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A generalization of Cartan space.

By Keinosuke TONOWOKA

(Received December 23, 1950)

A space such that the area of a domain on a hypersurface
xi=xi(u"), a=1,2,--,m—1, is given by the (n—1)-ple integral

j( W F(xi, 0xi/ou®) du! --- du»!

is called a Cartan space.. E. Cartan has shown that this space may
be regarded as a manifold of the hyperplane elements (x¢, 8x%/6u®).
Thereafter L. Berwald has treated the geometry at large of this space,
and T. Okubo and the present auther have extended this geometry to
the higher order (#—1)-ple integrals of some special forms. In this
paper the auther will establish the geometry of a space in which the
area of a domain on a K-dimensional surface x=xi(«®), i=1,2,---,%n;
a=1,---, K, is given by the K-ple integral

f F(u®, x%, oxi/ou”, 6 xi/ou” ouP) du' --- du*X .
K

It is convenient to regard the space in question as a manifold of
the K-dimensional surface elements of the third order and #*, (=1, --,
K') which we shall denote by F®. Namely, the manifold F® consists
of all system of values of u*, x¢, 6xi/ou”, 6°x'/ouou’, °x¢/ououtou’.

Throughout this paper we shall use the notations

; X xe ; & x¢ 2 xe
Xi= 0%, Xe= ", Xig=-CX - Kgp=-0%_ ..,

oxe ox’ 0x% 9% 0x' 9x™

a_ OUu” Ur— @, = o u” A= o° u*

AT -2 [ 2 | AQ2)— — —>a ? a(2) ™ T T ar o~ ’
ou* on” ou’ out* ou™ ou™

(s) — Ads) — A A

:(:)—' ‘:i a T Uf: ’ Uwg:;—Uzi Uw; ot Uaz: .

which are evaluated for the transformations




A generalization of Cartan space 1356

xXe=x2(x%), - a=1,2,-,m,; i=1,2,, m,
wr=aNu®), r=12-,K; a=1,2,, K.
Moreover we shall use the notations
;__ oxt VY - _ oF __ oF
p:x“‘%‘;;’ Da» =D, 2= W,"', F,= on®’ F;’i—, oxi

and

peo— 9 po WlBL-hl o

ap{i(s) S! apfv(s)
when the indices «;, a3, -, @ consist of /4, 4,--- and /; same indices.

§1. Fundamental tensor of F®.

Suppose that we have the K-ple integral
() | Fue, 2, i, pip) it -

which is invariant under the transformation-group of coordinates and
parameters

(2) xa=x%o(x?), wr=uNu").

It is easily seen that the function F is transformed under any
parameter transformation as follows |
3) F(u, xi, p, pL)=F(u®, %%, pi, pip) 4, (4= U
which behaves as a scalar under any coordinate transformation; that
is _
(4) F(u?, xe, pg, p.)=Fu®, x%, pi, bis) 4 .

It is well known that the identity (3) holds good when and only
when the following identities are satisfied by the function F(u®, x¢,

Pi, piﬂ) ’

(5a) F.,=0 (@=1,2,, K),
(Sb) F,U:BP‘IYZO (7:1’ 2), K):
(SC) 2F:dispﬁt"¥+F:?p'z;(:8$F (!y:l’ 2;“'9K)-

From we have the identities
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#F FF___ ... PF g
ap;illﬁl p;]zlﬂz apm B3 pm B1 ap;" K)B p’” -k
N-1BN-1 " en By
and
Y N P
{4;‘1131 apgv]zlﬂz apgfp;, pm B1 al);n K:; apfn K] L
N-1Pn-1 T enBy

putting ‘N=2(n—K), so that there is.a quantity p***~;Pi1f~By gych
that

(6) *F PF oF
i1 ] ]
D@1 g 0. A ﬂz 3 Ba opi: B4 6p;7v II(BN o 6p;?v)£(1'v)

_ . ri, ./ 1 r 7 .’
=iy il il Ciriy i DI DAR Pl p I
x pa’l @g-a@py, B1B2Bpy ,

where we have put

—72'8[,, 8" K sn K+1,,

€5
f1d2d,y, K1 i

:KJ

It is seen from (4) and (6) that p***~*n B1f2-BN bhehaves under the
transformation (2) in the manner

A A2ANS K1 K2 RN — 4B-K=2 T)2 p%1@2a g, B1B2B AN) TTCND
p N N=4 D’p Ny NUZM UsR3

putting D=| X% |.

Suppose now that the (¥%¥-1).rowed determinant p=| p**N-F1fN|
. ] . K+N-1)I6]
does not vanish. Since | UMM 1=] U2 1"FT)", we have the u-tensor

Pal...mN' 31...BN:p—x F—y po}l-..wAv, 31...{3N

putting x=1/(V4&-1), y=—2N/K.

Let P, .a,,v.-v, be the inverse system of PN A-By. that is
Pron. BBy Pul---uN- yl...vN=3(si"'5$x)’ and put P*eNFPUEN P M"'?N' YUY Ny
=Qp;~ ., then the quantity Q7 7"~ is transformed Dby (2) as fol-

b '
lows

Qm PaBar  — Qﬂx Br-Bpy  [JHN) [TV U'v

ViveeVps. Y1Y2Ypr. g B(N) v(N)
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AL A2 AP7 182077 a(N) Y(N)
+P P o1 Az aNy VIYV2 YN NNy Uv(N)

DAL Ap, K121 AT a(N) T TY(N)
+ P Pﬂ’ll a’/?"'dN. Y1 'YZ""YN U)\(N) U'U(N)/\l

where the symbol /v indicates the total differentiation with respect to
w. Putting wuy=vy, py=vs, -, uy-1=vy-; and contracting these indices
one gets

7 @m wabp N = Bt BBy Uk Uﬂ Uv

L RS LI Bt Bz _13 Y

PAL AaAps_1P Bl p2 Az 1A D @
+NP N-1 N-1 PM Az'--AN_lw, K1 p2ephpg qpb U: Upv

+U}L1Mu IU}‘ (UﬁlUﬁﬁ Uﬁx—iU‘fN)/

B1 B2~
If L% is a coefficient of the linear connection of #-tensor, it is trans-
formed in the following way :
(8) Le,=12, UsUBUI+UsUS,.
Eliminating U3 U3, from (7) and (8) we have

’ana-"#N_lx K"" Lw = QP BBy U UE U?

N R RY B1 Ba- 3N 1B v
—K 2L UNUPUY +5% §%--5n-1 U U
8B ey & M v M1 2 Bar-1 @ "y
m-1
+ 8 St Uk U P 5118 ),
t=1 AL S | ®
where we have put

IZoN AL A2 Anr_1Ps B2 _7\“ i
K2\ =N P 22 y-1p p1b2mkn_ g P}‘IM"'}‘N—I"" 1 et L i+

Moreovér one gets
9) y—Ko Lo, =(Q8,— K LYY Us UL Uy +pU;, Ui, +q 8., 8, log 4,
putting @3, =Q*#*~-1*  where p, ¢ are suitable rational numbers.

[0 S g V28 15
Putting A=x and contracting this indix we have

(10) @y_KZZ:,v:(Qv KSLy) UY+(p+qn Q) Oy IOgA

nn+1)--(n+N—-2) 5 .
: N! v

where we have put @2,=@, and K°o=K*\ =
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Eliminating &,log 4 from (9) and one obtains
(p+an—q) (@) —KiL L3)—a(@.,— K Ly) 8}
={(p+an—q) (@5, — K3 L)) —q(@y— K3 L2,) 83U UL UY
+pp+an—q) Uz UL, ,

so that the law of transformation of the quantity

1 QR Is)— q @,—ReIn) 6
b | p(p+agn—aq)

is the same as the law of transformation of L),. Hence we may put

(11) % (@3,—Rer Lo,

— q 5. nnt1)-(N+n—2) 7 \a_7a
i (@ N eI,
from which it follows
— q KOQ.— ‘N+n—2\ 7 T
p(p+an—q) { < ( N )L} Ly,

putting L,=L),.

If we denote by N2, the quantity i— K*\ +83 82, and assume that

the K2-rowed determinant | N er | is different from zero, then we can
uniquely determine the quantities L), and L, from (11) and

Moreover we put L},,,=G., which is transformed in the manner
GhL=Gg Uy ULUI-ULULU,.

We have now the quantities

61 61 hd
[ J— -— —-l’z’...,n; a-—l’z’..., R ’

which are known as the components of the Synge vectors. These are
not intrinsic under arbitrary parameter transformation. After some
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calculation we see that the Synge vector E? is transformed by the

transformation-group (2) in the manner

o

opis
By the above equation and the law of transformation of Gg, we

can see that the vectors

‘.’:——i_ @ oF -4 =]1,2,-
(‘-E: F {Ez + 6péy By } (C\i ]-9 2’ sK)

are intrinsic, that is

Ey=4E:XiUi+4 -2 XU,

Gr=6r XL U3.
By virtue of and it is known that there are the relations
(13) . @;&pzy____ac; (a’ '}’:1, 2,”" K)-

We see that the rank of the (K g 1) n—rowed determinant | F2 F2 |

is not greater than (K _2'" 1> (r—K), because of F#2 P2 pi—0 (y=1,2,

-, K). Suppose now that the determinant |F*®?®| is of rank
( K g 1) (n—K), then we have one and only one system of the intrinsic
quantities B%s, o, satisfying the equations

B5o bo=DBkw 5o »

By by FIR PP =F(8;—pi €7) 853,

Bt kiz) €%=0 («=1,2,--,K),

because of (8:—p% 62) pi=0 (y=1,2,--,K). The quantities By e
thus determined are quantities in F,2.

If we put Big, kg, ¢, 5¥ =g, these are components of a sym-
metric #-tensor of the second degree. Suppose that the determinant
| 9*?| be different from zero and ¢.s be the inverse system of g®f. If
we put ¢g.s €7 CH+ %,— Feibrosb g @ Junep=Y;; for which the relation
9:; Dy pi=9.e holds good and assume that g=|g,;;|=F0, then we have
the conjugate system ¢/ such that ¢/ g;,=8i. The quantities g/
and g;; thus defined are components of a contravariant tensor and a
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covariant tensor in F respectively. We shall adopt ¢;; and g¢/
as the fundamental tensors of the space F'¥ and raise the subscripts
by means of ¢/ and lower the superscripts by means of g;;. Moreover
we shall raise the greek subscripts by means of ¢** and lower the
greek superscripts by means of ¢us.

§ 2. Covariant differential of the vector in F.

After some calculation it is known that the quantity
1

— 7 B(2) 3 Y(2) B
fy— 3 —‘B;yé(Z){F;?;j +G‘7172F;i i 7 }

K+1
is transformed by (2) as follows:
A=A X X5 U+ (55— 5 ) X5 Xy .
It is easily seen that the quantity
V8 j— Al V8 + G5, 07
is intrinsic when ¢% is an intrinsic quantity which satisfies the relation

v 5§=0 (y=1,2,-, K).
As a consequence of the above result the quantity

HI®p= L (.15~ Ay .37~ 2405 52+ 3G% .7} =}

is intrinsic. Moreover it is seen that the above expression is linear
with respect to the highest derivatives piu,. Accordingly, if we put
GF* H*=H*®, this is written in the form

(14) H®=H® & pl i+ PP (2%, Py, Dyon Dia) »
where the second term of the right hand members is the function of

xxo p:;(l); p;(Z)) p;(S)- Since' H?M) ?(4) p(’:'o ('Y: 1’ 2’. Ty K)’ the (KI 3) n=

fowed determinant | H* *® | has the highest rank (X} 3)—K). 1t

N\

we assume that | H*® O | is of rank (K Z3> (n—K), then from (14)

we can derive another intrinsic system
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T5y= (85— D% €3) Dlcp+ Py (%%, Py, Dicors Piscs) -
In order to determine the coefficients of connection of F®, we
shall assume that
(15) T545=0,
and denote by D,f the total derivative of f with respect to #* under
the condition [15). Then we can easily see that D,¢&? is a function of

only the surface elements of the third order.
Let us consider the quantity

I'y= Al + s (D €3+ G, 6)) ™
which is a quantity in F&. After some calculation we see that the
law of transformation of I, is
(16) m—X XU Iriu— X Xspi Us .

We shall now determine the coefficient of connection using the
quantity I'%,. Let us consider the operation P*? which is defined as

follows
3
PPO(T7)= I_Zl (§) TPP 3D (dphs-p —Dics-1y AWY)
Then we have the following theorem.
THEOREM 1. When T/ behaves so as TA=%4+T7 under the

transformation-group (2),_‘ PPO(T7) are transformed wunder (2) in the
manners

(17) PHo(TH =3 3] P""’(Tf)’Agff,’ (s=1,2,3),
where N3} are functions of only X2, Xéon, -+, Us, Usayy e, and 'A% afe

the same as the coeffiicients of the transformation of Py, under any
parameter transformation, thal is

. l .
Dsay= Z; Dis AL .
=

On the other hand the quantities K} (¢,/=1,2,3; t <) which
are defined as follows

Y — 7 Y — Y _ Y Y
5—833 KB(Z)—‘ GBl B2y Kﬁ(a) _D(ﬁa Gﬁl B2) + Gu(Ba Ggl B2) »

v y YD (Y y y3) va 8
KiB=28%, 8%, K¥3=3GH e 8% KiP=380 558k,
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are transformed in the following manﬁer
(18) Ki®= ¥§SZK”€3 Ak (s=1,2,3),
where ALY is the inverse system of ‘A4S, that is

S(l)l B(s) — 2B()
Z‘Au(s) Afy =8k -

From ((17) and [(18) one gets the following theorem.
THEOREM 2. Under the transformation-group (2) the quantity

STPPTY) K= 3331 () T2 K (@b Bice-in d”)
is transformed in the manner
SIPHTA) Kln=f U333 P (T7) Ko
By the above theorem and [(16) it follows that the quantity
ri=_L zpﬂw (174) K8+ Iy du®
behaves under (2) as follows:
=i X X+ X¢ X5, dxe,

so that we can define the covariant differential of a vector »¢ in the
manner
Svi=dvi+I'v7

or
2 . .
19 Svi=dvi+ > CL82 vi dpfy+ Ciy vi dud”
s=0 d
putting

: 1 7, v, ) »
C;',‘ - K {I ‘Jd/ x+Gﬂ152 1 fm g(z +D(B1 Gg2ﬁa) 1 .‘10’ ﬁ(S)
+ G$(51 Gzz B3) I""a ;ax(a)} ’
Ct;,l;i‘(l)_. {21’;0; ‘“+3G§2 53 u Bxfeﬁa} ,

{ 3 7 ;1 B(s)
C;_fi(Z)___ K I ‘ja;B(KZ)ws C,'i'Y’— K Zo .é(sly .
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§ 3. Intrinsic Pfaff’s forms.

In-order to define the covariant derivatives of the vector we shall
derive the intrinsic Pfaff’s forms. By the theorem 2 we see that the
expressions

1 3 1 3,38 _
LS pai(y, B(ja)) Ki5= > 31310 g, scjs); ah Xi=D 1

l=s g 1I=s =i

x {dpg(zd)‘"Pg(z—m du’} (s=1,2,3)
are intrinsic. Putting ¢—/=#» we have

1 3-s . .
L5 S0 0,59, KA dphor— e du}
or
1 - . 1 2= .
(20) ? (g) g; 3(1,3);w(s) 81(3 s) 31((55)) dpg(s_s) + _g_ ;;:)MI;(.’S) 'Y(i_)w(r) dp;(r)

1
+ M@ du” | (s=1,2,3),
9
where we have put
) 3~r
— ( S
M?(I'l) 'Y(is)d(r)__ l.zs (l*‘lr) 9;5‘3); Ui a(r) Kg((;)) ,

B V) — _ Y X (1 3) ()8! Y(s) pi
MjK ‘ws 2 (+r)953) wl) ” Kw(?)pg(r)w-

t/w

-
I

Suppose now that the (Ké"Z) n— rowed determmant | g.P®2*¥ | is of

rank (K ;2> (n—K), then we can derive from the intrinsic Pfaff’s
forms
(21) . “’ufS s) (3'—[701, @a) dpw(s s)+ 2 Pw(a -5) J dpﬂ(r)

+ Q;(B—s)? du (3=1, 29 3) .

Moreover we can derive from the intrinsic differential of ¢;%* defined
by

89,%0= L {dg 29— 1] g 4P —207 9 #9+3Gy 9,5 du'}
g i ;
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another intrinsic Pfaff’s form

(22) wo3)=(8%—p% €%) dpla+ r§0‘ Pl 57 dp, + Qhayy du .

§4. Covariant derivatives.
When we put
. ) 3 o
) 1)'=—’V~, v? duy"" 2 V_‘;(r) vt Q)é(,),
=0

it follows from [(19), and

’
0 Pu
. a vi . . . .
V:(Z) pi= ap’( +C; N(KZ) L _Pé(3) ’C‘t(Z) 75(3) vl ,
a(2)
al) o oVt ~i D) i . . . .
peQ) pyi— aip"if + C oD pi— Pl g, 2D pE® i — P, 2O phD i |
a(1)
voyim OV i i Pi pE® i PP pED i PP pAD i
V= U Baw P57 U —Lhan V20— P V5 v,

o x"

. i P .
Prvi= 22 1 Clyvd— 33 Qe PV,
ou s=0

under the conditions

V?((s)vip_';:() ('Y=1)2""’ K)-
The quantities 7*® v/, (s=0,1,2,3) and F,»' thus defined are co-
variant derivatives of a vector »¢ in F.

Mathematical Institute
Iwate University.

References

{11 E. Cartan. Les espaces métriques fondés sur la netion d’aire, Actualités, 1933.
[2] L. Berwald. Uber die n-dimensionale Cartansche Riume und eine Normalform

der zweiten Variation eines (#—1)-fachen Integrals, Acta. Math., 71 (1939).




A generalization of Cartan space 145

[3] L. Berwald. Uber Finslersche und Cartansche * Geometrie, 1I, Compositio
Math., 7 (1939).

[4]1 T. Okubo. A generalization of Cartan space, Tensor 6.

[5] H. Iwéx;noto. Uber eine geometrische Theorie der mehrfachen Integrale,
Japanese Jour. of Math., Vol. XIX No. 4.

[6] K. Tonowoka. On invariants of

. .- . 1
X( b (a%? 5(3) P Pha)+ B§<3) b +C)2du, Tensor 9.
n—




	A generalization of Cartan ...
	\S 1. Fundamental tensor ...
	\S 2. Covariant differential ...
	THEOREM 1. ...
	THEOREM 2. ...

	\S 3. Intrinsic Pfaff's ...
	\S 4. Covariant derivatives.
	References


