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\S 1. Introduction. Theorems.

In what follows we consider the integration of the equation of
evolution1)

(1.1) $dx(t)/dt=A(t)x(t)+f(t)$ , $a\leqq t\leqq b$ ,

and the associated homogeneous equation

(1.1’) $dx(t)/dt=A(t)x(t)$ .
Here the unknown $x(t)$ is an element of a complex Banach space $\mathfrak{B}$

depending on a real variable $t$, while $f(t)$ is a given element of $\mathfrak{B}$ and
$A(t)$ is a given, in general unbounded, linear operator in $\mathfrak{B}$ , both
depending on $t$

The solution of (1.1) is formally given by

(1.2) $x(t)=U(t, a)x+\int_{a}^{t}U(t, s)f(s)ds$ , $x=x(a)$ ,

where $U(t, s)$ is a linear operator in $\mathfrak{B}$ depending on $s,$
$t$ with $s\leqq t$.

The main purpose of the present paper is to give some sufficient con.
ditions for the existence of $U(t, s)$ and to study its properties.

If $A(t)=A$ is independent of $t,$ $U(t, s)$ is given formally by $U(t, s)$

$=\exp[(t-s)A]$ , and the rigorous definition of the exponential function
has been given by Hille and Yosida in connection with the analytical
theory of semi.groups.2) As we are going to generalize some of their
results to the case in which $A(t)$ actually depends on $t$, it is natural
to take over their assumptions on the infinitesimal generator $A$ for our

1) The terminology after Schwarz [2].

2) Hille [1], Chap. XII, in $p_{3}rticular$ Theorem 12.2.1; Yosida [3], Theorem 2.
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$A(t)$ for each $t$. Thus it is convenient to introduce the following de-
finition.

DEFINITION 1. An operator $A$ in $\mathfrak{V}$ will be said to have property
$S$ if the following conditions are fulfilled: 1) $A$ is a closed linear
operator with domain dense in $\mathfrak{V}$ ; 2) the resolvent set of $A$ includes
all positive reals and

(1.3) $||(I-\alpha A)^{-1}||\leq 1$ for $\alpha>0.3$ )

Then our first assumption can be expressed as
$C_{1}$ . $A(t)$ is defined for $a\leq t\leq b$ and has property $S$ for each $t$ .
As regards the continuity property of $A(t)$ , we introduce the fol-

lowing conditions successively.
$C_{2}$ . 1) The domain $\mathfrak{D}$ of $A(t)$ is independent of $t$ (then it follows

from Lemma 2 below that $B(t, s)=[I-A(t)][I-A(s)]^{-14)}$ is a bounded
operator5) for each $s,$

$t$). 2) $B(t, s)$ is umformly bounded, that is, there
is a $M>0$ such that $||B(t, s)||\leq Mfor$ every $s,$

$t$ (this is the case if
$B(t, s)$ is continuous in $t$ in the sense of the norm $||$ $||$ at least for
some $s$). 3) $B(t, s)$ is of bounded variation in $t$ in the sense that there
is a $N\geqq 0$ such that

$j^{J}\geq_{-1}^{n_{\urcorner}}||B(t_{j}, s)-B(t_{j-1}, s)||\leq N$

.for every partition $a=t_{0}<t_{1}<\cdots<t_{n}=b$ of the interval $(a, b)$ , at least
for some $s$ (then it follows that the same is true for every $s$ and that
$N$ may be taken as independent of $t$ and $s$ ).

$C_{3}$ . $B(t, s)$ is weakly continuous in $t$ at least for some $s$ (then it
follows that $B(t, s)$ is even continuous in $t$ in the sense of the norm
1 $||$ for every $s$ ).

$C_{4}$ . $B(t, s)$ is weakly differentiable in $t$ and $\partial B(t, s)/\partial t$ is strongly
continuous in $t$, at least for some $s$ (then it follows that the same is
true for every $s$).

3) Cf. note 2). It should be noted that (1.3) implies actually that the half.plane
${\rm Re}\lambda>0$ belongs to the resolvent set of $A$ .

4) More generally, we may take $B(l, s)=[\lambda I-A(l)\urcorner[\lambda I-A(s)\neg-1$ with an arbitrary
constant $\lambda>0$ . without any essential modification.

5) By a bounded operator we mean a bounded linear operator with domain $\mathfrak{B}$ . Also
all operators are assumed to have domain and range in $\mathfrak{B}$ , unless the contrary is expressly
stated,
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Our main results are summarized in the following theorems.
THEOREM 1. Let the condition $C_{1}$ be satisfied. Let $x(t)$ be defined

for $a\leqq t\leqq b$ and satisfy the following conditions: 1) $x(t)$ is strongly
continuous for $a\leqq t\leqq b$ ; 2) $x(t)$ has strong right.derivative $D^{+}x(t)$ ,
$x(t)\in \mathfrak{D}[A(t)]^{6)}$ , and $D^{+}x(t)=A(t)x(t)$ for $a\leqq t<b$. Then $||x(t)||$ is a
non-increasing function for $a\leqq t\leqq b$.

$CoROLLARY$. Under the assumption of Theorem 1, the solution
$x(t)$ of (1.1) is uniquely determined by the initial value $x(a)$ .

THEOREM 2. Let the conditions $C_{1},$ $C_{2}$ be satisfied. Then the
operators $A(t\pm O)$ are defined in a sense described below, have the
same domain $\mathfrak{D}$ as $A(t)$ , and $A(t\pm 0)=A(t)$ holds except at most at a
denumerable set of $t$ . There exists an operator function $U(t, s)$ defined
for $a\leqq s\leqq t\leqq b$ with the following properties:

(1.4) $U(t, s)$ is a bounded operator in $\mathfrak{B}$ and $||U(t, s)||\leqq 1$ ;

(1.5) $U(ts)$ is strongly continuous in $s$ and $t$ simultaneously, and
$U(t, t)=I$ ;

(1.6) $U(t, r)=U(t, s)U(s, r)$ , $r\leqq s\leqq t$ ;

(1.7) $lfx\epsilon \mathfrak{D}$ , we have for $\epsilon\downarrow 0$

$e^{-1}[U(t+e, t)-I]x\rightarrow A(l+O)x$ , $a\leqq t<b$ ,

$e^{-1}[U(t, t-e)-I]x\rightarrow A(t-O)x$ , $a<t\leqq b$ ,

in the strong sense.
If in particular $\mathfrak{V}$ is reflexive, we have further

(1.8) $U(t, s)\mathfrak{D}\subset \mathfrak{D}$ , and for each $x\in \mathfrak{D},$ $x(t)=U(t, a)x$ has strong
right-derivative and satisfies $D^{+}x(t)=A(t+O)x(t)$ for $a\leqq t<b$ .
In this case $U(t, s)$ is uniquely determined by these properties.

THEOREM 3. Let the conditions $C_{1},$ $C_{2},$ $C_{3}$ be satisfied. If $\mathfrak{B}$ is
umformly convex, we have, in addition to the assertions of Theorem 2,

(1.9) $D^{+}x(t)=A(t)x(t)$ and $A(t)x(t)$ is strongly right.continuous.

6) We denote by $\mathfrak{D}(A)$ the domain of the operator $A$ .
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If in particular $\mathfrak{B}$ is a Hilbert space and $iA(t)$ is self.adjoint, $we$

have
(1.10) $x(t)$ is strongly differentiable, $dx(t)/dt=A(t)x(t)$ , and $A(t)x(t)$

is strongly continuous.

THEOREM 4. Let $\mathfrak{B}$ be arbitrary and let the conditions $C_{1},$ $C_{2},$ $C_{3}$ ,
$C_{4}$ be satisfied. Then the operator $U(t, s)$ introduced in Theorem 2
satisfies $U(t, s)\mathfrak{D}\subset \mathfrak{D}$ and (1.10) holds for $x(t)=U(t, a)x$ with $xe\mathfrak{D}$ .

THEOREM 5. Let the hypotheses of Theorem 4 be satisfied. If
$x\in \mathfrak{D}$ and $lft\rightarrow f(t)$ is a function on $(a, b)$ into $\mathfrak{D}$ such that $[A(r)$

-Il $f(t)^{7)}$ is strongly continuous in $t$ for some fixed $r$ , the expression
(1.2) is well defined, belongs to $\mathfrak{D}$ for each $t$ , strongly differentiable
in $t$ and satisfies the differential equation (1.1) with the initial condition
$x(a)=x$ . Moreover $dx(t)/dt$ and $A(t)x(t)$ as well as A $x(t)$ are strongly
continuous, where $A$ is any linear operator with a closed extension and
with domain containing $\mathfrak{D}$ .

REMARK. (1.2) is defined for every $x\in \mathfrak{V}$ and for every strongly
continuous (or even Bochner integrable) function $f(t)$ . In view of
Theorem 5 and Corollary to Theorem 1 (uniqueness theorem), it may
be justified to regard (1.2) as giving the solution in the generalized
sense of (1.1) for such general $x$ and $f(t)$ , although it does not neces-
sarily satisfy (1.1) in a strict sense.

In the next section we shall prove some lemmas to be used in the
sequel and which may also be of some independent interest, and in $\backslash \zeta_{\backslash }3$

we shall give the proof of the theorems. As an illustration of the use
of these theorems, we shall consider in $b4$ their application to the case
in which $A(t)$ is an ordinary differential operator.

$\backslash \sigma_{\supset^{\{}}2$ . Some lemmas.

First we collect some important results of the theory of semi.
groups2) which will be of frequent use in the following. If the oper-
ator $A$ has property $S$ (see Definition 1), there is defined an operator
$\exp(tA)$ for every $t\geqq 0$ with the properties:

(2.1) $\exp(tA)$ is bounded and $||\exp(tA)||\leqq 1$ ;

7) The result is the same if we take, in place of $A(r)-1$, any closed linear oper.. $tor$

$A$ with domain $\mathfrak{D}$ and with $A^{-1}$ bounded.
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(2.2) $\exp(tA)$ is strongly continuous in $t$ and $\exp(0A)=I$ ;
(2.3) $\exp[(t+s)A]=\exp(tA)\exp(sA)$ ;
(2.4) $\exp(tA)\mathfrak{D}(A)\subset \mathfrak{D}(A)$ , and for each $x\in \mathfrak{D}(A),$ $\exp(tA)x$ is

strongly differentiable with $(d/dt)\exp(tA)x=A\exp(tA)x$
$=\exp(tA)$ A $x$ .

(2.5) $\exp(tA)$ is permutable with the resolvent $(\lambda I-A)^{-1}$ .
LEMMA 1. If the operator $A$ has property $S$ , we have for each

$x\in \mathfrak{D}(A)$

$||(I+eA)x|||-\underline{<_{-}}||x||+o(e)$ , $e\downarrow 0$ .
PROOF. We have $(I+eA)x=(I-e^{2}A^{2})(I-eA)^{-1}x=(I-eA)^{-1}x$

$-e^{2}|A(I-eA)^{-1}Ax$ and hence $||(I+eA)x||\leq|||x||+e||B_{\epsilon}$ $A$ $x||$ by (1.3),
where we have set $B_{\epsilon}=eA(I-eA)^{-1}=-I+(I-eA)^{-1}$ . Hence $||B_{\epsilon}||\leq 2$

by (1.3) and $B_{8}$ is uniformly bounded. On the other hand if $ye\mathfrak{D}(A)$ ,
$B_{e}y=e(I-eA)^{-1}Ay$ and $||B_{8}y||\leq\epsilon||Ay|_{1}^{1}\rightarrow 0$ for $e\downarrow 0$ . Thus we have
$B_{e}\rightarrow 0$ strongly, for $\mathfrak{D}(A)$ is dense in $\mathfrak{V}$ , and the above inequality
proves the lemma.

LEMMA 2. Let $A$ be a closed linear operator, and let $B$ be a linear
operator with a closed extension and such that $\mathfrak{D}(B)\supset \mathfrak{D}(A)$ . If $\lambda$

belongs to the resolvent set of $A$ , then $B(\lambda I-A)^{-1}$ is bounded.
PROOF. Set $C=B(\lambda I-A)^{-1}$ . $C$ is defined everywhere in $\mathfrak{V}$ so

that it is sufficient to show that $C$ is closed. Let $x_{n}\rightarrow x$ and $Cx.\rightarrow y$ .
Then $(\lambda I-A)^{-1}x_{n}\equiv z_{n}\rightarrow z\equiv(\lambda I-A)^{-1}x$ and $Bz_{n}=Cx_{n}\rightarrow y$ . This
shows that $y=B_{0}z$ , where $B_{0}$ is a closed extension of $B$ . But since
$z\in \mathfrak{D}(A)\subset \mathfrak{D}(B)$ , we must have $y=Bz=Cx$ , showing that $C$ is closed.

LEMMA 3. Let $A,$ $B$ have property $S$ and let $\mathfrak{D}(A)\tau \mathfrak{D}(B)$ . Then
we have for $t\geqq 0,$ $\lambda>0$ ,

$||[\exp(tA)-\exp(tB)](\lambda I-A)^{-1}||\leqq t||(A-B)(\lambda I-Ai)^{-1}||$ ,

where $(A-B)(\lambda I-A)^{-1}=A(\lambda I-A)^{-1}-B(\lambda I-A)^{-1}$ is bounded by Lem-
ma 2.

PROOF. For each $x\in \mathfrak{D}(A),$ $\exp[(t-s)B]\exp(sA)x$ is differentiable
in $s$ for $0\leqq s\leqq t$, for

$h^{-1}\{\exp[(t-s-h)B]\exp[(s+h)A]x-\exp[(t-s)B]e_{st}^{\backslash r}p(sA)x\}$

$=\exp[(t-s-h)B]h^{-1}\{\exp[(s+h)A]x-\exp(sA)x\}$
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$+h^{-1}\{\exp[(t-s-h)B]-\exp[(t-s)B]\}\exp(sA)x$

and, since $x\in \mathfrak{D}(A),$ $\exp(sA)x\in \mathfrak{D}(A)\subset \mathfrak{D}(B)$ by (2.4) and hypothesis,
we obtain by making $h\rightarrow 0$

$(d/ds)\{\exp[(t-s)B]\exp(sA)x\}=\exp[(t-s)B]A\exp(sA)x$

$-\exp[(t-s)B]B\exp(sA)x=\exp[(t-s)B](A\cdot-B)\exp(sA)x$

by (2.2) and (2.4). Now let $y\in \mathfrak{V}$ be arbitrary and set $x=(\lambda I-A)^{-1}y$

$\in \mathfrak{D}(A)$ in the above result. Since $\exp(sA)$ and $(\lambda I-A)^{-1}$ are per-
mutable, the right-hand side is strongly continuous in $s$ , for $(A-B)$
$(\lambda I-A)^{-1}$ is bounded as stated in the lemma. Thus the above identity
can be integrated from $0$ to $t$ , yielding

$[\exp(tA)-\exp(tB)](\lambda I-A)^{-1}y$

$=\int_{0}^{l}\exp[(t-s)B](A-B)(\lambda I-A)^{-1}\exp(sA)yds$ .

This gives immediately the desired inequality by (2.1).
LEMMA 4. Let $\{A_{n}(s)\},$ $\{B_{n}(s)\}$ be two sequences of bounded linear

operators depending on a variable $s$ in a compact set $S$ of $a$ euclidean
space. Let $A_{n}(s)\rightarrow A(s),$ $B_{n}(s)\rightarrow B(s),$ $ n\rightarrow\infty$ , strongly and $umfo/mly$
with respect to $s$, where $B(s)$ is strongly continuous in $s$ . Further let
there exist a $M\geqq 0$ such that $||A_{n}(s)||\leqq M$ for all $s$ and $n$ . Then
$A_{n}(s)B_{n}(s)\rightarrow A(s)B(s)$ holds strongly and umformly wiih respect to $s$.

PROOF. For each $x\in \mathfrak{V}$ we have

$||A_{n}(s)B_{n}(s)x-A(s)B(s)x||$

$\leqq||A_{n}(s)[B_{n}(s)-B(s)]x||+||[A_{n}(s)-A(s)]B(s)x||$ .
The first term can be made arbitrarily small independently of $s$ by
making $n$ sufficiently large, for $||A_{n}(s)||\leq M$ and $B_{n}(s)\rightarrow B(s)$ uniform-
ly in $s$. The second term is

$\leqq||[A_{n}(s)-A(s)]B(s_{0})x||+||[A_{n}(s)-A(s)][B(s)-B(s_{0})]x||$

$\leqq||[A_{\hslash}(s)-A(s)]B(s_{0})x||+2M||[B(s)-B(s_{0})]x||$

for a fixed $s_{0}$. Since $B(s)$ is strongly continuous, to each $e>0$ there
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is a $\delta>0$ such that $||B(s)-B(s_{0})$ ] $x||\nearrow e/2M$ for $|s-s_{0}|<\delta$ . Then we
can take $n$ so large that $|1|[A_{\iota}(s)-A(s)]B(s_{0})x||<e$ for every $s\in S$.
Thus, for each $e>0$ and $s_{0}\in S$ , there are $\delta=\delta(s_{0}, e)>0$ and $n_{0}=n_{0}(s_{0}, e)$

such that
$||A_{n}(s)B_{n}(s)x-A(s)B(s)x||<3e$ for $n>n_{0}$ , $|s-s_{0}|<\delta$ .

For fixed $e$ , there is thus defined a neighborhood $|s-s_{0}|<\delta$ for each
$s_{0}\in S$ with the above property. Since $S$ is compact, it can be covered
by a finite number of these neighborhoods. Let $N$ be the largest among
the corresponding $/\iota_{()}$ . Then the above inequality holds for all se $S$ pro-
vided $n>N$, and this completes the proof.

$LEM_{1}\backslash $IA 5. Let $\backslash )^{\backslash }\backslash ^{\backslash }$ be reflcxive and let $A$ be a closed linear operator
zvith non-c $/nply$ rcsolvcnl $s’ t$ . Let $\{x_{n}\}bc$ a sequence such that $x_{n}e\mathfrak{D}(A)$ ,

weak $\lim_{l^{\rightarrow\infty}}x_{l}=x$ , and { $||A.t_{/\iota}^{-}||_{f,\prime}$

) is bounded. Then $x\in \mathfrak{D}(A)$ , and

$Ax=wcak\lim_{;p\rightarrow\infty}Ax_{n}$ .

PROOF. We may assume without loss of generality that $\lambda=0$ be-
longs to the resolvent set of $A$ . Thus $A^{-1}$ exists and bounded so that
$(A^{-1})^{1}$ also exists and we have for every $x^{*}\in\backslash $ )$\backslash ^{\backslash ^{\backslash *}}$

$(A_{X_{n)}}(A^{-1})^{*}x^{j})--(8)$

But $(A^{-1})_{\backslash ^{\backslash }}^{\triangleright_{\backslash }}\backslash |^{\backslash \ltimes}$ is dense in $\backslash $ )$\sim^{\grave{t}^{\mu}}$ for otherwise there would exist a $z\in\backslash )_{\backslash }\backslash ^{\backslash }$

$z=\{-- 0$ , orthogonal to $(A^{-1})_{\backslash ^{\backslash }}^{*}\backslash )^{1*}$ for $\backslash )^{\backslash }\backslash ^{\backslash }$ is reflexive by hypothesis, which
leads to the contradiction $o--(z,(A^{-1})^{*}x^{*})=(A^{-1}z,x^{1-}),$ $A^{-1}z=0,$ $z=0$ .
Since $\{Ax_{l}\}$ is boundcd, it follows that $\{Ax.\}$ is weakly convergent.

Since a reflexive space is weakly complete, there is a $y\in\backslash $
)$\backslash ^{\backslash ^{\backslash }}$ such that

$y\rightarrow weak\lim Ax_{n}$ . Thus we have

(A $x_{l},(A^{-1})^{*}x^{*}$ ) $\rightarrow(y,(A^{-1})^{k}x^{*})^{-}--(A1y,x^{1})$ .

A comparison of these two relations gives $(x,x^{*})=(A^{- 1}y,x^{*}),$ $x\rightarrow A^{-1}y$ .
This shows that $x\leftrightarrow_{\sim}^{\wedge}\backslash (A),$ $Ax=y--$-weak $\lim Ax_{n}$ .

LEMMA 6. Let $\backslash |_{\backslash }^{\prime}\backslash bc$ uniformly convex and let $\{x_{n}\}$ be a sequence
such that $x_{n}\in\backslash )^{\backslash }\backslash ^{\backslash }$ weak $\lim_{fl\rightarrow\infty}x_{n}=x$ , and $\lim\sup_{t\rightarrow\infty}||x_{l}||_{-}<||x||$ . Then $x_{l}\rightarrow x$

holds $slron\sigma ly$ .
PROOF. Thcre is a $x^{1}\epsilon_{\backslash ^{\backslash }}^{\backslash )^{\backslash }}’$ such that $(x,x^{*})=||x||,$ $||x^{k}||=1$ . Then

8) We denote by $(x, x^{*})$ the scalar product of $xe\mathfrak{B}$ and $x^{k}e\mathfrak{V}^{*}$ .
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the relations $(x_{n},x^{\prime}\triangleright)\rightarrow(x,x^{*})=||x||,$ $|^{1}(x_{n},x^{*})|\leq||x_{n}||$ show that $\lim$ inf
$||x_{n}||\geq||x||$ . Hence the hypothesis implies $\lim||x_{n}||=||x||$ . Since the
lemma is trivial if $x=0$ , we may $as_{3}^{\backslash }umex\neq 0$ and $x_{n}\neq 0$ . Setting
$y_{n}=||x_{n}||^{-1}x_{n}$ and $y=||x||^{-1}x$ , we have $||y_{n}||=||y||=1$ and $(y_{n},x^{*})=||x_{n}||^{\rightarrow 1}$

$(x_{n}, x^{*})\rightarrow||x||^{-1}(x, x^{*})=1,$ $(y,x^{*})=||x||^{-1}(x,x^{*})=1$ so that $((y_{n}+y)/2,x^{*})$

$\rightarrow 1$ . On the other hand $|((y_{n}+y)/2,x^{*})|\leq||(y_{n}+y)/2||\leq(||y_{n}||+||y||)/2$

$=1$ . Hence we must have $||(y_{n}+y)/2||\rightarrow 1,$ $||y_{n}|_{1}^{1}=||y||=1$ . Since $\mathfrak{V}$

is uniformly convex, it follows that $||y_{n}-y||\rightarrow 0$ , that is, $y_{n}\rightarrow y$ strong-
ly. Hence we have $x_{n}=||x_{n}||y_{l}\rightarrow||x||y=x$ by $||x_{n}||\rightarrow||x||$ already
proved.

$\backslash ^{\backslash }3$ . Proof of the theorems.

1. Proof of theorem 1. For fixed $t$ , we have by hypothesis $||x(l+e)$

$-[I+eA(t)]x(t)||=o(e)$ for $e\downarrow 0$ . It follows by Lemma 1 that $||x(t+e)||$

$\leqq||[I+eA(t)]x(t)||+o(e)\leqq||x(t)||+o(e)$ . This shows that thc upper
right derivative of $||x(t)||$ is not positive. Since $||x(t)||$ is by hypothesis
a continuous function of $t$, it follows that $||x(t)||$ is non-increasing.

2. Before proceeding further, we make the following convention
in order to simplify the notation. We shall write $A(t)$ instead of
$A(t)-I$ so far considered. This is equivalent to assuming

(3.1) $||A(t)^{-1}||\leqq 1$ , $||[I-\alpha A(t)]^{-1}||\leqq(1+\alpha)^{-1}$ , $\alpha>-1$ ,

from the beginning and there is no loss of generality, for we have only
to multiply $U(t,s)$ and $x(t)$ by the numerical factor $\exp(t-s)$ in the
theorems stated above. Thus the only change in the results to be
proved is
(3.2) $||U(t,s)||\leq\exp[-(t-s)]$

in place of (1.4).
With this convention, the conditions of $C_{2}$ can be written as

(3.3) $B(t,s)=A(t)A(s)^{-1}=B(s,t)^{-1}$ , $||A(t)A(s)^{-1}|^{1}|\leq M$ .

3. First we prove various assertions stated in parentheses in $C_{2}$

etc. If $B(t,s)$ is continuous in $t$ in the sense of the norm 1 I for
some $s$ , the same is true for its inverse9) $B(s,t)$ , and both are bounded

9) See $e$ . $g$ . Hille $\lfloor 1$ ], $p,$ $92$ .
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as $||B(t,s)||_{-}\dagger-\leq.M^{\prime},$ $||B(s,t)||\leqq M^{\prime\prime}$ with $M^{\prime},$ $M^{\prime\prime}$ independent of $t$. Then
we have for arbitrary $t_{1}$ and $t_{2}||B(t_{1},t_{2})||=||B(t_{1},s)B(s,t_{2})||\leq M^{\prime}AP^{\prime\prime}$.
Next, by virtue of the inequality $||B(t_{j},r)-B(t_{j-1},r)||\leqq||B(t_{i},s)-$

$B(t_{j-1},s)||||B(s,r)||$ and $||B(s,r)||\leqq M$, it is clear that $B(t,s)$ is of
bounded variation in the sense of $C_{2}$ for each $s$ if this is the case for
some $s$ , and that the total variation of $B(t,s)$ has a finite upper bound
$N$ independent of $s$. The assertions in $C_{3}$ and $C_{4}$ can be proved in a
similar fashion (note the next paragraph for $C_{3}$).

4. Next we give the definition of $A(t\pm O)$ mentioned in Theorem
2. Set $B(t)=B(t,s)$ for a fixed $s$ . Since $B(t)$ is of bounded variation
in the strong sense of $C_{2},$ $B(t\pm O)=\lim B(t\pm e)$ exists in the sense of
convergence by the norm $||$ $||$ . Since

$B(t^{\prime})^{-1}-B(t)^{-1}=B(t^{t})^{-1}[B(t)-B(t^{\prime})]B(t)^{-1}$

and $B(t)^{-1}=B(s,t)$ is uniformly bounded, it follows that $B(t\pm 0)^{-1}$ ex-
ists, is bounded, and is equal to the limit of $B(t\pm e)^{-1}$ for $e\downarrow 0$. We
now define the operator $A(t\pm O)$ with domain $\mathfrak{D}$ by $A(t\pm O)=B(t\pm O)$

$A(s)$ . Then $A(t\pm 0)^{-1}=A(s)^{-1}B(l\pm 0)^{-1}$ is bounded, so that $A(t\pm O)$ is
closed. Since it is clear that $A(t\pm e)x\rightarrow A(l\pm O)x$ for each $xe\mathfrak{D},$ $A(t\pm O)$

is actually independent of $s$ used in defining it. Also it is easily seen
that $A(t\pm 0)^{-1}=\lim A(t\pm e)^{-1}$ in the sense of convergence by the norm,
so that we have $||A(t\pm 0)^{-1}||\leq 1$ . Since similar results are obtained
by considering $[\lambda I-A(l)][\lambda I-A(s)]^{-1}$ instead of $B(t)$ , it follows that
$A(t\pm O)$ has property S. Also we see easily that $A(t)A(s\pm O)$ is of
bounded variation with the total variation not larger than $N$, and that
$B(t\pm O, s\pm O)=A(t\pm O)A(s\pm 0)^{-1}$ is also bounded by $M$. Finally we note
that $B(t\pm O)=B(t)$ holds except at most at a denumerable set of $t$.
Hence the same holds for $A(t)$ .

5. We shall now give the proof of Theorem 2 in several steps.
First let us construct the operator $U(t,s)$ . We consider a partition $\Delta$

of the interval $(a,b)$

(3.4) $a=t_{0}<t_{1}<\cdots<t_{n}=b$ , $t_{j-1}\leq\tau_{j}\leq t_{j}$ $(i=1,2,\cdots,n)$

and set
(3.5) $U(\Delta)=X_{n}X_{n-1}\cdots X_{1}$ ,

$X_{j}=\exp[(t_{j}-t_{j-1})A_{j}]$ , $A_{j}=A(\tau_{j})$ $(i=1,2,\cdots n)$ .
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It is our purpose to show that $U(\Delta)$ converges strongly to a limit
when the maximum chord $|\Delta|={\rm Max}(t_{j}-t_{j-1})$ tends to zero. For this
purpose we further set

(3.6) $U_{jk}=X_{j}X_{j-1}\cdots X_{k}$ , $W_{j}=A_{j}U_{j,1}A_{0^{-- 1}}$ , $A_{0}=A(a)$ .

We note that

(3.7) $||X_{j}||\leqq\exp[-(t_{i}-t_{j-1})]\leq 1$ , $||U_{jk}||\leq\exp[-(t_{j}-t_{k- 1})]\leq 1$

by (2.1) and the fact that $A(t)+I$ has property $S$ on account of our
convention. Thus $X_{j}$ and $U_{jk}$ are uniformly bounded. The same is
true for $W_{j}$ , for we have $A_{j}X_{j}\overline{-}X_{j}A_{j^{10)}}$ by (2.4) and hence

$W_{j}=A_{j}X_{j}\cdots X_{I}A_{0^{-1}}=X_{j}A_{j}A_{j-1}^{1}X_{j-1}A_{j-1}A_{j- 2}^{-1}X_{j- 2}\cdots X_{1}A_{1}A_{0^{-1}}$ ,

which shows that $W_{j}$ is bounded and that

$||W_{j}||\leqq||A_{j}A_{j-1}^{-1}|||_{1}^{1}A_{j-1}A_{j-2}^{-1}||\cdots||A_{1}A_{0^{-1}}||$

by (3.7). But we have

$||A_{k}A_{k1}^{-\underline{1}}||=||I+(A_{k}-A_{k-1})A_{k- 1}^{-1}||<.1+||(A_{k}-A_{k- 1})A_{k- 1}^{-1}||$

$\leqq 1+||(A_{k}-A_{k- 1})A_{0^{-1}}||||A_{0}A_{k-1}^{-1}||\leqq 1+M||(A_{k}-A_{k-1})A_{0^{\sim 1}}||$ ,

SO that

(3.8) $||W_{j}||\leq\exp[\sum_{\hslash- 1}^{j}M||(A_{k}-A_{k- 1})A_{0^{-1}}||1\leq\exp(MN)$ \langle $i=1,2,\cdots n$),

since the total variation of $A(t)A_{0^{-1}}$ is $\leq N$.
In the same way it can easily be shown that

$||A_{j}A_{j\sim}^{-1_{- 1}}W_{j-1}||\leqq\exp(MN)$ $(j=2,\cdots n)$ ,
(3.9)

$||AU(\Delta)A_{0^{-1}}||=||AA_{n}^{\sim 1}W_{n}||\leq M\exp(MN)$ .

where $A$ is any one of $A(s)$ or $A(s\pm O)$ .
6. Let $\Delta$ and $\Delta^{\prime}$ be two partitions of the interval $(a, b)$ such that

$\Delta$ is a subpartition of $\Delta^{\prime}$ , and let us construct $U(\Delta)$ and $U(\Delta^{\prime})$ as above.
As $\Delta$ is a subpartition of $\Delta^{\prime}$ , each factor $X_{j}^{\prime}$ of $U(\Delta^{\prime})$ corresponding to

10) $A\supset B$ means that $A$ is an extension of $B$ .
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(3.5) can further be decomposed by (2.3) into the product of several
factors in such a way that we can write

$U(\Delta)=X_{n}X_{n- 1}\cdots X_{1}$ , $X_{j}=\exp[(t_{j}-t_{j- 1})A_{j}]$ , $A_{j}=A(\tau_{j})$ ,

$U(\Delta^{\prime})=X_{n}^{\prime}X_{n- 1}^{\prime}\cdots X_{1}^{\prime}$ , $X_{j}^{\prime}=\exp[(t_{j}-t_{j}1)A_{j}^{\prime}]$ , $A_{j}^{\prime}=A(\tau_{j}^{\prime})$ ,

with the same $n$ and $t_{j}$ . The only point to be noted is that, whereas
$t_{j-1}\leq\tau_{j}\leq t_{j},$ $\tau_{\acute{j}}$ does not in general satisfy this inequality, although
$\tau_{\acute{j}}$ and $\tau_{j}$ belong to the same subinterval of the partition $\Delta^{\prime}$ .

If we define $U_{j.k}^{\prime}$ and $W_{j}^{\prime}$ by replacing $\tau_{i}$ by $\tau_{i}$ in $U_{j.k}$ and $W_{j}$

of (3.6), it is clear that they satisfy the same inequalities (3.7) to (3.9).
We have now

$U(\Delta^{\prime})-U(\Delta)=\sum_{j1}^{n}U_{n,j}^{\prime}1(X_{j^{\prime}}-X_{J})U_{j- 1.1}$ ,

where we set $U_{n.n\vdash 1}^{\prime}=U_{0.1}=I$. On multiplying from right by $A_{0^{- 1}}$ and
noting that $U_{j-1.1}A_{0^{-1}}=A_{j^{-1}}A_{j}A_{j- 1}^{-1}W_{j- 1}$ by (3.6), we obtain

$||[U(\Delta^{\prime})-U(\Delta)]A_{0^{- 1}}||\leq\sum||(X_{J}^{\prime}-X_{j})A_{j}^{-1}||||A_{j}A_{j- 1}^{-1}W_{j- 1}||$

$\leq\exp(MN)\sum||(X_{j}^{\prime}-X_{j})A_{j}^{-1}||$ ,

where we have used (3.7) and (39). But we have by Lemma 3

$||(X_{j}^{\prime}-X_{j})A_{j}^{-1}||=||\{\exp[(t_{j}-t_{j-1})A_{j}^{\prime}]-\exp[(t_{j}-t_{j-1})A_{j}]\}A_{j}^{-1}||$

$\leq(t_{j}-t_{j- 1})||(A_{j}^{\prime}-A_{j})A_{j}^{-1}||\leq(t_{j}-t_{j- 1})||(A_{j}^{\prime}-A_{j})A_{0^{-1}}||||A_{0}A_{j}^{-1}||$ .

Hence it follows by 1 $A_{0}A_{j}^{-1}||\leq M$ that

(3.10) $||[U(\Delta^{\prime})-U(\Delta)]A_{0^{-1}}||$

$\leqq M\exp(MN)\sum_{j=1}^{n}(t_{j}-t_{j-1})||(A_{j}^{\prime}-A_{j})A_{0^{-1}}||$ .

To calculate the right-hand side, we first take the sum for those
subintervals $(t_{j- 1},t_{j})$ contained in a fixed subinterval, say $I_{k}^{\prime}$ , of the
partition $\Delta^{\prime}$ . Then both $\tau_{\acute{J}}$ and $\tau_{j}$ belong to $I_{k}$ , and $||(A_{j}^{\prime}-A_{j})A_{0^{-1}}||$

is not larger than the oscillation, and a fortiori, than the variation
$v(I_{k}^{\prime})$ , of $A(t)A_{0^{-1}}$ in the interval $Ik$ . Thus the sum under consideration
is not larger than $v(I_{k}^{\prime})\sum(t_{j}-t_{j-1})=v(I_{k}^{\prime})|I_{k}^{\prime}|\leqq v(I_{k^{\prime}})|\Delta^{t}|$ , where $|\Delta^{\prime}|$
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is the maximum chord of $\Delta^{\prime}$ . On adding these for all $I_{k}^{f}$ , we obtain
(3.11) $||[U(\Delta^{\prime})-U(\Delta)]A_{0}^{-1}||\leq L|\Delta^{\prime}|$ , $L=MN\exp(MN)$ ,

since $\sum v(I_{k}^{\prime})$ is not larger than the total variation of $A(t)A_{0^{- 1}}$ and
hence $\leq N$.

7. Let $\Delta^{t}$ and $\Delta^{\prime\prime}$ be arbitrary two partitions of $(a, b)$ . If we
denote by $\Delta$ their common subpartition, we have (3.11) and a similar
inequality for $\Delta^{\prime\prime}$ . Hence
(3.12) $||[U(\Delta^{\prime})-U(\Delta^{\prime\prime})]A_{0^{-1}}||\leq L(|\Delta^{\prime}|+|\Delta^{\prime\prime}|)$ .
It follows that $U(\Delta^{\prime})A_{0^{- 1}}$ has a uniform limit for $|\Delta^{\prime}|\rightarrow 0$ . For each
$x\in \mathfrak{D}$ , we can write $x=A_{0^{-1}}y,$ $y=A_{0}x$ , so that $U(\Delta^{\prime})x=U(\Delta^{\prime})A_{0^{-1}}y$ has a
limit for $|\Delta^{\prime}|\rightarrow 0$ . On the other hand $U(\Delta^{\prime})$ are uniformly bounded by
$||U(\Delta^{\prime})||=||U_{n.1}^{\prime}||\leq\exp[-(b-a)]\leq 1$ by (3.7). Since $\mathfrak{D}$ is dense in $\mathfrak{V}$ ,
it follows that $U(\Delta^{\prime})$ converges strongly to a limit for $|\Delta^{\prime}|\rightarrow 0$ . Let us
denote the limit by $U(b,a)$ . Clearly $U(b,a)$ is a bounded operator and
$||U(b,a)||<\exp[-(b-a)]\leq 1$ . Incidentally we note the following in-
equality obtained from (3.12) by letting $|\Delta^{\prime\prime}|\rightarrow 0$ :
(3.13) $||[U(\Delta^{\prime})-U(b,a)]A_{0^{- I}}||\leqq L|\Delta^{\prime}|$ .

Clearly the above construction can be applied to any subinterval
$(s,t)$ of $(a,b)$ and leads to an operator $U(t,s)$ with $||U(t, s)||\leqq\exp[-(t$

$-s)]$, which proves (3.2). Also we set $U(t,t)=I$ by definition. (1.6)
can now be proved easily. Let $\Delta^{\prime}$ and $\Delta^{\prime\prime}$ be partitions of the intervals
$(r,s)$ and $(s,t)$ respectively, and let $\Delta$ be the partition of $(r,t)$ obtained
by combining $\Delta^{\prime}$ and $\Delta^{\prime\prime}$ . Then we have $\ddagger I(\Delta)=U(\Delta^{\prime\prime})U(\Delta^{\prime})$ by (3.5).
If we let $|\Delta^{\prime}|\rightarrow 0$ and $|\Delta^{\prime\prime}|\rightarrow 0$ , then also $|\Delta|\rightarrow 0$ so that we have $U(\Delta^{\prime})$

$\rightarrow U(s,r),$ $U(\Delta^{\prime\prime})\rightarrow U(t,s)$ , and $U(\Delta)\rightarrow U(t,r)$ strongly, and we obtain
(1.6) for $r<s<t$. Of course (1.6) is trivial if $s=r$ or $s=t$.

Incidentally we note that $U(t,s)=\exp[(t-s)A]$ if $A(t)=const.=A$ .
8. Suppose that there is another operator function $A^{\prime}(t)$ satisfying

the conditions $C_{1},$ $C_{2}$ , and such that its domain $\mathfrak{D}^{\prime}$ contains D. Then
we can define the operator $U^{\prime}(t,s)$ for $A^{\prime}(t)$ in the same way as we
have defined $U(t,s)$ for $A(t)$ . Now the following generalization of
Lemma 3 holds:

(3.14) $||[U^{\prime}(t,s)-U(t,s)]A_{0^{-1}}||\leqq M\exp(MN)\int_{s}^{l}||[A^{\prime}(\tau)-A(\tau)]A_{0^{-1}}||d\tau$ .
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This can. be proved by considering a partition $\Delta$ of $(s,t)$ common to
$A(t)$ and $A$ ‘

$(t)$ and proceeding in the same way as in paragraph 6;
then we can deduce an inequality similar to (3.10), and on passing to
the limit $|\Delta|\rightarrow 0$ , we obtain the desired result (3.14). The constants
$M,$ $N$ and the operator $A_{0^{- 1}}$ are those belonging to $A(t)$ and not to
$A^{\prime}(t)$ .

We use (3.14) to generalize the inequality (3.13). Let $\Delta$ be again
the partition of $(a,b)$ given by (3.4), and let $A^{\prime}(t)$ be the step function
defined by

$A^{\prime}(t)=A_{j}=A(\tau_{j})$ , $t_{j-1}\leqq t<t_{j}$ $(j=1,2,\cdots,n)$ .

Then the corresponding operator $U^{\prime}(b,a)$ is identical with $U(\Delta)$ given
by (3.5). In general let us write $U(t,s;\Delta)$ for $U^{\prime}(t,s)$ . Clearly $U(t,s;\Delta)$

has the form

(3.15) $U(t,s;\Delta)=\exp[(t-t_{j-1})A_{j}]\exp[(t_{j-1}-t_{j-z})A_{j-1}]\cdots\exp[(t_{k}-s)A_{k}]$

for $t_{j- 1}\leqq t\leqq t_{j}$ , $t_{k- 1}\leqq s\leqq t_{k}$ .

In this case (3.14) becomes

(3.16) $||[U(t,s;\Delta)-U(t,s)]A_{0^{-1}}||\leqq M\exp(MN)N|\Delta|=L|\Delta|$

quite in the same way as in deducing (3.11). (3.16) shows that
$U(t,s;\Delta)\rightarrow U(t,s),$ $|\Delta|\rightarrow 0_{7}$ holds strongly and uniformly with respect

to $s,$
$t$.
9. By virtue of (2.2) it follows from (3.15) that $U(t,s;\Delta)$ is strong $\cdot$

ly continuous in $s,$
$t$ simultaneously. Furthermore, since each factor of

(3.15) takes $\mathfrak{D}$ into $\mathfrak{D}$ by (2.4), $U(t,s;\Delta)x$ is strongly differentiable to
the right in $t$ provided $xe\mathfrak{D}$ . $T^{1}r_{1}us$ we have

$D_{l^{+}}U(t,s;\Delta)x=A^{\prime}(t)U(t,s;\Delta)x$ , $xe\mathfrak{D}$ .

The right.hand side is strongly piecewise continuous in $t$, so that we
can integrate both sides and obtain

$[U(l^{\prime},s;\Delta)-U(t,s;\Delta)]x=\int_{l^{\prime}}^{\ell_{A^{\prime}()U(}}\tau\tau,S;\Delta)xd\tau$ , $s\leqq t\leqq l^{J}$ .

But it can easily be shown that $||A^{\prime}(t)U(t,s;\Delta)A_{0}^{-1}||\leqq\exp(MN)$ in
the same way as (3.8). Hence we have
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(3.17) $||[U(t^{\prime}, s;\Delta)-U(t,s;\Delta)]x||\leqq(t^{\prime}-t)\exp(MN)||A_{0}x||,$ $s\leqq t\leqq t$ .

Similarly we have

$[U(t,s^{\prime} ; \Delta)-U(t,s;\Delta)]x=-\int_{s^{\prime}}s_{U(t,\sigma;\Delta)A^{\prime}()xd\sigma}\sigma$

and
(3.18) $||[U(t, s^{\prime} ; \Delta)-U(t, s;\Delta)]x||\leqq(s^{\prime}-s)M||A_{0}x||$ , $s\leqq s^{\prime}\leqq t$ .
These inequalities show that $||U(t, s;\Delta)x||$ are equicontinuous with
respect to the partitions $\Delta$ , at least in $s$ or $t$ separately, provided $x\in \mathfrak{D}$ .
We note that (3.17) and (3.18) can also be written as

$||[U(t^{\prime}, s;\Delta)-U(t,s;\Delta)]A_{0^{-1}}||\leqq(t^{\prime}-t)\exp(MN)$ ,
(3.19)

$||[U(t, s^{\prime} ; \Delta)-U(t,s;\Delta)]A_{0^{- 1}}||\leq-(s^{\prime}-s)M$ .
On making $|\Delta|\rightarrow 0$ in (3.17) and (3.18) and noting that $U(t,s;\Delta)_{X}$

$\rightarrow U(t,s)x$ by paragraph 8, we obtain

$||[U(t^{\prime},s)-U(t,s)]x||\leqq(t^{\prime}-t)\exp(MN)||A_{0}x||$ ,
(3.20)

$||[U(t,s^{\prime})-U(t,s)]x||\leq(s^{\prime}-s)M||A_{0}x||$ .

These inequalities show that $U(t,s)x$ is continuous in $s$ or $t$ provided
$x\in \mathfrak{D}$ . But as $U(t,s)$ is uniformly bounded by (3.2) already proved, it
follows that $U(t, s)$ is strongly continuous in $s$ or $t$. By making use
of the relation $U(t, s)=U(t, r)U(r,s),$ $s\leq r\leqq t$, we then conclude that
$U(t, s)$ is strongly continuous in $s$ and $t$ simultaneously (see the note at
tee end of the paper). Thus we have proved (1.5).

10. Next we set $t=s+e,$ $A^{\prime}(\tau)=A(s+O),$ $s\leqq\tau\leqq t$, in (3.14). Then
we have $U^{\prime}(t, s)=\exp[eA(s+0)]$ and the right-hand side of (3.14) is
$o(e)$ by the definition of $A(s+O)$ given in paragraph 4. Thus we have

$||\{\exp[eA(s+0)]-U(s+e,s)\}A_{0^{-1}}||=o(e)$ .
It follows that for each $x\in \mathfrak{D}$

$e^{-1}\{\exp[eA(s+0)]x-U(s+e, s)\chi\}\rightarrow 0$ , $e\downarrow 0$ ,

for $x$ may be written as $x=A_{0^{-1}}y,$ $y=A_{0}x$. But as
$e^{-1}\{\exp[eA(s+0)]x-x\}\rightarrow A(s+O)x$
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by (2.4), we obtain the first relation of (1.7). ine second relation can
similarly be proved.

It should be noted that (1.7) does not imply that $D_{l^{+}}(t, s)x=A(l+O)$

$U(t, s)x$, for it is not proved that $x_{\hat{c}}\mathfrak{D}$ implies $U(t, s)xe\mathfrak{D}$ . This can
be proved, however, at least if $\mathfrak{B}$ is reflexive. We have shown in
paragraph 5 that $A$ $U(\Delta)A_{0}^{-1}$ is uniformly bounded by $||AU(\Delta)A_{0^{- 1}}||$

$\leqq M\exp(MN)$ (see (3.9)). Let $\{\Delta_{n}\}$ be a sequence of partitions of
$(a, b)$ such that $|\Delta_{n}|\rightarrow 0$, and set $x_{n}=U(\Delta_{n})x$ for a fixed $x\in \mathfrak{D}$ . Then
we have $x_{l}\rightarrow U(b, a)x$ and $||Ax_{n}||_{-<_{--}}||AU(\Delta_{n})A_{0}^{-1}||||A_{0}x||$ is bounded
for $ n\rightarrow\infty$ . It follows from Lemma 5 that $U(b,a)xe\mathfrak{D}$ and $||AU(b$ ,
$a)A_{0}^{-1}||\leqq M\exp(MN)$ .

In the same way we can show that $U(t, s)x\in \mathfrak{D}$ whenever $xe\mathfrak{D}$ .
Hence we have

$e^{-1}[U(t+\epsilon, s)-U(t, s)]x=e^{- 1}[U(t+e, t)-I]U(t,s)x$

and (1.8) follows from (1.7). That.$U(t, s)$ is uniquely determined is
then a consequence of Theorem 1. With these results, the proof of
Theorem 2 is complete.

11. We now proceed to the proof of Theorem 3. We recall that
the condition $C_{3}$ , together with $C_{1}$ and $C_{2}$ , implies that $B(t)=A(t)A(s)^{-}$

and $B(t)^{-1}$ are continuous in the sense of the norm $||$ $||$ (paragraphs

3 and 4).

We have shown in the preceding paragraph that $||AU(b,a)A_{0^{-1}}||$

$\leqq M\exp(MN)$ , provided $\mathfrak{V}$ is reflexive. Hence we have $||AU(b,a)A^{-1}||$

$\leq M^{2}\exp(MN)$ . We recall that here $A$ may be any $A(r)$ for a fixed
$r,$ $M$ is an upper bound of $||A(t)A(s)^{-1}||$ for $a\leq-s,$ $t\leqq b$ , and $N$ is an
upper bound of the total variation of $A(t)A(s)^{-}$ as a function of $t$ for
$a\leq t\leq b$ . Of course a similar inequality holds if we replace $U(b,a)$ by
$U(t,s),$ $(s, t)$ being any subinterval of the small interval $(t_{0}-e, t_{0}+e)$ for
a fixed $t_{0},$ $A$ by $A(t_{0})$ and $M,$ $N$ by the corresponding quantities $M_{\epsilon}$ ,
$N_{8}$ defined for the interval $(t_{0}-\epsilon, t_{0}+e)$ . But as $A(t)A(s)^{-1}$ and its
inverse are continuous and of bounded variation in $l$ in the sense of
the norm $||$ $||$ , we have $M_{\epsilon}\rightarrow 1$ and $N_{\epsilon}\rightarrow 0$ for $e\downarrow 0$. Thus we have

(3.21) $\lim_{s\rightarrow 0}$. $\sup_{l\rightarrow l_{0}}||AU(t,s)A^{-1}||\leq 1$ , $A=A(t_{0})$ .

On the other hand we know that strong $\lim U(t,s)=I$ by (1.5) already
proved. It follows that
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(A $U(t,s)A^{-1}x,$ $(A^{-1})^{*}x^{*})$

$=(U(t,s)A^{-1}x,$ $x_{*})\rightarrow(A^{-1}x, x^{*})=(x,(A^{-1})^{*}x^{*})$

for every $x\in \mathfrak{B}$ and $x^{*}e\mathfrak{B}^{*}$ . But as $(A^{-1})^{*}\mathfrak{B}^{*}$ is dense in $\mathfrak{V}^{*}$ as was
shown in the proof of Lemma 5, it follows that $A$ $U(t,s)A^{-1}x$ converges
weakly to $x$ . If $\mathfrak{B}$ is uniformly convex, we conclude by (3.21) and
Lemma 6 that AU $(t,s)A^{-1}x\rightarrow x$ even strongly.

If we let $t^{\prime}\downarrow t$ for a fixed $t$ in the identity

A $U(t^{\prime}, s)A^{-1}=AU(t^{\prime},t)A^{-1}AU(t,s)A^{-1}$ , $s\leqq t\leqq t^{\prime}$ , $A=A(t)$ ,

and note that AU $(t^{\prime}, t)A^{-1}\rightarrow I$ strongly as we have just proved, we
have $A$ $U(t^{\prime}, s)A^{-}$ $\rightarrow AU(t,s)A^{-1}$ strongly. Thus $A$ $U(t^{\prime},s)A^{-}$ is strong-
ly continuous to the right with respect to $t^{\prime}$ . Then the same is true
for $A(t^{\prime})U(t^{\prime},s)A_{0^{-1}}=A(t^{\prime})A^{-1}$ A $U(t^{\prime},s)A^{-1}AA_{0}^{-1}$ , and this completes the
proof of (1.9).

If $\mathfrak{B}$ is a Hilbert space and $iA(t)$ is self-adjoint, there is no dis.
tinction between the positive and negative sense of $t$, so that $A(t)x(t)$

is continuous to the left as well as to the right. This proves the last
part of Theorem 3.

1 ‘. Next we prove Theorem 4. We again consider the partition
$\Delta$ and the operators $U_{j,k},$ $W_{j}$ , etc. introduced in paragraph 5. We
note that by virtue of the relation $A_{k}X_{k}\approx X_{k}A_{k}$ ,

$U_{j},$ $kA_{k}A_{k- 1}^{-1}W_{k- 1}=U_{j,k+1}X_{k}A_{k}U_{k- 1,1}A_{0^{-1}}$

$=U_{j,k+1}A_{k}X_{k}U_{k-1,1}A_{0^{-1}}=U_{jk+1}A_{k}U_{k,1}A_{0^{-1}}=U_{jk+1}W_{k}$ ,

where $k=1,2,\cdots,j$ and we set $U_{j,j\vdash 1}=W_{0}=I$. It follows that

$W_{j}-U_{j,1}=\sum_{k=1}^{j}U_{j,k}(A_{k}A_{k- 1}^{-1}-I)W_{k- 1}$

$=\sum_{k=1^{1}}^{j}U_{j,k}(A_{k}-A_{k- 1})A_{0}^{-1}A_{0}A_{k-1}^{-1}W_{k-1}$ .

From now on we take $\tau_{k}=t_{k}$ and set

$B_{k}=A_{k}A_{0^{- 1}}=A(t_{k})A_{0^{-1}}=B(t_{k})$ $(B(t)=A(t)A_{0^{-1}})$ ,
(3.22)

$C_{k}=B_{k}^{-1}=A_{0}A_{k}^{-1}$ , $k=0,1,2,\cdots,$ $n$ .
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Then all $B_{k}$ and $C_{k}$ are bounded operators, and the above identity can
be written as

$(3,23)$ $W_{j}-U_{j1}=\sum_{k\Rightarrow 1}^{j}U_{j,k}(B_{k}-B_{k-1})C_{k-1}W_{k-1}$ , $i=1,2,\cdots,n$ .

This can be regarded as a recurrence equation of Volterra type for
$W_{j}$ . Hence it can be solved for $W_{j}$ by the method of successive ap-
proximation, yielding

(3.24) $W_{i}=\sum_{p=0}^{\infty}W_{j}^{(p)}$ ,

$W_{J}^{0)}=U_{j,1}$ $(U_{0’ 1}=I)$ ,
(3.25)

$W_{j}^{(p)}=\sum_{k=1}^{j}U_{j,k}(B_{k}-B_{k-1})C_{k-1}W_{k-1}^{p-1)}$ , $i=0,1,\cdots,n,$ $ p=1,2,\cdots$ .

Of course (3.24) is a finite series, for it is easily seen that $W_{j}^{(p)}=0$ for
$j<p$ . However, as we shall ultimately let $ n\rightarrow\infty$ and $|\Delta|\rightarrow 0$, we need
an estimate of the magnitude of each term of the series. We shall
show by induction that

(3.26) $||W_{j}^{(p)}||\leqq\frac{M^{p}}{p!}(\int_{a}^{t_{j}}||dB(t)||)^{p}\leqq(MN_{!})^{p_{-}}\overline{p}$ $ j=1_{0},2_{1,2}\cdot,.np=,,\cdot\cdot$

.
Since this is clear for $p=0$ by $||W_{j}^{(0)}||=||U_{j,1}||\leqq 1$ , we assume that it
is already proved for $p-1$ . Then, noting that $||U_{j,k}||\leqq 1$ and $||C_{k}||\leqq M$,
it follows from (3.25) that

$||W_{j}^{(p)}||\leqq\sum_{k=1}^{j}||B_{k}-B_{k- 1}||M^{M^{p-1}}(p-1)[(\int_{a^{k-1}}^{l}||dB(t)||)^{p-1}$

$\leqq(\overline{p}^{M^{p}}-1)!^{-}\int_{a^{j}}^{l}||dB(t)||[\int_{a}^{t}||dB(t)||]^{p-\iota}=\frac{M^{p}}{p!}(\int_{a^{j}}^{t}||dB(t)||)^{p}$

as we wished to show. Thus we see that the series (3.24) converges
not less slowly than the series of $\exp(MN)$ , uniformly with respect to
$j$ and independently of the partition $\Delta$.

13. Before letting $|\Delta|\rightarrow 0$ , it is convenient to change the notation.
We introduce the following step functions:
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$i=0,1,\cdots,n$ ;

(3.27)

$C(t;\Delta)=C_{j}W^{(p)}(t,a;\Delta)=W_{j}^{(p)}\{$$W(t,a;\Delta)=W_{j}$ for $t_{j}\leqq t<t_{j+1}$ ,

$V(t,s;\Delta)=U_{j,k}$ for $\left\{\begin{array}{l}t_{j}\leqq t<t_{j+1}, j=0,l,\cdots,n-1,\\t_{k- 1}=<s<t_{k}, k=1,2,\cdots,n,\end{array}\right.$

where $s\leqq t$ and it should be recalled that $U_{jj\dashv 1}=U_{0,1}=I$. Then (3.24)
and (3.26) can be written as

(3.28) $W(t,a;\Delta)=_{p}\sum_{=0}^{\infty}W^{(p)}(t,a;\Delta)$ , $||W^{(p)}(t,a;\Delta)||\leqq(MN)^{p}/p!$ .

So far we have been assuming only the conditions $C_{1},$ $C_{2},$ $C_{3}$ . Now
let us introduce $C_{4}$. Since $B(t)=A(t)A_{0^{-1}}$ is weakly differentiable and
$\dot{B}(t)=dB(t)/dt$ is strongly continuous, it follows easily that for each
$x\in \mathfrak{B}$

$(B_{k}-B_{k- 1})x=[B(t_{k})-B(t_{k- 1})]x=\int_{t_{k- 1}^{k}}^{l}\dot{B}(s)xds$ .

(Incidentally this implies that $B(t)$ is actually strongly differentiable.)
Thus we have by (3.27)

$U_{jk}(B_{k}-B_{k-1})C_{k- 1}W_{k-1}^{(.p-1)}x$

$=\int_{t_{k-1}}^{t_{k}}V(t, s;\Delta)\dot{B}(s)C(s;\Delta)^{\backslash }W^{(p- 1)}(s,a;\Delta)xds$ ,

where $t$ may be any value such that $t_{j}\leqq t<t_{j*1}$ , and (3.25) may be
written as

$W^{(0)}(t,a;\Delta)=V(t, a;\Delta)$ ,
(3.29)

$W^{(p)}(t,a;\Delta)x=\int_{a^{j}}^{l}V(t,s;\Delta)\dot{B}(s)C(s;\Delta)W^{(p- 1)}(s,a;\Delta)xds$ ,

$t_{j}\leqq t<t_{j+1}$ .
It should be noted that the integrand is a step function so that there
is no difficulty in the meaning of the integral. Also the integrand has
an upper bound independent of $s,t$ and $\Delta$ , for we have the inequalities
$||V(t,s;\Delta)||\leqq 1,||C(s;4)||\leqq M,$ $||W^{(p)}(s,a;\Delta)||\leqq\exp(MN)$ by (3.27) and
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(3.26), and there is a $K\geq 0$ such that $||\dot{B}(t)||\leqq K$ by the strong conti-
nuity of $\dot{B}(t)$ . Therefore the value of the above integral is changed
only slightly if we replace $t_{j}$ by $t$ ; more precisely, we have

(3.30) $||W^{(p)}(t,a;\Delta)x-\int_{a}^{t}V(t,s;\Delta)\dot{B}(s)C(s;\Delta)W^{(p- 1)}(s,a;\Delta)xds||$

$\leq KM\exp(MN)|\Delta|||x||$

since $|t-t_{j}|\leq|\Delta|$ .
14. We shall now show that

(3.31) $V(t,s;\Delta)\rightarrow U(t,s)$ , $|\Delta|\rightarrow 0$ ,

strongly and uniformly in $t,$ $s$ . For this purpose it is convenient to
compare $V(t,s;\Delta)$ with $U(t,s;\lrcorner)$ introduced in paragraph 8. It is clear
that $V(t_{j}, t_{/}\backslash ’ 1;\Delta)=U(l_{j}, t_{/-\iota}\vee’ ; \Delta)=U_{j,k}$ . Hence we have for $t_{k- 1}\leqq s<t_{k}$ ,
$t_{j}\leqq t<t_{j_{I}1}$ and $s\leq t$

$U(t,s;\Delta)-V(t,s;\Delta)=U(t_{J}s;\Delta)-U(t_{j},t_{k}1;\Delta)$

$=\left\{\begin{array}{l}[U(l,s,\Delta)-U(t_{j},s.\Delta)]+[U(t_{j},s.\Delta)-U(l_{j},l_{k- 1}.\Delta)], t_{k}1<l_{j},\\[U(l,s,\Delta)-U(t,l_{j}.\Delta)]\dashv[U(l,l_{j}.\Delta)-I], t_{k- 1}--t_{j},\end{array}\right.$

and hence by (3.17) and (3.18) it follows that

$||U(t,s;\Delta)x-V(t,s;\Delta)x||\leq|\Delta|[\exp(MN)+M]||A_{0}x||$

provided 1 $\epsilon:\mathfrak{D}$ . Thus the left-hand side tends to zero uniformly in $s,$
$t$

when $|\Delta|\rightarrow 0$ for $x\sigma \mathfrak{D}$ . But as $U(t,s;\Delta)-V(t,s;\Delta)$ is uniformly bound-
ed, it converges strongly to zero. Since $U(t,s;\Delta)\rightarrow U(t,s)$ holds strongly
and uniformly in $s,$

$t$ as we have shown in paragraph 8, this proves
(3.31).

(3.31) shows in particular that $iV^{0)}((t,a;\Delta)\rightarrow U(t, a)$ strongly and
uniformly in $t$. We shall prove in general that

(3.32) $W^{(p)}(t,a;\Delta)\rightarrow W^{(p)}(t,a)$ , $|\Delta|\rightarrow 0$ , $ p=0,1,2,\cdots$ ,

strongly and umformly $i_{l}t$ , where $W^{(p)}(t,a)$ are operators defined by
the recurrence formulas:
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$W^{(0)}(t,a)=U(t,a)$ ,
(3.33)

$W^{(p)}(t,a)x=\int_{a}^{l}U(t, s)\dot{B}(s)C(s)W^{(p- 1)}(s,a)xds$ ,

$C(t)=A_{0}A(t)^{-1}$ , $ p=1,2,\cdots$ .

First we note that $W^{(p)}(t,a)$ are well defined and strongly conti-
nuous in $t$. This is easily shown by induction, for $U(t,s)$ , $\dot{B}(s)$ , and
$C(s)$ are all strongly continuous in $t,s$ . Next we prove (3.32) also by
induction. As it is already proved for $p=0$ , we assume that it is already
proved for $p-1$ and prove it for $p$. It is clear that $C(\ell;\Delta)\rightarrow C(t)$ ,
$|\Delta|\rightarrow 0$, holds strongly and uniformly in $t$, for $C(l)$ is continuous even
in the sense of the norm $||$ $||$ as was shown in paragraph 4 and
$C(t;\Delta)=C(t_{j})$ for $t_{j}\leq_{-}t<t_{j}$

[ Thus we have $V(t,s;\Delta)\rightarrow U(t,s),$ $C(s;\Delta)$

$\rightarrow C(s)$ , $W^{(p-1)}(s,a;\Delta)\rightarrow W^{(p-1)}(s,a)$ strongly and uniformly in $s,$
$t$.

Noting that these operator functions are uniformly bounded and that
their limits are strongly continuous in $s,t$ , we conclude by Lemma 4
applied successively that

$V(t,s;\Delta)\dot{B}(s)C(s;\Delta)W^{(p- 1)}(s,a;\Delta)\rightarrow U(t,s)\dot{B}(s)C(s)W^{(p- 1)}(s,a)$

strongly and uniformly in $s,$ $t$. On making $|\Delta|\rightarrow 0$ in (3.30) and noting
(3.33) we therefore obtain (3.32) and complete the induction.

15. (3.32) shows that each term on the right-hand side of$\cdot$ (3.28),
being majorized by the corresponding term of the series of $\exp(MN)$
independent of $\Delta$ , converges strongly to $W^{(p)}(t,a)$ . It follows that

(3.34) $W(t,a;\Delta)\rightarrow W(t,a)=\sum_{p- 0}^{\infty}W^{(p)}(t,a)$ , $|\Delta|\rightarrow 0$ ,

where
(3.35) $||W(t,a)||\leqq\exp(MN)$ , $||W^{(p)}(l,a)||\leq(MN)^{p}/p!$ , $ p=0,1,2,\cdots$ ,

and $W(t,a)$ is strongly continuous in $t$ since this is the case for all
$W^{(p)}(t,a)$ .

Since $W(b,a;\Delta)=W_{n}=A_{n}U_{n’ 1}A_{0^{-}}$ $’=A(b)U(\Delta)A_{0^{- 1}}$ and $ U(\Delta)\rightarrow$

$U(b,a)$ , $W(b,a;\Delta)\rightarrow W(b,a)$ for $|\Delta|\rightarrow 0$ , we have for each $y\in^{\sigma_{\backslash ^{)_{\grave{\urcorner}}}}}$

$U(\Delta)A_{0^{- 1}}y\rightarrow U(b,a)A_{0^{- 1}}y$ , $A(b)U(\Delta)A_{0^{- 1}}y\rightarrow W(b,a)y$ .

This shows tllat $U(b,a)A_{0^{- 1}}y$ belongs to the domain $\mathfrak{D}$ of the closed
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operator $A(b)$ and that $A(b)U(b,a)A_{0}^{-1}y=W(b,a)y$. In other words,
we have shown that $U(b,a)\mathfrak{D}\subset \mathfrak{D}$ and $A(b)U(b,a)A_{0^{-1}}=W(b,a)$ . It
is clear that the same is true if we replace $b$ by any $t,$ $a\leqq t\leqq b$.
Then an argument similar to that given in paragraph 10 shows that
$x(t)=U(t,a)x$ for $x_{\tilde{c}}\mathfrak{D}$ is strongly differentiable to the right. But as
$D^{+}x(t)=A(t)x(t)=W(t,a)A_{0}x$ is continuous in $t$, we must have

$x(t)-x(t)=\int_{l^{\prime}}^{t}A(t)x(t)dt$

and, $S\dot{i}$ nce the integrand is continuous, it follows that $x(t)$ is actually
strongly differentiable and $dx(t)/dt=A(t)x(t)$ . This completes the proof
of Theorem 4.

16. Finally we prove Theorem 5. We note that $W(t, s)$ can be
defined for $s\leqq t$ quite similarly as $W(t, a)$ defined in (3.34). We have
only to replace $W^{(p)}(t, a)$ by $W^{(p)}(t,s)$ , which are to be defined by re-
currence formulas similar to (3.33). It is. easily shown that $W^{(p)}(t,s)$

and hence $W(t, s)$ is strongly continuous in $t,s$ . Also we have the
relation
(3.36) $A(t)U(t,s)A(s)^{-1}=W(t,s)$

as in the preceding paragraph where this was proved for $s=a$.
Let now $f(s)$ be as in Theorem 5. According to our convention

to replace $A(t)-I$ by $A(t)$ , the hypothesis implies that $A(r)f(s)$ is
continuous in $\dot{s}$ for some $r$, and hence $A(s)f(s)=A(s)A(r)^{-1}A(r)f(s)$

is also continuous in $s$ as well as $f(s)=A(r)^{-1}A(r)f(s)$ . Then (3.36)
shows that $A(t)U(t,s)f(s)=W(t,s)A(s)f(s)$ is continuous in $t,s$ as well
as $U(t,s)f(s)$ . It follows that the right.hand side of (1.2) can be differ-
entiated in the usual way and we have

(3.37) $dx(t)/dt=A(t)U(t,a)x+f(t)+\int_{a}^{l}A(t)U(t,s)f(s)ds$

by virtue of $U(t,t)=I$ and the result of Theorem 4. But as $A(t)^{-1}$ is
bounded, we have

$A(t)^{-1}\int_{a}^{t}A(t)U(t,s)f(s)ds=\int_{a}^{t}A(t)^{-1}A(t)\cdots=\int_{a}^{l}U(t,s)f(s)ds$ .

Tbis shows that $\int^{\ell_{l}}U(t,s)f(s)ds$ belongs to $\mathfrak{D}$ and that



Integration of the equation of evolution in a Banach space. 229

(3.38) $A(t)\int_{a}^{l}U(t,s)f(s)ds=\int_{a}^{i}A(t)U(t,s)f(s)ds$ .

Thus (3.37) shows that $x(l)$ satisfies the differential equation (1.1). It
is clear that $x(a)=x$. The continuity of $dx(t)/dt$ and of $A(t)x(t)$

follows from (3.37) and (3.38), together with the above remarks. Finally,
if $A$ is an operator stated in the theorem, $AA(r)^{-1}$ is bounded by
Lemma 2, so that $Ax(t)=AA(r)^{-1}A(r)A(t)^{-1}A(l)x(t)$ is continuous
with $A(f)x(t)$ .

\S 4. Application to differential operators.

1. As an illustration how our theorems are applied to concrete
problems, let us consider the case in which $A(t)$ is an ordinary differ-
ential operator. Since we do not aim at the generality, we restrict
ourselves to the case of a second order linear differential operator de-
fined on a circle $S$. It is convenient to introduce on $S$ the coordinate
$\xi,$ $-\infty<\xi<+\infty$ , and identify the points $\xi$ and $\xi+2n\pi(n=0,$ $\pm 1$ ,
$\pm 2,\cdots)$ . In what follows all functions of $\xi$ are assumed $l^{}o$ be periodic
with period $ 2\pi$ unless the contrary is expressly stated.

We consider the formal differential operator $T$ given by

(4.1) $T[x]=p(\xi)x^{\prime\prime}+q(\xi)x^{\prime}+r(\xi)x$ , $x=x(\xi)$ ,

where $/meansd/d\xi$ and $p(\xi),$ $q(\xi),$ $r(\xi)$ are real-valued functions with
continuous derivatives of second, first, and zeroth order respectively.
Further we assume that $p(\xi)>0$ . The formal adjoint $T^{*}$ of $T$ is de-
fined by

(4.2) $T^{*}[y]=p(\xi)y^{\prime\prime}+q^{*}(\xi)y^{\prime}+r^{*}(\xi)y$ ,

$q^{*}=2p^{\prime}-q$ , $r^{*}=p^{r/}-q^{\prime}+r$ .
In what follows we also assume that

(4.3) $r(\xi)\leqq 0$ , $r^{*}(\xi)\leqq 0$ ,

which does not affect the generality, for otherwise we have only to
add a negative constant to $r(\xi)$ .

Then the Green function $G_{\lambda}(\xi,\eta)$ for the differential equation $T_{\lambda}[x]$

$=T[x]-\lambda x=0$ (with the periodic boundary conditions) exists if $\lambda>0$.
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To show this, we have only to show that there is no non-trivial
(periodic) solution of $T_{\lambda}[x]=0$ , and this follows from the fact that the
solution of $T_{\lambda}[x]=0$ has neither a positive maximum nor a negative
minimum. Similarly the Green function $G_{\lambda}^{y}\cdot(\xi,\eta)$ for $T_{\lambda}^{\star}[y]=T^{b}[y]-\lambda y$

$---0$ exists for $\lambda>0$ and we have $G_{\lambda}^{\star}(\xi,\eta)=G_{\lambda}(\eta,\xi)$ . The Green func.
tion has the important property

(4.4) $G_{\lambda}(\xi, ’)_{-}>0$ , $\lambda>0$ .

To show this, we note that $G_{(}(\xi, /)$ , as a function of $\xi$ , satisfies the
differential equation $T_{\lambda}[G_{\lambda}]=0$ except at $\xi=\eta+2n\pi$ . It follows as
above that $G_{\backslash }$ has no negative minimum for $\xi\neq\eta+2n\pi$ , and it is
clear by the characteristic singularity

(4.5) $G_{\backslash }^{\prime}(\eta\vdash 0,\eta)-G_{\lambda}^{\prime}(\eta-0,\eta)=-1/p(\eta)$

that $G_{\lambda}$ has no minimum at $\xi=\eta+2n\pi$ too, thus proving (4.4).

We next show that

(4.6) $\int_{0}^{2\kappa}G_{\lambda}(\xi,\eta)d\xi<\lambda 1$ $\int_{0^{)}}^{-K}G_{\lambda}(\xi,\eta)d\eta\leq-\lambda^{-1}$ .

For this purpose we take the formula

$\int_{0}^{2\kappa}(’\grave{1}_{\lambda}[x]y-xT_{\lambda}^{\star}[.v])d\xi=[px^{\prime}y-x(py)^{\prime}\vdash qxy]_{\eta 0}^{\eta- 0}$

and set $x(\xi)=G_{\lambda}(\xi, \eta),$ $y(\xi)=1$ . Then we have by (4.5)

$\int_{0^{\kappa}}^{\prime}\angle[\lambda-r^{*}(\xi)]G_{\lambda}(\xi,\eta)d\xi=1$ ,

and the first inequality of (4.6) follows by $r^{1}(\xi)\leq 0$ . The second in.
equality can be proved by exchanging $T$ and $T^{*}$ .

2. We now introduce a Banach space $\backslash $ )$\backslash ^{\grave{\urcorner}}$ . In the following we
take as $\backslash $)$\backslash ^{\backslash ^{\backslash }}$ one of the complex function spaces $L_{/J}(S)$ , $ 1\leq p<\infty$ , and
$C(S)$ . Let $\mathfrak{D}_{1}$ be the totality of complex.valued functions $x(\xi)$ with
continuous derivative of the second order. Then $\mathfrak{D}_{1}$ is dense in $\mathfrak{V}$ and
the operator $A_{1}$ defined by $A_{1}x=T[x]$ for $x\in \mathfrak{D}_{1}$ is a linear operator in

$\backslash 1\backslash ^{\backslash }$ , and we have the following
THEOREM 6. The clcsure $A$ of $A_{1}$ exists and has property $S$
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(introduced in Definition 1). The domain $\mathfrak{D}(A)$ of $A$ is the totality of
$x\in \mathfrak{B}$ such that $x$ and $x^{\prime}$ are absolutely continuous and $x^{\prime\prime}e\mathfrak{V}$ .

PROOF. If $x\in \mathfrak{D}_{1},$ $(\lambda I-A_{1})x=-T_{\lambda}[x]=y$ , we have

(4.7) $ x(\xi)=\int_{0}^{2_{l}r}G_{\backslash }(\xi,\eta)y(\eta)d\eta$

by the fundamental property of the Green function. Conversely, to
each continuous function $y(\xi),$ $(4.7)$ defines a function $x(\xi)$ belonging
to $\mathfrak{D}_{1}$ and $(\lambda I-A_{1})x=y$ , so that the range of $\lambda I-A_{1}$ is dense in $\mathfrak{V}$ .
Moreover, it is well known that the integral operator $G_{\lambda}$ with the
kernel $G_{\lambda}(\xi,\eta)$ is defined everywhere in $\backslash $ )$\backslash ^{\backslash ^{\backslash }}$ and bounded. Hence $(\lambda I$

$-A_{1})^{-1}$ exists and is a contraction of $G_{\lambda}$ , and it is easily seen that the
closure $A$ of $A_{1}$ exists and $(\lambda I-A)^{-1}=G_{\lambda}$ . Thus $\mathfrak{D}(A)$ is the totality
of $x$ expressed by (4.7) with $y\in \mathfrak{V}$ . It follows easily that $\mathfrak{D}(A)$ is
characterized by the properties stated in the theorem. Since $G_{\lambda}=(\lambda I$

$-- A)^{-1}$ is bounded for $\lambda>0$ , the resolvent set of $A$ contains the posi-
tive real axis. In order to prove that $A$ has property $S$ , it only remains
to show that $||G_{\lambda}||\leqq\lambda^{-1}$ . In the case $\backslash 1\urcorner^{\backslash }=L_{p},$ $ 1<p<\infty$ , this is shown
by the following inequalities: for $x,$ $y$ of (4.7)

$|_{X}(\xi)|\leqq[J_{0^{t}}^{c_{\lambda}(\xi,\eta)d\eta}2]^{p_{p^{- 1}}}|_{-}^{-}\int_{0}^{2r}G_{\lambda}(\xi,\eta)|y(\eta)|^{p}d\eta_{-}^{-}|^{\frac{1}{p}}$ ,

$||x||^{b}=\int_{0}^{2\kappa}|x(\xi)|^{l}’ d\xi\leqq\lambda(p- 1)\int_{0}^{2\kappa}G_{\backslash }(\xi_{7},)|y(\eta)|^{p}d\eta d\xi=\lambda^{-(p- 1)}\lambda^{-1}||y||^{1}’$ ,

where use is made of (4.4) and (4.6). In the case $\mathfrak{V}=L_{1}$ or $C$, the
proof is similar and even simpler.

REMARK 1. Theorem 6 shows, in particular, that the domain $\mathfrak{D}(A)$

is independent of $p(\xi),$ $q(\xi),$ $r(\xi)$ , as long as these functions satisfy the
general conditions stated above.

REMARK 2. If $\backslash Ji=C(S),$ $A$ coincides with $A_{1}$ and $\mathfrak{D}(A)$ with $\mathfrak{D}_{1}$ .
3. With these preparations, we proceed to the consideration of a

formal differential operator

(4.8) $T_{l}[x]=p(\xi,t)x^{\prime\prime}+q(\xi,t)x^{\prime}+\prime\prime(\xi,t)x$

depending on a parameter $t$. For simplicity we assume that $(p,$ $q,$ $r$

are periodic in $\xi$ and) $\partial^{2}p/\partial\xi^{2},$ $\partial q/\partial\xi,$ $r,$ $\partial p/\partial t,$ $\partial q/\partial t,$ $\partial r/\partial t$ all exist and
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are continuous for $-\infty<\xi<+\infty,$ $a\leqq t\leqq b$ , and that $p>0,$ $r\leqq 0$,
$r^{*}=\partial^{\rho}Ap/\partial\xi^{2}-\partial q/\partial\xi+r\leqq 0$.

Then the results obtained above are valid for each $t$. Thus we
can determine from $T_{t}$ a closed linear operator $A(t)$ in $\mathfrak{V}$ for each $t$,
which has property $S$ and has domain $\mathfrak{D}$ independent of $t$, as is seen
from Remark 1 above. The condition $C_{1}$ and the first part of $C_{2}$ are
obviously satisfied. To see if other conditions are also fulfilled, we
note that $A(t)$ can be written as

$A(t)=P(t)D_{\underline{o}}+Q(t)D_{i}+R(t)$ ,

where the operators $D_{1}=d/d\xi,$ $D_{2}=d^{2}/d\xi^{2}$ are assumed to have domain
$\mathfrak{D}$ , and $P(t)$ etc. are multiplicative operators defined by $[P(t)x](\xi)$

$=p(\xi,t)x(\xi)$ etc. It is clear that $D_{2}$ is identical with $A$ of the preced-
ing paragraph for the special case $p(\xi)=1,$ $q(\xi)=r(\xi)=0$ so that $D_{2}$ is
closed. It is easily seen that $D_{1}$ has a closed extension. Thus $D_{2}[A(s)$

$-I]^{-1}$ and $D_{1}[A(s)-I]^{-1}$ are bounded by Lemma 2. Furthermore, it
is easily seen that $P(t),$ $Q(t),$ $R(t)$ are bounded operators, differentiable
in $t$ in the sense of the norm $||||$ , and that $dP(t)/dt$ etc. are continuous
in $t$ in the sense of $||$ $||$ . Noting that

$A(t)[A(s)-I]^{-1}=P(t)D_{2}[A(s)-I]^{-!}$

$+Q(t)D_{1}[A(s)-I]^{-1}+R(t)[A(s)-I]^{-1}$ ,

it follows easily that the rest of $C_{2}$ and $C_{3},$ $C_{4}$ are also satisfied.
Thus Theorems 1, 4, and 5 are applicable; we see that the differ-

ential equation

(4.9) $\frac{\partial x}{\partial t}=p(\xi,t)\frac{\partial^{2}x}{\partial\xi^{2}}+q(\xi, t)\frac{\partial x}{\partial\xi}+r(\xi,t)x+f(\xi,t)$

has a unique solution $x(\xi,t)$ for any initial value $x(\xi)=x(\xi,a)$ belonging
to $\mathfrak{D}$ at least in a generalized sense, provided that $f$ and $\partial^{2}f/\partial\xi^{2}$ are
strongly continuous in $t$ (note that we may take $D_{2}$ instead of $A(r)$ of
Theorem 5). In general it is difficult to decide how far $x(\xi,t)$ satisfies
thc concrete differential equation (4.9). However, the situation is rather
simple if $\mathfrak{V}=C(S)$ , for in this case the existence of the derivative
$dx(t)/dt$ in the strong sense implies that of $\partial x(\xi,t)/\partial t$ in the usual sense,
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and the strong continuity of $x(t)$ and $dx(l)/dt$ implies that $x(\xi,t)$ and
$\partial x(\xi,t)/\partial t$ are continuous in $\xi$ and $t$ simultaneously.

We therefore consider the case $\mathfrak{V}=C(S)$ and assume that the initial
value $x=x(\xi)$ has continuous derivative of second order so that $x\in \mathfrak{D}$ .
Further let $\partial^{2}f/\partial\xi^{2}$ exist and be continuous in $\xi,$ $t$ with $f$ itself. Then
$D_{2}f$ is strongly continuous in $1^{\prime}$, and the hypotheses of Theorem 5 are
fulfilled. It follows that there exists a unique solution of the differential
equation (4.9) in the ordinary sense. Moreover, Theorem 5 shows that
1) $dx(t)/dt$ is strongly continuous in $t$ and that 2) $x(t)\in \mathfrak{D}$ for each $t$

and $D_{1}x(t),$ $D_{2}x(t)$ are strongly continuous in $t$ , for $D_{1}$ and $D_{2}$ satisfy
the condition for the operator $A$ of that theorem. Translating these
properties into ordinary language, we see that 1) $\partial x(\xi, t)/\partial t$ is conti.
nuous in $\xi,$ $t$ and 2) $\partial x(\xi, t)/\partial\xi$ and $\partial^{2}x(\xi, t)/\partial\xi^{2}$ are continuous in $\xi,$ $t$ .
In this way we have proved the following theorem as an application
of our general theory.

THEOREM 7. Let $p(\xi,t),$ $q(\xi,t),$ $r(\xi,t),$ $f(\xi,t)$ be defined for $-\infty<\xi$

$<+\infty,$ $a\leqq t\leqq b$ and periodic in $\xi$ with period L. Let $p,$ $\partial p/\partial\xi,$ $\partial^{2}p/\partial\xi^{2}$,
$q,$ $\partial q/^{\prime}\partial\xi,$

$r,$ $f,$ $\partial^{2}f/\partial\xi^{2},$ $\partial p/\partial t,$ $\partial q/\partial t,$ $\partial r/\partial t$ exist and be continuous in $\xi$

and $t$ simultaneously. If $x(\xi)$ is periodic wilh period $L$ and has conti.
nuous derivative of second order, the differential equation (4.9) has
one and only one periodic solution such that $x(\xi,a.)=x(\xi)$ and $x(\xi, t)$ ,
$\partial x(\xi, t)/\partial\xi,$ $\partial^{2}x(\xi, t)/\partial\xi^{2},$ $\partial x(\xi, t)/dt$ are $continuous_{\backslash }in$ $\xi$ and $t$ simulta-
neously.

4. In this way we see that our general theorems give fairly satis-
factory results when applied to ordinary differential operators. It seems,
however, that matters are not so simple when $A(t)$ is a partial differ.
ential operator. The method stated above may perhaps be used to
show that, under certain general conditions, that $A(t)$ has property $S$

for each $t$. But the characterization of the domain of $A(t)$ is not so
simple as above, at least for the spaces $\mathfrak{V}=L_{1}$ and $C$. Thus we do not
know at present whether the domain of $A(t)$ is independent of $t$ or
not, although it can be shown that this is the case at least for $\mathfrak{V}=L_{2}$.
The writer wishes to discuss these problems elsewhere.

In conclusion the writer wishes to express his hearty thanks to
Professor K. Yosida for his interest in this work and valuable sugges-
tions.

Department of Physics, University of Tokyo
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Note (added in proof). The proof of the continuity of U(t,$ $s) given
at the end of S3.9 was incomplete, since it covers only the case
s $<t$. However, a complete proof can easily be derived directly
from (3.20).
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