On the nilpotency of nil-algebras.

By Masayoshi Nagata

(Received June 20, 1952)

Introduction. We say in the present paper that a ring R satisfies the condition $c(n)$, if $u^{n}=0$ holds for all $u \in R, n$ being a (given) natural number. The purpose of the present paper is to answer a problem on the nilpotency of algebras satisfying $c(n)$, raised by Y. Kawada and N. Iwahori, in proving the following

Theorem. Let $\mathfrak{i l}$ be a ring with a coefficient field K. If $\mathfrak{A l}$ satisfies the condition $c(n)$ and if K is of characteristic 0 , then there exists a natural number $f(n)$ depending solely on n such that $\mathfrak{R f}^{f(n)}=0$.

In the last paragraph, we shall add some remarks concerning the case when K is a general coefficient ring.

1. Preliminaries on group rings of symmetric groups.

We denote by S_{t} the symmetric group on letters $1,2, \cdots, t ; t$ being a natural number. Let K be the field in our theorem and \mathfrak{r}_{t} the group ring of S_{t} over K.

We denote by (α) or (β) a Young diagram (of letters $1, \cdots, t$). Furthermore, for an arbitrary Young diagram (α), we denote by A_{α} the totality of $(-1)^{\delta(q)} q\left(q \in S_{t}\right)$ such that i and $q(i)$ are in the same column of (α) for each $i(1 \leq i \leq t)$ and that $\delta(q)=1$ or 0 according as the permutation q is odd or even; and by S_{α} the totality of $p\left(p \in S_{t}\right)$ such that i and $p(i)$ are in the same row of (α) for each $i(1 \leq i \leq t)$. Further we set $A_{\alpha}^{*}=\sum_{a \in A_{\alpha}} a\left(\in \mathfrak{r}_{t}\right), S_{\alpha}^{*}=\sum_{s \in S_{\alpha}} s\left(\in \mathfrak{n}_{t}\right)$.

Remark. A_{∞} is a subgroup of $S_{t} \times\{1,-1\}$ and S_{∞} is a subgroup of S_{t}.

Now the following facts are well known :
(1) $\mathrm{n}_{t} S_{\alpha}^{*} A_{\alpha}^{*}$ is a simple left ideal of o_{t}.
(2) Every simple left ideal of \mathfrak{r}_{t} is operator isomorphic to $\mathfrak{r}_{t} S_{\omega}^{*} A_{\alpha}^{*}$ with a suitable (α).

From these facts follows easily

Lemma 1. $\sum_{(\alpha)} \mathrm{o}_{t} S_{\omega}^{*} A_{\alpha}^{*}=\mathrm{o}_{t}$ (where (α) runs over all Young diagrams of letters $1,2, \cdots, t$.

Now let g be a given natural number.
a) For a set of arbitrary g letters $i_{1}, i_{2}, \cdots, i_{g}\left(i_{1}<i_{2}<\cdots i_{g}\right)$ among $1,2, \ldots, t(t \geq g)$, let $S\left(i_{1}, i_{2}, \cdots, i_{g}\right)$ be the symmetric group on letters i_{1}, \cdots, i_{g} and set $S^{*}\left(i_{1}, \cdots, i_{g}\right)=\sum_{s \in S\left(i_{1} \cdots, \cdots, i_{g}\right)} s$. Further we set $\mathrm{l}_{1}=\sum_{\left(i_{1}, \cdots, i_{g}\right)}{ }^{\mathrm{n}_{t}} S^{*}\left(i_{1}, \cdots, i_{g}\right)$.
b) For a set of arbitrary g letters $j_{1}, j_{2}, \cdots, j_{g}$ such that $j_{1}<j_{1}+1$ $<j_{2}<j_{2}+1<\cdots<j_{g}<j_{g}+1 \leq t(t \geq 2 g)$, let $A\left(j_{1}, \cdots, j_{g}\right)$ be the totality of elements σ of S_{t} such that (1) σ permutes only $j, j_{1}+1$, $j_{2}, \cdots, j_{g}, j_{g}+1$ and (2) σ transforms $\left\{j_{1}, \cdots, j_{g}\right\}$ onto itself and $\sigma\left(j_{k}+1\right)$ $=\sigma\left(j_{k}\right)+1$ for every $k=1, \cdots, g$. We set $A^{*}\left(j_{1}, \cdots, j_{g}\right)=\underset{a \in A\left(j_{1}, \cdots, j_{g}\right)}{ } a$. Further we set $\mathfrak{r}_{2}=\sum_{\left(j_{1}, \cdots, j_{g}\right)} \mathfrak{n}_{t} A^{*}\left(j_{1}, \cdots, j_{g}\right)$. Then we have

Lemma 2. If $t \geq g\left(g^{2}-2 g+2\right)$, then $\mathfrak{r}_{1}+\mathfrak{r}_{2}=\mathfrak{o}_{t}$.
Proof. Since $\sigma S^{*}\left(i_{1}, \cdots, i_{g}\right) \sigma^{-1}=S^{*}\left(\sigma\left(i_{1}\right), \cdots, \sigma\left(i_{g}\right)\right)(\sigma \in S), r_{1}$ is a twosided ideal. If (α) is a Young diagram with columns not less than g, $S_{\alpha}^{*} \in I_{1}$, whence $S_{\alpha}^{*} A_{\alpha}^{*} \in I_{1}$. Now it is sufficient to show, by virtue of Lemma 1, that for any Young diagram (β) with columns less than $g, A_{\beta}^{*} \in \mathrm{I}_{2}$.

Let B be the set of letters which are in the first column of (β) and set $B^{\prime}=\{s ; s \in B, s+1 \in B\}, B^{\prime \prime}=\{s ; s \in B, s \neq t, s+1 \notin B\}$.
(1) When the number of letters of B^{\prime} is not less than $2 g-1$, we can select $j_{1}, j_{2}, \cdots, j_{g} \in B^{\prime}$ as in b) above. Then since $A\left(j_{1}, \cdots, j_{g}\right) \subseteq A_{\beta}$, we see that $A_{\beta}^{*} \in \mathfrak{I}_{2}$.
(2) When the number of letters of B^{\prime} is less than $2 g-1$, that of $B^{\prime \prime}$ is not less than $g^{2}-3 g+3=(g-1)(g-2)+1$. For, since $t \geq g\left(g^{2}-2 g\right.$ +2) and since (β) has at most $g-1$ columns, the number of letters of B is not less than $g^{2}-g+2$ (observe that $\left(g^{2}-g+1\right)(g-1)=g^{3}-2 g^{2}$ $+2 g-1)$. For all $s \in B^{\prime \prime}$, we consider $s+1$; they are in columns other than the first. Therefore at least one contains at least g of such $s+1$, i. e., we can select $j_{1}<\cdots<j_{g}$ from $B^{\prime \prime}$ such that $j_{1}+1, \cdots, j_{g}+1$ are in the same column. Then $A\left(j_{1}, \cdots, j_{g}\right) \subseteq A_{\beta}$, whence $A_{\beta}^{*} \in \mathrm{I}_{2}$. Thus the proof is completed.
2. Preliminaries on rings satisfying the condition $c(n)$.

We denote by R a ring which has K as a coefficient field. When $y_{1}, \cdots, y_{t} \in R$ and $X=\sum_{i} a_{i} \sigma_{i}\left(a_{i} \in K, \sigma_{i} \in S_{t}\right)$, we denote by $X\left(y_{1} \cdots y_{t}\right)$ the
sum $\sum_{i} a_{i} y_{\sigma_{i}(1)} \cdots y_{\sigma_{i}(t)}$. Let ($\left.K, R\right)$ be the ring obtained from R by adjoining an identity having K as the coefficient field.

Lemma 3. Let d and t be given natural numbers and let $V=\left\{\left(i_{1}, \cdots, i_{t}\right)\right\}$ be the totality of vectors of dimension t such that (1) each component i_{k} is a non-negative integer and (2) the sum $\sum_{k=1}^{t} i_{k}$ of the components i_{k} is equal to d (for every vector $\left.\left(i_{1}, \cdots, i_{t}\right) \in V\right)$. Now suppose that to every vector $\left(i_{1}, \cdots, i_{t}\right) \in V$ there corresponds an element $u\left(i_{1}, \cdots, i_{t}\right)$ of R. If for arbitrary elements c_{2}, \cdots, c_{t} of K it holds $\sum c_{2}^{i+\cdots} c_{t}^{i} u\left(i_{1}, \cdots, i_{t}\right)=0$, then each $u\left(i_{1}, \cdots, i_{t}\right)$ is 0 .

Proof. When $t=1$ our assertion is evident. When $t=2$, since the determinant

$$
\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{d} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & a_{d} & a_{d}^{2} & \cdots & a_{d}^{d}
\end{array}\right|
$$

is the fundamental alternative function of $1, a_{1}, \cdots, a_{d}$, our assertion follows easily. Now assuming that our assertion holds when $t=s$, we consider the case $t=s+1$. Since

$$
\sum_{i_{s+1}=0}^{d} c_{s+1}^{i_{s+1}}\left(\sum_{i_{s+1} \text { fixed }} i_{2}^{i} \ldots c_{s}^{i s} u\left(i_{1}, \cdots, i_{s+1}\right)\right)=0
$$

we see, by the case $t=2$, that $\left.\sum_{i_{s+1} \text { fixed }} i_{2}^{i_{2}} \cdots c_{s}^{s} u\left(i_{1}, \cdots, i_{s+1}\right)\right)=0$, which is the case $t=s$. Therefore $u\left(i_{1}, \cdots, i_{s+1}\right)=0$.

Lemma 4. Assume that R satisfies the condition $c(n)$. Then for arbitrary elements y_{1}, \cdots, y_{n} of R, we have

$$
S_{n}^{*}\left(y_{1} \cdots y_{n}\right)=0 \quad\left(S_{n}^{*}=\sum_{s \in S_{n}} s\right) .
$$

Proof. Since $\left(y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}\right)^{n}=0$ for arbitrary elements c_{2}, \cdots, c_{n} of K, we have our assertion by Lemma 3.

Corollary. With the same R, we have $y^{n-1} R y^{n-1}=0$ for every $y \in R$.

Lemma 5. Assume again that R satisfies the condition $c(n)$. Let m be the least integer greater than $n / 2$. Then for an arbitrary element u of $R, \overline{\mathrm{v}}=u(K, R)+\left(u^{2}\right) /\left(u^{2}\right)$ satisfies the condition $c(m)$, where $\left(u^{2}\right)=(K, R) u^{2}(K, R)$.

Proof. It is sufficient to prove that for an arbitrary element z of $R, \quad(u z)^{m-1} u \equiv 0 \quad\left(\bmod . \quad u^{2}\right)$. In the equalities $S_{n}^{*}\left(y_{1} \cdots y_{n}\right)=0$ and $S_{n}^{*}\left(y_{1} \cdots y_{n}\right) u=0$, we put $y_{1}=\cdots=y_{n+1-m}=u, y_{n+2-m}=\cdots=y_{n}=z$. Then we see $(u z)^{m-1} u \equiv 0$ (mod. u^{2}) from the former or the latter according as n is odd or even.

Lemma 6. Let R, n and m be the same as in Lemma 5. Let r be the least integer such that $n-1 \leq 2^{r}$. If there exists $f(m)$ (in the theorem with n replaced by m), and if $u \in R$, then $(u)^{g(n)}=0$, where $g(n)$ is $2 f(m)^{r}$ or $f(m)^{r}$ according as $n-1=2^{r}$ or $\mathrm{n}-1<2^{r}$.

Proof. By Lemma 5, we see that $(u(K, R))^{f(m)} \subseteq\left(u^{2}\right)$. Therefore $(u)^{f(m)} \subseteq\left(u^{2}\right)$. Thus we see $(u)^{f(m)^{r}} \subseteq\left(u^{2}\right)^{f(m)^{r-1}} \subseteq \cdots \subseteq\left(u^{2 r}\right)$. Now our assertion follows from the corollary to Lemma 4.

Lemma 7. With the same R and $g(n)$ (and assuming the existence of $f(m))$, let $y_{1}, \cdots, y_{t}(t \geq g(n))$ be arbitrary elements of R and let $i_{1}<i_{2}<\cdots<i_{g(n)}$ be arbitrary integers among $1,2, \cdots, t$. Then

$$
S^{*}\left(i_{1}, \cdots, i_{g(n)}\right)\left(y_{1} \cdots y_{t}\right)=0 .
$$

Proof. We may assume without loss of generality that $i_{1}=1$ and $i_{g(n)}=t$. Take $r_{1}=1, s_{1}, r_{2}, s_{2}, \cdots, r_{k}, s_{k}=t$ such that $\left\{i_{1}, \cdots, i_{g(n)}\right\}=\left\{r_{1}=1\right.$, $\left.2, \cdots, s_{1}, r_{2}, r_{2}+1, \cdots, s_{2}, \cdots, r_{k}, r_{k}+1, \cdots, s_{k}\right\}$ and that $r_{j+1}>s_{j}+1(j=1$, $\cdots, k-1)$. We set $u=\left(y_{i_{1}}+c_{2} y_{i_{2}}+\cdots+c_{g(n)} y_{i_{g(n)}}\right)$ witharbitrary elements $\boldsymbol{c}_{2}, \cdots, \boldsymbol{c}_{g(n)}$ of K. Then by Lemma 6 we have

Since $c_{2}, \cdots, c_{g(n)}$ are arbitrary, we have our assertion by Lemma 3.
Corollary. When $t \geq 2 g(n)$, take $j_{1}, \cdots, j_{g(n)}$ such that $A\left(j_{1}, \cdots\right.$, $\left.j_{g(n)}\right)$ can be defined. Then

$$
A^{*}\left(j_{1}, \cdots, j_{g(n)}\right)\left(y_{1} \cdots y_{t}\right)=0 .
$$

3. Proof of Theorem.

Since we may set $f(2)=3$, as is easily seen, we prove the theorem by induction on n : We assume the existence of $f(m), m$ being the
least integer greater than $n / 2$ (observe that when $n \geq 3, m<n$).
We take $g=g(n)$ given by Lemma 6 and let $t=f(n)=g\left(g^{2}-2 g+2\right)$: We prove $\mathfrak{g}^{t}=0$. For this purpose, we may assume without loss of generality that $\mathfrak{N}=F / \mathfrak{R}, F$ being the ring freely generated by sufficiently many indeterminates x_{λ} over K and $\mathfrak{\Re}$ being the (two-sided) ideal of F generated by all of the n-th powers of elements of F.

Let x_{1}, \cdots, x_{t} be arbitrary, mutually distinct elements among x_{λ}. Then, as \mathfrak{R} is left-invariant under $\mathfrak{o}_{t}, \mathfrak{i}=\left\{X ; X \in \mathfrak{\imath}_{t}, X\left(x_{1} \cdots x_{t}\right) \in \mathfrak{R}\right\}$ forms a left ideal of o_{t}. By Lemma 7 and its corollary, every $S^{*}\left(i_{1}, \cdots, i_{s}\right)$ and every $A^{*}\left(j_{1}, \cdots, j_{g}\right)$ are in I . Therefore by Lemma $2 \mathfrak{} \mapsto 1$, whence $x_{1} \cdots x_{t} \in \mathfrak{R}$, and this shows $\mathfrak{g r t}^{t}=0$.

4. A more restricted case.

We say in this paragraph that a ring R^{*} satisfies the condition $c^{*}(n)$, if R^{*} satisfies the condition $c(n)$ and R^{*} possesses a system M of generators such that $x^{2}=0, x R^{*} x=0$ for every $x \in M$.

By our theorem we see that there exists a natural number $h(n)$ such that $\mathfrak{B}^{h(n)}=0$, if \mathfrak{B} satisfies the condition $c^{*}(n)$ and if \mathfrak{B} has a coefficient field, say K, of characteristic 0 .

It is remarkable that for this $h(n)$ we have $9 h^{\left(h^{(n)}=0\right.}$ for any ring \mathfrak{A}^{2} which satisfies the condition $c(n)$ and which has also a coefficient field of characteristic 0 , that is if $f(n)$ and $h(n)$ are chosen to be the least possible value, then $f(n)=h(n)$.

Indeed, let F, \mathfrak{R} and $\mathfrak{\Re}$ be the same as in $\S 3$, and let \Re_{1} be the ideal generated by $\mathfrak{\Re}$ and all of both $x_{\lambda} F x_{\lambda}$ and x_{λ}^{2}. We may assume that $\mathfrak{B}=F / \Re_{1}$. $\mathfrak{B}^{h(n)}=0$ shows $x_{1} \cdots x_{h(n)} \in \mathfrak{R}_{1}$ for any (mutually distinct) $x_{1}, \cdots, x_{h(n) \in\{x\} \text {. This shows that }}$

$$
x_{1} \cdots x_{k(n)}=\sum_{i} a_{i} u_{i} s_{i} v_{i}+Q \text {, }
$$

where (1) $s_{i}=S_{n}^{*}\left(y_{i}^{(i)} \ldots y_{n}^{(i)}\right)$ with $y_{j}^{(i)} \in F$, (2) $a_{i} \in K$, (3) each of u_{i} and v_{i} are in F unless it is the identity and (4) Q is a sum of terms which are of weight greater than 1 on some x_{λ}. It is evident that when $y_{k}=z_{k}+w_{k}$ for one $k(1 \leq k \leq n)$, then $S_{n}^{*}\left(y_{1} \cdots y_{n}\right)=S_{n}^{*}\left(z_{1} \cdots z_{n}\right)$ $+S_{n}^{*}\left(w_{1} \cdots w_{n}\right)$ with $y_{i}=z_{i}=w_{i}$ for every $i \neq k$. Therefore we may assume without loss of generality that (1) u_{i}, v_{i} and $y_{j}^{(i)}$ are monomials on $x_{1}, \cdots, x_{h(n)}$ (u_{i} and v_{i} may be 1) and (2) every $u_{i} s_{i} v_{i}$ contains no term of weight greater than 1 for any x_{λ}. Then since $x_{1} \cdots x_{h(n)}$ is of weight

1 for every $x_{1}, \cdots, x_{h(n)}$, we have $Q=0$, i. e., $x_{1} \cdots x_{h(n)} \in \mathfrak{R}$, which shows $\mathfrak{H}^{h^{(n)}}=0$.

5. Remarks.

(I) When K is a field of characteristic $p \neq 0$: If $p \leq n$, the conclusion of our theorem does not hold. A counter-example can be easily constructed even when (1) $n=p$ and (2) \mathfrak{N} is commutative; namely as follows: Let A_{k} be the algebra over K of the rank $n^{k}-1$ with the generating elements x_{1}, \cdots, x_{k} with the fundamental relations $x_{i}^{n}=0$, $x_{i} x_{j}=x_{j} x_{i}$ for $i, j=1,2, \cdots, k$; and put $A=\sum_{k=1}^{\infty} A_{k}$ (direct sum!). Then A satisfies $c(p)$, but A is not nilpotent.

If p is greater than $f(n)$ given by the theorem, then the same conclusion holds. This fact is established by an easy modification of our above proof.
(II) When K is a commutative ring with identity: The conclusion of our theorem holds for K, if and only if it holds for every residue fields of K. The proof is easily obtained if we consider the group rings of symmetric groups over K.
(III) Conjecture: The conclusion of our theorem will hold, also when K is a field of characteristic $p>n$.

Nagoya University.

