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Introduction. We say in the present paper that a ring $R$ satisfies
the condition $c(n)$ , if $u^{n}=0$ holds for all $u\in R,$ $n$ being a (given) natural
number. The purpose of the present paper is to answer a problem
on the nilpotency of algebras satisfying $c(n)$ , raised by Y. Kawada and
N. Iwahori, in proving the following

THEOREM. Let $\mathfrak{A}$ be a ring with a coefficient field K. If $\mathfrak{A}$ satisfies
the condition $c(n)$ and if $K$ is of characteristic $0$ , then there exists a
natural number $f(n)$ depending solely on $n$ such that $\mathfrak{A}^{f(n)}=0$ .

In the last paragraph, we shall add some remarks concerning the
case when $K$ is a general coeflicient ring.

1. Preliminaries on group rings of symmetric groups.
We denote by $S_{t}$ the symmetric group on letters 1, 2, $\cdots,$ $t;t$ being

a natural number. Let $K$ be the field in our theorem and $0_{t}$ the group
ring of $S_{t}$ over $K$.

We denote by $(\alpha)$ or $(\beta)$ a Young diagram (of letters 1, $\cdots,$
$t$).

Furthermore, for an arbitrary Young diagram $(\alpha)$ , we denote by $A_{\alpha}$

the totality of $(-1)^{\text{\^{o}}(q)}q(q\in S_{t})$ such that $i$ and $q(i)$ are in the same
column of $(\alpha)$ for each $i(1\leq i\leq t)$ and that $\delta(q)=1$ or $0$ according as
the permutation $q$ is odd or even; and by $S_{a}$ the totality of $p(p\in S_{t})$

such that $i$ and $p(i)$ are in the same row of $(\alpha)$ for each $i(1\leq i\leq t)$ .
Further we set $A_{\alpha}^{*}=\sum_{a\epsilon A\alpha}a(\in\iota_{t}^{\urcorner)}, S_{\alpha}^{*}=\sum_{s\epsilon S\alpha}s(\in \mathfrak{o}_{t})$ .

Remark. $A_{\alpha}$ is a subgroup of $S_{t}\times\{1,-1\}$ and $S_{\alpha}$ is a subgroup
of $S_{t}$ .

Now the following facts are well known:
(1) $o_{t}S_{\alpha}^{*}A_{\alpha}^{*}$ is a simple left ideal of $c_{t}$ .
(2) Every simple left ideal of $\mathfrak{o}_{t}$ is operator isomorphic to $\mathfrak{d}_{t}S_{a}^{*}A_{\alpha}^{*}$

with a suitable $(\alpha)$ .
From these facts follows easily
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LEMMA 1. $\sum_{(\alpha)}0_{t}S_{\alpha}^{*}A_{a}^{*}=\mathfrak{o}_{t}$ (where $(\alpha)$ runs over all Young diagrams

of letters 1, 2, $\cdots,$
$t$).

Now let $g$ be a given natural number.
a) For a set of arbitrary $g$ letters $i_{1},$ $i_{2},$

$\cdots,$
$i_{(\prime}(i_{1}<i_{2}<\cdots i_{g})$ among

1, 2, ..., $t(t\geq g)$ , let $S(i_{1}, i_{2}, \cdots, i_{q})$ be the symmetric group on letters
$i_{1},$

$\cdots,$
$i_{g}$ and set $S^{*}(i_{1}, \cdots, i_{q})=\sum_{s\epsilon S(i_{1}}\ldots.s_{J^{)}}i$

,
Further we set

$1_{1}=_{(i_{1’}}\sum \mathfrak{d}_{t}i_{\subset/}$

)
$S^{*}(i_{1}, \cdots,i_{q})$ .

b) For a set of arbitrary $g$ letters $j_{1},j_{2},$ $\cdots,j_{g}$ such that $j_{1}<j_{1}+1$

$<i_{2}<i_{2}+1<\cdots<i_{g}<j_{q}+1\leq l(t\geq 2g)$ , let $A(i_{1}, \cdot, i_{g})$ be the
totality of elements $\sigma$ of $S_{t}$ such that (1) $\sigma$ permutes only $j,j_{1}+1$ ,
$j_{2},$ $\cdots,j_{g},$ $j_{g}+1$ and (2) $\sigma$ transforms $\{j_{1}, \cdots,j_{g}\}$ onto itself and $\sigma(j_{k}+1)$

$=\sigma(i_{k})+1$ for every $k=1,$ $\cdots,$ $g$ . We set $A^{*}(j_{1}, \cdots,j_{r},)=\sum_{a\epsilon A(j_{1}}\ldots.a_{j_{r/})}$ Further
we set

$1_{2}=_{1}.\sum_{j_{g}(j\cdots.)}\mathfrak{v}_{t}A^{*}(j_{1}, \cdots, j_{r},)$ . Then we have

LEMMA 2. If $t\geq g(g^{2}-2g+2)$ , then $\mathfrak{l}_{1}+\mathfrak{l}_{2}=c_{t}$ .
PROOF. Since $\sigma S^{*}(i_{1}, \cdots, i,,)_{\sigma^{-1}}=S^{*}(\sigma(i_{1}), \cdots, \sigma(i_{q}))(\sigma\in S),$ $\mathfrak{l}_{1}$ is a two-

sided ideal. If $(\alpha)$ is a Young diagram with columns not less than
$g,$ $S_{\alpha}^{*}\in r_{1}$ , whence $S_{\alpha}^{*}A_{\alpha}^{*}\in I_{1}$ . Now it is sufficient to show, by virtue of
Lemma 1, that for any Young diagram $(\beta)$ with columns less than
$g,$ $A_{\beta}^{*}\in \mathfrak{l}_{2}$ .

Let $B$ be the set of letters which are in the first column of $(\beta)$

and set $B^{\prime}=\{s;s\in B, s+1\in B\},$ $B^{\prime\prime}=\{s;s\in B, s\neq t, s+1\not\in B\}$ .
(1) When the number of letters of $B^{\prime}$ is not less than $2g-1$ , we

can select $j_{1},j_{2},$ $\cdots,j_{g}\in B^{\prime}$ as in b) above. Then since $A(j_{1}, \cdots,j_{q})\subseteq A_{\beta}$,
we see that $A_{\beta}^{*}\in \mathfrak{l}_{2}$ .

(2) When the number of letters of $B^{\prime}$ is less than $2g-1$ , that of
$B^{\prime\prime}$ is not less than $!j^{2}-3g+3=(g-1)(g-2)+1$ . For, since $t\geq g(g^{l}2-2g$

$+2)$ and since $(\beta)$ has at most $g-1$ columns, the number of letters
of $B$ is not less than $g^{2}-g+2$ (observe that $(g^{2}-Jc+1)(g-1)=g^{3}-2g^{2}$

$+2g-1)$ . For all $s\in B^{\prime\prime}$ , we consider $s+1$ ; they are in columns other
than the first. Therefore at least one contains at least $g$ of such $s+1$ ,
$i.e.$ , we can select $j_{1}<\cdots<j_{g}$ from $B^{\prime\prime}$ such that $j_{1}+1,$ $\cdots,j_{g}+1$ are
in the same column. Then $A(j_{1}, \cdots,j_{g})\subseteq A_{\beta}$ , whence $A_{\beta}^{*}\in 1_{2}$ . Thus the
proof is completed.

2. Preliminaries on rings satisfying the condition $c(n)$ .
We denote by $R$ a ring which has $K$ as a coefficient field. When

$y_{1},$ $\cdots,y_{t}\in R$ and $X=\sum_{i}a_{i^{\sigma}i}(a_{i}\in K, \sigma;\in S_{t})$ , we denote by $X(y_{1}\cdots y_{t})$ the
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sum $\sum_{i}a_{i}y_{\sigma_{i}(1)}\cdots y_{\sigma_{i}(t)}$ . Let $(K, R)$ be the ring obtained from $R$ by adjoin-
ing an identity having $K$ as the coefficient field.

LEMMA 3. Let $d$ and $t$ be given natural numbers and let
$V=\{(i_{1}, \cdots, i_{t})\}$ be the totality of vectors of dimension $t$ such that (1)

each component $i_{k}$ is a non.negative integer and (2) the sum $\sum_{k-1}^{t}i_{k}$ of
the components $i_{k}$ is equal to $d$ (for every vector $(i_{1},$

$\cdots,$
$i_{t})\in V$). Now

suppose that to every vector $(i_{1}, \cdots, i_{t})\in V$ there corresponds an element
$u(i_{1}, \cdots, i_{t})$ of $R$ . If for arbitrary elements $c_{2},$ $\cdots,$ $c_{t}$ of $K$ it holds
$\sum c_{2}^{i*}\cdots c_{\ell^{l}}^{i}u(i_{1}, \cdots, i_{t})=0$ , then each $u(i_{1}, \cdots, i_{t})$ is $0$.

PROOF. When $t=1$ our assertion is ‘ evident. When $t=2$ , since
the determinant

$\left|\begin{array}{lllllll} & & 1 & 1 & 1 & \cdots & 1\\ & & 1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{d}\\ & & \cdots & \cdots & \cdots & \cdots & \cdots\\ & & \cdots & \cdots & \cdots & \cdots & \cdots\\ & & 1 & a_{d} & a_{d}^{2} & \cdots & a_{d}^{d}\end{array}\right|$

is the fundamental alternative function of 1, $a_{1},$ $\cdots,$ $a_{d}$ , our assertion
follows easily. Now assuming that our assertion holds when $t=s$, we
consider the case $t=s+1$ . Since

$\sum_{i_{s+1}=0}^{d}c_{s_{i}}^{i_{s+1}}+1_{s+1^{fixed}}(\sum c_{2}^{iz}\cdots j_{s^{s}}u(i_{1}, \cdots, i_{s+1}))=0$

we see, by the case $t=2,$
$that\sum_{i_{s+1}fixed}c_{2^{2}}^{i}\cdots\dot{t}_{s}^{s}u(i_{1}, \cdots, i_{s+1}))=0$

, which is the

case $t=s$ . Therefore $u(i_{1}, \cdots, i_{s+1})=0$.
LEMMA 4. Assume that $R$ satisfies the condition $c(n)$ . Then for

arbitrary elements $y_{1},$ $\cdots,$ $y_{n}$ of $R$, we have

$S_{n}^{\star}(y_{1}\cdots y_{n})=0$
$(S_{n}^{*}=\sum_{s\epsilon s_{n}^{S}})$ .

PROOF. Since $(y_{1}+c_{2}y_{2}+\cdots+c_{n}y_{n})^{n}=0$ for arbitrary elements
$c_{2},$ $\cdots,$ $c_{n}$ of $K,$ we $\cdot have$ our assertion by Lemma 3.

$CoROLLARY$ . With the same $R$ , we have $y^{n-1}Ry^{n-1}=0$ for every
$yeR$ .
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LEMMA 5. Assume again that $R$ satisfies the condition $c(n)$ . Let
$m$ be the least integer greater than $n/2$ . Then for an arbitrary $eIe$ .
ment $u$ of $R,$ $-0=u(K, R)+(u^{2})/(u^{2})$ satisfies the condition $c(m)$ , where
$(u^{2})=(K, R)u^{2}(K, R)$ .

PROOF. It is sufficient to prove that for an arbitrary element $z$ of
$R$, $(uz)^{m-1}u\equiv 0$ $(mod. u^{2})$ . In the equalities $S_{n}^{*}(y_{1}\cdots y_{n})=0$ and
$S_{n}^{*}(y_{1}\cdots y_{n})u=0$, we put $y_{1}=\cdots=y_{n+1-m}=u,$ $y_{n+2-m}=\cdots=y_{n}=z$ . Then we
see $(uz)^{m-1}u\equiv 0(mod. u^{2})$ from the former or the latter according as
$n$ is odd or even.

LEMMA 6. Let $R,$ $n$ and $m$ be the same as in Lemma 5. Let $r$

be the least integer such that $n-1\leq 2^{r}$ . If there exists $f(m)$ (in the
theorem with $n$ replaced by $m$), and if $u\in R$ , then $(u)^{g(n)}=0$ , where $g(n)$

is $2f(m)^{r}$ or $f(m)^{r}$ according as $n-1=2^{r}$ or n-l $<2^{r}$ .
PROOF. By Lemma 5, we see that $(u(K, R))^{f(m)}\subseteq(u^{2})$ . Therefore

$(u)^{f(m)}\subseteq(u^{2})$ . Thus we see $(u)^{J^{(m)^{r}}}\subseteq(u^{2})^{f(m)^{r-1}}\subseteq\cdots\subseteq(u^{2^{r}})$ . Now our as-
sertion follows from the corollary to Lemma 4.

LEMMA 7. With the same $R$ and $g(n)$ (and assuming the existence
of $f(m))$ , let $y_{1},$ $\cdots,y_{t}(t\geq g(n))$ be arbitrary elements of $R$ and let
$i_{1}<i_{2}<\cdots<i_{q(n)}$ be arbitrary integers among 1, 2, $\cdots,$

$t$. Then

$S^{*}(i_{1}, \cdots, i_{g(n)})(y_{1}\cdots y_{t})=0$ .
PROOF. We may assume without loss of generality that $i_{1}=1$ and

$i_{g(n)}=t$. Take $r_{1}=1,$ $s_{1},$ $r_{2},$ $s_{2},$ $\cdots,$ $r_{k},$ $s_{k}=ts\lrcorner ch$ that $\{i_{1}, \cdots, i_{g(n)}\}=\{r_{1}=1$ ,
2, $\cdots,$ $s_{1},$ $r_{2},$ $r_{2}+1,$ $\cdots,$ $s_{2},$ $\cdots,$ $r_{k},$ $r_{k}+1,$

$\cdots,$ $s_{k}$ } and that $r_{j+1}>s_{j}+1(j=1$ ,
$k-1)$ . We set $lt=(y_{i_{I}}+c_{2}y_{i_{2}}+\cdots+c_{g(n)}y_{i_{g(n)}})$ witharbitrary elements

$c_{2},$ $\cdots,$ $c_{((n)}$ of $K$. Then by Lemma 6 we have

$u^{s_{1}}y_{s_{1}+1}\cdots y_{r2-1}u^{s_{2}-r_{2}+1}y_{s_{2}+1}\cdots y_{r_{k}-1}u^{s_{k}-r_{k^{+1}}}=0$ .
Since $c_{2},$ $\cdots,$ $c_{g(n)}$ are arbitrary, we have our assertion by Lemma 3.

$CoROLLARY$. When $t\geq 2g(n)$ , take $j_{1},$ $\cdots,j_{J(n)}$ such that $A(i_{1},$ $\cdots$ ,
$j_{g(n)})$ can be defined. Then

$A^{*}(j_{1}, \cdots,j_{g(n)})(y_{1}\cdots y_{t})=0$ .
3. Proof of Theorem.
Since we may set $f(2)=3$ , as is easily seen, we prove the theorem

by induction on $n$ : We assume the existence of $f(m),$ $m$ being the
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least integer greater than $n/2$ (observe that when $n\geq 3,$ $m<n$).
We take $g=g(n)$ given by Lemma 6 and let $t=f(n)=g(g^{2}-2g+2)$ :

We prove $\mathfrak{A}^{t}=0$ . For this purpose, we may assume without loss of
generality that $\mathfrak{A}=F/\mathfrak{R},$ $F$ being the ring freely generated by sufficiently
many indeterminates $x_{\lambda}$ over $K$ and $\mathfrak{N}$ being the (two $\cdot$ sided) ideal of $F$

generated by all of the n-th powers of elements of $F$.
Let $x_{1},$ $\cdots,$ $x_{t}$ be arbitrary, mutually distinct elements among $x_{\lambda}$ .

Then, as $\mathfrak{N}$ is left-invariant under $\mathfrak{o}_{t},$
$f=\{X;X\in 0_{t}, X(x_{1}\cdots x_{t})\in \mathfrak{N}\}$ forms

a left ideal of $0_{t}$ . By Lemma 7 and its corollary, every $S^{*}(i_{1}, \cdots, i_{q})$ and
every $A^{*}(j_{1}, \cdots,j_{q})$ are in $l$ . Therefore by Lemma 2 $t\ni 1$ , whence $x_{1}\cdots x_{t}\in \mathfrak{N}$ ,
and this shows $?I^{t}=0$ .

4. A more restricted case.
We say in this paragraph that a ring $R^{*}$ satisfies the condition

$c^{*}(n)$ , if $R^{*}$ satisfies the condition $c(n)$ and $R^{*}$ possesses a system $M$

of generators such that $x^{2}=0,$ $xR^{*}x=0$ for every $x\in M$.
By our theorem we see that there exists a natural number $h(n)$

such that $\mathfrak{B}^{h^{(}n)}=0$ , if $\mathfrak{B}$ satisfies the condition $c^{*}(n)$ and if $\mathfrak{B}$ has a
coefficient field, say $K$, of characteristic $0$ .

It is remarkable that for this $h(n)$ we have $91^{h^{(n)}}=0$ for any ring
$\mathfrak{A}$ which satisfies the condition $c(n)$ and which has also a coefficient
field of characteristic $0$ , that is if $f(n)$ and $h(n)$ are chosen to be the
least possible value, then $f(n)=h(n)$ .

Indeed, let $F,$ $\mathfrak{N}$ and $\mathfrak{A}$ be the same as in \S 3, and let $\mathfrak{N}_{1}$ be the
ideal generated by $\mathfrak{N}$ and all of both $x_{\lambda}Fx_{\lambda}$ and $x_{\lambda}^{2}$ . We may assume
that $\mathfrak{B}=F/\mathfrak{N}_{1}$ . $\mathfrak{B}^{h(n)}=0$ shows $x_{1}\cdots x_{h(n)}\in \mathfrak{N}_{1}$ for any (mutually distinct)
$x_{1},$ $\cdots,$

$x_{h(n)}\in\{x\}$ . This shows that

$x_{1}\cdots x_{h(n)}=\sum_{i}a_{i}u_{i}s_{i}v_{i}+Q$ ,

where (1) $s_{i}=S_{n}^{*}(y_{1^{i)}}^{(}\cdots y_{n}^{(i)})$ with $y_{j}^{ti)}eF,$ (2) $a_{i}\in K,$ (3) each of $u_{i}$ and $v_{i}$

are in $F$ unless it is the identity and (4) $Q$ is a sum of terms
which are of weight greater than 1 on some $x_{\lambda}$ . It is evident that
when $y_{k}=z_{k}+w_{k}$ for one $k(1\leq k\leq n)$ , then $S_{n}^{*}(y_{1}\cdots y_{n})=S_{n}^{*}(z_{1}\cdots z_{n})$

$+S_{n}^{*}(w_{1}\cdots w_{n})$ with $y_{j}=z_{i}=w_{i}$ for every $i\neq k$ . Therefore we may assume
without loss of generality that (1) $u_{i},$ $v_{i}$ and $y_{j^{i)}}^{(}$ are monomials on
$x_{1},$ $\cdots,$ $x_{h(n)}$ ( $u_{i}$ and $v_{i}$ may be 1) and (2) every $u_{i}s_{i}v_{i}$ contains no term
of weight greater than 1 for any $x_{\lambda}$ . Then since $x_{1}\cdots x_{h(n)}$ is of weight
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1 for every $x_{1},$ $\cdots,$ $x_{h(n)}$ , we have $Q=0$ , i. e., $x_{1}\cdots x_{h(n)}\in \mathfrak{N}$ , which shows
$\mathfrak{A}^{hn}()=0$ .

5. Remarks.
(I) When $K$ is a field of charaderistic $p\neq 0$ ; If $p\leq n$ , the $con$ .

clusion of our theorem does not hold. A counter.example can be easily
constructed even when (1) $n=p$ and (2) $\mathfrak{A}$ is commutative; namely as
follows: Let $A_{k}$ be the algebra over $K$ of the rank $n^{k}-1$ with the
genemting elements $x_{1},$ $\cdots,$ $x_{k}$ with the fundamental relations $x_{i}^{n}=0$ ,

$x_{i}x_{j}=x_{j}x_{i}$ for $i,j=1,2,$ $\cdots,$
$k$ ; and put $A=\sum_{k=1}^{\infty}A_{k}$ (direct sum!). Then $A$

satisfies $c(p)$ , but $A$ is not nilpotent.
If $p$ is greater than $f(n)$ given by the theorem, then the same conclu-

sion holds. This fact is established by an easy modification of our
above proof.

(II) When $K$ is a commutative ring with identity: The conclusion
of our theorem holds for $K,$ $lf$ and only $lf$ it holds for every residue
fields of $K$ The proof is easily obtained if we consider the group rings
of symmetric groups over $K$

(III) Conjecture: The conclusion of our theorem will hold, also
when $K$ is a field of characteristic $p>r_{l}$ .

Nagoya University.
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