x_{0}\in X$ be the set
of the form $\{x||y<x\leqq x_{0}\}$ . Then the space $X$ is well known to be
completely normal and locally compact but not compact.

LEMMA 8. Let $f:X\rightarrow X$ be a mapping such that $f(x)<x$ for
sufficiently large $x\in X$. Then there is an element $c\in X$ such that, for
every $xeX,there$ exists an element $y\geqq x$ satisfying $f(y)<c$. See N.
Bourbaki [10, Chap. I, \S 10, ex. 21)].

PROOF. If the lemma were not true, we could inductively define
a sequence $\{z_{n}\}$ such that $y\geqq z_{n+1}$ implies $f(y)\geqq z_{n}$ . Clearly $ z_{1}<z_{2}<\cdots$ .
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Let $z_{0}$ be the ordinal which follows immediately after $\{z_{n}\}$ . Then $z_{0}\in X$

and $z_{0}\geqq z_{n+1}$ , hence $z_{0}>f(z_{0})\geqq z_{n}$ for every $n$ , which contradicts the
definition of $z_{0}$.

From this lemma, we see that $X$ is point.finitely paracompact.
More precisely, we have the following

THEOREM. Every point-finite covering of the space $X$ has a finite
subcovering.

PROOF. Let $\mathfrak{U}=\{U_{a}|a\in A\}$ be a point-finite covering of $X$. Define
a mapping $f:X\rightarrow X$ as follows: $f(\alpha)=1$ if $\alpha=1$ . In case $\alpha>1$ , let
$\{U_{b}|beB\}$ be the collection of all $U_{a}’ s(a\in A)$ containing $\alpha$ . By virtue
of point-finiteness of 11, $B$ is a finite set and the set $V=\cap\{U_{b}|beB\}$

is an open set containing $\alpha$ . Put $ f(\alpha)=\beta$ , where $\beta$ is the smallest $\beta$

such that $\{\gamma|\beta<\gamma\leqq\alpha\}\subset V$. Let $c$ be the ordinal obtained by the
above lemma and $U_{1},$ $U_{2},\cdots,$ $U_{s}$ be the elements of $\mathfrak{U}$ which contain $c$.
For any $\alpha>c$, there exists an ordinal $\beta\geqq c$ such that $ f(\beta)<c<\alpha\leqq\beta$.
Then the neighborhood $\{\gamma|f(\beta)<\gamma\leqq\beta\}$ is contained in some $U_{a}\in \mathfrak{U}$ .
Since $c$ is contained in $U_{a},$ $U_{a}$ must be one of the $U_{i}’ s,$ $1\leqq i\leqq s$, and
$\alpha\in U_{1}\cup U_{2}\cup\cdots\cup U_{s}$ . The segment $\{\alpha|\alpha\leqq c\}$ of $X$ is easily seen to be
compact and is covered by some finite number of $U_{a}$ . Consequently,
$X$ is covered by finite number of $U_{a}$, and the proof is complete.

COROLLARY. The space $X$ is not paracompact.
In fact, let $\mathfrak{U}$ be a covering of $X$ which has no finite subcoverings

(such a covering may be easily constructed.) Then the above theorem
shows that $\mathfrak{U}$ has no locally finite refinements.

Department of the General Education,
Nagoya University.
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Notes.

(1) According to C. H. Dowker $\llcorner\ulcorner 3$], a topological space is called countably paracompact.
if every countable covering has a locally finite refinement. In this paper we use the term
“ covering” as ” open covering”, and locally finite=neighborhood.finite in the sense of
S. Lefschetz [41.

(2) See S. Lefschetz [4, p. 13].

(3) Michael’s original proof is not yet known to us.
(4) We denote by $S(b0;$ r) the open sphere of radius r about b0 in the Banach space

Ei. e., the set {b| $||b-b0||<r, $beE} and by $S(A;\in)$ the open $\epsilon\cdot neighborhood$ of A $\subset E$,
i.e., the set { b| $||b-a|]<\hat{c}$ for some a eA}.

(5) We assume that the vectors $\{b_{a}\}$ are linearly indepenpent; therefore the space
E is an $(l^{I})\cdot space$ not necessarily of countable dimension.

Added in proof: Corollary 3 in \S 4 is valid for an arbitrary Banach space E. In
fact, let $H$ be the closed linear subspace of $E$ spanned by $f(A)$ . $f(A)$ being compact
metric, hence separable, $H$ is a separable Banach space, and the given function $f$ may be
considered as a function from $A$ into $H$.


	Characterization of topological ...
	Introduction.
	THEOREM I. ...
	THEOREM II. ...
	THEOREM III. ...
	THEOREM 1V. ...

	1. Preliminary lemmas.
	2. Proof of necessity.
	3. Proof of sufficiency.
	4. Some applications.
	5. An example of a point-finitely ...
	THEOREM. Every ...

	Bibliography.


