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Fundamental theorems in potential theory.

By Masatsugu TSUJI
(Received April 5, 1952)

The potential theory plays an important r\^ole in function-theory,
so that in this paper, I shall prove fundamental theorems in potential
theory in the shortest lines. Almost all results are known and the
proofs are not new, but are somewhat simpler than the usual ones.

Theorem 20 seems to be new and of some interest. In view of
applications to function-theory, we confine ourselves to logarithmic
potentials.

1. Maximum principle.

Let $F$ be a bounded closed set on the z-plane and $\mu(e)\geqq 0$ be a
positive mass distribution on $F$ of finite total mass and consider the
potential:

$u(z)=\int_{F}\log\frac{1}{|z-a|}d\mu(a)$ .

THEOREM 1. (Maximum principle).1) If $u(z)\leqq K$ on $F$, then
$u(z)\leqq K$ in the whole z.plane.

PROOF. Let $D$ be the complement of $F$ and $a_{0}\in F$ be its boundary
point. It is sufficient to prove

$\varlimsup_{z\rightarrow a_{0}}u(z)\leqq K$ $(z\in D)$ .

Let $D_{\rho}$ be the part of $D$ contained in $|z-a_{0}|<\rho$ and $F_{\rho}$ be that of $F$

1) For Newtonian potentials: M. A. Maria: The potential of a positive mass and the
weight function of Wiener. Proc. Nat. Acad. Sci. U S. A. 20 (1931). For general potentials:
O. Frostman: Potentiel d’\’equilibre et capacit\’e des ensembles, Lund (1935). Frostman’s
proof depends on Poincar\’e’s $sweeping\cdot out$ process. A simple proof independent of the
sweeping.out process was given by Y. Yosida: Sur le principe du maximum dans la th\’eorie
du $pot_{\vee}^{\circ}ntie1$ . Proc. Imp. Acad. 17 (1941).
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contained in $|z-a_{0}|\leqq\rho$ . Since $u(z)\leqq K$ on $F$, a single point does not
contain a positive mass, so that we take $\rho$ so small that $\mu(F_{\rho})<e$ .
Let $z\in D_{\rho}$ . We choose $z_{1}\in F_{\rho}$ , such that $|z-z_{1}|\leqq|z-a|$ for any $a\in F_{\rho}$ ,
then

$|z_{1}-a|\leqq|z-z_{1}|^{1}+|z-a|\leqq 2|z-a|$ for any $a\in F_{\rho}$ ,

so that

$\int_{F_{\rho}}\log\frac{1}{|z-a|}d_{\mu}(a)\leqq\mu(F_{\rho})\log 2+\int_{F_{\rho}}\log\frac{1}{|z_{1}-a|}$

$d\mu(a)<e\log 2+\int_{F}\log\frac{1}{|z_{1}-a|}d_{\mu}(a)-\int_{F-F\rho}\log\frac{1}{|^{1}z_{1}-a|}$

$d\mu(a)<e\log 2+K-\int_{F-F_{\rho}}\log\frac{1}{|z_{1}-a|}d_{\mu}(a)$ ,

$\int_{F_{\rho}}i_{og\frac{1}{|z-a|}}d\mu(a)+\int_{F-F_{\rho}}\log\frac{1}{|z_{1}-a|}d\mu(a)<e\log 2+K$ .

Since $z_{1}\rightarrow a_{Q}$, as $z\rightarrow a_{0}$ , if $z$ is sufficiently near to $a_{0}$,

$\int_{F-F_{\rho}}\log\frac{1}{|z_{1}-a|}d_{\mu}(a)>\int_{F-F_{\rho}}\log\frac{1}{|z-a|}d\mu(a)-e$ ,

hence

$u(z)=\int_{F_{p}}\log\frac{1}{|z-a|}d\mu(a)+\int_{F-F_{\rho}}\log\frac{1}{|z-a|}d\mu(a)<e\log 2+K+e$ ,

SO that

$\varlimsup_{z\rightarrow a_{0}}u(z)\leqq K$ .

THEOREM $2^{2)}$ . $Lcta_{0}eFbe$ a boundary point of D. If $u(z)$ is
continuous at $a_{0}$ considered as a function on $F$, then $u(z)$ is continuous
at $a_{0}$ considered as function in the full neighbourhood of $a_{0}$.

2) G. C. Evans: Application of Poincar\’e’s sweeping-out process, Proc. Nat. Acad. Sci.
U. S. A. 19 (1933). On potentials of positive mass, I, Trans. Amer. Math. Soc. $\delta 7$ (1935).

Vasilesco: Sur la continuit\’e du potentiel \‘a travers des masses et la d\’emonstration d’un

lemme de Kello$gg$, C. R. 200 (1935). For general potentials $u(P)=\int_{F}\Phi(\overline{PQ})d_{\dagger}\downarrow(Q)$ :

T. Ugaheri: On the general potentials and capacity, Jap. Journ. Math. 20 (1950).
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PROOF. In the above proof, if $\rho$ is small, then $u(z_{1})<u(a_{0})+e$ ,
hence taking $K=u(a_{0})+e$ , we have

$\varlimsup_{z\rightarrow a_{0}}u(z)\leqq u(a_{0})(z\in D)$ .

Since $u(z)$ is lower semi-continuous, we have $\lim_{z\rightarrow a_{0}}u(z)=u(a_{0}),$ $q$ . $e.d$ .
THEOREM 3. Let $\mu(e)\geqq 0$ be a positive mass distribution of finite

total mass in a finite domain D. If

$u(z)=\int_{D}\log\frac{1}{|z-a}||d\mu(a)=const.=V$

almost everywhere in a neighbourhood $U\subset D$, then $\mu(U)=0$.
PROOF. We suppose that $ U:|z|<\rho$ and let $D$ be contained in $|z|<R$.

We put

$\Omega(r)=\int_{1aI<r}d\mu(a)$ $(0<r<R)$ .
Then since

$\frac{1}{2\pi}\int_{0}^{2\kappa}\log|re^{i\theta}-a|d\theta={\rm Max}(\log r, \log|a|)$ ,

$\frac{1}{2\pi}\int_{0}^{2,\iota}u(re^{;\theta})d\theta=-\int_{0}^{R}{\rm Max}(\log r, \log t)d\Omega(t)$

$=\int_{r}^{R}\frac{\Omega(l)}{t}dl-\Omega(R)\log R$ .

By Fubini’s theorem, $u(re^{i\theta})=V$ almost everywhere on $|z|=r(0<r<\rho)$ ,
except a null set of $r$ in $(0, \rho)$ , so that for a non-exceptional $r$,

$\frac{1}{2_{\pi}}\int_{0}^{2x}u(re^{j\theta})d\theta=V$ .

Hence for a non.exceptional $r$,

$\int_{r}^{R}\frac{\Omega(t)}{t}dl=const$ . $(0<r<\rho)$ ,

so that $\Omega(r)=0(0<r<\rho)$ , or $\mu(U)=0$ .
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2. Capacity and conductor potential.

1. Let $F$ be a bounded closed set on the z-plane and $\mu(e)\geqq 0$ be
a positive mass distribution on $F$ of total mass 1. We consider with
Frostman the energy integral:

$I(\mu)=\int\int_{F}\log\frac{1}{|a-b|}d\mu(a)d\mu(b)$ , $\mu(F)=1$ , (1)

and let

$V=\inf_{\mu}I(\mu)$ . (2)

We take $K\geqq 1$ so large that $|a-b|\leqq K$ for any $aeF,$ $b\in F$, then

$I(\mu)=\int\int_{F}\log\frac{K}{|a-b|}d\mu(a)d\mu(b)-\log K\geqq-\log K$ ,

so that $ V>-\infty$ .
We define the capacity of $F$ by

$C(F)=e^{-V}$ . (3)

If $C(F)>0$ , then there exists $\mu$ , such that $I(\mu)=V^{3)}$ We call $\mu$ the
equilibrium distribution and

$u(z)=\int_{F}\log\frac{1}{|z-a|}d\mu(a)$ , $\mu(F)=1$ (4)

the conductor potential of F. $u(z)$ is lower semi.continuous and super-
harmonic.

The kernel $F^{*}$ of $\mu$ is defined as the set of points $a$, such that any
small neighbourhood of $a$ contains a positive $\mu\cdot mass$ . Evidently $F^{*}$ is
a closed sub.set of $F$.

The capacity of any Borel set $E$ is defined by

$C(E)=\sup_{FCE}C(F)$ , (5)

where $F$ are closed sub-sets of $E$ .

zero
$Itcanbep_{n}rovedeasi1yt.hatifC(E),thentheandifC(E)=0(n=1,2.\cdot\cdot),$

$thenC(\sum_{n=1}^{=_{\infty}0}E_{n})=0$

.
measure of $E$ is

3) Frostman, 1. $c$. $1$).
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In this paper ” almost everywhere) means “ except a set of capacity
zero”.

THEOREM 4. Let $\mu(e)\geqq 0$ be a positive mass distribution on a
bounded closed set $F$ of total mass 1 and

$u(z)=\int_{F}\log|\overline{z}-a|1d\mu(a)$ , $\mu(F)=1$ .

If $\int_{F}u(z)d\mu(z)<\infty$ , then any Borel set $e\subset F$ of capacity zero does not
contain a positive $\mu$ -mass, $i$. $e$ . $\mu(e)=0$ .

PROOF. Suppose that $\mu(e)=m>0$ . We may assume that $e$ is closed.
We take $K\geqq 1$ , so large that $|a-b|\leqq K$ for any $a\in F,$ $b\in F$, then

$u(z)+\log K=\int_{F}\log\frac{K}{|z-b|}d\mu(b)$ ,

hence

$\int_{F}u(a)d\mu(a)+\log K\geqq\int\int_{e}\log\frac{K}{|a-b|}d\mu(a)d\mu(b)$

$=\int\int_{e}\log\frac{1}{|a-b|}d\mu(a)d\mu(b)+m^{2}\log K$ .

Hence $\int\int_{e}\log$
$-1$

$- d\mu(a)d\mu(b)<\infty$ , so that $C(e)>0$ , which con-
$|a-b|$

tradicts the hypothesis. Hence $\mu(e)=0$ .
THEOREM 5. Let $E$ be a bounded $F_{\sigma}$ -set of capacity zero, thdn

we can distribute a positive mass $\mu(e)>0$ on $E$, such that

$u(z)=\int_{F,}\log\frac{1}{|z-a|}d\mu(a)$ , $\mu(E)=1$

tends to $+\infty$ , when $z$ tends to any point of $E$.
This follows from Evans’s theorem4), where $E$ is closed.
We call $u(z)$ the Evans’s function with respect to $E$ . We use this

function frequently in this paper.
2. Now we shall prove the following fundamental theorem in

the potential theory.

4) G. C. Evans: Potentials and positively infinite singularities of harmonic functions,

Monatshefte $f$. Math. $u$ . Phys. 43 (1936).
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THEOREM 6 Let $u(z)$ be the conductor potential of a bounded
closed set $F$, which is of positive capacity. Then $u(z)\leqq V$ in the whole
z-plane and $u(z)=V$

“ almost everywhere” on $F$, such that $u(z)=Von$
$F$, except at an $F_{\sigma}$ -set of capacrty zero.

PROOF. First we shall prove

$u(z)\geqq V$ “ almost everywhere” on F. (1)

Suppose that $u(z)<V$ on a set $E\subset F$, such that $C(E)>0$ , then we
can find a suitable closed set $F_{0}\subset E$ , such that $C(F_{0})>0$ and

$u(z)<V-2e$ on $F_{0}$ for some $e>0$ . (2)

Let $F^{*}$ be the kernel of $\mu$ , then since $\int_{F*}u(a)d\mu(a)=V$, there exists
$a_{0}\in F^{*}$ , such that $u(a_{0})>V-e$ , then $a_{0}$ lies outside $F_{0}$ . By the lower
semi.continuity of $u(z)$ ,

$u(z)>V-e$ in $U(a_{0})$ , (3)

where $U(a_{0})$ is a neighbourhood of $a_{0}$ , which we take so small that
$U(a_{0})$ and $F_{0}$ have a positive distance.

Since $C(F_{0})>0$ , there exists $\sigma\geqq 0$ on $F_{0}$, such that

$\sigma(F_{0})=\mu(U(a_{0}))=m>0$ , $ I(\sigma)=\int\int_{F_{0}}\log\frac{1}{|^{I}a-b|}d_{\sigma}(a)d\sigma(b)<\infty$ . $(4)$

We put

$\sigma_{1}=-\mu$ in $U(a_{0})$ , $\sigma_{1^{=}}\sigma$ in $F_{0}$ , $\sigma_{1^{=0}}$ elsewhere, (5)

then

$ I(\sigma_{1})=\int\int_{F}\log\frac{1}{||a-b|}d\sigma_{1}(a)d\sigma_{1}(b)\neq\infty$ , $\sigma_{1}(F)=0$ .

Hence for $0<\eta<1$ , we have $\mu+\eta\sigma_{1}>0,$ $\int_{F}d(\mu+\eta\sigma_{1})=1$ and

$\delta I=I(\mu+\eta\sigma_{1})-I(\mu)=2\eta\int_{F}ud_{\sigma_{1}}+\eta^{2}I(\sigma_{1})$

$<2\eta[m(V-2e)-m(V-e)]+\eta^{2}I(\sigma_{1})=-\eta[2me-\eta I(\sigma_{1})]<0$

5) Frostman, 1. $c$ . $1$).
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for a small $\eta>0$ , which contradicts the definition of $I(\mu)$ . Hence
$u(z)\geqq V$

” almost everywhere “ on $F$.
Next we shall prove

$u(z)$ $; $V$ on $F^{*}$

Suppose that $u(a_{0})>V+e(a_{0}\in F^{*}, e>0)$ , then by the lower semi-
continuity of $u(z)$ ,

$u(z)>V+e$ in $U_{0}=U(a_{0})$ . (7)

Hence by (1) and Theorem 4,

$V=\int_{F^{\$(}U_{0}}u(a)d\mu(a)+\int_{F^{x_{\backslash }}-F^{*}U_{0}}u(a)d\mu(a)\geqq(V+e)\mu(U_{0})$

$+V(1-\mu(U_{0}))=V+e\mu(U_{0})>V$ ,

which is absurd, so that $u(z)\leqq V$ on $F^{*}$ . Hence by the maximum
principle, $u(z)\leqq V$ in the whole z-plane, so that by (1), $u(z)=V$ “ al-
most everywhere” on $F$.

Since $u(z)$ is lower semi-continuous and $u(z)\leqq V$, the set of points
of $F$, such that $u(z)<V$ is an $F_{\sigma}$-set. Hence our theorem is proved.

We have easily
THEOREM 7. If $u(a_{0})=V(a_{0}\in F)$ , then $u(z)$ is continuous at $a_{0}$ .
The complement of $F$ consists of at most a countable number of

connected domains $D_{\infty}+\{D_{v}\}$ , where $D_{\infty}$ contains $ z=\infty$ . Let $l^{\gamma}$ be the
boundary of $D_{\infty}$ . We call $l$

’ the outer boundary of $F$.
THEORFM 8 $\mu\cdot mass$ lies on the outer boundary $I^{\gamma}$ of $F$ and

$\Gamma-F^{*}$ is of capacrty zero.
$1^{\supset}ROOF$ . $u(z)$ is a bounded harmonic function in $D_{\nu}$ and by Theorem

6, its boundary value is $V$
“ almost everywhere”, so that $u(z)\equiv V$ in

$D_{\nu}$ . Let $z_{0}$ be an inner point of $F$ and $ U:|z-z_{0}|<\rho$ be contained
in $F$, then $u(z)=V$ almost everywhere in $U$, so that by Theorem 3,
$\mu(U)=0$, hence $u(z_{0})$ is harmonic in $U$ and $u(z_{0})=V$. Hence $u(z)=V$ at
inner points of $F$. Now the complement of $1^{\gamma}$ consists of at most a
countable number of connected domains $D_{\infty}+\{\Delta_{v}\}$ . Since $u(z)=V$ in
$D_{\nu}$ and at inner points of $F$ and $u(z)=V$ “ almost everywhere” on the
boundary of $D_{\nu},$ $u(z)=V$ almost everywhere in $\Delta_{\nu}$ , so that by Theorem

6) Frostman, 1. $c$ . $1$).



Fundamenlal theorems in polential theory 77

3, $\mu(\Delta_{\nu})=0$ . Hence the mass lies on $I^{7}$ . We put $E=l^{\gamma}-F^{*}$ and sup-
pose that $C(E)>0$ . Then $E$ contains a closed sub-set $F_{0}$ of positive
capacity. Since $F_{0}$ and $F^{*}$ have a positive distance, $u(z)<V$ on $F_{0}$ ,
but by Theorem 6, $F$ contains a point, such that $u(z)=V$, which is
absurd. Hence $C(E)=0$ .

THEOREM 9 $\mu$ is unique.
PROOF. Suppose that $I(\mu_{1})=I(\mu_{2})=V$ and let

$u_{1}(z)=\int_{\Gamma}\log\frac{1}{|z-a|}d\mu_{1}(a)$ , $u_{2}(z)=\int_{\Gamma}\log\frac{1}{|z-a|}d\mu_{2}(a)$ ,

$\mu_{1}(\Gamma)=\mu_{2}(\Gamma)=1$ ,

then $u_{1}(z)=u_{2}(z)=V$
“ almost everywhere” on $I^{\prime}$ . Hence

$u(z)=u_{1}(z)-u_{2}(z)=\int_{T}\log\frac{1}{|z-a|}d\mu(a)$ , $(\mu=\mu_{1}-\mu_{2})$

is a bounded harmonic function in $D_{\infty}$ and its boundary value vanishes
“ almost everywhere”, so that $u(z)\equiv 0$ in $D_{\infty}$ . Since $u(z)=0$ in $\Delta_{\nu}$ and
‘ almost everywhere “ on $\Gamma,$ $u(z)=0$ almost everywhere in the whole
z.plane, so that by Theorem 3, $\mu^{\equiv}0$, or $\mu_{1}=\mu_{2}$ .

3. Green’s functions.

1. Let $D$ be a finite or an infinite domain, but we assume that
its boundary $\Gamma$ is a bounded closed set of positive capacity. Let $\mu\geqq 0$

be a positive mass.distribution on $\Gamma$ of total mass 1 and $z_{0}$ be a fixed
point of $D$.

We consider with Frostman

$G(\mu)=\int_{\Gamma}(\int_{\Gamma}\log\frac{1}{|a-b|}d\mu(a)-2\log\frac{1}{|b-z_{0}|})d\mu(b)$ , (1)

$G=\inf_{\mu}G(\mu)$ . (2)

Then there exists $\mu z_{0}$ , such that $G(\mu z_{0})=G^{8)}$ . $\mu_{z_{0}}$ is called the mass of
balayage.

7) Frostman, 1. $c$ . $1$ ).
8) Frostman, 1. $c$ . $1$ ).
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Since $ G=G(\mu_{z_{0}})\neq\infty$ ,

$\int\int_{\Gamma}\log\frac{1}{|a-b_{1}^{1}}du_{z_{0}}(a)d\mu_{z_{0}}(b)<\infty$ ,

hence by Theorem 4, a set of capacity zero on $\Gamma$ does not contain a
positive $\mu z_{0}$-mass.

We put

$h(z)=\int_{r\overline{a|}}\log\frac{1}{|z-}d\mu z_{0}(a)-\log\frac{1}{|z-z_{0}|}$ $(\mu z_{0}(I’)=1)$ (3)

and let
$\gamma(z_{0})=\sup_{r*}h(z)$ , (4)

where $\Gamma^{*}$ is the kernel of $\mu_{z_{0}}$ . Then we can prove similarly as
Theorem 6,

$h(z)=\gamma(z_{0})$
” almost everywhere” on $I^{7}$ . (5)

First we shall prove
$h(z)\geqq\gamma(z_{0})$

“ almost everywhere” on $\Gamma$ . (6)

If $h(z)<\gamma(z_{0})$ on a set $E\subset I^{7}$ of positive capacity, then by the same
notation as in the proof of Theorem 6,

$h(z)<\gamma(z_{0})-2e$ on $F_{0}$ , $C(F_{0})>0$ .
By the definition of $\gamma(z_{0})$ , there exists $a_{0}\in\Gamma^{*}$ , such that $h(a_{0})>\gamma(z_{0})-e$ ,
so that

$h(z)>\gamma(z_{0})-e$ in $U_{0}=U(a_{0})$ .
We define $\sigma,$ $\sigma_{1}$ as before, then for $0<\eta<1$ ,

$\delta c=c(\eta\sigma_{1}\mu z_{0}\eta^{2}I(\sigma_{1})$

$<2\eta[m(\gamma(z_{0})-2e)-m(\gamma(z_{0})-e)]+\eta^{2}I(\sigma_{1})$

$=-\eta[2me-\eta I(\sigma_{1})]<0$

for a small $\eta>0$ , which contradicts the definition of $G(\mu_{z_{0}})$ . Hence
$h(z)\geqq\gamma(z_{0})$

“ almost everywhere) on $\Gamma$.
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Since $h(z)\leqq\gamma(z_{0})$ on $\Gamma$ and $h(z)$ is harmonic at $ z=\infty$ , by the
maximum principle,

$h(z)\leqq\gamma(z_{0})$ in the whole z.plane, (7)

so that by (6),

$h(z)=\gamma(z_{0})$
“ almost everywhere “ on $I^{\gamma}$ , $q$. $e$ . $d$ .

If $D$ is a finite domain, then $\gamma(z_{0})=0$. For let

$u(z)=\int_{\Gamma}\log\frac{1}{|z-a|}d\mu(a)(\mu(I^{\gamma})=1)$

be the conductor potential of $I’$, then since $u(z_{0})=V$ and $u(z)=V$
“ almost everywhere . on $\Gamma$ and a set of capacity zero does not contain
a positive $\mu$ and $\mu_{z_{0}}$ mass, we have by (5),

$\gamma(z_{0})=\int_{\Gamma}h(z)d\mu(z)$

$=\int_{\Gamma}d\mu z_{0}(a)\int_{\Gamma}Iog\frac{1}{|z-a|}d\mu(z)-\int_{\Gamma}\log\frac{1}{|z-z_{0}|}d\mu(z)=V-V=0.(8)$

If $D$ is an infinite domain, then $\gamma(z_{0})>0$ . For

$\gamma(z_{0})=V-\int_{\Gamma}\log\frac{1}{|z-z_{0}|}d\mu(z)>0$ . (9)

2. We define the Green’s function $g(z, z_{0})$ of $D$ by

$g(z, z_{0})=\gamma(z_{0})-h(z)$ $(z_{0}\neq\infty)$ ,

$g(z, \infty)=V-\int_{\Gamma}\log\frac{1}{|z-a_{1^{1}}}d\mu(a)$ ,
(10)

where $\mu$ is the equilibrium distribution on $1^{\gamma}$.
Hence:

(i) If $D$ is a finite domain,

$g(z, z_{()})=\log\frac{1}{|z-z_{0}}|^{--}\int_{r\overline{|}_{Z}}\log\frac{1}{-a|}d\mu z_{0}(a)$ ; (11)

(ii) If $D$ is an infinite domain,
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$g(z,\infty^{0})=V-\frac{1}{|_{Z}-a|}g(z, z)=\log\frac{1}{|-z|,J_{T}^{z_{\log^{0}}}}+\gamma(z_{0})-\int\Gamma\log\frac{1}{|_{\sim}-a|}d\mu_{z_{0}}(a)rd\mu(a).(z_{0}\neq\infty),$ $\}(12)$

Hence from (9) and (12),

$\gamma(z_{0})=g(z_{0}, \infty)=g(\infty, z_{0})$ . (13)

$g(z, z_{0})$ is upper semi.continuous and subharmonic. Hence the set of
points on $I^{7}$ , such that $g(z.z_{0})>0$ is an $F_{\sigma}\cdot set$ .

We can prove easily that $g(z, z_{0})=0$ in the complement of $ D+\Gamma$ .
By this and the upper semi.continuity and subharmonicity of $g(z, z_{0})$ , we
can prove that $g(a_{0}, z_{0})=0(a_{0}e\Gamma)$ , when and only when $\lim_{z\rightarrow a_{0}}g(z, z_{0})=0$

$(z\in D)$ . Hence we have proved:
THEOREM 10 $g(z, z_{0})>0$ in $D$ and $g(z, z_{0})=0$

“ almost every.
where” on $\Gamma$ . The set of points $z$ on $I^{\gamma}$ such that $g(z, z_{0})>0$ is an
$F_{\sigma}$-set of capacity zero.

Let $ a_{\mathfrak{v}}e\Gamma$ , then $g(a_{0}, z_{0})=0$, when and only when $\lim_{z\rightarrow ao}g(z, z_{0})=0$

$(z\in D)$ .
Since $h(z)\leqq\gamma(z_{0})$ in the whole z-plane and $h(z)=\gamma(z_{0})$

“ almost
everywhere” on $\Gamma$ , we can prove similarly as Theorem 8,

THEOREM 11. Let $I_{z_{0}}^{7*}$ be the kernel of $\mu z_{0}$ , then $\Gamma-I_{z_{0}}^{v\star}$ is of
capacity zero.

THEOREM 12 $\mu z_{0}$ is unique.
PROOF. Suppose that “ almost everywhere) on $I^{7}$,

$\log\frac{1}{|z-z_{0}|}+\gamma_{1}(z_{0})-\int_{\Gamma}\log\frac{1}{|\prime z-a|}d\mu_{z_{0}}^{1}(a)=0$ ,

$\log\frac{1}{|z-z_{0}|}+\gamma_{l}(z_{0})-\int_{\Gamma}\log\frac{1}{|z-a|}d\mu_{z_{0}}^{2}(a)=0$ ,

then “ almost everywhere” on $\Gamma$ ,

$u(z)=\int_{\Gamma}\log\frac{1}{|z-a|}d\mu(a)=\gamma_{1}(z_{0})-\gamma_{2}(z_{0})$ $(\mu=\mu_{z_{0}}^{1}-\mu_{z_{0}}^{2})$ .

9) Frostman, l. c. 1).
10) Frostman, l. c. 1).
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From this we can prove easily that $u(z)=\gamma_{1}(z_{0})-\gamma_{2}(z_{0})$ almost every-
where in the whole z-plane, so that by Theorem 3, $\mu\equiv 0$ or $\mu_{z_{0}}^{1}=\mu_{z_{0}}^{2}$ .

THEOREM 13 $g(z_{2}, z_{1})=g(z_{1}, z_{2})$ .
PROOF. Since $g(z, \infty)=g(\infty, z)$ , we assume that $z_{1}\neq\infty,$ $ z_{2}\neq\infty$ .

It suffices to prove

$\gamma(z_{1})-\int_{r}\log\frac{1}{|z_{2}-a|}d\mu_{z_{1}}(a)=\gamma(z_{2})-\int_{r\overline{|z_{1}}-\overline{a_{1}^{I}}}\log d\mu_{z_{2}}(a)1$ . (1)

Since $g(z, z_{2})=0$
” almost everywhere” on I,

$\log\frac{1}{|z_{2}-a|}=-\gamma(z_{2})+\int_{\Gamma}\log\frac{1}{|a-b|}d\mu_{z_{a}}(b)$

for “ almost all” $a$ on $\Gamma$. Since the exceptional set does not contain
a positive $\mu z_{1}\cdot mass$ ,

$\int_{\Gamma}\log\frac{1}{|z_{2}-a|}d\mu z_{1}(a)=-\gamma(z_{2})+\int\int_{r\ulcorner a-\overline{b|}}ld\mu z_{1}\mu_{2}(b)$ ,

$\gamma(z_{1})-\int_{\Gamma}\log\frac{1}{|z_{2}-a_{1}^{I}}d\mu z_{1}(a)=\gamma(z_{1})+\gamma(z_{2})-\int\int_{\Gamma}\log\frac{1}{|a-b|}d\mu z_{1}(a)d_{\mu z_{A}},(b)$ .

Hence by the symmetry, we have (1).
THEOREM 14. We approximate $D$ by a sequence of domains

$D_{1}\subset D_{2}\subset\cdots\subset D_{n}\rightarrow D$, where the boundary $I_{n}^{\gamma}$ of $D_{n}$ consists of a
finite numbe $r$ of analytic Jordan curves and $z_{0}\in D_{1}$ . Let $g_{n}(z, z_{0})$ be the
Green’s function of $D_{n}$ and

$d\mu_{z_{0}}^{n}(a)=\frac{1}{2\pi}\frac{\partial g_{n}(a,z_{0})}{\partial\nu}ds$ $(a\in I_{n})$ ,

where $\nu$ is the inner normal and $ds$ the arc element of $\Gamma_{n}$ at $a$.
Then

$g_{n}(z, z_{0})\rightarrow g(z, z_{0})$ , $\mu_{z_{0}}^{n}\rightarrow\mu_{Z_{0}}(n\rightarrow\infty)$ .
Since $d\mu_{z_{0}}^{n}(a)$ is a bounded harmonic function of $z_{0},$ $d_{\mu z_{0}}(a)$ is a bounded
harmonic function of $z_{0}$ .

Hence if $f(a)$ is a bounded B-measurable function on $\Gamma$, then

$u(z)=\int_{\Gamma}f(a)d\mu_{z}(a)$

11) Frostman, 1. $c$ . $1$ ).
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is a bounded harmonic function in $D$ .
PROOF. Since $g_{n}(z, z_{0})\leqq g_{n+1}(z, z_{0})$ , let

$\lim_{n\rightarrow\infty}g_{n}(z, z_{0})=G(z, z_{0})$ . (1)

We shall prove $G(z, z_{0})=g(z, z_{0})$ .
Since $g(z, z_{0})>0$ on $I_{n},$ $g(z, \overline{0})>g_{n}(z, z_{0})$ in $D_{n}$ , so that

$g(z, z_{0})\geqq G(z, z_{0})$ in D. (2)

Let $e$ be the $F_{\sigma}\cdot set$ of capacity zero on $I^{\gamma}$ , where $g(z, z_{0})>0$ and
$v(z)$ be the Evans’s function with respect to $e$ , then since $\varliminf G(z, z_{0})\geqq 0$

on $I^{\gamma}$, we have for any $e>0$,

$G(z, z_{0})>g(z, z_{0})-e-ev(z)$ in $D$ ,

so that for $e\rightarrow 0$ ,
$G(z, z_{0})\geqq g(z, z_{0})$ in D. (3)

Hence from (2), (3), we have
$G(z, z_{0})=g(z, z_{0})$ in D. (4)

Next we shall prove the second part of the theorem. If $D$ is a
finite domain, then

$g_{n}(z, z_{0})=g_{n}(z_{0}, z)=\log|z-1_{Z_{0}|^{1}}-\frac{1}{2\pi}\int_{\Gamma_{n}}\log|_{Z}^{-}-\overline{a}|^{-}1\partial\underline{g}_{n}(a, z_{0})_{-ds}\partial\nu^{-}$

$=\log\frac{1}{|z-z_{0}|}-\int_{\Gamma_{n}}\log\frac{1}{|z-a|}d\mu_{z_{0}}^{n}(a)$ .

Since $\int_{\Gamma_{n}}d\mu_{z_{0}}^{n}(a)=1$ , we select a partial sequence, such that $\mu_{z_{0}}^{n_{\nu}}\rightarrow\nu_{z_{0}}$ ,

so that by (4),

$g(z, z_{0})=\log\frac{1}{|z-z_{0}|}-\int_{\Gamma}\log\frac{1}{|z-a|}d_{\nu\prime_{Q}}(a)$ .

Hence by the uniqueness of $\mu z_{0}$ , we have $\nu z_{c}=\mu z_{0}$ . Since $\mu z_{0}$ is in-
dependent of the choice of $n_{\nu},$

$\lim_{n}\mu_{zo}^{n}$ exists and $=\mu z_{0}$ . If $D$ is an

infinite domain, then let $\gamma_{0}$ ; $|\zeta-z_{0}|=\rho,$ $\gamma;|\zeta-z|=\rho,$ $C:|\zeta|=R$ and
$\Delta_{n}$ be the domain bounded by $l_{n},$ $\gamma_{C},$ $\gamma,$

$C$. If we apply the Green’s

formula $\int(u_{\partial\nu}^{\partial v_{-}}--v\partial u\partial^{-}\nu)ds=0$ for $u=g_{n}(\zeta, z_{0}),$ $ v=\log$ $|\zeta-z|1$ in $\Delta_{n}$
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and make $\rho\rightarrow 0,$ $ R\rightarrow\infty$ , we have

$g_{n}(z, z_{0})=\log\frac{1}{|z-z_{0}|}+g_{n}(\infty, z_{0})-\frac{1}{2\pi}\int_{\tau_{n}}\log\frac{1}{|z-a|}\frac{\partial g_{n}(a,z_{0})}{\partial\nu}ds$

$=\log\frac{1}{|z-z_{0}|}+g_{n}(\infty, z_{0})-\int_{\Gamma_{n}}\log\frac{1}{|z-a|}d_{t\dot{\sim}_{zo}}^{n}(a)$ .
Hence

$g(z, z_{0})=\log\frac{1}{|z-z_{0}|}+g(\infty, z_{0})-\int_{\Gamma}\log\frac{1}{|z-a|}d_{\nu z_{0}}(a)$ ,

so that $\nu z_{0}=\mu z_{0}$ and $\lim_{n}\mu_{z_{0}}^{n}$ exists and $=\mu z_{0}$ .

4. Dirichlet problem.

1. Let $D$ be a finite or an infinite domain. We assume that its
boundary $\Gamma$ is a bounded closed set of $p\varphi itive$ capacity. Let $f(a)$ be a
given continuous function on $I’$ . We extend it to a continuous function
$F(z)$ in the whole z-plane, such that $f=F$ on $I’$ . We approximate $D$

by a sequence of domains $D_{1}\subset D_{2}\subset\cdots\subset D_{n}\rightarrow D,where$ the boundary
$I_{n}^{7}$ of $D_{n}$ consists of a finite number of analytic Jordan curves. Let
$u_{n}(z)$ be the solution of the Dirichlet problem for $D_{n}$ with $F$ as its
boundary value. Then $Wiener^{I2)}$ proved that $\lim_{n\rightarrow\infty}u_{n}(z)=u(z)$ exists,

where $u(z)$ is independent of the choice of $D_{n}$ and $F$. By means of
Theorem 14, we can prove

THEOREM 15. $\lim_{n\rightarrow\infty}u_{n}(z)=u(z)=\int_{\Gamma}f(a)d\mu z(a)$ ,

where $d\mu_{z}(a)is$ the mass of balayage.
PROOF. Let $g_{n}(\zeta, z)$ be the Green’s function of $D_{n}$ , then

$u_{n}(z)=\frac{1}{2\pi}\int_{\Gamma_{n}}F(a)\frac{\partial g_{n}(a,z)}{\partial\nu}ds$ .

Hence by Theorem 14,
$u_{n}(z)\rightarrow\int_{T}f(a)d\mu z(a)$ , q. e. d.

2. Let $a_{0}$ be a point of $\Gamma$. If $\lim_{z\rightarrow a_{0}}u(z)=f(a_{0})$ for any $f,$ $a_{0}$ is called

12) N. Wiener: Certain notions in potential theory, Journ. Math. Massachusetts Inst.
Technology, 1924.
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a regular point and, otherwise, $a_{\mathfrak{v}}$ is called an irregular point. By
Theorem 15, we have

THEOREM 16 $a_{0}eI$
’ is a regular point, when and only when

$d_{\mu z}(a)\rightarrow 1$ as $z\rightarrow a_{0}$.
$d\mu_{z}(a)\rightarrow 1(z\rightarrow a_{0})$ means that for any $\delta>0$ and for any neighbour-

hood $U(a_{0})$ of $a_{0}$ , if $|z-a_{0}|<\eta=\eta(\delta)$ , then the mass $d\mu_{z}(a)$ contained
in $U(a_{0})$ is $>1-\delta$ .

THEOREM 17 $a_{0}\in I^{7}$ is a regular point, when and only when
$\lim_{z\rightarrow a_{0}}g(z, z_{0})=0(z\in D)$ .

PROOF. If $D$ is a finite domain, then

$g(z, z_{0})=\log\frac{1}{|z-z_{0}|}-\int_{\Gamma}\log\frac{1}{|_{Z_{0}}-a|}d_{\mu_{z}}(a)$ . (1)

Hence if $d_{\mu z}(a)\rightarrow 1(z\rightarrow a_{0})$ , then $g(z, z_{0})-*0$.
Next suppose that $g(z, z_{0})\rightarrow 0(z\rightarrow a_{0})$ , then we choose a sequence

$z_{k}\rightarrow a_{0}$, such that $\mu_{z_{k}}\rightarrow\nu$ , so that putting $z=z_{k}$ in ( $ 1\rangle$ , we have

$\log\frac{1}{|a_{0}-z_{0}|}=\int_{\Gamma}\log\frac{1}{|z_{0}-a|}d\nu(a)$ . (2)

Since if $g(z, z_{0})\rightarrow 0$, then $g(z, z_{1})\rightarrow 0$ for any $z_{1}\in D,$ (2) holds for any
$z_{0}\in D$ . Since $\log\frac{1}{|a_{0}-z_{0}|}$ is a harmonic function of $z_{0}(\neq a_{0})$ , we have by

Theorem 3, $d\nu(a)=0$, if $a\neq a_{0}$ and $d\nu(a)=1$ , if $a=a_{0}$ . Hence $d\mu_{z}(a)\rightarrow 1$

as $z\rightarrow a_{0}$.
If $D$ is an infinite domain and $d\mu_{z}(a)\rightarrow 1(z\rightarrow a_{0})$ , then

$w(z)=\int_{\Gamma}|a-a_{0}|d\mu_{z}(a)\rightarrow 0$ as $z\rightarrow a_{0}$ .
We enclose $I$

’ in a Jordan curve $C$, such that $z_{0}$ lies outside of $C$.
Let $D_{0}$ be the domain bounded by $I$

’ and $C$. We take $K>0$, so large
that

$Kw(z)>g(z, z_{0})$ on $C$ ,

then for any $e>0$,
$Kw(z)>g(z, z_{0})-e-ev(z)$ in $D_{0}$ ,

13) de la Valle’e.Poussin: Les nouvelles m\’ethodes de la th\’eorie du potentiel et le
probl\‘eme g\’en\’eralis\’e de Dirichlet, Actualit\’es scientifiques et industrielles, 1937.

14) Bouligand: Sur le probl\‘eme de Dirichlet, Ann. de la Soc. Polonaise de Math. 1925.



Fundamental theorems in potential theory 85

where $v(z)$ is the Evans’s function with respect to the set of points of
$I^{7}$ such that $g(z, z_{0})>0$ . Hence for $e\rightarrow 0$ ,

$Kw(z)\geqq g(z, z_{0})$ in $D_{0}$ .
Since $w(z)\rightarrow 0$, we have $g(z, z_{0})\rightarrow 0$ as $z\rightarrow a_{0}$ .

Next suppose that $g(z, z_{0})\rightarrow 0,$ $(z\rightarrow a_{0})$ . Since

$g(z, z_{0})=\log\frac{1}{i|z-z_{0}|}+g(z, \infty)-\int_{\Gamma}\log\frac{1}{|z_{0}-a|}d\mu_{z}(a)$ ,

and $g(z, \infty)\rightarrow 0$ with $g(z, z_{0})\rightarrow 0$ as $z\rightarrow a_{0}$, we have

$\log\frac{1}{|z-z_{0}|}-\int_{\Gamma}\log\frac{1}{11_{Z_{0^{-a|}}}}d\mu_{z}(a)\rightarrow 0$
$(z\rightarrow a_{0})$ ,

so that $d_{\mu z}(a)-*1$ as $z\rightarrow a_{0}$ , $q$ . $e.d$ .
From Theorem 10 and 17, we have
THEOREM 18 The $sct$ of irregular points is an $F_{\sigma}$-set of capacity

zero.
From the expression of $g(z, \infty)$ in (12) of $\backslash _{\llcorner^{\mathfrak{l}}}^{Q}3.2$ and Theorem 10

and 17, we have
THEOREM 19. Let $u(z)$ be the conductor potential of a bounded

closed set Fand $I^{\gamma}$ be its outer boundary and $a_{0}$ be a point of $I’$ .
Then $u(a_{0})=V$, when and only when $a_{0}$ is a regular point of $D_{\infty}$ .

3. By Theorem 16, if $a_{0}$ is a regular point, then $d_{\mu z}(a)\rightarrow 1$ as
$z\rightarrow a_{0}$ . If $a_{0}$ is an irregular point, then $d_{\mu z}(a)$ is dispersed on $I^{7}$ in
such a way as the following theorem.

THEOREM 20. Let $D$ be a finite domain and $a_{0}$ be an irregular
point on its boundary $\Gamma$ , so that $\lim_{k}g(z_{k}, z_{0})>0$ for some $z_{k}\rightarrow a_{0}$ .
We select a partial sequence, which we denote again $k$ , such that
$\mu z_{k}\rightarrow\nu$ . Let $I^{\gamma*}$ be the kernel of $\nu$ , then $I‘-I^{*}$ is of capacity zero.

PROOF. From

$g(z_{k}, z_{0})=\log\frac{1}{|_{Z_{k}}-z_{0}|}-\int_{\Gamma}\log\frac{1}{|z_{0}-a|}d\mu z_{k}(a)\geqq\eta>0$ $(k=1,2, \cdots)$ ,

we have

15) O. D. Kellogg: Unicit\’e des fonctions harmoniques, C. R. 187 (1928). G. C. Evans:
Application of Poincar\’e’s $sweeping\cdot out$ process, Proc. Nat. Acad. Sci. U. S. A. (1933).
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$\log\frac{1}{|a_{0}-z_{0}|}-\int_{r*}\log\frac{1}{|z_{0}-a|}d_{\nu}(a)\geqq\eta>0$ . (1)

Since $g(z_{k}, z)=\log\frac{1}{|_{Z_{k}}-z|}-\int_{\Gamma}\log\frac{1}{|z-a|}d\mu z_{k}(a)>0$ for any $z\in D$ ,

$u(z)=\log\frac{1}{|a_{0}-z|}-\int_{\Gamma\star}\log 1_{Z}\frac{1}{-a|}d_{\nu}(a)\geqq 0$ in $D$ , (2)

so that $\lim u(z)\geqq 0$ on $I^{*}$ , hence by the upper semi-continuity of
$u(z),$ $u(z)\geqq 0$ on $I^{\gamma*}$ . Since $u(z)$ is harmonic at $ z=\infty$ , by the maximum
principle, $u(z)\geqq 0$ in the complement of $I^{*}$ . Since by (1), $u(z_{0})>0$,
we have

$u(z)>0$ in the complement of $I^{\gamma*}$ . (3)
From

$\log\frac{1}{|z_{k}-z}-|-\int_{\Gamma\overline{|z-}\overline{a|}}\log d\mu z_{k}(a)1$

$=\log|z_{k}^{-}-z|^{--}1_{-}\int_{\Gamma}\log\frac{1}{|z_{k}-a|}d\mu_{z}(a)$ ,

we have

$\int_{\Gamma}\log\frac{1}{|z-a|}d\mu_{z_{k}}(a)=\int_{l}\log\frac{1}{|z_{k}-a|}d\mu_{z}(a)$ ,

so that by Fatou’s theorem,

$\int_{r*}\log\frac{1}{|,|z-a|}d_{\nu}(a)\geqq\int_{\Gamma}\log\frac{1}{|a_{0}-a|}d\mu_{z}(a)$ .
Hence by (2),

$0<u(z)\leqq\log\frac{1}{|a_{0}-z|}-\int_{T}\log\frac{1}{|a_{0}-a!}d\mu_{z}(a)$ in D. (4)

We put $E=l^{7}-I^{\tau*}$ and suppose that $C(E)>0$ . Then $E$ contains a
regular point $\alpha$ and if $z$ tends to $\alpha,$ $d\mu_{z}(a)\rightarrow 1$ , so that the right hand
side of (4) tends to zero, hence $u(z)\rightarrow 0$ as $ z\rightarrow\alpha$ . But since $\alpha$ lies
outside $I^{*},$ $u(z)$ is harmonic at $\alpha$ and $u(\alpha)>0$, which is absurd.
Hence $C(E)=0$ .

4. Let $D$ be a domain and $I^{7}$ be its boundary and $ a_{0}\in\Gamma$ and $D_{\rho}$

be the part of $D$ , which is contained in ! $ z-a_{0}|<\rho$ . If $w(z)$ satisfies
the following condition, then $w(z)$ is called a barrier at $h$.
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(i) $w(z)>0$ and is continuous and superharmonic in $D_{p0}$ ,
(ii) $\lim_{z\rightarrow a_{0}}w(z)=0(z\in D)$ ,

(iii) $w(z)\geqq d(\rho)>0$ on $|z-a_{0}|=\rho(0<\rho\leqq\rho_{0})$ .
THEOREM 21 $a_{0}\in I$

’ is a regular point, when and only when a
barrier exists at $a_{0}$.

Hence the regularity and irregularity is a local property.
PROOF. (i) Suppose that a barrier $w(z)$ exists at $a_{0}$ . We take $\rho$ so

small than $\rho<|z_{0}-a_{0}|$ . Then if we take $K>0$ sufficiently large, we
have for any $e>0$ ,

$Kw(z)>g(z, z_{0})-e-ev(z)$ in $D_{\rho}$ ,

where $v(z)$ is the Evans’s function with respect to the set of irregular
points. Hence for $e\rightarrow 0$ ,

$Kw(z)\geqq g(z, z_{0})$ in $D_{\rho}$ ,

so that $g(z, z_{0})\rightarrow 0$ . Hence $a_{0}$ is a regular point.
(ii) Next suppose that $a_{0}$ is a regular point and put

$w(z)=\int_{\Gamma}|a-a_{0}|d\mu z(a)$ ,

then by Theorem 16, $w(z)\rightarrow 0$ as $z\rightarrow a_{0}$ and the boundary value of
$w(z)$ coincides with that of $|z-a_{0}|$

“ almost everywhere” on $I’$ . If $D$

is a finite domain, then $|z-a_{0}|$ is subharmonic in $D$ , so that
$w(z)\geqq|z-a_{0}|$ in $D$ ,

hence $w(z)$ is a barrier at $a_{0}$ . If $D$ is an infinite domain, we enclose
$\Gamma$ in a Jordan curve $C$ and $D_{0}$ be the domain bounded by $\Gamma$ and $C$.
We take $K\geqq 1$ , so large that

$Kw(z)\geqq|z-a_{0}|$ on $C$ ,

then $Kw(z)\geqq|z-a_{0}|$ in $D_{0}$, so that $w(z)$ is a barrier at $a_{0}$ .
5. Let $D$ be a domain and $I^{\gamma}$ be its boundary, which is a bounded

closed set of positive capacity. Let $f(z)$ be a bounded B.measurable
function on $\Gamma$ . We define with Brelot an upper function $\psi(z)$ as
follows:

(i) $\psi(z)$ is continuous and superharmonic in $D$,

16) O. D. Kellogg: Foundations of potential theory, Berlin (1929) p. 326.



88 M. TSUJI

(ii) $\varliminf_{z\rightarrow a}\psi(z)\geqq f(a)(z\in D)$ on $I^{\gamma}$ .
We put

$\overline{H}_{f}(z)=\inf_{\psi}\psi(z)$ . (1)

A lower function $\varphi(z)$ is defined as follows:
(i) $\varphi(z)$ is continuous and subharmonic in $D$ ,

(ii) $\varlimsup_{z\rightarrow a}\varphi(z)\leqq f(a)$ $(z\in D)$ on $\Gamma$ .
We put

$\overline{H}_{f}(z)=\sup_{\varphi}\varphi(z)$ . (2)

Brelot called $\overline{H}_{f}(z)$ the hyperfonction, $\underline{H}_{f}(z)$ the hypofonction.

THEOREM 22 $\underline{H}_{f}(z)=\overline{H}_{f}(z)=H_{f}(z)=\int_{T}f(a)d\mu_{z}(a)$ ,

where $d_{\mu_{z}}(a)$ is the mass of balayage. Hence
$\varphi(z)\leqq\int_{\Gamma}f(a)d\mu_{z}(a)\leqq\psi(z)$ in $D$ .

PROOF. Let

$u(z)=\int_{\Gamma}f(a)d\mu_{z}(a)$ , (1)

then $u(z)$ is a bounded harmonic function in $D(\backslash s_{!}3)$ . If $f(a)$ is lower
semi-continuous on $I^{\gamma}$ , then at a regular point $a$ ,

$\frac{1i}{z}\rightarrow^{\frac{m}{a}}u(z)\geqq f(a)$ .
Let $v(z)$ be the Evans’s function with respect to the set of irregular
points, then for any $e>0,$ $u(z)+ev(z)$ is an upper function, so that
$\overline{H}_{f}(z)\leqq u(z)+ev(z)$ , hence for $e\rightarrow 0$,

$\overline{H}_{f}(z)\leqq u(z)$ . (2)

If $f(a)$ is upper semi.continuous on $I^{\gamma}$ , then similarly

$\underline{H}_{f}(z)\geqq u(z)$ . (3)

Let $f(a)$ be a bounded B.measurable function on $I^{\gamma}$ , then by Vitali-
Carath\’eodory’s theorem, there exist upper semi.continuous functions
$U_{n}(a)$ and lower semi.continuous functions $L_{n}(a)$ , such that

17) M. Brelot: Familles de Perron et probl\’eme de Dirichlet, Acta de Szeged 19
(1938).
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$U_{1}(a)\leqq U_{2}(a)\leqq\cdots\leqq U_{n}(a)\leqq f(a)\leqq I_{\Lambda l}(a)\leqq\cdots\leqq L_{2}(a)\leqq L_{1}(a)$ ,

$\psi_{n}(z)=\int_{\Gamma}L_{n}(a)d\mu z(a)\rightarrow\int_{\Gamma}f(a)d\mu z(a)=u(z)$ ,

$\varphi_{n}(z)=\int_{\Gamma}U_{n}(a)d\mu z(a)\rightarrow\int_{r}f(a)d\mu z(a)=u(z)$ .
By (2), (3),

$\overline{H}_{Ln}(z)\leqq\psi_{n}(z)$ , $\underline{H}_{Un}(z)\geqq\varphi_{n}(z)$ .
Since $f\leqq L_{n}$ on $\Gamma,\overline{H}_{f}(z)\leqq\overline{H}_{Ln}(z)$ , so that $\overline{\overline{H}}_{f}(z)\leqq\psi_{n}(z)\rightarrow u(z)$ . Hence
$\overline{H}_{f}(z)\leqq u(z)$ . Similarly $\underline{H}_{f}(z)\geqq u(z)$ , so that $\underline{H}_{f}(z)=\overline{H}_{f}(z)=H_{f}(\prime z)=u(z)$ .

6. By means of Theorem 20 and 22, we can prove easily the
following theorem.

THEOREM 23 Let $D$ be a domain and $a_{0}$ be a point on its
boundary $I^{v}$ . If there exists a continuous superharmonic function
$w(z)>0$ in $D$ , such that $\lim_{z\rightarrow a_{0}}w(z)=0(z\in D)$ , then $a_{0}$ is a regular point.

PROOF. We may assume that $w(z)$ is bounded, since otherwise we
consider ${\rm Min}(w(z),$ $1$ ) instead of $w(z)$ . Let $D_{\rho}$ be the part of $D$ , which
is contained in $|z-a_{0}|$ $<\rho$ and $\Lambda_{p}$ be its boundary. We take $\rho$ so
small that $ C:\downarrow^{1}z-a_{0}|=\rho$ contains an inner point of $D$ . Let

$0<m\leqq w(z)\leqq M$ on an arc $\alpha\beta\wedge$ of C. (1)

For any $a\in\Lambda_{\rho}$ , we put

$\varliminf_{z\rightarrow a}w(z)=\underline{w}(a)$
$(zeD_{\rho})$ ,

then $\underline{w}(a)$ is a bounded lower semi-continuous function on $\Lambda_{\rho}$ . Let

$u(z)=\int_{\Lambda_{\rho}}\underline{w}(a)d\mu z(a)$ $(z\in D_{\rho})$ , (2)

where $d_{\mu z}(a)$ is the mass of balayage with resepct to $D_{\rho}$ . Since $w(z)$

is an upper function of $\underline{w}(a)$ , we have by Theorem 22,

$0<u(z)\leqq w(z)$ in $D_{\rho}$ .
Hence

$\lim_{z\rightarrow a_{0}}u(z)=0$ . (3)

18) Brelot, 1. $c$. $17$).
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Suppose that $a_{0}$ is an irregular point of $D$, then $a_{0}$ is an irregular point
of $D_{p}$ , so that by Theorem 20,

$\int_{\alpha\beta}\wedge d\mu_{z_{k}}(a)\geqq\eta>0$ for some $z_{k}\rightarrow a_{0}$ .

Since $\underline{w}=w\geqq m>0$ on $\alpha\beta\wedge$ ,

$u(z\iota)\geqq\int_{\alpha\beta}\wedge md\mu z_{k}(a)\geqq m\eta>0(z_{k}\rightarrow a_{0})$ ,

which contradicts (3). Hence $a_{0}$ is a regular point.

5. Elliptic capacity and elliptic conductor potential.

Let $K$ be the Riemann sphere of diameter 1, which touches the
z.plane at $z=0$ and $[a, b]=\overline{\sqrt{}(1+|}\overline{\overline{a}}|a\frac{-b|}{|^{2})^{-}(1\overline{+}|b^{-}|^{2})^{-}}$ be the spherical dis-

tance of $a,$
$b$ .

Let $F$ be a closed set on $K$ and $\mu(e)>0$ be a positive mass dis-
tribution on $F$ of total mass 1 and let

$I(\mu)=\int\int_{F}\log\overline{[a},\overline{b}]1d\mu(a)d\mu(b)$ , (1)

$V_{+}=\inf_{\mu}I(\mu)$ . (2)

We define the elliptic capacity of $F$ by
$C_{+}(F)=e^{-V}’$. (3)

and of any Borel set $E$ by

$C_{+}(E)=\sup_{FCE}C_{+}(F)$ , (4)

where $F$ are closed sub-sets of $E$ . The capacity defined in \S 2 may be
called the parabolic capacity. $19$) We can prove easily that $C_{+}(E)=0$,
when and only when $C(E)=0$ .

If $C_{+}(F)>0$ , then there exists $\mu$ , such that $I(\mu)=V_{+}$ and

19) Similarly we can define the hyperbolic capacity and the elliptic and hyperbolic
transfinite diameter. I have proved the identity of the elliptic (hyperbolic) capacity with
the elliptic (hyperbolic) transfinite diameter in another paper, M. Tsuji: Some metrical
theorems on Fuchsian groups, Jap. Journ. Math. 19 (1947).



Fundamental theorems in potential theory 91

$u(z)=\int_{F}\log\frac{1}{[z,a]}d\mu(a)$ , $\mu(F)=1$ (5)

is called the elliptic conductor potential of F. $u(z)$ is lower semi-
continuous on $K$ and is subharmonic outside the mass. We can
prove similarly as Theorem 6,

THEOREM 24. $u(z)\leqq V_{+}$ on the whole sphere $K$, and $u(z)=V_{+}$

on $F$ except at an $F_{\sigma}\cdot set$ of capacity zero.
We shall prove
THEOREM 25. $u(z)=V_{+}$ at inner points of $F$ and the density of

$\mu$ at inner points is $ 1/\pi$ .
PROOF. We consider at $z=0$ and put

$\Omega(r)=\int_{|a|<r}d\mu(a)$ .
Since

$u(re^{;\theta})=\int_{F}\log_{\theta}^{\overline{|\underline{a|^{2})}}}\frac{\sqrt{}(1+r^{2})}{|re^{i}}\frac{(1+}{-a}|d\rho Xa)$

$=\log\sqrt{1+r^{2}}+\int_{F}\log\frac{\sqrt{1+|a|^{2}}}{|re^{i^{\theta}}-a|}d\mu^{(}a)$ ,

we have

$\frac{1}{2\pi}\int_{0}^{2_{l}\iota}u(re^{i\theta})d\theta=\log\sqrt{}\overline{1+r^{2}}+\int_{0}^{\infty}(\log\sqrt{}\overline{1+t^{2}}-{\rm Max}(\log r, \log t))d\Omega(t)$

$=\log\sqrt{1+r^{2}}+\int_{0}^{\infty}\frac{\Omega(t)}{t(1+t^{2})}dt-\int_{0}^{r}\frac{\Omega(t)}{t}dt$ .
Since

$u(0)=\int_{F}\log\frac{\sqrt{1+|a|^{2}}\prime}{|a|}d\mu(a)=\int_{0}^{\infty}\frac{\Omega(t)}{t(1+t^{2})}dt$ ,

we have

$\frac{1}{2\pi}\int_{0^{rt}}^{2}u(re^{;\theta})d\theta=\log\sqrt{}\overline{1+r^{2}}+u(0)-\int_{0}^{r}\frac{\Omega(t)}{t}dt$ . (1)

Hence

$\lim_{r\rightarrow 0}\frac{1}{2\pi}\int_{0}^{2_{tl}}u(re^{i^{g}})d\theta=u(O)$ . (2)
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If $z=0$ is an inner point of $F$, then $u(z)=V_{+}$ almost everywhere in
a neighbourhood of $z=0$, so that from (2), we have $u(O)=V_{+}$ . If
$|z|<\rho$ belongs to $F$, then $u(re^{t\theta})=V_{+}(0<r<\rho),$ $u(O)=V_{+}$ , so that
from (1),

$\int_{0}^{r}\frac{\Omega(t)}{t}dt=\log\sqrt{}\overline{1+r^{2}}$ .

Hence $\Omega(r)=r^{2}/1+r\underline’$, so that $\lim_{r\rightarrow 0}\Omega(r)/\pi r^{2}=1/\pi$ . Hence the density of

$\mu$ at $z=0$ is $ 1/\pi$ .
REMARK. If $|z|<\rho$ lies outside $F$, then $\Omega(r)=0(0<r<\rho)$, so

that from (1),

$\frac{1}{2\pi}\int_{0}^{2\iota}u(re^{;\theta})d\theta=\log\sqrt{}\overline{1+\mu}+u(0)>u(0)$ , (3)

which expresses that $u(z)$ is subharmonic outside the mass. If $F$ consists
of a finite number of Jordan domains and $A$ be the area of $F$, then
the mass contained inside of $F$ is $ A/\pi$ , so that the boundary of $F$

contains a mass $(_{\pi}-A)/\pi$ , where $\pi-A$ is the area of the complement
of $F$.

THEOREM 26. $\mu$ is unique.
PROOF. Let

$u_{1}(z)=\int_{F}\log\overline{[z}^{\frac{1}{a}}]^{-d\mu_{1}(a)}$ $uJz$ ) $=\int_{F}\log[z,\overline{a}]1d\mu 4a$),

$\mu_{1}(F)=\mu_{2}(F)=1$ ,

such that $u_{1}(z)=u_{2}(z)=V_{+}$
‘ almost everywhere” on $F$. We may assume,

by a suitable rotation of $K$, that $F$ is projected on a finite distance
on the z-plane. Then

$u(z)=u_{1}(z)-u_{2}(z)=\int_{F}\log\frac{1}{|z-a|}d\mu_{1}(a)-\int_{F}\log\frac{1}{|,|z-a|}d\mu_{2}(a)+$

$+const.=\int_{F}\log\frac{1}{|z-a|}d\mu(a)+const$ . $(_{\mu=\mu_{1}-\mu_{1})}$

is harmonic outside $F$. Since $u(z)=0$
” almost everywhere” on the

boundary of the complement of $F$ and $u=0$ at inner points of $F$,
$u(z)=0$ almost everywhere in the whole z-plane, so that by Theorem
3, $\mu\equiv 0$ , or $\mu_{1}=\mu_{2}$.
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THEOREM 27. Let $F$ be a closed set on the Riemann sphere $K$

and the complement of Fconsists of only one domain D. Let $a_{0}$ be a
boundary point of $D$, then $u(a_{0})=V_{+}$ , when and only when $a_{0}$ is a
regular point of $D$ .

PROOF. (i) Suppose that $u(a_{0})=V_{+}$ . Then by the lower semi-
continuity of $u(z)$ and $u(z)\leqq V_{+}$ , we have $\lim_{z\rightarrow a_{0}}u(z)=V_{+}(zeD).$ Since
$w(z)=V_{+}-u(z)>0$ is superharmonic in $D$ and tends to zero, by Theo-
rem 23, $a_{0}$ is a regular point of $D$ .

(ii) Next suppose that $a_{0}=0$ is a regular point of $D$ . Let $D_{p}$ be
the part of $D$ contained in $|z|<\rho$ and $F_{\rho}$ be that of $F$ contained in
$|z|\leqq\rho$ . Then if we put

$u(z)=\int_{p_{\rho}|}\log^{\sqrt{(1+}}\infty\frac{z|^{2})(1+|\overline{a}|^{2}\overline{)}}{z-a|}d\mu(a)$

$+\int_{F-F_{\rho}}\log^{\underline{\sqrt{}(1+|}_{1}}\overline{\frac{z|^{2})(1+|a|^{2})}{z-a|}}d\mu(a)$

$=\int_{F_{\rho}|z-a|}\infty\sqrt{1+|a2}\mu$

$+\int_{F-F_{\rho}}\log\frac{\sqrt{1+|a|^{2}}}{|a|^{\prime}}d\mu(a)+\varphi(z)$ ,

then $\lim_{z\rightarrow 0}\varphi(z)=0$ , so that if $|z|<\rho_{1}<\rho$ then $|\varphi(z)|<\delta$ . We put

$u_{1}(z)=\int_{F_{\rho}}\log\frac{}{|z-a|}\sqrt{1+|a|^{2}}-d\mu(a)+\int_{F-F_{\rho}}\log\frac{}{|a}\sqrt{1+||a\underline{|^{2}}}d\mu(a)|$ (1)

then
$u(z)=u_{1}(z)+\varphi(z)$ . (2)

Since $u(z)=V_{+}$ on $F$, except at an $F_{\sigma}$ -set $E$ of capacity zero,

$ V_{+}-u_{1}(z)=\varphi(z)<\delta$ on $F_{\rho_{1}}$ , except at E. (3)

Let $w(z)$ be a barrier at $z=0$ , then for a large $K\geqq 1$ ,
$Kw(z)>V_{+}-u_{1}(z)-\delta-ev(z)$ in $D_{\rho_{1}}$

for any $e>0$ , where $v(z)$ is the Evans’s function with respect to $E$ ,
so that making $e\rightarrow 0$ ,

$ Kw(z)\geqq V_{+}-u_{1}(z)-\delta$ in $D_{\rho_{1}}$ ,
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or
$u(z)-\varphi(z)+\delta+Kw(z)\geqq V_{+}$ in $D_{\rho 1}$ .

Since $w(z)\rightarrow 0,$ $\varphi(z)\rightarrow 0$ as $z\rightarrow 0$ and $\delta$ is arbitrary, $\lim_{z\rightarrow 0}u(z)\geqq V_{+}$ .
Since $u(z)\leqq V_{+},$ we have $\lim_{z\rightarrow 0}u(z)=V_{+}(z\in D)$ .
Since $u(z)=V_{+}$

‘ almost everywhere” on $F$ and $u(z)\rightarrow V_{+},$ $(z\rightarrow 0)$ ,
we have

$ u(z)>V_{+}-\delta$

almost everywhere in a full neighbourhood $|z|<\rho$ of $z=0$, where
$\delta\rightarrow 0$ with $\rho\rightarrow 0$ . Hence by (2) of the proof of Theorem 25, we have
$u(0)=V_{+}$ .

6. Functions of $U^{*}$-class.

Let $w(z)$ be regular and $|w(z)|<1$ in $|z|<1$ and $\lim_{r\rightarrow 1}|w(re^{i\theta})|=1$

almost everywhere on $|z|=1$ , then $w(z)$ is called a function of U.class.
Frostman2(1) proved that a function of U-class takes any value $a$

$(|a|<1)$ , except a set of capacity zero.
We generalize the definition of U.class as follows. Let $F$ be a

closet set of positive capacity on the Riemann sphere $K$ and $w(z)$ be
meromorphic in $|z|<1$ and does not take values on $F$ and $\lim_{r\rightarrow I}w(re^{i\theta})$

$=w(e^{i\theta})$ belongs to $F$ almost everywhere on $|z|=1$ . We call $w(z)$ a
function of $U^{*}\cdot class$ and $F$ its lacunary set. The complement of $F$

consists of at most a countable number of connected domains $\{D_{v}\}$ .
Let $D$ be one of $D_{\nu}$ , which contains $w(O)$ , then $w(z)$ belongs to $D$ .

Similarly as Frostman, we shall prove
THEOREM 28. Let $w(z)$ be a function of $U^{*}\cdot class$ in $|z|<1$ .

Then $w(z)$ takes any value in $D$ , except a set of capacity zero.
PROOF. Let $g(\iota v, a)(a\in D)$ be the Green’s function of $D$ , then

$g(w, a)=0$ on $F$, except at a set $E$ of capacity zero, where $E$ is inde.
pendent of $a$ . Let $e$ be a bounded closed set of $p_{O^{\neg}},itive$ capacity con-
tained in $D$ and $\mu$ be the equilibrium distribution of $e$ , then we can
prove easily

20) Frostman, l. c. 1).
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$u(w)=\int_{e}g(w, a)d\mu(a)$

is bounded in $D$ . If $w(z)$ does not take values on $e$ , then

$\int_{0}^{2,\iota}u(w(rc^{i\theta}))d\theta=\int_{e}d\mu(a)\int_{0}^{2_{l}\iota}g(w(re^{i\theta}), a)d\theta=2\pi\int_{e}g(w(O),$ $a)d\mu(a)$

$=2\pi u(w(0))>0$ $(0<r<1)$ .
Since $u(w)$ is bounded, by Lebesgue’s theorem, if we make $r\rightarrow 1$ ,

$ 2\pi u(w(O))=\int_{0}^{2_{tl}}u(w(e^{i\theta}))d\theta=\int_{e}d\mu(a)\int_{0}^{2t}g(w(e^{i\theta}), a)d\theta$ .

Since $E$ is of capacity zero, its ima$ge$ on $|z|=1$ is of measure zero,
so that $g(w(e^{j\theta}),$ $a$ ) $=0$ almost everywhere on $|z|=1$ , hence $u(w(O))=0$ ,
which is absurd. Hence $w(z)$ takes any value in $D$, except a set of
capacity zero.

THEOREM 29. Let $D$ be a domain on the w-plane and its boundary
$I$

’ is of positive capacity. We map $D$ on $|z|<1$ conformally. Let $E$

be a closed sub-set of $1^{7}$ , such that $E$ and $I’-E$ have a positive distance
and let $e$ be the image of $E$ on $|z|=1$ . Then the measure of $e$ is
positive, when and only when $C(E)>0$ .

PROOF. If $me>0$ , then by Frostman’s theorem,21) $C(E)>0$ .
Next suppose that $C(E)>0$ and we shall prove $me>0$ .
If $C(l^{\gamma}-E)=0$ , then $I’-E$ is mapped on a null set on $|z|=1$ , so that
$me=2\pi>0$ . If $C(I’-E)>0$ and $me=0$ , then the mapping function
$w=f(z)$ belongs to $U^{*}$ -class, whose lacunary set is $I’-E$ . Since $f(z)$

does not take values on $E(C(E)>0)$ , this contradicts Theorem 28.
Hence $me>0$ .

Mathematical Institute,
Tokyo University.

21) Frostman, 1. $c$ . $1$ ).
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