Journal of the Mathematical Society of Japan Vol. 4, No. 1, July, 1952.

An application of Ahlfors's theory of covering surfaces.

By Zuiman YûJÔBÔ

(Received 2. May, 1948)

We shall give here an alternative proof of the following theorem of Ahlfors¹⁾ using his theory of covering surfaces.²⁾

THEOREM. Let w=f(z) be a meromorphic function in |z| < R, and D_1, D_2, \dots, D_q $(q \ge 3)$ be simply connected closed domains on the Riemann sphere lying outside each others. If

$$R \ge k \; rac{1 + |f(0)|^2}{|f'(0)|}$$
 ,

k being a constant depending only on D_i $(i=1, 2, \dots, q)$, then we have

$$\sum_{i=1}^{q} \left(1 - \frac{1}{\mu_i}\right) \leq 2,$$

f(z) ramifying at least μ_i -ply on D_i $(i=1, 2, \dots, q)$.³⁾

PROOF. Suppose that the latter inequality does not hold. Then, since μ_i are positive integers or $=\infty$, it is easily verified that there holds for any $r \leq R$

$$\sum_{i=1}^{q} \left(1 - \frac{1}{\mu_i(r)} \right) \ge \sum_{i=1}^{q} \left(1 - \frac{1}{\mu_i} \right) \ge 2 + \frac{1}{42} , \qquad (1)$$

where f(z) ramifies at least $\mu_i(r)$ -ply on D_i $(i=1, 2, \dots, q)$ in $|z| \leq r \leq R$ $(\mu_i(r) \geq \mu_i(R) = \mu_i).$

¹⁾ L. Ahlfors, Sur les domaines dans lesquels une fonction méromorphe prend des valeurs appartenant à une région donnée. (Acta Soc. Sci. Fenn. N. s. 2 Nr. 2 (1933)).

²⁾ L. Ahlfors, Zur Theorie der Überlagerungsflächen (Acta Math. 65 (1935)); or R. Nevanlinna, Eindeutige analytische Funktionen.

³⁾ By this expression we mean that the Riemann image of |z| < R by f(z) contains no connected island above D_i whose number of sheets is $< \mu_i$.

Z. Yûjôbô

On the other hand we have the following inequality⁴⁾ which Ahlfors obtained from his theory of covering surfaces:

$$\sum_{i=1}^{q} \left(1 - \frac{1}{\mu_i(r)} \right) \leq 2 + h \frac{L(r)}{A(r)}, \qquad (2)$$

where h(>0) depends only on D_i , and A(r), L(r) are respectively the area and the length of the Riemann images of |z| < r and |z| = rby f(z). Then we have from (1) and (2),

$$rac{L(r)}{A(r)} \ge rac{1}{42h}$$
.

Next from this and the inequality (obtained easily using Schwarz's inequality)

$$\log rac{R}{r_0} \leq 2 \pi \int_{r_0}^{R} rac{dA(r)}{L(r)^2}$$
 5) ,

we have

$$\log rac{R}{r_0} \leq 2\pi \, (42h)^2 \int_{r_0}^R rac{dA(r)}{A(r)^2} < rac{3528\pi h^2}{A(r_0)}$$

or

$$A(r_0) < rac{3528 \pi h^2}{\log{(R/r_0)}} \, .$$

So we have for $r_0 = R \exp(-7056h^2)$

/

$$A(r_0) \,{<}\, \pi/2$$
 .

Next we have for any $0 < r_1 < r_0$,

$$\log rac{r_0}{r_1} \leq 2\pi \int_{r_1}^{r_0} rac{dA(r)}{L(r)^2} < rac{2\pi}{L(r_f)^2} A(r_0) < rac{\pi^2}{L(r_f)^2}$$
 ,

where r_f is the radius which minimizes L(r) in $r_1 \leq r \leq r_0$. Therefore we have

$$L(r_f) < \pi/2 \qquad (r_1 \leq r_f \leq r_0), \qquad (3)$$

when we take $e^{-4}r_0$ for r_1 . On the other hand we have of course

$$A(r_f) < \pi/2 . \tag{4}$$

60

^{4), 5)} L. Ahlfors or R. Nevanlinna, loc. cit.

Now we rotate the Riemann sphere so as to bring f(0) to w=0. Then we obtain a new function $f^*(z)$ such that $f^*(0)=0$ and $|f^{*'}(0)| = |f'(0)|/(1+|f(0)|^2)$, and such that L(r) and A(r) for f^* is the same as those for f. Further we have $|f^*(z)| < 1$ in $|z| < r_f$, as is easily observed from (3), (4) and $f^*(0)=0^{6}$. Then we have

$$\frac{\pi}{2} > L(r_f) = \int_{|z|=r_f} \frac{|f^{*\prime}(z)|}{1+|f^{*}(z)|^2} |dz|$$
$$> \frac{r_f}{2} \int_0^{2\pi} |f^{*\prime}(r_f e^{i\theta})| d\theta > \pi r_f |f^{*\prime}(0)|.$$

Therefore we obtain

$$R < \frac{1}{2} \exp (4 + 7056h^2) \frac{1 + |f(0)|^2}{|f'(0)|}$$

and we conclude the proof by putting

$$k = \frac{1}{2} \exp{(4 + 7056h^2)}.$$

Mathematical Institute, Tokyo University

6) This can be proved as follows: Let λ be the image of $|z|=r_f$ by f^* on the Riemann sphere. Then the complement of λ consists of a finite number of connected domains. If the southern pole lie on λ , then λ is obviously contained in the lower hemisphere on account of (3); then no point of the upper hemisphere is assumed by f^* in $|z| < r_f$, for otherwise the whole upper hemisphere would be covered by the image of $|z| < r_f$ by f^* , which contradicts (4). So we may consider only the case where the southern pole does not lie on λ . Now let G be the one containing the southern pole among the above-mentioned domains. Then G is obviously simply connected and all the points of G are assumed by f^* on account of $f^*(0) = 0$.

Now let us suppose that λ is not contained in the lower hemisphere. Then there must exist intersection points of λ with the equator (|w|=1), for otherwise G must cover the whole lower hemisphere which is impossible on account of (4). Let us denote one of them by P and by C_P the locus of the points with spherical distance $\pi/4$ from P. Then C_P meets with the boundary of G, since C_P is a great circle which passes through the southern pole and G cannot cover a whole hemisphere. But this is clearly impossible on account of (3).

Now since λ is contained in the lower hemisphere, either all the points in the upper hemisphere or none of them are assumed by f^* . But the former case is impossible on account of (4).