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On algebraic families of positive divisors
and their associated Varieties

on a projective Variety.1)

By Teruhisa MATSUSAKA

(Received Jan. 23, 1953)

In spite of their importance, little is known on algebraic families
of positive cycles on a projective Variety, except for the fundamental
results of Chow-v. $d$ . Waerden on associated-forms of positive cycles.2)

In the case of a Curve, a maximal algebraic family of divisors of a given
degree form a complete family. But in the case of higher dimensions
than 1, the situation is slightly different. A maximal algebraic family

of positive divisors of a given degree on a non-singular surface is not
determined uniquely in general, and there is a finite number of maximal
algebraic families of the given degree, the divisors of which are mutually
algebraically equivalent. A non-special linear system of a Curve be-
longs to the complete algebraic family such that every divisor of the
family determines the complete linear system of the same dimension,

which is totally contained in the algebraic family. Now the question
is, whether there exists always such a complete algebraic family on
algebraic Varieties of higher dimensions, or more precisely, how one
can obtain such a complete algebraic family from the given maximal
algebraic family.$2^{\prime}$ ) We shall show that such a family can be obtained
always, by adding to the given algebraic family sufficiently large multi-
ples of the hyperplane sections, when the ambient Variety is non-
singular (th. 2). Moreover, as we shall show, algebraic families thus
obtained generates the Picard Variety of the given Variety, $i$ . $e.$ , when

1) We shall use the terminologies and conventions in A. Weil’s ” Foundations of

Algebraic Geometry “, Amer. Math. Soc. Colloq., vol. 29, 1946 and ‘ Vari\’et\’es Ab\’eliennes

et Courbes Alg\’ebrique ”. Act. Sc. et $Ind.$ , no. 1046.
Numbers and letters in brackets refer to Bibliography at the end of this paper.
2) Cf. [C-W] and [C-2].
$2^{\prime})$ Cf. G. Albanese, “ Intorno ad alcuni concetti $e$ teoremi fondamentali sui sistemi

algebrici di curve d’una superficie algebrica.” Ann. Mat. pura appl. III. $s$ . vol. 24, 1915,
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$q$ is the dimension of the Picard Variety, it consists of $\infty q$ distinct
linear systems. This has a certain contact with the following Severi’s
theorem (translated in our terminology):

On a surface of irregularity $q$ , every arithmetically effective Curves
belongs to a maximal algebraic family consisting of $\infty q$ distinct linear
systems. (cf. [Severi-l])

In order to prove th. 2, we shall show that, on a non.singular pro.
jective Variety, the notion of the virtual arithmetic genus of divisors
is invariant with respect to algebraic equivalence (th. 1) (cf. [Severi-2]).
In the remaining part of this paper, we shall discuss some properties
of associated-Varieties of algebraic families of divisors on a normal
projective Variety.

The writer wishes to express here his deepest appreciation to Pro-
fessors Y. Akizuki and J. Igusa for their interests taken in this work.3)

Let $V^{r}$ be a normal Variety in a projective space defined over a
field $k_{0}$ which we fix as the basic field. All fields we shall consider
will be assumed to contain $k_{0}$ . A linear equivalence of divisors on V
is defined in the usual manner and is denote $by\sim$ . Let $X$ be a positive
V-divisor. Considering the coefficients of the associated-form of $X$ as
a homogeneous coordinate of a Point in a projective space, we call it
the Chow-Point of X. Algebraic equivalence of divisors are also defined
in the usual manner. When a positive integer is given, totalities of
Chow.Points of positive V-divisors of that degree distributes in a bunch
$\sim_{\uparrow}$ in a certain projective space. (cf. $[C\cdot W]$). Let $U$ be a component of
7, and {X} be the totality of V.divisors whose Chow-Points are on
$U$. We shall say that {X} is a maximal algebraic family. Let $U^{\prime}$ be
a Subvariety of $U$ and {X‘} the Subfamily of {X} corresponding to
$U^{\prime}$ . We say that $U^{\prime}$ is the associated.Variety of an algebraic family
{X’}. By the degree of {X‘}, we mean the degree of a certain divisor
$X^{\prime}$ of {X’}. This notion is clearly independent of the choice of $X^{\prime}$ .
When $X$ and $X^{\prime}$ belong to the same maximal algebraic family, $X-X^{\prime}$

is said to be al\caebraically equivalent to zero and $X$ and $X^{\prime}$ are said to
be algebraically equivalent. Denote by $G_{a}(V)$ the group generated by
V.divisors which are algebraically equivalent to zero and $G_{l}(V)$ the

3) Prof. Igusa gave many valuabte advices to the writer reading the manuscript of
this paper, to whom the writer wishes to express his deepest thank.
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group generated by the V-divisors which are linearly equivalent to
zero. Assume that, whenever any divisor $Y$ in $G_{a}(V)$ is given, there
are two divisors $X$ and $X^{\prime}$ in a maximal algebraic family {X} in such
a way that

$Y\sim X-X^{\prime}$ .

Then we say that {X} is a maximal reqular algebraic family. The
existence of such a family has been proved in [M.4].th. 1. We say
that a maximal algebraic family {X} of positive V-divisors is complete,
when it holds $1(X)=l(X^{\prime})$ for any two divisors $X$ and $X^{\prime}$ in {X}.
When a maximal algebraic family of positive divisors {X} is complete,
then any algebraic family of positive V-divisors, the divisors of which
are algebraically equivalent to a divisor in {X}, must be a Subfamily
of {X}. That is, the totality of positive V-divisors which are alge-
braically equivalent to $X$ is a Variety (absolutely irreducible) as a
totality of divisors (cf. th. 2). On a non-singular projective Curve, a
maximal algebraic family of positive divisors is complete when the
degree of it is sufficiently large by the theorem of Riemann-Roch. Let
$U$ be the associated-Variety of an algebraic family of positive V.divisors
{X} and $k$ a field of definition for $U$. Then we say that {X} is
defined over $k$ or $k$ is a field of definition of {X}. Let $X$ be a divisor
in {X} such that its Chow-Point is a generic Point of $U$ over $k$ .
When that is so, $X$ is said to be a generic divisor of {X} over $k$ .

Denote by $L_{s}$ the linear system on V induced by all the positive
divisors of degree $s$ on the ambient projective space of $\nabla$ and by $C_{s}$

a special divisor in $L_{s}$ . A maximal algebraic family {X} of positive
V.divisors is said to be ample when $X-C_{s}\sim Y>0$ for large but fixed
value of $s$ , whenever $X$ is in {X}. Let $X$ be a positive V-divisor,
then we denote by $|X|$ the complete linear system determined by $X$.
We say that $|X|$ is defined over a field $k$ , when $|X|$ contains a rational
divisor over $k$ . When that is so, there is a rational divisor $Z$ over $k$

on $L^{s}\times V(s=l(X)-1)$ such that $|X|$ is the totality of V-divisors of
the form $p_{\gamma_{V}}[(u\times V). Z]=Z(u)$ , which we show in some details in
no. 5, $\backslash .\backslash \urcorner 3$ .

Let $U$ and $W$ be two arbitrary Varieties and $Z$ a Subvariety of
$U\times W$ such that the projection of $Z$ on $U$ is regular. Following A. Weil
(cf. [W-2].ch. I), we say that $Z$ is the graph of the function 9 and
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when $x\times y$ is a Point of $Z$ such that the projection of $Z$ on $U$ is
regular at $x$ , we denote $g(x)=y$ . When $k$ is a common field of defini-
tion for $U,$ $W$ and $Z_{J}$, we say that $g$ is defined over $k$ . $g$ is said to
be the function defined on $U$ with values on $W$. Let $\mathfrak{F}$ be a bunch
on $U\times W$. By proj $u\mathfrak{F}$ , we denote the ” geometric” projection of $\mathfrak{F}$

on $U$.
\S 1.

1. Throughout this and the following S\S , we always assume that
V is non.singular.

LEMMA 1. Let $X$ be a positive V-divisor. There is a positive
integer $m_{0}$ such that for every integer $m\geqq m_{0},$ $|X+C_{m}|$ has no base
Point. The integer $m_{0}$ depends only on the degree of $X$.

PROOF. There is a positive integer such that

$X\sim C_{t}-Y$ , $Y\succ 0$ .
We can find such an integer by the method of projecting Cones (cf.
[ $v$ . $d.$ Waerdenl) and the projecting cone of $X$ has the same order as
X. Hence $t=\deg(X)$ in this case. Let $Q$ be a Point on V One can
choose $Y$ in such a way that every component of it does not contain
$Q$ . Again, applying the method of projective cones, one can find an
integer such that

$Y\sim C_{s}-Z$ , $Z\succ 0$ ,

where $Z$ may be assumed to contain no component containing $Q$ . We
have also $s=\deg(Y)=\deg(C_{t})-\deg(X)=\deg(V)\cdot\deg(X)-\deg(X)$ by
the theorem of B\’ezout. It follows that

$X+C_{s}\sim C_{t}+Z$

and from what we have seen above, $X+C_{s}$ is linearly equivalent to a
positive V-divisor not going through $Q$ . Since $Q$ was the preassigned
Point, this proves our lemma when we put $m_{0}=s$, together with the
relation $s=\deg(V)\cdot\deg(X)-\deg(X)$ .

Now we shall prove the following lemma, which is trivial in the
classical case by the theorem of Bertini.
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LEMMA 2. Let $X$ be a V-divisor such that $|X-C_{1}|$ exists and that
$|X|$ has no base Point. Then a generic divisor of $|X+\cdot C_{1}|$ is a non-
singular Variety. (cf. [Z.1] and [A])

PROOF. Let $K$ be an algebraically closed field of definition for V
and $|X|,$ $V$ a representative of V and $(x)=(x_{0}, x_{1},\cdots, x_{N})$ a generic point
of $V$ over $K$. By our assumption, $|X|$ contains partially $C_{1}$ and hence,
it cannot be composite with a pencil. This proves that a generic
divisor of $|X|$ over $K$ is a Variety by the generalized theorem of
Bertini (cf. [Z.2] and [M-1]). Therefore, there is a divisor $X_{0}$ in $|X|$

which is a Variety defined over $K$.
Let $\varphi_{0}=1,$

$\varphi_{1},\cdots,$ $\varphi_{m}$ be a base of the module $L(X_{0})$, consisting of
functions, which are multiples of $X_{0}$ ; we may assume that they are
all defined over $K$ (cf. [W-1], th. 10, ch. VIII). Put $(\varphi_{i})=X_{i}-X_{0}$ . Then
by what we have observed above, we may assume that $X_{*}$. is a Variety
and hence

$(\varphi_{i})_{0}=X_{i}$ , $(\varphi_{i})_{\infty}=X_{0}$ $i=1,2,\cdots,$ $m$ .

We can find a set of functions $\{\tau_{m+1}^{y},\cdots, \varphi_{n}\}$ in $L(X_{0})$ all defined over
$K$ such that $(\varphi_{m+i})=X_{m+i}$ is a Variety, $(\varphi_{n+i})_{0}=X_{m+i},$ $(\varphi_{m+i})_{\infty}=X_{0}$ and
that $\wedge X_{i}=\aleph n$

$i\Leftrightarrow 0$

Consider the linear system generated by the set of functions
$\{\varphi_{i^{\mathcal{T}}j}\},$ $0\leq i\leq n,$ $0\leq j\leq N$ (assume that $x_{0}=1$ ) where $\tau_{j}$ is the func-
tion defined by $x_{j}=\tau_{j}(x)$ . We may consider that $(\varphi_{i^{\tau}j})_{0}=(\varphi_{i})_{0}+(\tau_{j})_{0}$,
$(\varphi_{i}\tau_{j})_{\infty}=(\varphi_{i})_{\infty}+(\tau_{j})_{\infty}$ as $X_{j}$ is a Variety and $|X-C_{1}|$ exists. Put
$v_{i}=\varphi_{i}(x)$ and denote by $V^{\prime}$ the locus of $(v_{i}x_{j})$ over K. $V^{\prime}$ determines a
projective Variety $V^{\prime}$ defined over $K$ such that $V^{\prime}$ is a representive of
V’. It is clear that V and $V^{\prime}$ are birationally equivalent over $K$ by the
correspondence induced by $(x)_{\leftarrow}^{\rightarrow}(v_{i}x_{j})$ . We shall show that the bira-
tional correspondence is everywhere biregular. It is regular at every
Point on $V^{\prime}$ , which can be easily verified from the structure of $V^{\prime}$ .
Let $Q$ be a Point on V such that it has a representative $Q_{\alpha}=(a)$ on
a representative $V_{\alpha}$ of V. A generic Point of $V_{\alpha}$ may be assumed to
be $P_{\alpha}=(1/x_{\alpha},\cdots, x_{i}/x_{\alpha},\cdots, x_{N}/x_{\alpha})$ . By the choice of $X_{i}$ , there is an integer
$\beta$ such that $Q\not\in X_{\beta}$ . Let $V_{\alpha\beta}$ be a representative of $V^{\prime}$ , whose generic
point over $K$ is $(v_{i}x_{j}/v_{\beta}x_{\alpha})$ . We have
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$(v_{t^{X}j/v_{\beta}x_{\alpha})=(v_{i}x_{j})-(v,x_{\alpha})=(v_{i})-(v,,)+(x_{j})-(x_{\alpha})=X_{i}-X_{\beta}+(x_{j}/x_{\alpha})}$

and hence ( $/-\dashv-(x_{j}/x_{a})_{\infty}.$ $x_{j/^{\prime}}x_{\alpha}$ is in the specialization $\cdot$

ring of $Q_{\omega}$ in $K(P_{a})$ and $Q\not\in X_{i}$ , that is, $Q\not\in(v_{i}x_{j}/v_{t}, x_{a})$ . Since this
holds for every choice of $i,$ $i$, this proves that the birational corres.
pondence is regular at $Q$ on V, $i$ . $e,$ , it is everywhere biregular.

Let $(\lambda)=(\lambda_{iJ})$ be a set of independent variables over $K(P_{\alpha})$ and

consider the divisor $(\searrow^{il}\neg i^{\Lambda}0\sum_{J- 0}^{n}\lambda_{jj}v_{i}x_{j})_{0}$ on V This is transformed to a
generic hyperplane section of V’ over $K$. But as we have seen above,
V’ has no singular Point since it is in everywhere biregular birational
correspondence with V (cf. [W-1], th. 17, ch. IV). Therefore a generic
hyperplane section has no singular Point (cf. [N]). Hence the divisor
considered is a Variety having no singular Point. Thus, we have
proved that the complete linear system $|X+C_{1}|$ contains a non-singular
Variety. Now our lemma follows from the following general lemma.

LEMMA 3. Let 1’ be a non-singular Curve and $X$ a divisor on
the product $l^{7}\times V$, such that every component of $X$ has the projection
1’ on I‘. Let $K$ be a common ficld of definition for $I$

’ and V over
which $X$ is rational, $u$ a generic Point of 1’ over $K$ and $v$ a Point of
1’. When $pr’[(v\times V)\cdot X]=X(v)$ is a non-singnlar Variety, $X(u)$ is
also a non.singular Variely.

PROOF. Since every component of $X$ has the projection 1 on $I’$ ,

the interscction-product $(v\times V)\cdot X$ is defined on / $\times V$ and is of the
form $v\times X(v)$ by [W-1], prop. 16, ch. VII. When $v$ is a generic Point
of I‘ over $K$, we have nothing to prove. Hence we may assume that
$v$ is algebraic over K. $X(v)$ is a specialization of $X(u)$ over $u\rightarrow v$

with reference to $K$ (cf. [M-2] and [S]) and since $X(v)$ is a Variety,
$X(u)$ must be a Variety.

Now let $x$ be a multiple Point on $X(u)$ , and extend the speciali-
zation $(u,$ $X(u))\rightarrow(v, X(v))$ to a spccialization

$(u,$ $X(u),$ $x)\rightarrow(v, X(v),$ $x^{\prime}$ )

over $K$. It is clear that $x^{\prime}$ is a Point of $X(v)$ . Let $L^{N}/$ be the dual
projective space of the ambient space $L^{N}$ of $V^{r}$ and $ W=L^{\prime}\times$ $\times L^{\prime}$

be the product of $r-1$ factors equal to $L$ ‘. The hyperplanes passing
through $x$ are represented in $L^{\prime}$ as the Points of the hyperplane $H(x)$
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in the usual manner. Then the linear Varieties $L^{N}r^{1}1$ passing through
$x$ are represented as the Points on the product $ H(x)\times\cdot$ . . $\times H(x)$ on $W$.

$-\sim_{r\overline{-1}}$
.

In the same way the linear Varieties of dimension $N-r+1$ passing
through $x^{\prime}$ are represented as the Points on

$H(\backslash \frac{x^{\prime})\times}{r}-\underline{\prime\prec H(}x^{\prime})$
. More-

over, $ H(x^{\prime})\times\cdot$ . $\times H(x^{\prime})$ is a specialization of $H(x)\times\cdots\times H(x)$ over $K$.
This proves that the linear Variety of dimension $N-r+1$ passing
through $x^{\prime}$ is a specialization of a certain linear Variety of dimension
$N-r+1$ passing through $x$ over $x\rightarrow x^{\prime}$ with respect to $K$.

Let $L^{N}r1$ be any linear Variety passing through $x$ such that $x$ is
a proper intersection of $L^{N- r}$ 1 and $X(u)$ on $L^{N}$. Then, since $x$ is
multiple on $X(u)$ , we have

$i(X(u)\cdot L^{N}r^{\iota}1x$ : $L^{N})>2$

by [ $W\cdot 11$ , th. 5, ch. V. One can find $L^{N- r^{L}1}$ in such a way that
$X(u)\cdot L^{N}$ is defined on $L^{N}$. In fact, let $(\xi_{0},\cdots, \xi_{N})$ be a coordinate of
$x$ on some $r_{-}^{s}pr_{C}\backslash sentativ_{C^{1}}\cdot V$ of $V$ in $L^{N}$ and $w_{1}$ , , $w_{v}$ be $N$ indepen-
dent variables over $K(u, \xi)$ . Assume that $\xi_{0}=1$ for simplicity. Every
hyperplane in $L^{N}$ passing through $(\xi)$ is a specialization of the hyper-
plane defined by

$w_{1}X_{1}+$ $\vdash\iota v_{N}X_{N}=u_{1}\xi_{1}\vdash\cdots-\dagger\sim w_{N}\xi_{N}$ .

Let $U$ be any Variety defined over $K(u, v, \xi)$ , containing $(\xi)$ .
When that hyperplane contains $U$ , the one defined by

$X_{i}=-\xi_{i}$ $(i=1,2, \cdot\cdot, N)$

contains $U$ as it is a specialization of the former over $K$. But this is
impossible when $dim$ . $U>1$ . This proves that a generic Point of $H(x)$

over $K(u, x)$ determines on $L^{N}$ a hyperplane $L_{1}$ , passing through $x$

such that $X(u)\cdot L_{1}$ is defined on $L^{N}$. Let $ L_{1},\cdot$ . , $L_{r- 1}$ be hyperplanes
on $L^{N}$ corresponding to $r-1$ independent generic Points of $H(x)$ over
$K(u, x)$ . ’Ihen the above arguments show that $X(u)\cdot L_{1}\cdots L_{r-1}$ is de-
fined on $L^{N}$ . The same holds for $X(v)$ and $x^{\prime}$ . Let $L^{\{\cdot N^{-\prime\cdot t}1}$ be a
linear Variety passing through $x^{\prime}$ , corresponding to a generic Point of
$ H(x^{\prime})\times\cdot$ $\times H(x^{\prime})$ over $K(v, x^{\prime})$ . Thcn $L^{*}\cdot X(v)$ is defined on $L^{N}$ and

$i$ $(X(v)\cdot L^{*}, x^{\prime} : L^{N})=1$
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since $X(v)$ is non.singular (cf. [W-l]-th. 5, ch, V). As we have re-
marked above, $L^{*}$ is a specialization of a certain $L^{N- r}$ 1 passing through
$x$ over (X $(u),$ $x$ ) $\rightarrow(X(v), x^{\prime})$ with reference to $K$. When that is so,
$X(u)\cdot L^{N-r+1}$ is defined. Moreover, $X(v)\cdot L^{*}$ is the uniquely determined
specialization of $X(u)\cdot L^{N-r\dashv 1}$ over (X $(u),$ $x,$ $L^{N-r}$ ‘ $1$ ) $\rightarrow(X(v),$ $x^{\prime},$ $L^{*}$ )
with reference to $K$ by $[S]\cdot th$ . $2$ , ch. VI and $[M]\cdot th$ . $2$ . This proves
that

$i(X(u)\cdot L^{N-r\}1}, x:L^{N})=1$

This is a contradiction and hence $x$ must be simple on $X(u)$ . $q.e.d$ .

COROLLARY to LEMMA 3. Let $X$ be a positive V-divisor. Then,

there is a positive integer $m_{0}$ such that for every integer $m\geqq m_{0}$,
$|X+C_{m}|$ exists, and a generic divisor of it over a common field of de-
finition for V and $|X+C_{m}|$ is a non-singular Variety.

Now we shall make the following remark. In the proof of lemma
3, we have applied to V an everywhere biregular birational transform-
ation, transforming V to a non-singular Variety V’ and transforming

a certain complete linear system on V to the complete linear system
on V’ determined by the hyperplane section $C_{1}^{\prime}$ of it. Such a birational
transformation always exists for a given complete linear system on V,

which transforms it to the complete linear system determined by the
hyperplane sections, wherever it is sufficiently ample by virtue of
lemmas 1 and 2. Now given a Variety $W$ on V and a sufficiently
ample complete linear system $|X|$ on V Let $X$ be a generic divisor
of $|X|$ over a common field of definition for V, $W$ and $|X_{1}^{1}$ . Then
the above arguments show that $X\cdot W$ is defined on V by [W-l]-th. 1
ch. V and [M-1], and is a Variety. Therefore we have

LEMMA 4. Let $Y$ be a V-cycle and $|X|$ a sufficiently ample com-
plete linear system on V. Let $X$ be a generic divisor of $|X|$ over a
common field of definition for V and $|X|$ over which $Y$ is rational.
When $Y=\sum a_{i}W_{i}$ is the reduced expression for $Y,$ $W_{i}\cdot X$ is defined
on $V$, is a Varitey and $\sum a_{i}W_{i}\cdot X$ is the reduced expression for a
X-cycle $Y\cdot X$.

2. We are now in position to prove the invariance of the notion
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of virtual arithmetic genus of divisors on a non-singular projective
Variety with respect to algebraic equivalence. For the definition of
the virtual arithmetic genus of cycles, see [Z-3]. Denote by $\{A\}$ a
maximal regular algebraic family of positive V-divisors, the existence
of which is proved in [M.4].th. 1.

THEOREM 1. Let $X$ and $X^{\prime}$ be two V-divisors such that they are
algebraically equivalent to each other. Then the virtual arithmetic
genus of $X$ and $X^{\prime}$ are the same.

PROOF. This theorem is certainly true for the divisors on non-
singular projective Curve. We proceed by induction on the dimension
of the ambient Variety. Hence we assume that the theorem is proved
already for non-singular projective Varieties of dimension $\leq r-1$ . The
virtual arithmetic genus must satisfy the modular property

$p_{a}(D^{r-1}+C_{m})=p_{a}(D)+p_{a}(C_{m})+p_{a}(D\cdot C_{m})$

whenever $D\cdot C_{m}$ is defined by [Z-3], part III. Therefore, by our induc-
tion assumption, we may assume that $X$ and $X^{\prime}$ are both positive V-
divisors. (cf. [Z-4], Part III). Moreover, we may assume that $X$ and
$X^{\prime}$ belong to one and the same maximal algebraic family of positive
V.divisors {X}.

Let $K$ be a common field of definition for V, $\{A\}$ and {X} over
which $X$ and $X^{\prime}$ are rational. By lemma 2, both $|X+C_{s}|$ and $|X^{\prime}+C_{s}|$

contain non.singular Varieties for sufficiently large $s$, which we
denote by $Y$ and $Y^{\prime}$ . Let $A$ and $\overline{X}$ be independent generic divisors
of $\{A\}$ and {X} over $K$ and $\{C_{s}+\overline{X}+A\}$ be a maximal algebraic
family of positive V-divisors containing $C_{s}+\overline{X}+A$ as its divisor. It
can be easily seen that it is also a regular family, and is defined over
$\overline{K.}$ Moreover, it contains $C_{s}+X+A$ and $C_{s}+X‘+A$ as its divisors
and they are linearly equivalent to generic divisors $Z,$ $Z^{\prime}$ of it over
$\overline{K}$ which can be easily verified from the structure of the Picard Variety
of V (cf. [M-4], \S 4). Therefore

$C_{s}+X+A\sim Z$ , $C_{s}+X^{\prime}+A\sim Z^{\prime}$ .
Since $Z$ and $Z$ ‘ are generic specializations of each other over $\overline{K,}$ we
have
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$p_{l}(Z)=p_{a}(Z^{\prime})$ .

This shows that $p_{a}(Y+A)--p_{\ell}(Y^{\prime}\rightarrow|A)$ . By lemma 2, $A$ may be as.
sumed to bc non-singular, and both $|Y-\vdash A|,$ $|Y^{\prime}\vdash A|$ contain non-
singular Varicties $W$ and $W$ ‘, since $\{A\perp C_{\iota}\}$ is regular for every $n$

as long as $\{A\}$ is regular. Then $p_{l}(W)--p_{(\ell}(Y\sim\vdash A)--p_{a}(Y^{\prime}+A)$

$p_{l}(W^{\prime})$ by $|Z\cdot 4|$ , part 1II. Moreover, we may assume that there is
an $evc\cdot rywh_{(}\cdot re$ biregular birational correspondence $T$ between $V$ and
a non.singular $\overline{V}$ such that $|A|$ is transformed to the complete linear
system on $V$ formed by a hyperplane sections of it by the remark at
the end of no. 1. Since $V$ is $non\cdot singular$ and $T$ is everywhere bire-
gular, $p_{l}(W)-p_{l}(r1^{1}(W)),$ $p_{l}(W^{\prime})-p_{ll}(l^{7}(W^{\prime}))$ by $|$ M-Zl-th. 2 and
$|W- 1|\cdot th$ . 17, ch. 1V. Moreovcr, it holds $T(W)\sim T(Y)\vdash T(A)$,
$T(W^{\prime})\sim 7^{\tau}(Y^{\prime})\vdash T(A)$ by $|$ W-l $|- th$ . $7$ , VIII. This implies that $p_{a}(T$

$(Y)- IT(A))-p_{p}(T(W)),$ $p_{a}(z^{1}(W^{\prime}))-p_{tl}(T(Y^{\prime})\}T(A))$ by [Z-3],

part III. Now replacing $T(A)$ by a generic $h$ ] $\backslash $ section $(_{\lrcorner^{\prime}}-$ of
$\overline{\nabla}$ over a common field of definition for $V,$ $T,$ $7^{\tau}(Y)$ and $T(Y^{\prime})$ con-
taining $\overline{K}$, we have

$p_{tl}(T(Y)+T(A))\rightarrow p_{r\ell}(T(Y)\dashv\overline{(_{\lrcorner^{\prime}}})$

$-p_{l}(I^{1}(Y))\vdash p_{a}((J^{\prime})+p_{a}-(T(Y)\cdot\overline{C})$ ,

$p_{a}(T(Y^{\prime})$ }- $7^{\tau}(A))^{:}p_{a}(T(Y^{\prime})-\dagger \overline{(_{\lrcorner}})$

- $p_{\iota l}(T(Y^{\prime}))\perp p_{l}(\overline{C})+p_{l}(T(Y^{\prime})\cdot\overline{C^{\prime}})$ .
Since $Y$ and $Y^{\prime}$ are algebraically equivalent to each other, $T(Y)$ ,
$T$ $(Y$ ‘

$)$ are also algebraically equivalent to each other. Hence $T(Y)\cdot\overline{C}$

and $T(Y^{\prime})\cdot C$ are also algebraically equivalent to each other. We have
$p_{a}(T(Y)\cdot\overline{(_{\lrcorner}})-- p_{l}(T(Y^{\prime})\cdot\overline{C})$ by our induction assumption and hence
$p_{a}(T(Y))-- p_{a}(T(Y ‘))$ . Since $Y$ and $Y$ ‘ are non.singular, and $T$ is
everywhere biregular, we have $p_{a}(Y)=p_{a}(Y^{\prime})$ by [W. 11-cor. 4, th. 17,
ch. IV and [ $M- Z|- th$ . $2$ . This shows that $p_{a}(C_{\backslash }+x)=p_{a}(C_{s}+X^{\prime})$ and
from the modular prop( $\backslash rty$ of the arithmetic genus,

$p_{a}(C_{s})\dashv p_{\gamma\ell}(X)+p_{a}(X\cdot C_{i})=p(l(C_{s})-\{p_{a}(X^{\prime})+p_{ll}(C_{s}\cdot X^{\prime})$
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whenever $C_{s}$ is generic over $K$. Since $C_{s}$ is non-singular by [N], and
$X\cdot C_{s},$ $X^{\prime}\cdot C_{s}$ are algebraically equivalent to each other, $p_{a}(X\cdot C_{s})$

$=p_{a}(X^{\prime}\cdot C_{s})$ by our induction assumption. This proves our theorem.

\S 2.

LEMMA 5. Let $U$ be a non-singular abstract Variety and $W$ be a
non-singular proiective Variety; let $Z$ be a positive $U\times W$-cycle. There
is a frontier $\sim_{\forall}$, on $U$ such that, the fact that a Point $x$ on $U$ is not
contained in any component $()f\sim_{V}l$ , is the necessary and sufficient $con$ .
dition for $Z\cdot(x+W)$ to be defined.

PROOF. We may assume that $Z$ is a Variety and reduce this
lemma to the case when $Z$ is the graph of the function. Let $K$ be a
common field of definition for $U,$ $W$ and $Z$ and $x^{\}^{\prime}}$ the Chow-Point of
$Z(x)$ defined by $Z(x\times W)=x\times Z(x)$ . $Z(x)$ is rational over $K(x)$ and
hence $x^{k}$ is rational over it. Therefore, $x^{k}$ has the Locus $U$ ’ over $K$

and $g(x)=x^{\psi_{\backslash }}$ is the function defined on $U$ with values on $U^{*}$ . Let
$x^{\prime}$ be a Point on $U$ at which $g$ is defined. Then $x^{*}$ has the uniquely
determined specialization $x^{*/}$ over $x\rightarrow x^{t}$ with reference to $K$ (cf.
[W-2]-no. 1, ch. I). This shows that $Z\cdot(x^{\prime}\times W)$ is defined. Assume
conversely that $ Z\cdot(x^{\prime}\times W)=x^{\prime}\times Z(x^{\prime}\rangle$ is defined, then $Z(x^{\prime})$ is the
uniquely determined specialization of $Z(x)$ over $x\rightarrow x^{\prime}$ with reference
to $K$ by [M-2] prop. 2., $i$ . $e.,$

$x^{*}$ has the uniquely determined speciali-
zation $x^{*/}$ over $x\rightarrow x^{t}$ with reference to $K$. When that is so, if $\Omega$ is
the graph of $g$

$(x^{\prime}\times U^{*})\leftrightarrow\Omega$

reduces to a component $x^{\prime}\times x^{*/}$ . As $U$ is non-singular, the projection
of $\Omega$ on $U$ is regular at $x^{\prime}$ , by the main theorem of birational trans-
formations (cf. [Z-4]main th.) and $g$ is defined at $x^{\prime}$ . Thus, the fact
that $Z\cdot(x^{\prime}\times W)$ is defined and the fact that $g$ is defined at $x^{\prime}$ are
equivalent. Hence we may assume that $Z$ is the graph of the function
and this case is reduced to the case when $Z$ is the graph of the
numerical function, returning to the definitions of function (cf. $[W- 2]-$

no. 1, ch. I). Then our lemma follows from [W-l]-cor. 2, th. 1, ch.
VIII.
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LEMMA 6. Let {X} be a regular maximal algebraic family of
positive $V\cdot divisors$. There is an integer $m_{0}$ such that for every integer
$m\geqq m_{0}$ we have

$l(X+C_{m})=l(X^{\prime}+C_{m})$

for every $X,$ $X^{\prime}$ in {X}.

PROOF. Let $K$ be a common field of definition for $V^{r}$, the Picard
Variety $P$ of V and for {X} and $X$ a generic divisor of it over $K$.
Let $x$ be the Chow.Point of $X$ and $C_{n}$ a generic divisor of $L_{n}$ over
$K(x)$ .

Let $W$ be the associated-Variety of {X}. We shall show that,
there is a frontier $\sim_{\uparrow n}$ on $W$ algebraic over $K$ for the given integer $n$

such that
1 $(C_{n}+X)=l(C_{n}+X^{\prime})$

when the Chow.Point of $X^{\prime}$ is on $W-\mathfrak{F}_{n}$ , and

1 $(C_{n}+X)<l(C_{u}+X^{\prime})$

otherwise. There is a finite number of maximal algebraic families of
positive V-divisors of the same degree as {X}, whose divisors are
mutually algebraically equivalent. Denote the associated.Variety of
them by $W^{\prime},$ $ W^{t/},\cdots$ . Ihey are clearly defined over $\overline{K}$, and $W\leftrightarrow W^{\prime}$ ,
$ W-W^{\prime\prime},\cdots$ are algebraic over $K$. Put $\mathfrak{F}^{\prime}=(W-W^{\prime})\cup(W\sim W^{r/})\cdots$ .
Let $X_{0}$ be a fixed rational divisor of {X} over $\overline{K}$ and $\xi$ the class of
$X-X_{0}$ on $P$. We may assume that $\xi$ is rational over $X(x)$ by $[M- 4]-$

th. 3 and when that is so, there is a function $g$ defined on $W$ with
values on $P$ such that $ g(x)=\xi$ . Let $Z$ be the graph of $g$, i. e., the
Locus of $\xi\times x$ over $\overline{K}$ . By [M.4]-prop. 10, and its corollary, $Z(\xi)=$

$p_{\gamma_{W}}[Z\cdot(\xi+L)]$ is the associated-Variety of $|X|$ , where $L$ is the ambient
projective space of $W$. There is a bunch $\overline{\Psi}$ algebraic over $K$ on $P$

such that
$(\xi^{\prime}\times L)\cdot Z=\xi^{\prime}\times Z(\xi^{\prime})$

is defined when $\xi^{\prime}$ is on $P-\overline{\Psi}$ and is not defined when $\xi^{\prime}$ is on some
component of $\overline{\Psi}$ by lemma 5. Put

$\mathfrak{F}^{\prime\prime}=proj_{L}[(\overline{\Psi}\times L)\leftrightarrow Z]$ ,

$\mathfrak{F}=\mathfrak{F}^{\prime}\rightarrow \mathfrak{F}^{\prime\prime}$
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We shall prove that when $x^{\prime}$ is on $W-\mathfrak{F}$ , the corresponding divisor
$X^{\prime}$ is such that $l(X^{\prime})=l(X)$ and when $x^{\prime}$ is on $\mathfrak{F},$ $l(X)<l(X$ ‘

$)$ .
Let $T(X)$ and $T(X^{\prime})$ be associated.Varieties of $|X|$ and $|X$ ‘

$|$ . We
have $Z(\xi)=T(X)$ by [M.4]-cor., prop. 10. Let (X’, $T(X)^{\prime})$ be a
specialization of (X, $T(X)$ ) over $\overline{K}$ on ambient projective spaces.
Since specializations of divisors of functions are also divisors of func-
tions (cf. $[M\cdot 4]$ -lemma 3 and $[W\cdot 2]\cdot lemma10$) every component of
$T(X)^{\prime}$ is contained in $T(X^{\prime})$ . As $x^{\prime}$ is not on $\mathfrak{F}^{\prime\prime}$ , and as $(P\times x^{\prime})\leftrightarrow Z$

reduces to a component $\xi^{\prime}\times x^{\prime}$ by [M.4].prop. 10, $\xi^{\prime}$ is not on the
frontier $\overline{\Psi}$ and $\xi^{\prime}$ is the class of $X^{\prime}-X_{0}$ on $P$ by [M-4] prop. 10 and
th. 1. By the definition of $\overline{\Psi}$ ,

$(\xi^{\prime}\times L)\cdot Z=\xi^{\prime}\times Z(\xi^{\prime})$

is defined and $Z(\xi^{\prime})$ is the uniquely determined specialization of $Z(\xi)$

over $\xi\rightarrow\xi^{\prime}$ , that is, over $x\rightarrow x^{\prime}$ with reference to $\overline{K}$ by [M.2]-th. 2 and
$[S]- th$ . $2$ , ch. VI. Therefore $Z(\xi^{\prime})=T(X)^{\prime}$ and from the property of
$Z,$ $W\leftrightarrow T(X^{\prime})$ and $T(X)$ ‘ coincide from the point set theoretical point
of view. (cf. [M-4].prop. 10 and its corollary). There is a certain $W^{(j)}$

such that $T(X^{\prime})$ is the Subvariety of it. Then $x^{\prime}$ is in $W\leftrightarrow W^{(j)}$ and
so $W^{(j)}=W$ as $x^{\prime}\not\in\sim(\eta^{\prime}$ . This proves that $T(X^{\prime})$ is a component of
$T(X)^{\prime}$ and so $\dim T(X^{\prime})=\dim T(X)^{\prime}=\dim T(X)$ . Therefore 1 $(X)=$
$l(X^{\prime})$ .

Assume that $x^{\prime}$ is on $\mathfrak{F}^{\prime}$ and assume further, that it is a generic
Point of its component $\overline{W}$ over $\overline{K}$. There is a certain $W^{ti)}$ such that
$\overline{W}$ is a component of $W\leftrightarrow W^{(t)}$ . As we have seen above, $T(X)^{\prime}$ is
contained in $T$ $(X$ ‘

$)$ . Assume that $\dim T(X)^{\prime}=\dim T(X^{\prime})$ then, there
is a positive integer $\alpha$ such that $T(X)^{\prime}=\alpha\cdot T(X^{\prime})$ . Since $T(X)^{\prime}$ is
on $W,$ $T(X^{\prime})$ is on $W$. Let $x_{i}$ be a generic Point of $W^{(i)}$ over $\overline{K}$,
corresponding to $X_{i}$ . Since {X} is regular, there is a divisor $X_{i}^{\prime}$ in
{X} such that $X_{i}-X_{0}\sim X_{i}^{\prime}-X_{0},$ $i$ . $e.,$ $X_{i}\sim X_{i}^{\prime}$ by [M-4]-th. 1. Hence
$l(X_{i})\geqq l(X)$ . As $\dim T(X)=\dim T(X)=\dim T(X^{\prime})$ , we have $l(X)$

$=l(X^{\prime})$ , and as $X^{\prime}$ is a specialization of $X_{i}$ over $\overline{K},$ $l(X_{i})\leq l(X^{\prime})=$

$l(X)$ . This proves that $1(X)=l(X_{i})=l(X_{i}^{\prime})$ . But when that is so,
we can easily see that $|X_{i}^{\prime}|=|X_{i}|$ is totally contained in {X}, and this
shows that $W\succ W^{(j)}$ . Therefore we must have $l(X^{\prime})>l(X)$ .

Assume that $x^{\prime}$ is on $\mathfrak{F}^{\prime\prime}$ . Then $\xi^{\prime}$ is on $\overline{\Psi}$ and hence
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$(\xi^{\prime}\times L)\rightarrow Z$

has a component $\xi^{\prime}\times\overline{W}$ having the greater dimension than $\xi\times Z(\xi)$

$=\xi\times T(X)$ . From the property of $Z$ (cf. [M-4]-prop. 10 and its corol.

lary), every divisor whose Chow.Point is on $\overline{W}$ is mutually linearly

equivalent. Therefore, $\overline{W}$ is the Subvariety of $T(X^{\prime})i$ . $e.,$ $l(X^{\prime})>$

$1(X)$ .
Now we shall prove the following lemma, known as a lemma of

Castelnuovo in the classical case of algebraic surfaces. Let $D$ be a
positive divisor on V, rational over a field $k$ and $C=C_{1}$ be a generic
divisor of $L_{1}$ over $k$ . Then for sufficiently large $h,$ $|D+hC|$ induces
on $C$ a complete linear system. For

$\dim(Tr\ell.|D+hC|)=(-- 1)^{r}\{p_{a}(V)+p_{a}(-D-hC)-p_{a}(V)$

$-p_{a}(-D-(h-1)C)\}-1=(-1)^{r}\{p_{a}(-D-hC)$

$-p_{tp}(-D-(h-1)C)\}-1$

when $h$ is sufficiently large by Zariski’s theorem (cf. $\lfloor Z\cdot 3]- th$ . $5$ ). More.
over, when $h$ is sufficiently large, we have

$\dim|D\cdot C+hC^{2}|=(-1)^{r-1}\{p_{r/}(C)+P_{a}(-D\cdot C-hC-))\}-1$

by the same theorem. But from the modular property of the arithmetic
genus, we have

$p_{a}(-D\cdot C-hC^{2})=p_{a}(-D-(h-1)C)-p_{a}(C)-p_{a}(-D-hC)$

and hence

$\dim|D\cdot C+hC^{2}|=(-1)^{r-1}\{p_{a}(D-(h-1)C)-p_{a}(-D-hC)\}-1$ .

This proves our assertion.
We complete our proof with induction on $r$ . Assume that our

lemma is proved already for non.singular projective Varieties of di-
mensions less than $r$ . Let $C$ be a generic divisor of $L_{1}$ over $K(x)$ and
$h_{0}$ a positive integer such that $|X+hC|$ induces on $C$ a complete linear
system when $h>h_{0}$ and that every divisor in a maximal algebraic
family of C-divisors containing $X\cdot C$ has also the property enunciated
in our lemma, when $h>h_{0}$ . Let $\sim|\eta_{h}$ be the bunch on $W$ already
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defined and $x^{\prime}$ be a Point on $W_{l\uparrow h}^{\sim}-$ corresponding to $X^{\prime}$ such that
$X^{\prime}\cdot C$ is defined. We have

$\dim(Tr’|X+(h+1)C|)=\dim(|X+(h+1)C|)-\dim(|X+hC|)$

$\dim(Tr_{f}\cdot|X^{\prime}+(h+1)C|)=\dim(|X‘+(h+1)C|$
$,$

$-\dim(|X^{\prime}+hC|)$

By our choice of $h$ , we have dinl $(Tr,.|X+(h+1)C|)\geqq\dim(Tr_{C}|X^{\prime}+$

$(h-\vdash 1)C|)$ and as $x^{\prime}\not\in W_{1}^{\sim}-\uparrow_{h}$ , it holds

$\dim|X+hC|=\dim|X^{\prime}+hC|$

Therefore, $\dim|X\dashv(h+1)C|>\dim|X^{\prime}+(h\}1)C|$ . This proves that
it must hold the following equality

$\dim|X\dashv(h\vdash 1)C|=\dim|X^{\prime}+(h+1)C|$

Repeating this, we conclude that

$\dim|X+hC|=\dim|X_{\urcorner}^{\prime}- hC|$

for any $h^{-}\searrow h_{0}$ whenever $x^{\prime}\in W-\sim\}_{lr}^{\neg}$ .
Let $\sim/V_{h^{--}}\cup U_{i}$ and $x_{i}$ be a generic Point of $U_{i}$ over $\overline{K}$, corresponding

to $X_{i}$ . One can find a positive integer $h_{1}>h_{j}$ such that for integers
$t_{-}^{-}\geq h_{1}$ we have

1 $(C_{t}+X)=(-1)^{r}\{p_{a}(V)+p_{\subset\ell}(-C_{l}-X)\}$

1 $(C_{t}-\vdash X_{i})--(-1)^{r}\{p_{a}(V)-\vdash p_{a}(-C_{t}-X_{i})\}$

by Zariski’s theorem. By th. 1, we get 1 $(C_{l}+X)=l(C_{l}+X_{i})$ . When
the Chow-Point of $X^{\prime}$ is on $W_{(}^{\sim}-\tau_{hl}$

1 $(C_{l}\perp X)---- l(C_{t}+X^{\prime})=l(C_{t}+X_{i})$ .

This shows that the frontier $\sim_{Y_{h_{1}}}l$ corresponding to $h_{1}$ is such that
every component of it is properly contained in a component of $\sim_{\uparrow h_{0}}$ .
Therefore when $h$ is sufficiently large, $\sim|\uparrow h$ will be empty, which com-
pletes the proof of our lemma, since our lemma holds on non-singular
Curves by virtue of the theorem of Riemann.Roch.

3. Now we shall state and prove the main theorem of this \S .

THEOREM 2. Let {X} be a regular maximal al\caebraic family of
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positive divisors on V, $\{Y\}$ and {X} a maximal algebraic family of
positive V-divisors such that $X$ and $Y$ are algebraically equivalent to each
other. When {X} and $\{Y\}$ are distinct, $\{Y\}$ cannot be a regular family.

When {X} is any maximal algebraic family of positive divisors of
V, there is a positive integer $m_{0}^{\prime}$ independent of $X$ such that for in-
tegers $m>m_{0}^{\prime}$, there is a maximal algebraic family $\{X+C_{m}\}$ containing
$X+C_{m}$ for arbitmry $X$ in {X}, such that it is regular.

Moreover, there is a positive integer $m_{0}$ , such that for any integer
$m>m_{0}$ , a maximal algebraic family $\{X+C_{m}\}$ is complete and regular.
But in this case $m_{0}$ depends on {X}.

PROOF. We prove our first assertion. Let $K$ be a common field
of definition for V, the Picard Variety $P$ of V, {X} and for $\{Y\}$ .
Let $W,$ $U$ be associated.Varieties of {X}, $\{Y\}$ and $X_{0},$ $X_{0}^{\prime}$ be fixed
divisors of {X}, $\{Y\}$ such that $X_{0}\sim X_{0}^{\prime}$ . We assume that $K$ contains
the coordinates of the Chow Point of $X_{0}$ and that $\{Y\}$ is also a regular
family. Let $y$ be a generic Point of $U$ over $K$, corresponding to the
divisor Y. Since $\{Y\}$ is regular, there is a function $g$ defined on $U$

with values on $P$ defined over $K$ and $ g(y)=\eta$ is a generic Point of $P$

over $K$, which is the class of $Y-X_{0}$ on $P$ with respect to linear
equivalence (cf. $[M- 4]\cdot prop$ . $10$ and th. 2). In the same way, there is
a function $h$ defined on $W$ with values on $P$, having the same pro-
perty as $g$. As {X} is regular, there is a divisor $X$ in {X} such that

$Y-X_{0}\sim X-X_{0}$ , $i.e.$ , $Y\sim X$ .

This proves that, if $Z$ is the graph of $h$ and $x$ is the Chow.Point of
$X$, the intersection $(x\times P)\leftrightarrow Z$ reduces to $ x\times\eta$ (cf. [M-4]-prop. 10).

Therefore $x$ is a Point of $Z^{\prime}(\eta)$ defined by $(W\times\eta)\cdot Z=Z^{\prime}(\eta)\times\eta$ which
is clearly defined on $W\times P$ since $\eta$ is a generic Point of $P$ over $K$

(cf. $[W- 1]- th$ . $12$ , ch. VIII). Moreover, from the property of $h,$ $Z^{\prime}(\eta)$

is the associated-Variety of $|X|$ by $[M\cdot 4]\cdot cor$ . of prop. 10 and prop.
7, and $Z^{\prime}(\eta)$ contains $y$ . But this is a contradiction to our hypothesis
that $\{Y\}$ and {X} are distinct. This proves our first assertion. (cf.
[Z-5]-no. 3, ch. V).

Now let $\{A\}$ be any regular maximal algebraic family of positive
V-divisors and {X} an empty or arbitrary maximal algebraic family of
positive V-divisors. Let $K$ be a common field of definition for V, $\mathfrak{F}$ ,
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$\{A\}$ and {X} and $A$ a generic divisor of $\{A\}$ over $K$. One can find
a positive integer $m_{\eta^{\prime}}$ such that for any integer $m>m_{0}^{\prime},$ $L_{m}$ is complete
and contains partially $A$ (hence, a fortiori, special divisors of $\{A\}$ ).

Let $A_{0}$ be a divisor in $\{A\}$ rational over $\overline{K}$ and $X_{0}$ a rational divisor
of {X} over $\overline{K}$. The divisor

$X_{0}+C_{m}+A-A_{0}$

is linearly equivalent to a positive divisor $Y$ since $L_{m}$ contains partially
$A_{0},$ $i$ . $e$ . $X_{0}+C_{m}+A\sim Y+A_{0}$ . It can be easily seen that a maximal
algebraic family $\{X_{0}+C_{m}+A\}$ containing $X_{0}+C_{m}+A$ is regular, and
$X_{0}+C_{m}+A$ is linearly equivalent to a generic divisor of it over $1^{-}\overline{T}$ by
the same reasoning as above. Consider a maximal algebraic family
$\{Y\}$ containing Y. We have

$X_{0}+C_{m}-Y\sim A_{0}-A$

and $X_{0}+C_{m}$ may be assumed to be rational over $\overline{K}$. Since $X_{0}+C_{m}$ is
algebraically equivalent to $Y$, we conclude that $\{Y\}$ is a regular
family.

By lemma 6, there is a positive integer $m_{0}\geqq m_{0}^{\prime}$ such that for any
integer $m>m_{0}$ we have $l(Y+C_{m})=l(Y^{\prime}+C_{m})$ for any $Y^{\prime}$ in $\{Y\}$ .
We shall prove that when $D$ is any positive V-divisor algebraically
equivalent to $Y+C_{m},$ $D$ is a divisor of a maximal algebraic family
containing $Y+C_{m}$ . Let $W$ be the associated-Variety of $\{Y+C_{m}\}$ .
We can easily see that it is defined over $\overline{K}$ and $Y+C_{m}$ is linearly

equivalent to a generic divisor $\overline{Y}$ of $\{Y+C_{m}\}$ over $\overline{K}$. Let $Y_{0}$ be a
rational divisor of $\{Y\}$ over $\overline{K}$. There is, as before, a function $g$

defined on $W$ with values on $P$ defined over $\overline{K}$, and if $\overline{y}$ is the Chow-
Point of $\overline{Y}$, it is a generic Point of $W$ over $\overline{K}$ and $ g(\overline{y})=\eta$ is the

class of $\overline{Y}-(Y_{0}+C_{m})$ on $P$ with respect to linear equivalence: let $Z$

be the graph of $g$, then $Z(\eta)$ defined by $(\eta\times W)\cdot Z=\eta\times Z(\eta)$ is the
associated-Variety of $|\overline{Y}|$ by [M.4]-cor., prop. 10. th. 2 and prop. 7.
We have $\dim Z(\eta)=l(\overline{Y})-1$ and as $\overline{Y}\sim Y+C_{m},$ $\dim Z(\eta)=l(Y+C_{m})$

$-1=l(Y^{\prime}+C_{m})-1$ for any $Y^{\prime}$ in $\{Y\}$ . Denote by $\eta^{\prime}$ the class of
$D-(Y_{0}+C_{m})$ on $P$ with respect to linear equivalence, and consider the
intersection

$(\eta^{\prime}\times W)\sim Z$ .
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When $\eta^{\prime}\times\overline{y}^{\prime},$ $\eta^{\prime}\times\overline{y}^{\prime\prime}$ are in that intersection, the divisors $\overline{Y}^{\prime}$ , $\overline{Y}^{\prime\prime}$

corresponding to $\overline{y}^{\prime},\overline{y}^{\prime\prime}$ are mutually linearly equivalent by [M-4]-th.
1, and cor. prop. 10. Hence every component of that intersection is
contained in $\eta^{f}\times T(D)$ where $T(D)$ is the associated-Variety of $|D|=$
$|\overline{Y}|$ . On the other hand, every component of a specialization $\eta^{\prime}\times Z(\eta)^{\prime}$

of $\eta\times Z(\eta)$ over $\eta\rightarrow\eta^{\prime}$ with reference to $\overline{\overline{K}}$ is contained in a component
of $(\eta^{\prime}\times W)\leftrightarrow Z$ : moreover, $Z(\eta)^{\prime}$ is contained in $T(D)$ by [M-4]-1emma
3 and cor. prop. 10. But we have $\dim Z(\eta)=\dim Z(\eta^{\prime})=l(Y+G_{m})$

$-1=l(D)-1=\dim T(D)$ ; since $D\sim Y^{\prime}+C_{\iota}$ for a certain $Y^{\prime}$ in $\{Y\}$ .
Hence $Z(\eta^{t})=\alpha\cdot T(D)$ for a certain positive integer $\alpha$ and this shows
that $T(D)\prec W$. This completes our proof.

REMARK. Let $X$ be a positive $V^{\cdot}$-divisor and $\{A\}$ a regular maxi-
mal algebraic family of positive V-divisors. Let $A$ be a gcneric divisor
of $\{A\}$ over an algebraically closed common field of definition for $V$,
$\{A\}$ over which $X$ is rational, and $A_{0}$ a rational divisor of $\{A\}$ over
$K$. When $l(X+A-A_{0})>1,$ $i$ . $e.,$ $|X+A-A_{0}|$ exists and non.empry,
we can prove the existence of a regular maximal algebraic family
containing $X$ as its divisor, in the same way as in the proof of the
above theorem. Conversely, when $X$ belongs to a maximal regular
family, then we must have $l(X+A-A_{0})>1$ . In this case, 1 $(X+A^{\prime}$

$-A_{0})>1$ for any $A^{\prime}$ in $\{A\}$ since $A^{\prime}$ is a specialization of $A$ over
$K$. Hence, in order that $X$ belongs to maximal regular algebraic family,
it is necessary and sufficient that $l(X+A^{\prime}-A_{0})>1$ for any $A^{\prime}$ in
$\{A\}$ . Moreover, when that is so, 1 $(X+Y)->1$ for any divisor $Y$ ,
which is algebraically equivalent to zero. A part of the above theorem
is a special case of this. Severi and Italian geometers called a complete
linear system $|X|$ on a $non\prime singular$ surface in a projective space as
‘ arithmetically effective “, when

$I(X\cdot X)-\pi_{X}+p_{a}+1-l(K-X)>0$

where $K$ is the canonical divisor, $\pi_{X}$ the virtual arithmetic genus of $X$

and $p_{a}$ the arithmetic genus of the surface. Such $X$ satisfies the above
condition and hence belongs to a regular family. (cf., [Severi.1], and
[Z.5]-no. 3, ch. V).
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\S 3.

4. Let $|X|$ be a complete linear system on a normal projective
Variety V and $L(X)$ the module of the function on V such that
$(f)\succ-X$. $L(X)$ has a finite basis $\varphi_{0},$ $\varphi_{1,}$ . Let $K$ be a common
field of definition for V and for every $\varphi_{i}$ . Denote by $(u_{0},\cdots, u_{n})$ a
generic point of a representative of $L^{m}$ over $K$ and put $Z=(\geq_{- 0}^{m_{1}}\lrcorner u_{i}\varphi_{i})_{0}l$

considering $\backslash \neg$ as a function on $L^{m}\times V$. Intersection.product
$(v\times V)\cdot Z$ is defined for any Point $v$ on $L$ since $t/J_{0}\cdots,$ $\varphi_{m}$ are linearly
independent. One can see easily that there is a fixed divisor $D$ on $V$

such that every divisor of $|X|$ is of the form $Z(v)+D$ , or $|X|$ consists
of all the divisors of the form $\overline{Z}(v)$ where $\overline{Z}=Z+L\times D$ . We shall
say that $|X|$ is defined over a field $K^{\prime}$ or $K^{\prime}$ is a field of definition
for $|X|$ when $\overline{Z}$ is rational over $K^{\prime}$ $D$ is the fixed component for
$|X|$ . It is easy to see that when a certain divisor of it is rational
over a field $K^{\prime},$ $K^{\prime}$ is a field of definition for $|X|$ (cf. [W-l]-th ch.
VIII). Given a simple Point $Q$ on V, not contained in any component

of $X$, the divisor $\overline{\nearrow^{r_{\lrcorner}}}(v)=(\sum v_{j}\varphi_{l}\cdot)_{0}+D$ of $|X|$ contains $Q$ if and only
if $(v_{0},\cdots, v_{l})$ satisfies the linear condition $\sum v_{i}\varphi_{i}(Q)=0,$ $i$ . $e.$ . if and
only if $v$ is on the hyperplane defined by $\sum\varphi_{i}(Q)X_{i^{-}}-- 0$ defined over
$K^{\prime}(Q)$ .

LEMMA 7. Let $Q_{1},\cdots,$ $Q_{r}$ be a set of independent generic Points of
$V$ over a field K. Let $|X|$ be a complete linear system on $V$ defined
over K. When 1 $(X)=r+1$ , there is the uniquely determined divisor in
$|X|$ passing through $Q_{i}$ , for every $i$, which is ralional over $K(Q_{1},\cdots, Q_{r})$ .

PROOF. Let $Z$ be a divisor on $L^{r}\times V$ such that every divisor of
$|X|$ is of the form $Z(v)$ , where $v$ is a Point on $L$ . Since $|X|$ is de.
fined ovcr $K$, we may assumc that $Z$ is rational over $K$, and hence
$|X|$ has a rational divisor $X_{0}$ over $K$. Let $\varphi_{0},\cdots,\varphi_{r}$ be a base of $L(X_{0})$ .
$Q_{i}$ is not contained in any component of $X_{0}$ and we may assume
further, that $Z=(\sum u_{i^{\gamma}/i}J)_{0}$ where $(u_{0},\cdots, u_{r})$ is a representative of a
generic Point of $L$ over $K$. A divisor $Z(v)$ passing through $Q_{i}$ is
such that $v$ is on the hyperplane $H(Q_{i})$ defined by $\sum\varphi_{j}(Q_{i})X_{j}=0$ .
We may choose $\varphi_{i}$ in such a way that it is defined over $K$ by \lceil W-ll $\cdot$
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th. 12. ch. VIII and hence the matrix $||\varphi_{j}(Q_{j})||$ has the maximum rank
$r$ since $Q_{1},\cdots,$ $Q_{r}$ are independent generic Points of V over $K$ ; this
shows that the intersection-product $H(Q_{1})\cdots H(Q_{r})$ is defined and
reduces to a Point $v$ which is rational over $K(Q_{1},\cdots. Q_{r})$ . Then $Z(v)$

is rational over it. $q.ed$ .

5. Let $W$ be the associated-Variety of a regular maximal algebraic
family of positive V.divisors {X} and $X$ a generic divisor of it over
an algebraically closed field of definition $k$ for V and $X$. Let $M$ be
the Chow-Point of the associated-Variety $T(X)$ of $|X|$ and $U$ the Locus
of $M$ over $k$ . Let $X_{0}$ be a rational divisor of {X} and $Y_{0},\cdots,$ $Y_{n}$ a
set of independent generic divisors of {X} over $k^{\prime}(x)$ where $x$ is the
Chow.Point of $X$ and $k^{\prime}$ a field containing $k$ . Denote by $N_{0},\cdots,$ $N_{n}$

the Chow.Point of $T(Y_{0}),\cdots,$ $T(Y_{n})$ . Then, for sufficiently large $n,$ $U$

is birationally equivalent to the Picard Variety $P$ of V over $k$ ‘ $(N_{0},\cdots$ ,
$N_{n})$ (cf. [M-4]-prop. 10, th. 2 and [M-5], $\backslash ^{q}2$ ). More precisely, there is
a frontier $\mathfrak{F}_{\alpha}$ , normally algebraic over $k$ on a representative $U$ of $U$

and a coherent birational transformation $T_{\beta\alpha}$ between $U$ and $Ubi$ .
regular at every point on $U-\mathfrak{F}_{\alpha}$ and $U_{l}^{\sim}-(\uparrow_{\beta}$ such that the abstract
Variety

$[U_{\alpha}\cdot(=U):’\Im_{\alpha} : T_{\beta\alpha}]$

is the Picard Variety $P$ when $n$ is large. The mode of construction
of an Abeliari Variety in this way from a Variety having the normal
law of composition is due to A. Weil (cf. [W-2].th. 15 and its proof.).

As is shown in that proof of Weil, a certain representative of any
Point on $P$ is a generic Point of $U$ over $k$ ‘. The birational transform-
ation $T_{\beta\alpha}$ is defined in the following way. Let $X$ be a generic divisor
of {X} over $k^{\prime}(N_{0},\cdots, N_{n})$ . Put

$X+Y_{\alpha}-X_{0}\sim X_{\alpha}$ $(0\leq\alpha\leq n)$

and $M_{\alpha}$ the Chow-Point of $T(X_{\alpha})$ . Then $M_{\alpha}$ and $M_{\beta}$ are regularly
corresponding generic Points of $U_{\alpha}$ and $U_{\beta}$ by $T_{\beta\alpha}$ .

THEOREM 3. The associated-Variely $W$ of a regular maximal
algebraic family {X} of positive V.divisors is birationally equivalent

to $P\times L$ where $L$ is a projective space of a certain dimension.
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PROOF. Let, as above, $k$ be an algebraically closed common field
of definition for $V,$ $W$ and $X_{0}$ a rational divisor of {X} over $k$ . Let
$ Q_{1},\cdots$ . $Q_{r}$ be $r$ independent generic Points of V over $k$ : put $k^{\prime}=k(Q_{1}$ ,

$Q_{r})=k(Q)$ and $X,$ $Y_{0},\cdots,$ $Y_{l}n+2$ independent generic divisors of
{X} over $k^{\prime}$ . Denote by $N_{i}$ the Chow-Points of $T(Y_{i})$ and A4 the
Chow-Point of $T(X)$ . $M$ has the Locus $U$ over $k^{\prime}(N_{0},\cdots, N_{n})=k^{\prime}(N)$

and over $k(N)$ . Put $r=l(X)-1$ . $Q_{1},\cdots,$ $Q_{r}$ are $r$ independent generic
Points of $V$ over $k(N, M)$ and $T(X)$ is defined over it. Let $x^{\prime}$ be the
Chow-Point of the divisor $X^{\prime}$ in {X}, then $|X|$ is defined over $k(N$,
$M,$ $Q,$ $x^{\prime}$ ) and by lemma 7, the divisors $\overline{X}$ of $|X|$ going through
$Q_{J},\cdots,$ $Q_{r}$ is determined uniquely and is rational over $k(N, M, Q, x^{\prime})$ .
Hence the Chow.Point of it is rational over $k(N, M, Q, x^{\prime})$ by [C-2].
Now let $x^{\prime\prime}$ be a generic Point of $T(X)$ over $k(N, M, Q, x^{\prime})$ . Then
it is also rational over $k(N, M, Q, x^{\prime\prime})$ and hence the divisor $\overline{X}$ is
rational over $k(N, M, Q)i$ . $e.,$ $|X|$ is defined over it and the basis
$\varphi_{0},\cdots,$ $\varphi_{r}$ of $L(\overline{X})$ can be taken from the functions defined over it.
There is, then, a divisor $Z$ on $L^{r}\times V$ rational over $k(N, M, Q)=$
$k^{\prime}(N, M)$ which defines $|X|$ . We may assume that $x$ is a generic
Point of $T(X)$ over $k^{\prime}(N, M)$ . There is a generic Point $u$ of $L^{r}$

over $k^{\prime}(N, M)$ such that $Z(u)=X$. Then as $X$ is rational over $k^{\prime}(N$.
$M,$ $u$ ) by [W-l]-th. 12, ch. VII, we have $k^{\prime}(N, M, x)(\rightarrow k^{t}(N, M, u)$ and
$u$ is purely inseparable over the former. For, let $u^{\prime}$ be a specialization
of $u$ over $k^{\prime}(N, M, x)$ : then it is easily seen that $Z(u^{\prime})=X=Z(u)$ and
if $u\neq u^{\prime}$ , it implies $\sum(u_{i}-cu_{i}^{\prime})\varphi_{i}=0$ for a certain $c$ which contradicts
to the linear independency of $\varphi_{0},$ $\cdot\cdot,$ $\varphi_{r}$ . Now we shall prove that

$k^{\prime}(N, M, x)=k^{\prime}(N, M, u)$ .
As $X$ is rational over $k^{\prime}(N, M, x)$ , there is a function $\psi$ on V

defined over it such that $(\psi)=X-\overline{X}$ by [W.l]-th. 10, VIII and hence
$\psi=\sum c_{i}\varphi_{i}$ . But as $\varphi_{()},\cdots,$ $\varphi_{r}$ are linearly independent we conclude that
$\sum u_{i}\varphi_{i}$ is defined over $k^{\prime}(N, M, x)$ . Let $Q$ be a generic Point of $V$

over it and put
$\varphi_{i}(Q)=z_{i}$ , $\sum u_{i}\varphi_{i}(Q)=w$ .

$z_{i}$ and $w$ are in $k^{\prime}(N, M, x)(Q)$ and $(z_{0},\cdots, z_{r}, w)$ is linearly dependent
over $k^{\prime}(N, M, u)$ . But as $k^{\prime}(N, M, u)$ and $k^{\prime}(N, M, x_{J}Q)$ are linearly
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disjoint over $k$ ‘ $(N,M,x)$ , it must be linearly dependent over $k^{\prime}(N,M,x)$

by $[W\cdot 1]$ .prop. 3, ch. I. Therefore $u$ is rational over $k^{\prime}(N, M, x)$ and
this proves our assertion.

$x$ is a generic Point of $W$ over $k^{\prime}(N)$ and $k^{\prime}(N, x)\overline{z}k^{\prime}(N, M)$ .
The Locus $U$ of $M$ over $k$ ‘ $(N)$ is birationally equivalent to $P$ over it.
The Locus $T(X)$ of $x$ over $k^{\prime}(N, M)$ is birationally equivalent to $L$

over it by what we have proved above. Therefore $W$ is birationally
equivalent to $P\times L$ over $k^{\prime}(N)$ . This proves our theorem.

6. We shall state some remarks and add some appendices about
this paper. It will be desirable to extend our th. 2, replacing hyper-
plane sections by larger classes of positive V.divisors. It might be
possible to do so, for non-singular algebraic surfaces, by examining
carefully the generalized theorem of Riemann.Roch (cf. [K] and \lfloor Z-3]).

Now we shall add a certain result without proofs. Divide the
algebraic families of positive V-divisors {X} (not necessarily maximal)

into three classes:
i) the first class: a generic divisor of {X} over a field of defini-

tion for {X} is isolated with respect to linear equivalence,
ii) the second class: {X} contains all the divisors of the complete

linear system determined by a generic divisor of {X} over a field of
definition for it (where we assume that that complete linear system
has the dimension $->1$ ),

iii) the $thir\grave{d}$ class: all the other algebraic family.
An maximal algebraic family {X} belongs to the second class if

and only if a generic divisor of it is not isolated with respect to linear
equivalencc, otherwise it belongs to the first class.

Let $U$ be any Variety. We shall say that $U$ is a minimum model,
when, given any Variety $W$ and a function $g$ defined on $W$ with
values on $U,$ $g$ is defined at every simple Point of $W$ (cf. $\lfloor W\cdot 2$ ] $\cdot no$ .
15, ch. II). Now the following holds:

Associated-Varieties of the algebraic families of the first class on
a $no\gamma mal$ projective Variety have minimum modcls, but on the contrary,
$associaled- Va\gamma ieties$ of algebraic families of the second class have no
minimum models.
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The last half of the above assertion follows immediately when we
observe that the projective straight line has no minimum model.

Ochanomizu University, Tokyo.
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