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Generalized evolute in Klein spaces.
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We investigate in this paper the generalization of the enveloping
theorem of an evolute of a curve on the euclidean plane to the case of
figures in Klein spaces by the method of moving frame of E. Cartan
[1]. The idea of this paper is the same with that of [3]. In addition
we state the process of obtaining theorems in Klein spaces analogous
to Euler-Savary’s theorem on the euclidean plane ([2] pp. 28-29).

1. Generalized evolute
1.1 Let $\mathfrak{G}$ be a fundamental Lie group of the Klein space and

$\mathfrak{H}$ a closed subgroup of G. We consider the figure $F$
’ consisting of

one-parametric set of points of the homogeneous space $\mathfrak{G}/\mathfrak{H}$ and attach
to each element of $F$ a Frenet’s frame defined in [1] pp. 131-132. Let
the Frenet’s frame defined at the point $A$ on $F$ be $S_{a}R$ , where $R$ is
a fundamental frame and $S_{a}$ is an element of $\mathfrak{G}$ , and let the Frenet’s
frame at a consecutive point of $F$ be $S_{a+da}R$. The frames whose relative
displacements are each given by $S_{t}$ with respect to $S_{a}R$ and $S_{a+da}R$ are
$S_{a}S_{t}R$ and $S_{a+da}S_{t}R$. The infinitesimal relative displacement between
$S_{a}S_{t}R$ and $S_{a+da}S_{t}R$ is given by $(S_{a}S_{t})^{-1}(S_{a+da}S_{t})=S_{t^{-1}}(S_{a}^{-1}S_{a+da})S_{t}$ . We
take $S_{t}$ which depends on the parameter $a$, so that $S_{t^{-1}}(S_{a}^{-1}S_{a+da})S_{t}$ is
an infinitesimal element of a certain fixed subgroup $\mathfrak{K}$ of $\mathfrak{G}$ for all $a$.
$\mathfrak{K}$ is not in general unique. We call the elements of the homogeneous
space $\mathfrak{G}/\mathfrak{K}$ belonging to $S_{a}S_{t}R$ a central figure. To each point of $F$ a
central figure is defined and we call a set of central figures an evolute
of $F$, which we denote by $E$. The infinitesimal relative displacement
of the frames $S_{a}S_{t}R$ attached to $E$ can be given by

$(S_{a}S_{l})^{-1}(S_{a+da}S_{t+dt})=S_{l^{-1}}(S_{a}^{-1}S_{a+da})S_{t}\cdot S_{t}^{-1}S_{t+dt}$ .
Let the relative components of the relative displacement of $S_{a}S_{t},$ $S_{a},$ $S_{t}$

be $\omega_{p},$
$\omega_{p}^{(1)},$ $\omega_{p^{0)}}^{(}(p=1,2,\cdots, r)$ respectively. Then we have the relations
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(1) $\omega p^{=\sum_{q=1}^{r}\tau_{pq}\omega_{q}^{(1)}+\omega^{(}p^{())}}$ $(p=1,2,\cdots r)$

by virtue of [4] p. 4. If $\omega pS$ are so chosen that $\omega_{1},\cdots,$ $\omega_{n}$ are principal
relative components of $\mathfrak{G}/\mathfrak{K}$ , we have $\sum\tau_{iq}\omega_{q^{1)}}^{(}=0(i=1,\cdots, n)$ because
$S_{t^{-1}}(S_{a}^{-1}S_{a+da})S_{t}$ is an infinitesimal element of $\mathfrak{K}$. Hence we get the
relations
(2) $\omega_{i}=\omega_{i^{0)}}^{\langle}$ $(i=1,\cdots, n)$ .
These are the fundamental relations, which can be stated as follows.

THEOREM. The principal relative components of an evolute $E$ of
$a$ one-parametric figure $F$ in the homogeneous space are equal to those
of the figure generated by the positions of central figures relative to
the corresponding Frenet’s frame of $F$.

1.2 We verify that the above process gives an enveloping theorem
in the classical case. Let the origin of Frenet’s frame of a curve on
the euclidean plane be $A$ and the axes be $e_{1},$ $e_{2}$. The relative displace-

ment of Frenet’s frame is given by $dA=dse_{1},$ $de_{1}=\rho^{-1}dse_{2},$ $de_{2}=$

$-\rho^{-1}dse_{1}$ . If we take $\overline{A}=A+he_{2}$ with constant $h$, we have $dA=$

$\rho^{-1}(\rho-h)dse_{1}$ . So we have $d\overline{A}=0$ , when $h$ is a constant equal to the
value of $\rho$ at a point on the curve. The center of curvature $A=A$
$+\rho e_{2}$ is a central figure in our sense. As $dE=d\rho e_{2}$, the frame $(A,$ $e_{2}$ ,
$e_{1})$ is a Frenet’s frame for the evolute and $ d\rho$ is equal to an arc.element
of the evolute. This is a special case of (2).

1.3 Next we treat the case of the curve in the euclidean $3\cdot space$.
Let a vertex of a Frenet’s frame of the curve be $A$ and the axes be
$e_{1},$ $e_{2},$ $e_{3}$ . The relative displacement of the Frenet’s frame of the curve
is given by

$dA=dse_{1}$ , $de_{1}=kdse_{2}$

(3)
$de_{2}=-kdse_{1}+tdse_{3}$ , $de_{3}=-ldse_{2}$

and this infinitesimal displacement can be realized by the screw motion
around the axis which passes through $R=A+kc^{2}e_{2}$ and has the direc-
tion $\overline{e}_{1}=-tce_{1}+kce_{3}$, wllere $c=(k^{2}+t^{2})^{-1,2}$. This can be verified in the
following. We take a rectangular frame $(R,\overline{e}_{1},\overline{e}_{2},\overline{e}_{3})$ such that

$R=A+kc^{2}e_{2}$ , $\overline{e}_{1}=-tce_{1}+kce_{3}$

$(4)$

$\overline{e}_{2}=e_{2}$ , $\overline{e}_{3}=-kce_{1}-tce_{3}$ .
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Then putting $d\overline{A}=\sum\omega_{i}\overline{e}_{i},$
$d\overline{e}_{i}=\sum\omega_{ij}\overline{e}_{j}$ we have

$\omega_{2}=d(kc^{2})$ , $\omega_{3}=0$

(5)
$\omega_{12}=0$ , $\omega_{13}=d\tan^{-1}(k/t)$ .

Hence if $k$ and $t$ in (4) are constants which are equal to the values of
curvature and torsion at a certain point of the curve we have $\omega_{2}=\omega_{3}$

$=\omega_{12}=\omega_{13}=0$ at the point. As $\omega_{2},$ $\omega_{3},$ $\omega_{12},$ $\omega_{13}$ are principal relative com-
ponents of the line through $\overline{A}$ with the direction $\overline{e}_{1}$ the line is an
instantaneous axis of rotation of the displacement (3). Hence this is a
central figure of our curve $F$, and a set of these lines is an evolute $E$

of $F$. The relation (5) indicates that the frame $(\overline{A},\overline{e}_{1},\overline{e}_{2},\overline{e}_{3})$ is a
Frenet’s one of the ruled surface $E$ (cf. [1] p. 50). If we denote the
parameter of distribution of $E$ by $\kappa$ and the angle between two con.
secutive generating lines of $E$ by $d_{\sigma}$ we have

$dA=d\sigma(\alpha\overline{e}_{1}+\kappa\overline{e}_{2})$ , $d\overline{e}_{1}=d_{\sigma}\overline{e}_{2}$

(6)
$d\overline{e}_{2}=-\beta d\sigma\overline{e}_{3}$ , $d\overline{e}_{3}=d\sigma(-\overline{e}_{1}+\beta\overline{e}_{2})$ .

Hence comparing (5) and (6) we get

(7) $\kappa d\sigma=d(kc^{2})$ , $d\sigma=d\tan^{-1}(t./k)$ .
We put $h=kc^{2},$ $\theta=\tan^{-1}(t/k)$ . $h$ is a distance between the tangent at
a point of the curve $F$ and the line which is a central figure at the
point, while $\theta$ is an angle between the $\backslash central$ figure and the binormal
of the curve $F$. Integrating (7) from a point 1 to a point 2 we get

$\int_{12}\kappa d\sigma=h_{2}-h_{1}$ , $\sigma_{2}-\sigma_{1}=\theta_{2}-\theta_{1}$ .

1.4 Next we take a ruled surface $F$ in the euclidean $3\cdot space$ .
Let the relative displacement of the Frenet’s frame $(A, e_{1}, e_{2}, e_{3})$ along
$F$ be

$dA=d\sigma(\alpha e_{1}+\kappa e_{3})$ , $de_{1}=d\sigma e_{3}$

$de_{2}=d\sigma(-e_{1}+\beta e_{3})$ , $de_{3}=-\beta d\sigma e_{2}$ .
The line through $\overline{A}=A+(\alpha-\beta\kappa)\rho^{2}e_{2}$ with the direction $\overline{e}_{1}=\beta\rho e_{1}+\rho e_{3}$ ,
where $\rho=(1+\beta^{2})^{-1/2}$, is a central figure and the locus of these lines is
an evolute $E$ of $F$. When we put
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$R=A+(\alpha-\beta\kappa)\rho^{2}e_{2}$ , $\overline{e}_{1}=\beta\rho e_{1}+\rho e_{3}$

$\overline{e}_{2}=e_{2}$ , $\overline{e}_{3}=-\rho e_{1}+\beta\rho e_{3}$

the frame $(A, e_{1}, e_{2}, e_{3})$ is a Frenet’s one of $\cdot$

$E$ , and if we denote the
parameter of distribution by $K$ and the angle between consecutive lines
of $E$ by $ d\Sigma$ we have
(8) $Kd_{r}^{\backslash }=dh$ , $ d\Sigma=d\theta$ ,

where $h=(\alpha-\beta\kappa)\rho^{2}$ is a distance between the generating line of $F$ and
the corresponding central figure and $\theta=\tan^{-1}(1/\beta)$ is an angle between
these two lines.

2. Curve on the affine plane

2.1 In this section we treat a curve on the affine plane. As a
preliminary we consider a pair of intersecting straight lines on the
affine plane. Let $A$ be the point of intersection and $e_{1},$ $e_{2}$ be the
vectors which are parallel to these lines and are two sides of parallelo.
gram of area 1. For a set of such frames we put

$dA=\omega_{1}e_{1}+\omega_{2}e_{2}$ , $de_{1}=\omega_{11}e_{1}+\omega_{12}e_{2}$ , $de_{2}=\omega_{21}e_{1}-\omega_{11}e_{2}$ ,

When we take $\overline{e}_{1}=\lambda e_{1},\overline{e}_{2}=\lambda^{-1}e_{2}$ with variable $\lambda$ in the place of $e_{J},$ $e_{2}$

and put

$dA=\overline{\omega}_{1}\overline{e}_{1}+\overline{\omega}_{2}\overline{e}_{2}$ , $d\overline{e}_{1}=\overline{\omega}_{11}\overline{e}_{1}+\overline{\omega}_{12}\overline{e}_{2}$ , $d\overline{e}_{2}=\overline{\omega}_{-1}\overline{e}_{\iota}-\overline{\omega}_{11}\overline{e}_{2}$

we get $\overline{\omega}_{1}=\lambda^{-1}\omega_{1},$ $\overline{\omega}_{2}=\lambda\omega_{2},\overline{\omega}_{12}=\lambda^{2}\omega_{I2},$ $\overline{\omega}_{21}=\lambda^{-2}\omega_{21}$. These do not contain
$ d\lambda$ , hence $\omega_{1},$ $\omega_{2},$ $\omega_{12},$ $\omega_{21}$ are the principal relative components of a
homogeneous space with pairs of intersecting lines as its elements.
The invariants of this space are $\omega_{1}\omega_{2},$

$\omega_{1}^{2}\omega_{1_{\sim}^{\gamma}},$ $\omega_{2}^{2}\omega_{21}$ .
2.2 Let the frame $(A, e_{1}, e_{2})$ be Frenet’s one of the curve $F$ on

the affine plane. Then according to [1] p. 160 we have

(9) $dA=d_{\sigma}e_{1}$ , $de_{1}=d\sigma e_{2}$ , $de_{2}=kd\sigma e_{1}$ .
Now we take a frame consisting of

(10) $R=A-k^{-1}e_{2}$ , $\overline{e}_{1}=k^{1/2}e_{1}+e_{2}$ , $\overline{e}_{2}=-2^{-1}e_{1}+(2k^{1/2})^{-1}e_{2}$

which is imaginary if the point on the curve $F$ is elliptic. Then
putting $dA=\omega_{1}\overline{e}_{1}+\omega_{2}\overline{e}_{2},$ $d\overline{e}_{1}=\omega_{11}\overline{e}_{1}+\omega_{12}\overline{e}_{2},$ $d\overline{e}_{2}=\omega_{21}\overline{e}_{1}-\omega_{11}\overline{e}ae$ we get
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(11) $\omega_{1}=(2k-))^{-1}dk,$ $\omega_{-}’=k^{-2}\backslash dk,$ $\omega_{12}=-(2h^{1_{-}^{\prime)}})ldk$ , $\omega_{o}1=-(8h^{32})1dk$ .
These correspond to (2). If we take $k$ in (10) as a constant equal to
the affine curvature at the point, we have $(u_{1}=)==\omega_{-1}=0$ . Hence
the pair of lines passing through $A$ and having the directions $\overline{\epsilon}_{1},\overline{c}_{\sim)}$. is
invariant for the displacement (7), and this pair is a central figure of
$F$ in our sense. The set of these pairs is an evolute $E$ and the in-
variants of $E$ can be expressed by $k$ as follows
(12) $\omega_{1}\omega_{-}$) $=(2k^{7^{1\underline{\lambda}}})1(dk)-)$ $C\iota)^{\Delta}(D\omega r_{1))}\prime tl(dk)^{t}$

2.3 Next we take (
$\prime 1S$ a central figure the center of affine curv.

ature $\overline{A}=A-k^{-1}$ e)- and the evolute which is the locus of this point,
as is usually done. The frame $(’\overline{l}, t{}_{1}C))$ is not a Frenet’s one of the
curve $F$, as is seen from the relations

$d\overline{A}=k-)dkc\supset_{-},$ , $dc_{1}=d\sigma t_{1}^{J}$ , $dc_{-}$) $=kd_{\sigma}c_{1}$ .

We denote by a prime the differentiation with respect to the variable $\sigma$

and put $\lambda=k(k^{\prime})1^{\prime}i\mu=k^{-1}\lambda^{\prime}$ . If we take a frame determined by $\overline{A}$ ,
$\overline{c}_{1}=\lambda e_{1}-\mu_{-}^{\rho)},$

$\llcorner-.$

)$’*=\lambda^{-1}e_{\sim^{)}}-$, we get by calculation
$d\overline{A}=d_{-)}^{\backslash }’\cdot--$ , $ d\overline{c}_{1}=K\ell l_{-\cdot\overline{C}_{-}}^{\backslash }\cdot$

) $d_{C^{J})}^{-}.=d_{-\cdot\overline{C}_{1}}^{\backslash }$ ,

where we have put

$ d_{-}^{\backslash }=k^{-1}(k^{\prime})^{2,i}d\sigma$

(13)
$K=k-(k^{\prime})^{-\cdot 13}(k+(k\downarrow k^{\prime})--2/3k1k^{\prime\prime}-4/9(k^{-}{}^{t}k^{\prime\prime})^{\underline{\prime}}+1/3(k^{\prime})^{-1}k^{\prime\prime\prime})$ .

3. Curve on the projective plane

3.1 We consider the homogeneous space with conics as its ele-
ments. Let the fundamental frame on the projective plane be three
analytic points $A_{1}^{()},$ $A_{2}^{(I},$ A, (cf. [1 $|$ p. 75). We take a conic $Q_{0}$ repre.
sented by $x_{1}^{2}+x^{\underline{\frac{\prime)}{\prime r}}}+x^{\frac{\prime\prime}{3}}=0$ with respect to this frame and consider the
conics obtained from $Q_{0}$ by the frame transformation from $(A_{1}^{0}, A_{y}^{0}, A^{0}\eta)$

to $(A_{1}, A_{2}, A_{3})$ . $1f$ we put $d/i_{i}=\geq\lrcorner\backslash \omega_{ij}A_{j}(\sum\omega_{ii}=0)$ , the principal
relative components of our homogeneous space are $\pi_{ij}=\omega_{ij}+\omega_{ji}(i,j$

$=1,2,3)$ (cf. $\lfloor 4|$ p. 26) and $det$ . $|\pi_{ij}-\delta_{ij}\lambda|=L-K\lambda-\lambda^{3}$ is an invariant
polynomial in $\lambda$ , where $\delta_{ij}$ is the Kronecker delta. Hence the co.
efficients
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(14) $K=-1/2\sum_{ij}\pi_{ij}^{2}$ , $L=det$ . $|\pi_{ij}|$

are invariants of the homogeneous space with conics as its elements.
If we take a one-parametric family of conics and a suitable frame
$(\overline{A}_{1},\overline{A}_{2},\overline{A}_{3})$ obtained from $(A_{1}, A_{2}, A_{3})$ by an orthogonal transformation
we have $\pi_{ij}=e_{i}\delta_{ij}(i,j=1,2,3)$ and $K=-- 1/2(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}),$ $L=\epsilon_{1}e_{2}e_{3}$ . If
the point whose coordinates are $(x_{1}, x_{2}, x_{3})$ for the frame $(A_{1}, A_{2}, A_{3})$

has coordinates $(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime})$ for the frame $(A_{1}+dA_{1}, A_{2}+dA_{2}, A_{3}+dA_{3})$ ,
then we have $x_{i}=x_{i}^{\prime}+\sum\omega_{ji}X_{\acute{j}}$ , hence $x_{i}=x;-\sum\omega_{j};x_{j}$ but for a term
of higher order. The conic, which has an equation $\sum x_{i^{2}}^{\prime}=\sum(\delta_{i!}-$

$\pi_{ij})x;x_{j}=0$ for $(A_{1}, A_{2}, A_{3})$ has an equation $\sum(1-e;)x_{i}^{2}=()$ for $(\overline{A}_{1},$ $R_{2}$,
$A_{3})$ . Thus $e_{i}s$ are the coefficients appearing in the equation of the
conic when we take a frame which is selfconjugate with respect to
two consecutive conics and for which they are represented by $\sum x_{i}^{2}=0$

and $\sum(1-e_{i})x_{i}^{2}=0$ . This is a geometric interpretation of $e_{i}$ .
3.2 We consider a curve on the projective plane and let a Frenet’s

frame be $(A_{1}, A_{2}, A_{3})$ . Then we have (cf. [1] p. 75)

(15) $dA_{1}=d\sigma A_{2}$ , $dA_{2}=d_{\sigma}(-kA_{1}+A_{3})$ , $dA_{3}=d\sigma(-A_{1}-kA_{2})$ .
If the point $\sum x_{i}A_{i}$ , where $x_{i}’ s$ are constant, coinsides with the point
$\sum x_{i}(A_{i}+dA_{i})$ , we get $\sum x_{i}dA_{i}=\lambda\sum x_{i}A_{i}$ . Hence by (15) we get

(16) $Xx_{1}-kx_{2}-x_{3}=0$ , $x_{1}+\lambda x_{2}-kx_{3}=0$ , $x_{2}+\lambda x_{3}=0$ .
Eliminating $x_{1},$ $x_{2},$ $x_{3}$ we get

(17) $\lambda^{3}+2k\lambda-1=0$ .
If $k$ is not equal to $-3(32)^{-1/3}$ , three roots of (17) are different, though
they may not be real. Following the consideration of 1.1 a set of
three points $(x_{1}, x_{2}, x_{3})$ determined by (16) for each root is a central
figure and a one-parametric set of such figures is an evolute. The in-
variants of the evolute can be expressed by $k$ , as in the affine plane
(12), but the calculation is complicated and the result is not interesting.
We take another way and derive some formulas in the following.

3.3 Let the three roots of (17) be $\lambda;(i=1,2,3)$ . Then coordinates
$(x_{1}, x_{2}, x_{3})$ of three points $P_{i}(i=1,2,3)$ defined by (16) for each $\lambda_{i}$ are
$(\lambda_{i}^{2}+k, -\lambda_{i}, 1)$ . These three points are conjugate with respect to a
conic $x_{l}^{2}+2x_{1}x_{3}=0$. Now we take conics which have equations with
respect to the frame $(A_{1}, A_{2}, A_{3})$
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$Q_{1}$ : $-x_{1}x_{3}+x_{2}^{2}+kx_{3}^{?}=0$ , $Q_{2}$ : $x_{1}x_{2}+kx_{2}x_{3}+x_{3}^{2}=0$ .
These pass through $A$ and $P_{i}$ . Moreover $Q_{1}$ passes through $B(k, 0,1)$

and touches the line $A_{2}B$ at $B$ and the curve $F$ at $A_{1}$ , while $Q_{2}$ touches
$A_{1}A_{3}$ at $A_{1}$ . We calculate invariants $K,$ $L$ of a set of conics $Q_{1}$. When
we take a frame $(A_{1},\overline{A}_{2},\overline{A}_{3})$ determined by $\overline{A}_{1}=(k-1)A_{1}+A_{3},$ $A_{2}=A_{2}$ ,
$\overline{A}_{3}=-\sqrt{-\iota}(k+1)A_{1}-\sqrt{-1}A_{3}$ , the point which has the coordinates

$(\overline{x}_{1},\overline{x}_{2},\overline{x}_{3})$ for the frame $(\overline{A}_{1},\overline{A}_{2}, A_{3})$ has the following coordinates for
$(A_{1}, A_{2}, A_{3})$ ,

$x_{1}=(k-1)\overline{x}_{1}-\sqrt{-1}(k+1)x_{3}$ , $x_{2}=\overline{x}_{2}$ , $x_{3}=\vec{x}_{1}-\sqrt{-1}\overline{x}_{3}$ .
Then $Q_{1}$ has the equation $\overline{x}_{1}^{2}+\overline{x}_{2}^{2}+\overline{x}_{3}^{2}=0$ with respect to $(\overline{A}_{1},\overline{A}_{2}, A_{3})$ .
Putting $dR_{i}=\sum_{j}\omega_{ij}\overline{A}_{j},$ $\omega_{ij}+\omega_{ji}=\pi_{ij}$ we get

$\pi_{11}=d\sigma-dk$ , $\pi_{X^{=0}}$ , $\pi_{\mathfrak{B}^{=-(d_{\sigma}-dk)}}$

$\pi_{\mathfrak{B}^{=-\sqrt{-1}(k}}+- 2^{-}1)d_{\sigma},$ $\pi_{31}=-\iota/\overline{-1}(d_{\sigma}-dk),$ $\pi_{12^{=}}(k-\frac{1}{2})d\sigma$ .
Hence by (12) we get

(18) $K=2kd\sigma^{2}$ , $L=(d\sigma-dk)d\sigma^{2}$ .
The same calculation with respect to $Q_{2}$ leads to
(19) $ K=2k(d\sigma-dk)d\sigma$ , $L=d\sigma(d\sigma-dk)^{2}$ .

4. Generalization of Euler-Savary’s theorem

4.1 When a curve $C_{1}$ rolls without slipping on another curve $C_{2}$

on the euclidean plane, a point $P$ which is relatively fixed to $C_{1}$ des.
cribes a curve $C_{0}$ and according to Euler-Savary’s theorem the curvature
of $C_{0}$ at a point $P$ can be represented by those of $C_{1}$ and $C_{2}$ and the
polar coordinates of $P$ with respect to the Frenet’s frame at the point
of contact (cf. [2] p. 28-29).

We consider in the homogeneous space $\mathfrak{G}/\tilde{\backslash }\circ$ two one.parametric
sets of points $C_{1}$ and $C_{2}$ , of which $lhe$ latter is fixed in the space and
the former rolls on it. Here the rolling shall be meant as follows. We
take Frenet’s frames $S_{a}^{(1)}R$ and $S_{b}^{(2)}R$ along $C_{1}$ and $C_{2}$, where $b$ is a
function of $a$ . This function determines the way by which the rolling
is defined. We take a frame $S_{a}^{(1)}S_{t}R$ whose relative position to $S_{a}^{(1)}R$
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is $S_{t}$ and let it belong to an element $P$ of a certain homogeneous space
$b/\mathfrak{K}$ which is relatively fixed with respect to $C_{1}$ . As $C_{1}$ rolls on $C_{2}$,
the point $P$ describes a figure $C_{0}$ consisting of elements of $\mathfrak{G}/\mathfrak{K}$ . This
is a generalized roulette. We can express the invariants of $C_{0}$ by those
of $C_{1},$ $C_{2}$ and the parameters which indicate the position of $P$ relative
to the frame $S_{a}^{(1)}R$ .

Let the relative components of the fundamental Lie group be $\omega_{p}$

$(p=1,\cdots, r)$, while the principal relative components of the homogeneous
space ($\backslash \$/\mathfrak{K}$ be $\omega_{i}(i=1,\cdots, n)$ . $P$ is relatively fixed with respect to $C_{1}$ ,
and the frame $S_{a}^{(1)}S_{t}R$ is attached to $P$. The relative displacement of
$S_{a^{1)}}^{(}S_{t}$ is given by $(S_{a}^{(1)}S_{t})^{-1}(S_{a+da}^{(1)}S_{t1dt})=S_{t^{- 1}}((S_{a}^{(1)})^{-1}S_{a+^{)}da}^{(I})S_{t}\cdot S_{t^{-1}}S_{t+dt}$ .
Hence we get by (1)

(20) $\omega_{j}^{(0)}+\sum_{p- 1}^{r}\tau_{if},$ $\omega_{p^{1)}}^{(}=0$ $(i=1,\cdots, n)$

where $\omega_{p}^{(0)},$ $\omega_{p^{1)}}^{(}$ are relative components corresponding to $S_{t},$ $S_{a}^{(1)}$ and
$(\tau fiq)$ is an element of a linear adjoint group corresponding to $S_{t}$ .
When we superpose $S_{a}^{(1)}R$ on $S_{b}^{2)}(R$, the frame $S_{a}^{(1)}S_{t}R$ attached to $P$

has the $posi_{(2)}tionS_{b}^{(2)}S_{t}R$, and if we denote relative components of $S_{b}^{(2)}S_{t}$ ,
$S_{b}^{(2)}$ by $\omega_{p},$ $\omega_{p}$ , we get by (1)

(21) $\omega fl=\omega_{\phi}^{(0)}+\sum_{q-1}^{r}\tau flq\omega_{q^{2)}}^{(}$ $(p=1,\cdots, r)$ .

The invariants of the generalized roulette $C_{0}$ can be calculated by $\omega_{p}$ .
In the calculation the differentials of the parameters of $S_{t}$ may appear
repeatedly, which we eliminate by the use of (20).

4.2 Applying the above process we can get the classical case [2]
p. 28-29. Here we apply this process to the case of an affine plane.
Let $C_{1}$ and $C_{2}$ be curves on an affine plane, and let $C_{1}$ roll on $C_{2}$ in
such a way that affine lengths of the corresponding arcs are the same.
Thus a roulette motion can be realized. One-parametric motion on an
affine plane is not in general a roulette motion. We do not enter into
the details here. A roulette is a curve described by a point which is
relatively fixed to $C_{1}$ . Let the Frenet’s frame along $C_{i}(i=1,2)$ be

$dA=d\sigma e_{1}$ , $de_{1}=d\sigma e_{2}$ , $de_{2}=k_{i}d\sigma e_{1}$ ,

and let a translation from $(A, e_{1}, e_{2})$ to $(\overline{A}, e_{1}, e_{2})$ be given by $A=A+$
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$x_{1}e_{1}+x_{2}e_{2}$ . If $(A, e_{1}, e_{2})$ is a frame of $C_{1}$ the conditions under which
$\overline{A}$ is relatively fixed to $C_{1}$ are

(22) $dx_{1}+(1+k_{1}x_{2})d\sigma=0$ , $dx_{2}+x_{1}d\sigma=0$ .
We superpose a Frenet’s frame of $C_{1}$ on that of $C_{2}$ . Let the relative
displacement of the frame $(A, e_{1}, e_{2})$ determined by $A=A+x_{1}e_{1}+x_{2}e_{2}$,
where $(A, e_{1}, e_{2})$ is a Frenet’s frame of $C_{2}$ , be $d\overline{A}=\omega_{1}e_{1}+\omega_{2}e_{2},$ $de_{1}=$

$\omega_{11}e_{1}+\omega_{12}e_{2},$ $de_{2}=\omega_{21}e_{1}-\omega_{11}e_{1}$ , then we get for relative components of
frames attached to a roulette

(23) $\omega_{1}=dx_{1}+(1+k_{2}x_{2})d\sigma$ , $\omega_{2}=dx_{2}+x_{1}d\sigma$ .
(24) $\omega_{11}=0$ , $\omega_{12}=d\sigma$ , $\omega_{21}=k_{2}d\sigma$ .
This corresponds to (20). From (22) and (23) we get

(25) $\omega_{1}=(k_{2}-k_{1})x_{2}d\sigma$ , $\omega_{2}=0$ .
We take vectors $\overline{e}_{1}=pe_{1},$ $\not\in_{2}^{-}=qe_{1}+1/pe_{2}$ , where $p$ and $q$ are defined by
$p^{3}=(k_{2}-k_{1})x_{2},$ $q=^{dp}d\sigma/p^{2}$ . Then $(A, e_{1}, e_{2})$ is a Frenet’s frame as is
seen by

$d\overline{A}=d\Sigma\cdot\overline{e}_{1}$ , $d_{- 1}^{\overline{l}}=d\Sigma\cdot\overline{e}_{2}$ , $d\overline{e}_{2}=Kd_{\rightarrow}^{\backslash 1}\cdot\overline{e}_{1}$ .
Here $K$ and $d\underline{\backslash \urcorner}$ are an affine curvature and an affine arc length and
they are

$d\Sigma=((k_{2}-k_{1})x_{2})^{z\prime 3}d_{\sigma}$

(26) $K=((k_{2}-k_{1})x_{2})^{-4/3}(k_{2}+\frac{1}{3}k_{1^{---}}^{1}9(\overline{d}^{d_{\sigma}}-\log(k_{2}-k_{1})\frac{x}{x}-)^{2}2$

$+-\frac{1}{3}\frac{d^{2}}{d\sigma^{2}}$ iog $(k_{2}-k_{1})+31(\frac{1}{x_{2}})_{3}^{1}2---(\frac{x_{1}}{x_{2}})^{2})$ .

This is Euler-Savary’s theorem on the affine plane.
4.3 We take two ruled surfaces $C_{1}$ and $C_{2}$ in the euclidean 3-

space and we assume by a suitable correspondence of the generating
lines of both surfaces the angles between corresponding consecutive
lines are equal and the parameters of distribution coinside. We take
Frenet’s frames of both surfaces. Then we have
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$dA=d\sigma(a_{i}e_{1}+ke_{3})$ , $de_{1}=d\sigma e_{2}$

$(i=1,2)$

$de_{2}=d\sigma(-e_{1}+b_{j}e_{3})$ , $de_{3}=-b_{i}d\sigma e_{2}$

When $C_{1}$ rolls on $C_{2}$ in such a way that the corresponding lines coin.
side, a line $L_{1}$ which is relatively fixed to $C_{1}$ generates a ruled surface
$C_{0}$. Let the relative displacement of the Frenet’s frame of $C_{0}$ be

$dA=d\tau(\alpha e_{1}+\kappa e_{3})$ , $de_{1}=d\tau e_{2}$

$de_{2}=d\tau(-e_{1}+\beta e_{3})$ , $de_{3}=-\beta d\tau e_{2}$ ,

and let the distance of $L_{1}$ and the line of contact $L$ of $C_{1}$ and $C_{\eta}$ be $h$ ,
and 1 be a distance from the origin of the Frenet’s frame of $C_{2}$ to the
point where common perpendicular of $L_{1}$ and $L$ intersect $L$. Moreover
let $(p_{1},p_{l}, p_{3})$ be direction cosines of $L$ with respect to Frenet’s frame.
Then we get by calculation

$d_{\mathcal{T}}=q^{-1}(b_{2}-b_{1})d_{\sigma}$

$\kappa^{=-(a_{2}-a_{1})(b_{2}-b_{1})^{-1}-p_{1}qh}$

$\alpha=(p_{1}q(a_{2}-a_{1})-p_{1}p_{2}q^{4}h+p_{3}\oint k+p_{2}\phi t)(b_{2}-b_{1})^{-1^{\backslash }}-h$

$\beta=p_{1}q+p_{3}q^{3}(b_{2}-b_{1})^{-1}$ ,

where we have put $q=(1-p_{1}^{2})^{-1/2}$.

Mathematical Institute,
Nagoya University.
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