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Inner endomorphisms of an associative algebra.
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The inner automorphisms of an algebra are operations of funda-
mental importance defined on the algebra, where the adjective “ inner”
implies that these automorphisms are defined by some elements of the
algebra by means of a certain canonical procedure which enables one
to compute these automorphisms. Not only automorphisms, but homo-
morphisms of the algebra into itself $i$ . $e$ . endomorphisms of the algebra
play some r\^oles in the structure theory of the algebra. In this con-
nection, an attempt will be made in the following lines to generalize
the notion of the inner automorphisms so as to include some endo-
morphisms which may be called inner in the above sense.

\S 1. Throughout this paper, $A$ will denote an associative algebra
with an identity and of a finite dimension, say $n$ , over a ground field
$K$. Set $K_{0}=K(X_{1},\cdots,X_{n})$ and $K_{1}=K(X_{1},\cdots\cdots,X_{n}, Y_{1},\cdots, Y_{n})$ , where $ X_{1},\cdots$ ,
$X_{n},$ $Y_{1},\cdots,$ $Y_{n}$ are independent variables over $K$ ; an element $f(X_{1},\cdots,X_{n})$

of $K_{0}$ , or an element $g(X_{1},\cdots,X_{n}, Y_{1},\cdots, Y_{n})$ of $K_{1}$ will be written in the
simplified form $f(X)$ or $g(X, Y)$ , respectively. Construct an auxiliary
algebra $A_{1}$ by extending the ground field $K$ of $A$ to $K_{1}$ . A $K\cdot basis$

$(u_{i})$ of $A$ serves also as a $K_{1}$-basis of $A_{I}$. Let the multiplication table
of $(u_{i})$ be $u_{i}u_{j}=\sum\gamma_{ijk}u_{k},$ $\gamma_{ijk}eK$. If $a=\sum f_{i}u_{i},$ $f_{i}\in K_{1}$ , is an element
of $A_{1}$ , we shall denote by $M(a, u)$ the n-rowed matrix $(\sum_{i}f_{i}\gamma_{ijk})_{jk}$ .
Then $a$ is regular if and only if $\det M(a,u)\neq 0$ . Since $\det M(1, u)$

does not vanish certainly, we have also $\det M(S, u)\neq 0$ for the general
element $S=\sum X_{i}u_{i}$ , which has therefore an inverse element. Put
(1) $(\sum X_{i}u_{i})(\sum Y_{i}u_{i})(\sum X_{i}u_{i})^{-1}=\sum Y_{i}^{\prime}u_{i}$ ,

where $Y_{i}^{f}=Y_{i}^{\prime}(X, Y)$ is linear in $Y_{i}$ , and we can write

(2) $Y_{i}^{\prime}=\sum R_{ij}(X)Y_{j}$ with $R_{ij}(X)\in K_{0}$ .
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Then the inner automorphism by $S$ is represented by the matrix $R_{\ell\iota}(S)$

$=(R_{ij}(X))$ . Now, an element $a=\sum\alpha_{i}u_{i},$ $\alpha_{i}\in K$, of $A$ will be called
lefl-semiregular, or simply semiregular in \S \S 1, 2, if every $R_{ij}(X)$ can be
so expressed in the form $R_{ij}(X)=P_{ij}(X)/Q_{ij}(X),$ $P_{ij},$ $Q_{ij}\in K[X_{1},\cdots,X_{n}]$

that $Q_{ij}$ does not vanish at $X_{1}=\alpha_{1},\cdots,$ $X_{n}=\alpha_{n}$ . If this is the case, the
value $R_{ij}(\alpha)=P_{ij}(\alpha)/Q_{ij}(\alpha)$ is uniquely determined, independent of the
choice of the expression of $R_{ij}$ subjected to the condition above. De-
noting the matrix $(\dot{R}_{ij}(\alpha))$ by $R_{u}(a)$ , we shall say in this case that
$R_{u}(S)$ is defined at $a$ . We shall define an operation $I_{a}$ , for such a
semiregular element $a$ , as follows:
(3) $I_{a}$ : $\sum\beta_{i}u_{i}\rightarrow\sum Y_{i}^{\prime}(\alpha, \beta)u_{i}$ , $\beta_{i}\in K$ .
Since $I_{a}$ is obtained by the inner automorphism $b\rightarrow SbS^{-1}$ followed by
the specialization $S\rightarrow a,$ $I_{a}$ is clearly a homomorphism of $A$ into $A$ ,
and we shall call $I_{a}$ the inner endomorphism by $a$ .

Let $(\tilde{u}_{i})$ be another K.basis of $A$ . Put
$(\sum X_{i}\tilde{u}_{i})(\sum Y_{i}\tilde{u}_{i})(\sum X_{i}\tilde{u}_{i})^{-1}=\sum Y_{i}^{\prime\prime}(X, Y)\tilde{u}_{i}$ .

On the other hand, if $\sum f_{i}u;=\sum\tilde{f_{i}}\tilde{u}_{i}$ , we have by (1)

$(\sum\tilde{X}_{i}\tilde{u}_{i})(\sum\tilde{Y}_{i}\tilde{u}_{i})(\sum\tilde{Y}_{i}\tilde{u}_{i})^{-1}=\sum\tilde{Y}_{i}^{\prime}\tilde{u}_{i}$ ,

whence $Y_{i}^{\prime\prime}(\tilde{X},\tilde{Y})=\tilde{Y}$ ’. But if $a=\sum\alpha_{i}u_{i}=\sum\tilde{\alpha}_{i}\tilde{u}_{i}$ is semiregular with
respect to $(u_{i})$ , then $Y_{i}^{\prime}$ , and hence $\tilde{Y}_{i}^{\prime}$ , which is a linear combination
of $Y_{1}^{\prime},\cdots,$ $Y_{n}^{\prime}$ , can be defined at $X_{i}=\alpha_{i}$ ; this implies that $Y_{i}^{\prime\prime}$ is defined
at $X_{i}=\tilde{\alpha}_{i}$ , and hence the notion of semiregularity is independent of the
choice of the K-basis $(u_{i})$ . A similar argument shows that the inner
endomorphism by $a$ is also independent of the choice of $(u_{i})$ .

EXAMPLES. 1) A regular element of $A$ is obviously semiregular.
2) lf $A$ is commutative, every element of $A$ is semiregular, and

induces the identity automorphism of A.–This is clear since we have
$Y_{i}^{\prime}=Y_{i}$ in (1). Cf. \S 2, v).

3) Let $A$ be the subalgebra of the 3-rowed matrix algebra over
$K$ consisting of linear combinations $a=\alpha c_{11}+\beta_{23}+\gamma c_{33}+\delta c_{21},$ $\alpha,$ $\beta,$

$\gamma,$
$\delta\in K$,

where $c’ s$ denote the matrix units. Then $a$ is semiregular if and only
if $\alpha\neq 0$ . The kernel of the inner endomorphism by $c_{11}$ is the radical
$\{c_{21}\}$ , while the inner endomorphism by $c_{11}+c_{22}$ is actually the identity
automorphism in spite of the non $\cdot$regularity of $c_{11}+c_{22}$ .
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\S 2. The following two facts are immediate consequences of the
definition of the semiregularity.

i) An element $a_{1}+a_{2}$ of the direct sum $A_{1}+A_{2}$, where $a_{1}\in A_{1}$ ,
$a_{2}\in A_{2}$ , is semiregular $lf$ and only $lfa_{1}$ as well as $a_{2}$ is semiregular in
$A_{1}$ and $A_{2},$ respectively.

ii) Let $L$ be an extension field of $K$, then $a\in A$ is semiregular $lf$

and only $lf$ $a$ is semiregular in $A_{L}=A\otimes L$ .
Now we shall prove:
iii) Let $\mathfrak{a}$ be a two-sided ideal of $A,$ $\mathfrak{a}\neq A$ . If $a$ is semiregular

in $A$ , the residue class $\overline{a}$ of a modulo $\mathfrak{a}$ is semiregular in $A/\mathfrak{a}$ .
Take a K-basis $(u_{i})$ of $A$ such that $u_{k+1},\cdots,u_{n},$ $0<k<n$ , span $\mathfrak{a}$ .

Then the residue classes $\overline{u}_{i}$ of $u_{i},$ $i=1,\cdots,k$ , modulo $\mathfrak{a}$ constitute a
basis of $A/\mathfrak{a}$ . Since $u_{i}u_{j}\in \mathfrak{a}$ if $i$ or $j>k$ , it is a trivial matter to see
that

$(\geq_{=^{\lrcorner}}^{k_{\urcorner}}X_{i}\overline{u}_{i})(\sum_{l=2}^{k}Y_{i}\overline{u}_{i})(\sum_{i=I}^{k}X_{i}\overline{u}_{i})^{-1}=\sum_{i=1}^{k}Y_{i}^{\prime}\overline{u}_{i}$ ,

whence the proposition follows.
iv) If $a$ and $b$ are semiregular, then ab is also semiregular, and

we have $I_{a}\circ I_{b}=I_{ab}$ .
This is clear since $R_{u}(S)$ is defined at $ab$ and $R_{u}(ab)=R_{u}(a)R_{u}(b)$ .
v) The zero element is semiregular $lf$ and only $lf$ $A$ is com-

mutative.
The “ if” part is shown in Example 2). Since $M(S, u)$ (cf. \S 1) is

homogeneous in $X’ s,$ $0$ is semiregular only if every $R_{ij}(X)$ in (2) is
a polynomial. Since the numerator of $R_{ij}(X)$ has the same degree as
the denominator, $R_{ij}(X)$ must be a constant in this case. Then $Y_{i}^{\prime}$

in (1) is independent of $X’ s,$ $i=1,\cdots,$ $n$ . Specialize $\sum X_{i}u_{i}$ to the
identity, and we have $Y_{i}^{\prime}=Y_{i}$, which implies the commutativity of $A$ .

From iv) and v) follows at once:
vi) A semiregular element of a non.commutative algebra is not

nilpotent.
The kernel of $I_{a}$ is a two.sided ideal of $A$ , which we shall denote

by $J(a)$ . Since we have $ J(a)\subset J(a^{2})\subset\cdots$ , there exists some integer $k$,

for which $J(a^{k})=J(a^{k+1})$ . Let $a^{k}=b$ , then we have $J(b)=J(b^{2})$ . Now
we have

vii) If $J(b)=J(b^{2})$ for a semiregular element $b,$ $A$ is the direct
sum of $J(b)$ and $I_{b}(A)$.
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Indeed, since $J(b)=J(b^{2})$ , we have $J(b)\cap I_{b}(A)=(0)$ . The proposi-
tion follows as we have $(I_{b}(A):K)=(A/J(b)$ : $K)=(A:K)-(J(b):K)$ .

viii) A semiregular element of a simple algebra $A$ is a regular
element or the zero element.

For, let $a$ be semiregular. Since we have $ax=I_{a}(x)a$ for every
$x\in A,$ $Aa$ is a two.sided ideal of $A$ . If $Aa=A$ , then $a$ is regular, and
if $Aa=(O)$ , then $a=0$ .

ix) Every semiregular element of a non-commutative primary
algebra $A$ is a regular element.

Let $N$ be the radical of $A$ . If $a$ is semiregular in $A$ , the residue
class $\overline{a}$ of $a$ modulo $N$ is semiregular in $\overline{\overline{A}}=A/N$ by iii). By viii), $\overline{a}$

is regular or $\overline{a}=0$ . If $\overline{a}$ is regular in $\overline{A}$, then $a$ itself is regular in $A$ .
If $\overline{a}=0,$ $a$ is nilpotent, but this is not the case in view of vi).

\S 3. The inner endomorphism by a left.semiregular element is a
generalization of the mapping of the form $x\rightarrow axa^{-1}$ . But, we can
equally consider the mapping $x\rightarrow a^{-1}xa$ . Let $A^{\prime}$ be an anti-isomorphic
copy of $A$ , with a fixed anti.isomorphism $a\leftarrow\rightarrow a^{\prime}$ . Then $a\in A$ will be
called right.semiregular if $a^{\prime}$ is left-semiregular in $A^{\prime}$ . A right-semi-
regular element $a$ defines an inner endomorphism $x\rightarrow I_{a}^{\star}$ where $(I_{a}^{\star}(x))^{\prime}$

$=I_{a},(x^{\prime})$ for every $x\in A$ . It is evident that $i$ )$-ix$) hold for right-semi-
regular elements with the trivial modification $I_{a}^{\star}\circ I_{b^{*}}=I_{ba}^{*}$ in iv).

In general, the left-semiregularity and the right-semiregularity are
independent of each other.

EXAMPLE. In the algebra $A$ of Example 3) of \S 1, $a=\alpha c_{11}+\beta c_{22}$

$+\gamma c_{33}+\delta c_{21}$ is right-semiregular if and only if $\beta\neq 0$ .
x) For $a\in A$ , the following two conditions are equivalent:
I) $a$ is both left and right-semiregular.

II) $a$ is left-semiregular and the inner endomorphism $I_{a}$ by $a$ is
an automorphism.

If one of these (equivalent) conditions is satisfied, $I_{a}^{*}$ is defined
and is the inverse of $I_{a}$ .

PROOF. For the general element $S$, we have obviously $I_{S}\circ I_{S}^{*}=$

identity. Since $I_{a}$ and $I_{a}^{*}$ , if they can be defined, are given by the
specialization from $I_{S}$ and $I_{S}^{*}$ respectively, we have also $I_{a}\circ I_{a}^{*}=identity$ ,
which implies that $I_{a}$ and $I_{a}^{*}$ are automorphisms inverse of each other.
Next, let us assume II). The coefficients of the matrix $R_{u}^{-1}(S)$ of
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$I_{S^{\backslash }}^{x}=I_{\overline{s}^{1}}$ are $g$iven by the cofactors of $R_{u}(S)$ devided by the determinant
of $R_{u}(S)$ . On the other hand, if $I_{a}$ is an automorphism, the determinant
of $R_{u}(a)$ is non.vanishing. Hence $R_{u}^{-1}(S)$ is defined at $a$ , and $a$ is
right.semiregular.

Finally, we shall indicate a further possibility of extending the
notion of the inner automorphism. Take, as an example, the algebra
of all $3\cdot rowed$ matrices over $K$, whose right upper halves are vanish-
ing. Such a matrix $(\alpha_{ij}),$ $\alpha_{ij}\in K$, is left.semiregular if and only if
$\alpha_{11}\neq 0,$ $\alpha_{22}\neq 0$ . Now, if we substitute in the matrix $R_{u}(S)$ , where $S$

is the general element $S=\sum X_{ij}u_{ij},$ $\mu X_{2_{\sim}^{9}}$ and $\nu X_{22},$
$\mu,$

$\nu eK$, for the
variables $X_{32}$ and $X_{33}$, respectively, the resulting matrix is defined at
every element of $A$ , such that $\alpha_{11}\neq 0,$

$\alpha_{32}=\mu\alpha_{22},$ $\alpha_{33^{=}}\nu\alpha_{22}$ . In this
manner, we get a very wide class of semiregular elements and of inner
endomorphisms. A remarkable fact is that a semiregular element in
this sense may induce various endomorphisms different from each other,
according to the ways of specialization. In particular, the zero element
may define several endomorphisms. Thus, those semiregular elements
may provide us with some endomorphisms or automorphisms different
from the usual inner automorphisms. But, these remarks suggest us
on the other hand, that we should have some difficulties in treating
this subject along these lines.
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