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An application of Ahlfors’s theory of
covering surfaces.

By Zuiman Y\^UJ\^OB\^O

(Received 2. May, 1948)

We shall give here an alternative proof of the following theorem
of Ahlforsl) using his theory of covering surfaces.2)

THEOREM. Let $w=f(z)$ be a meromorphic function in $|z|<R$,
and $D_{1},$ $D_{2},$

$\cdots,$
$D_{q}(q\geqq 3)$ be simply connected closed domains on the

Riemann sphere lying outside each others. If

$R\geqq k\frac{1+|f(0)|^{2}}{|f^{\prime}(0)|}$ ,

$k$ being a constant depending only on $D_{i}$ $(i=1,2, \cdots , q)$ , then we have

$\sum_{i=1}^{q}(1-\frac{1}{\mu_{i}})\leqq 2$ ,

$f(z)$ ramifying at least $\mu i$ -ply on $D_{i}(i=1,2, \cdot.. , q)$

PROOF. Suppose that the latter inequality does not hold. Then,
since $\mu i$ are pOsitive integers or $=\infty$ , it is easily verified that there
holds for any $r(\leqq R)$

$\sum_{i<1}^{q}(1-\frac{1}{\mu_{i}(r)})\geqq\sum_{i=1}^{q}(1-\frac{1}{\mu_{i}})\geqq 2+\frac{1}{42}$ (1)

where $f(z)$ ramifies at least $\mu_{i}(r)$ -ply on $D_{i}(i=1,2, \cdots q)$ in $|z|\leqq r\leqq R$

$(\mu_{i}(r)\geqq\mu_{i}(R)=\mu i)$ .

1) L. Ahlfors, Sur les $domain\epsilon s$ dans lesquels une fonction m\’eromorphe prend des
valeurs appartenant \‘a une r\’egion donn\’ee. (Acta Soc. Sci. Fenn. N. $s$ . $2$ Nr. 2 (1933)).

2) L. Ahlfors, Zur Theorie der \"Uberlagerungsflachen (Acta Math. 65 (1935)); or
R. Nevanlinna, Eindeutige analytische Funktionen.

3) By this expression we mean that the Riemann image of $|z|<R$ by $f(z)$ contains
no connected island above $ D_{i}whos\circ$. number of sheets is $<\mu;$ .



60 $z$ . $Y_{\hat{U}J\hat{O}B\hat{O}}$

On the other hand we have the following inequality4) which Ahlfors
obtained from his theory of covering surfaces:

$\sum_{i=1}^{q}(1--1)\leqq 2+h-\mu_{i}\overline{(r)}A(r)L(r)$ , (2)

where $h(>0)$ depends only on $D_{i}$ , and $A(r),$ $L(r)$ are respectively
the area and the length of the Riemann images of $|z|<r$ and $|z|=r$

by $f(z)$ . Then we have from (1) and (2),

$-\frac{)}{)}\geqq\frac{1}{42h}A(rL(r$ .

Next from this and the inequality (obtained easily using Schwarz’s
inequality)

$\log\frac{R}{r_{0}}\leqq 2\pi\int_{r}^{R_{0}}\frac{dA(r)}{L(r)^{2}}5)$

we have

$\log\frac{R}{r_{0}}\leq 2_{\pi}(42h)^{2}\int_{r}^{R_{0}}dA(r)A(r)^{2}<\frac{3528\pi h^{2}}{A(r_{0})}$

or

$A(r_{0})<\frac{3528\pi h^{2}}{\log(R/r_{0})}$ .

So we have for $r_{0}=R\exp(-7056h^{2})$

$A(r_{0})<\pi/2$ .
Next we have for any $0<r_{1}<r_{0}$ ,

$\log\frac{r_{0}}{r_{1}}\leqq 2\pi\int_{r_{1}^{0}}^{r}dA(r_{2})L(r)<L(r^{\pi_{f}}\overline{)^{2}}2A(r_{0})<\frac{\pi^{2}}{L(r_{f})^{2}}$ ,

where $r_{f}$ is the radius which minimizes $L(r)$ in $r_{1}\leqq r\leqq r_{0}$.
Therefore we have

$L(r_{f})<\pi/2$ $(r_{1}\leqq\gamma_{f}\leqq r_{0})$ , (3)

when we take $e^{-4}r_{0}$ for $r_{1}$ . On the other hand we have of course
$A(r_{f})<\pi/2$ . (4)

4), 5) L. Ahlfors or R. Nevanlinna, loc. cit.
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Now we rotate the Riemann sphere so as to bring $f(O)$ to $w=0$.
Then we obtain a new function $f^{*}(z)$ such that $f^{*}(O)=0$ and $|f^{*/}(0)|$

$=|f^{\prime}(0)|/(1+|f(0)|^{2})$, and such that $L(r)$ and $A(r)$ for $f^{*}$ is the same
as those for $f$. Further we have $|f^{*}(z)|<1$ in $|z|<r_{f}$ , as is easily
observed from (3), (4) and $f^{*}(O)=0^{6)}$ . Then we have

$\frac{\pi}{2}>L(r_{f})=\int_{1z1=r_{f}}\frac{|f^{*/}(z)|}{1+|f^{*}(z)|^{2}}|dz|$

$>\frac{r_{f}}{2}\int_{0}^{2_{i}\iota}\pi$ .
Therefore we obtain

$R<\frac{1}{2}\exp(4+7056h^{2})\frac{1+|f(0)|^{2}}{|f(0)|}$

and we conclude the proof by putting

$ k=\frac{1}{2}\exp$ $($4+7056 $h^{2})$ .
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6) This can be proved as follows: Let ) be the image of $|z|=r_{J}$ by $f^{*}$ on the
Riemann sphere. Then the complement of ), consists of a finite number of connected
domains. If the southern pole lie on ), then ). is obviously contained in the lower
hemisphere on account of (3); then no point of the upper hemisphere is assumed by $f^{*}$

in $|z|<r_{j}$ , for otherwise the whole upper hemisphere would be covered by the image
of $|z|<r_{f}$ by $f^{*}$ , which contradicts (4). So we may consider only the case where the
southern pole does not lie on ).. Now let $G$ be the one containing the southern pole
among the above.mentioned domains. Then $G$ is obviously simply connected and all the
points of $G$ are assumed by $f^{*}$ on account of $f^{*}(O)=0$.

Now let us suppose that). is not contained in the lower hemisphere. Then there must
exist intersection points of). with the $\epsilon$ quator $(|w|=1)$ , for otherwise $G$ must cover the
whole lower hemisphere which is impossible on account of (4). Let us denote one of
them by $P$ and by $Cp$ the lccus of the points with spherical distance $\pi/4$ from $P$.
Then $C_{P}$ meets with the boundary of $G$, since $Cp$ is a great circle which passes through

the southem pole and $G$ cannot cover a whole hemisphere. But this is clearly impossible
on account of (3).

Now since). is contained in the lower hemisphere, either all the points in the upper
hemisphere or none of them are assumed by $f^{*}$. But the former case is impossible on
account of (4).
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