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The class number of embedding of the space
with projective connection.

By Makoto MATSUMOTO

(Received Nov. 24, 1950)

In this paper we shall concern with the embedding of projectively
connected spaces. This is a generalization of the embedding problem
of Riemann spaces.

The first five sections are of an introductory character, that is,
we get the Gauss, Codazzi and Ricci equations of n-dimensional variety
in the space with projective connection of m-dimensions and define the
class number of the projectively connected space, and then deduce the
fundamental theorem of embedding. We then give a necessary and

sufficient condition for a space with projective connection to be of
class one.

1. Frame on a sub-variety.

Let P,. be an m-dimensional space with projective connection and
(Ao Ay) (=1, --- , m) be a frame attaching to a current point 4,; where
A, is determined by a system of coordinates (y',---,3”). Then the
connection of P» is given by the following equations:

dA,=A.dy” ,
(1.1) { o=Audy

dA,=(11%,4,+ II1%,A,)dy* .

Next, consider an z-dimensional variety Vi in P defined by a
system of equations

(1-2) ywquw(xl, Ty x”) ’

where ¢’s are analytic functions in a certain domain of x’s and that
the functional matrix
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Bil ........ Bim

is everywhere of rank #. When a current point A, displaces along a
curve on Vi, we have

dAy=A.dy*=AB;%dxi .
Now 7 linearly independent points A;(:=1, ---, #) defined by
(1.3) A;=A,B;:*

are on the n-dimensional tangent plane of V» which lies in the cséulating
projective space of P, at A,. Moreover we take in the space (m—n)
points Ap defined by

(1.4) Ap=A,B»" (P=n+1, --,m),

where the quantities Bp* are arbitrarily chosen under a condition that
the determinant | B;” Bp* | does not vanish. Those (#2+1) linearly in-
dependent points A,, A; and Ap determine the frame, which is called

the frame on Va.

2. The fundamental equations of sub-variety.

We have immediately

(2.1) dA,=A;dxt,

and further we put, along Va,

2.2) dA;=(I1% Ay + 115 Ax+ HO.A ) dx
2.3) dAp=(H%;Ay+ Hb,Au+ HSA Q) dx? .

Differentiating [(1.3) and [(1.4), and making use of we get

I dA;= {11%B;"B; At (P07 + 113,B° By ) A} i

l dAp={112B3B; A+ (PB4 3By By) ALY dvs

On the other hand, substitution of and (1.4) in [2.2) and
gives
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{dA,-:{]J’ Ao+ (I15B3* + HEBy) A ) dx7 |
dAp={H%;Ay+ (H%;B;* + HZ;By")A,}dx7 .

Therefore, we have the following equations :

‘ 7%= 11%,B;°B;#
(2.4) { 7 B J
HY,=11%,By*B;? |
If]ij;“+H§’jB;,w= ..855': + 17%,B;*B;"
(2.5)

X
le,jB;e“+H§,-Bb“——— 0631; + I13,By*B;" .
. X

By these equations the coefficients of the equations and are
determined. We shall call the equations [2.1), and the

Sfundamental equations of Vi in Phm.

When we replace the system of coordinates y’s in Px by 3’s, the
equations of transformation of the components of the connection 779,
and /7)%s of Pn are given by

18,=11% PS PY,

—_ . o

17y, =Py (9% + 113, PLPY),
\ oy’

where P} and P¢ are
—')\

P}‘ 7.‘1 .ng_ a'}.) To.
oy” oy

The qua_r_}tities B;® enjoy the transformation B;*=B;* P3, and further
we put Bp'=By" P}, so that A; and Ap are invariant. Then, making
use of and (2.5) we see easily that the quantities 729, 7%, H f,,
HY%;, H}; and H%; are all invariant. :
Next, when we replace the coordinates x’s in V» by X’s, we have
B*=B;® Pi, and A,=A;Pi, where Pi= af;, Pe= %’# Further we
x x
put By*=B3* and then we see easily from and that the
quantities 779;, /7%, HE, {a, and HY; enjoy the transformation

1%, =11%; P, F
(2.6) IIIc =P, (aPa + I7% P;, P’)
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Hab—Hﬁ'Eiz_i’ H =HP1P:z;
o [ 7

Q

Pa
HPa'— JPngE:z’ g HP:EZ;~
From we see that the quantities 77%; and 7% are transformed
analogously to the components of the projective connection, so that we

shall call 779; and 17% the components of the projective connection of
V» induced from Pnm.

3. The torsion and curvature tensors of sub-variety.

Let a point A; on V. have coordinates y(x) and consider the in-
finitesimal circuit on V. consisting of A(y), A(y+dy), Ay +dy+8y),
Afy+8y) and A(y). The projective transformation of the frame (A,,
A;, Ap) for this circuit, that is,

JAAO:(Sd—dS)AO ’
4A;=(8d—ds)A; ,
4Ap=(8d—ds)Ap ,
are given by the following equations :
AA():(R() .od,p Ao + Ro 3“3 A;\)B; @ B;B dxi 8x7 ,
3.1) 4A;=(R,% . Ao+ R,% s A\)B;* B;* B;,? dx7 8x* ,
"flP:(RM(2 (7] A0+ Rl-'-t\dﬂ AA)B}J'L B}w B;eﬂ dxj Sx*k ’
by virtue of [(1.1), where the quantities R,%,s, Ro2us R,%.s and R,
are the torsion and curvature tensors of P, defined by
,Rogap:]]gg——]]%m, Ro?wp=ﬂzg_[[§w ’

0
R0up= 0ia _ 0Mis 4 e o e o

{ oy® 0y"
A
R = agg“ -~ "’5:" Ty Is— 1% I3 g+ 1% 83— 110 83 .

On the other hand, making use of the fundamental equations
and we have
4A,=(Ry%;; Av+Ry%;; Ar+ HE; Ap)dxi 8x7 .
(3.2) AA;=(I1; %4 Ao+ IT;} ;3 A+ 11,2 ;5 Ap) dx? 8x*,
lAApz(ﬂp". i Ag+IT g ;; Ae+ 118, ;; Ag) dxi 8x7
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where we put
I1;°,,=R;?,+H]; Hf—Hf, HY;
(3.3) I1;! =R} j+Hf HY— HE HE;
117:‘-13%:&'53 »—Hi j+HE HE—HR HE;
'.l]po. ”:Hp?']—Hpg,,"f‘Hﬁ, JIkO]_H}{ej Hk9+H§, Hé)}]—Hg] Hé.), ,
(B4) {ZIp.,;=Hf, ,;—Hp +HE HY—HP; HE + HY; 85— Hp, 8,
IHP?U‘:HIQJL i—H$, +Hf HE—HF HS +HE, HQ—HE; HY; .
The quantities R,?;;, Ro%;, R;9 }k and R/.;, are the torsion and
curvature tensors of Va constructed from the components of the pro-
jective connection of Vi induced from P, and the comma means the
covariant differentiation with respect to /7%. Hence we obtain from

and the following equations :

(3.5) Ry? . Bin}'B:ROPij ’

(3.6) Rylup B;” B =R, ¥;; Bi* + (H5—H%,)By
(3.7) R,% . B;* B;* B}?=1I;?;;,

(3.8) R.%2as Bi* By® Byf=11,!;, By*+ 11,7 ;, By,

(3.9) R.,s By B;* Bi*=1I. ;,

(3.10) R,%ap By B;® B;P=1IIp%;; Bi* + 11 8. BG" .

4. The fundamental theorem of embedding.

Let 77%; and 17} be components of the connection of the given
n-dimensional space P. with projective connection. We say that
P» can be embedded in a projective space S» of m-dimensions, if
there exists an #-dimensional sub-space S», whose components of pro-
jective connection induced from S» are equal to the given 77%; and
I7%. The space Pn is called of class p, if P» can be embedded in a
projective space of (»+ p)-dimensions but not of (n+g¢q) (p >g=0)-
dimensions.

It is clear that P». is of class zero if, and only if, the torsion and
curvature tensors vanish. Also it has been proved by S.S. Chern, see
that the class number is at most #(z—1)/2+(n ~1)/2 (n: odd), or
n(n—1)/2+n/2 (n: even).
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Since Pn in preceding sections is flat hereafter and the determinant
| B;® Bp* | does not vanish, we have from [3.5), (3.6), [(3.7), (3.8), [(3.9)
and the following equations:

(4.1) R,?;;=0, Ry ;;=0,

(4.2) HEY—HE =0,

(4.3) R,: jy=—Hj}; Hi+ Hf Hij,

(4.4) R;%;»=—H} HR+HL Hp; ,

(45)  Hfe—HF5+H HE—HY HE=0,

(46)  Hpj, ,—Hph, ;+HE; H§—HR, Hg;+ Hp; 8, — HB, 85=0,
(4.7)  Hp),—Hp) ;+H; D~ HA I )+ HE; HS,— HE, HY;=0,
(4.8)  HE; »—HE ;+HE; H—Hp HY + HE; HR,— HE, HE,;=0.

The equations (4.3) and (4.4) are called the Gauss equations ;
(4.6) and (4.7) the Codazzi equations; (4.8) the Ricci equation. From
(4.1) we see that the conmnection is necessarily symmetric, if the space
can be embedded in a projective space. Also from (4.2) we see that
the functions Hf are symmetric with respect to ¢ and j.

Conversely, suppose that there exist in P», whose connection is
symmetric, four systems of functions HY (=H?%), HY;, Hf; and HY;
(¢, 7=1, -, n; P,Q@Q=n+1,---,m) catisfying the Gauss, Codazzi and
Ricci equations. Consider the fixed frame (E,, E.) («=1,---,m) in an
m-dimensional projective space S» and let A) and A§ be coordinates of
a current point A, with reference to the frame. Then a system of
partial differential equations, namely the fundamental equations of sub-
variety

(4.9) 24y _ 4,

. ox?

(4.10) 984 = Aot Il Aw+ HE Ap,
(4.11) 04r —Hp, Av+ H; Avt HE, Ag,

is integrable. In fact, the integrability condition of [4.9), that is to
say,
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0 (o) _ o (0dy)
ox7 \ pxi ox* \ ox7

0A: _ 04;

ox7 oxt

is equal to
b

which is satisfied by virture of symmetry of the connection of P» and
that of Hf,. Next the integrability condition of

) (QAz-j)_ ) 'ﬁﬁ) -0
oxk \ ox7 ox7 \ px*

is satisfied by means of (4.3), (4.4) and (4.5), substituting
and [(4.11). Finally is also integrable by means of (4.6), (4.7)
and (4.8) Thus the zn-dimensional surface, that is the locus of the
point A, so defined as the solution of the above system, has the same
connection as given P». Hence we obtain the fundamental theorem
of embedding as follows :

THEOREM 1: A space with projective connection of n-dimensions
can be embedded in an (n+ p)-dimensional projective space if, and only
if, the connection is symmetrvic and there exist four systems of functions
HI (=H%Y), Hp;, Hp; and HY;. (i,j=1,--,n; P,Q=n+1,---, n+p)
satisfying the Gauss, Codazzi and Ricci equations.

5. Projectively connected space of class one.

Consider the case p=1. We replace A,.; by

(5.1) A,n=p Ay (p=0),

where A,,., coincides geometrically with A,,,, and we put, instead of
and

(5.2) dA;=(I1%GA,+ A+ HY A, dx7

(5.3) dA, .=(H,%;Ac+H, ;Av+H 1A, dx .

Substitution of in (5.2) and comparison with give H7}!
= —1—H:-’,-+1, IT%=11% and I1%=1%. Next, differentiating and

p > = ..
making use of and (5.3) we obtain H,Y;=pH,%1;, H,lj=pH,};
and
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Tin+l __ a
(5.4) Hyil=pHi+ -
It is well known that R,’,;=0 (i,7=1, ---, n) refering to the natural

frame of P, see [3], and hence the second member of (4.8) vanishes.
And also the third member vanishes identically. Therefore we have
8H; _ eHIL: -0 | |
oxk ox7 ’
and so we can take such a function p that H7;},=0 identically.

When we refer to such a frame (A4,, A;A».;) on P., the Gauss
and Codazzi equations are expressible as follows :

(5.5) R iy=—Hi; Hi+Hi H,

(5.6) R;%;,=—H;; H.+H;x H;,

(5.7) H;j, r—Hiz, =0,

(5.8) 5= Hj, ;j+ H; 8 — H 8,=0,
(5.9) Hj, r—Hy, j+H: 1T, —H} IT%=0;

where we put H;;=H?%'', Hi=H,%;; and H;=H,?,;; and finally the
Ricci equation is satisfied identically,

6. The second and third Codazzi equations as
consequences of the Gauss and the
first Codazzi equations.

In the case of Riemann space V. of class one, the Codazzi equation
is automatically satisfied, if Va» is of type = 4 and the Gauss equation
is satisfied, see [5] And also in the case of class greater than one,
three systems of conditions are not independent in general, see and
Now, in our case, we shall prove similarly that the conditions
m (5.8) and [(5.9) are consequences of the remaining [5.5), [(5.6) and [5.7).

(A) The equation [(5.8).

Differentiating covariantly with respect to x* and summing
three equations obtained from the first by cyclic permutation of i, j
and %, we have

(6.1) HiijHi+Hijn H+ Hini Hi=Hi H%+Hyj Hy;+ Hin HY;
J
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on account of and the Bianchi identity
Ry¢Gr o+ Ry j8H=0,
where we put
Hiij=Hui, j—Hij, i,
HY=H!,—H% ,+ H; 8*—H; 8% .

Then, if is satisfied, i.e. Hi;;=0(,,¢,7=1, --- , n), we obtain from
(6.1)

(6.2) Hij H}+ Hin H% + Hiy H5,=0.

| Suppose the determinant | H;;| == 0. Let || H#/ || be the inverse
matrix of the || H;;||; then contracting by H!' we have

(n_z)Hfh:() (j’ k; h:]-’"',n),

and hence H%,=0 for n>3.

Suppose the matrix || H;;|| be of rank o (#n > o =>3). Trans-
form the coordinates x¢ of P» so that at the origin the matrix || Hij ||
has the form

| Hijll=| H;{ 0], | H, |=| Hy------- H, [0,

and let || Hi/ || (i,j=1, ---, o) be the inverse of the || H,||. First, taking
l,i,7 and & for 1,---,0 in ‘and in the same way as we obtain
H%=0 (j,h=1, - ,0; k=1,---,n). Next, taking 2> and /,7,7=1, ---,
o in we have

Hi; Hf;fl—Hlj Hﬁi:().

Contraction of the above equation by H¥ gives H%=0 (j=1, -, 0;
h>o; k=1, ,n). Finally, taking j, 2 > o and i,/=1,--,0 in (6.2)
we have H%=0 (j,h >o; k=1,---,n). Since H} is skew-symmetric
with respect to i and 7, all of H% vanish.

Hence, if the matrix || H;; || has the rank o (= 3), (5.8) is @ con-
sequence of [5.5), and [(5.7).

(B) The equation [(5.9).
Similarly, differentiating covariantly and making use of

and [(5.7) and also the Bianchi identity
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R ujw— I10GR % =0,
we have
(6.3) Hi; Aje+ Hij Avi+Hir Ai ;=0
where we put
Ajr=Hj,e—Hy, j+H$ 1 —HE 11

In the same way as in (A) we can prove that [5.9)is a consequence of
(5.5), and if the matrix || Hij|| has the vank o (= 3).

In this way the rank of the matrix || Hij|| plays an important
part in our problem, but it seems to us that this integer o can not be
determined by intrinsic properties of Px. This circumstance is like to
a property of type number of Riemann spaces of class greater than
one, which was defined by C. B. Allendoerfer, see

7. Type number of hypersurfaces in projective space.

We put
(7.1) K, *,;=Hu H%,
and by contraction
(7.2) K;ji=K,%;;=Ha H%.

The above tensor Kj;;is symmetric on account of R,?;;=0. We intro-
duce the equation which determines the intrinsic form of K;j. Inter-
changing indices 7 and £ in the following expression

Kab.,'j Kkl:Hai H? Hcr H_I; ’

and subtracting, we have in accordance with
K2 irjKy=Hai Hi R 2.

Moreover, interchanging ¢ and /, and subtracting, we obtain

(7.3) R,1iR. 2 =K, t;Kini— K2 1K
Contraction of [(7.3) with respect to a and b gives
(7.4) M;iri=Kir Kj1— K1 Kjr,

making use of [(7.2), where we put
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(7.5) M;jrm=— —% R, Ry%y .

It is easily seen that the intrinsic tensor M, w satisfies the following
identities

(7.6) M;ju=—Mjiri=Mui;,

by means of the properties of the tensor R,?;;.
On the other hand, multiplying by H.r and summing three
equations obtained from the first by cyclic permutation of 7, 7 and 4,

we have from _
H, R i+ HiaR . %i5=0.

And further, multiplying the above equation by H,? and subtracting
three equations obtained by interchanging ¢ and e, 7 and m, % and
m, we obtain from

(D) R, aR %+ R EiiR byt Ry 5 R GF iy + Ry BR 2  1y=0.

This equation is a necessary condition that there may exist two systems
of functions H;; and H} satisfying [56.5). Contracting (I) with respect
to ¢ and k, and moreover & and /, we get

(7.7) M;ir,=0.

Thus the tensor M;;u has the same properties and as the
curvature tensor of Riemann spaces and has the same form as
the Gauss equation of hypersurfaces in euclidean space. Therefore, by
means of [7.4), we can obtain similar facts and theorems which
have been already proved by T.Y. Thomas in his excellent theory
of Riemann spaces of class one, see Let us enumerate those facts
and theorems without proofs.

(A) Definition of type number.

A hypersurface S in a projective space will be said.to be of Zype
one if the rank of the matrix || K;;|| is zero or one. It will be said
to be of type + where r is an integer of the set 2,---, # if the rank
of the above matrix is =. It is easily seen that S is of lype omne if,
and only if, the tensor M;;u is identically equal to zero. And we can
prove that the type number v (= 3) of a hypersurface is equal to the
rank of the matrix
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Hence the type number is determined by intrinsic properties of S.
(B) Uniqueness of solution K’s of
We can prove that it holds the following relation between the type
number and the number of solutions of That is, if a hypersur-
face S is of type v(=3), the system of functions K,; satisfying
is uniquely determined to within algebraic sign.
~ (C) Reality condition.
, When the hypersurface S is real, the tensor K;; is naturally real.
The solution K’s of will be real if, and only if, the matrix
condition

(IT) Maeasodaipn=| Mai; Masjr Masri | =0
Msci; Mpcir  Mpcri
Mecai; Meajr  Meari

is satisfied, when S is of type +(=3).

(D) Resultant system.
Let us write in the homogeneous form, namely

(7.4") 2 Mijuin=Kir Kji— K1 Kz,
and we obtain easily from
(78) Ky [iMm] ljk‘“Kl[ij] rim=0.

Represent the resultant system of (7.4’) and [(7.8), a set of polynomials
in the components M’s such that the vanishing of these polynomials
is a necessary and sufficient condition for the existence of a non-trivial
solution, by R«(M). We can prove that will have a real solution
if, and only if, the inequalities (11) and

(III) E Mz(a,b,c)(i, 7> k)> 0 ’

a, b.c.irjr k
and the equation
Iv) Ru(M)=0

are satisfied.
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Now there is a relation between the type number 7+ and the rank
o of the matrix || H;;|l. That is, from we have

(7.9) K l|=I| His |l - | Hf I

On account of the well-known theorem for the rank of the product of
two matrices, See we get < o; this is similar to a relation be-
tween two kinds of type numbers of Riemann space of class two, the
one defined by C.B. Allendoerfer and the other by the writer, see [6]
Hence, if P» of class one is of type = (= 3), the rank o of the matrix
|| Hi;|| is not less than three. Consequently from the results in the
last section we have the

THEOREM 11: If a space with symmetric projective connection Pn
of dimensions n (= 3), satisfying the equation (1), is of type +(=3),
then Pn will be of class one if, and only if, theve exist three system of
Sfunctions H;; (=Hj;), H} and H; (i,j=1, --- , n) satisfying the equations
(5.5), (5.6) and (5.7).

8. The first Gauss equation.

In this section we shall find the tensor K,%,; defined by (6.1)
making use of the intrinsic tensor K,; determined in the last section,
and get a necessary and sufficient condition for the existence of two
systems of functions H;; and H} satisfying [5.5), as P. is of type
(= 3).

First we prove that, if has a solution K,%;; (h,i,7, k=1, -, n),
it is uniquely determined. In fact let K,*;; and I_{h?i,- be two solutions
and we put

Eh{eij:Khlfz'j'*’thij )

and then we see that D,%;; satisfies the equation
(8-1) Da?ii KkI_Da{,ik Kjl_Dal-)l 7 Kki +Da?leji:O .

Suppose the type =2 (==3). Let |[|K?/|] be the inverse matrix
of || Kijll; then contraction of by K* gives
(8.2) (7’1—2) Da?,'j"{‘Kkl Daélk[(ij:().
Moreover, contracting by K7i we have K* D,?,,=0. Hence, from
we have D,%;;=0 (a,b,i,j=1,--,n).
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Suppose the type = (#z >+>3). Transform the coordinates
x¢ of P, such that in the origin the matrix || K;i;j|| has the form

IKsll=|| K 0 [, |Kl= Kyp-Ky %0,

Let || Ki/|| (5,7=1,---, ) be the inverse matrix of || K, ||; taking ¢, j,
k and / for 1,---,= in [8.1), we obtain, in the same way as in [1], D,*,;
=0(h, k=1, ,m; i,j=1,---,7). Next, taking / >+ and ¢, j, k=1, ---, 7
in we have

—D,%,; Kri+D,%,K;;=0.

Contraction by Ki/ gives D % ;=00 >+; j=1,,7; h, k=1, ---,n).
Finally taking k,/ >+; {,7=1,--,7 in we obtain K;;D,%,=0
and so we have D,%,=0(k,!>+; a,b=1,---,n). Hence the above
statement is proved.

Now we get a necessary and sufficient condition that has a
solution. Let us write in the homogeneous form

(7.3") t R, R 2j=K, 2 iKp— KKy

Represent the resultant system of a set of polynomials in the
components of the curvature tensor and K;; such that the vanishing
of these polynomials is necessary and sufficient for the existence of a
non-trivial solution, by R»(K). We see that has a solution if,
and only if, the equation

is satisfied. In fact, putting =0 in we have all K,%,;;=0, in the

similar way, by which we proved the uniqueness of solution. Thus we
have the intrinsic tensor K,%;; as the unique solution of (7.3), which
is clearly real.

Next, it is easily seen that this tensor so determined must satisfy

the following equations:
(VD) R,k ;=K% ;i—Kitij,
(VII) K;2;3=K;%,
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(VIII) . i.a]_b Ki .de =0.
i Kk?Ib Kk(-:ldr

The first is given by and [7.1), the second by symmetry of H;j,
the third by [7.1).
But, it can be proved that K,¢;;=K;;, i.e. (7.2). In fact, contracting

with respect to ¢ and 5, and making use of and [7.5), we
obtain

(8.3) K, ¢irjiKpmi— K% 0jKni=—2K;jKu; .

Suppose the type +=#n(=>3). Contraction of by Kt
gives

(8.4) (n—2)K, %+ K" K,%,; Kir=2(n—1) Kix .

Moreover, contracting by K we have Ki* K,%,,=n, so that we get
from .

Suppose the type 7(n_>+>3). Taking 4,7,k /=1,---,7 in
we have similarly (Z,7=1,--,7). Next, taking !> r;1,7,
k=1, - ,7 in we obtain

“—Ka‘.zlj Kki +Ka¢.z1k Kij:O .

Contraction by K% gives K,%,;=0(=Kij;) (!> ; j=1,---,7). Finally
taking L,k > 7;4,7=1, - ,7 in we have K,%,,K;;=0, and hence
K,%2,,=0(=Kuwu) ({, k> 7). Therefore the above statement is proved.

Now, by means of [VIII), it is seen that the matrix || K;%| (s,
j: rows; a,b: columns) has a rank not greater than one. But it can
not happen that tte rank be equal to zero; when it does, from
the tensor M;;m vanishes contrarily to the supposition of the type
(= 3), so that the rank of || K;%;;]|| is equal to one. Consequently
there are two systems of functions H;; and H} satisfying [7.1). From
(VIl) H;; is symmetric and from the rank of the matrix || H:j||
is ¢ (=17). Finally, from and [7.1) those H;; and H satisfy [5.5).
Therefore we get the

THEOREM IIl: If an n (= 3)-dimensional space with symmetric
projective connection is of type (== 3), there exist two systems of real
Sfunctions H;j (=Hj;) and H:(i,j=1, -, n) satisfying (5.5) if, and only
if, the inequalities (II) and (II1), and the equations (I), (IV), (V), (VI),
(VII) and (VIII) are satisfied.
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If we take the functions H;; and H}, instead of H;; and H,
satisfying (7.1), we have
H:;Hi{=H:;H3,
from which we obtain

H;; _ Hj boi =1 -
H‘j Eg (a’ I’ z,] ]" ’ n) ’
so that we have
(8.5) H;j=xH;;, Hi= -1 Hj,

K

hence the general solution of is given by
It is to be noted here that the equation does not determine

the algebraic sign of the solution K;;, but the sign can be chosen by
the condition [VI), because that of K,*;;, the solution of depends
on that of K;j.

9. The second Gauss equation.

At the end of the last section we take H;; and H! arbitrarily,
satisfying and hence it remains to find such a condition under
which we can take H;; satisfying [5.7). Be that as it may, in this
section, we shall find a condition for the algebraic equation having
a solution H; (i=1, -, n).

Contracting [(5.6), i. e.

(91) Ranc:Hac Hj“"Haj Hc
by H;x H¢ and making use of and [(7.2), we obtain
(92) K,'.akb RanC:Kbc Hik Hj—"ij Hik Hc.

Suppose the type r=#(=3). Contraction of (9.2) by Kb
gives
(n——l) H;. Hj=K?% Ki Zrp Ra(2 jc o
hence by substitution in we have
(IX) (n—1) R; 2j,=K% (K; %1y R.% jo— K; %js R 1) »

which is necessary for to ke satisfied. Conversely, if (IX) be
satisfied, we have
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(7’1—‘1) R,' 9jk:Hik (Kbc Hg Ragjc)""Hij (Kbc H(g Ra(3 kc) ’
substituting (7.1) in [IX), and hence if we put

(9.3) Hj=—1_ KwH{R,,,
‘ n—1
we obtain
Suppose the type 7 (#>+>3). Similarly we obtain
(IXy) (r—=1D R, 2, =Ko (K; %y R, jo—K; %5 R;% 1)
(b, C,j, k:]-’ L, T, 4, i_—:l, Ty n) .
Conversely, if (IX,) be satisfied, we put
94) Hj= ' KvHiRY ;. (bei=1-,ma=1-,n),

—]
which satisfies the equation
R;%=Hixr Hi— H;; H. (i=1,---,n;j,k=1,--- 7).
Next, taking j > and b,¢=1,---,7 in we have
Koy Hir Hi=K; %, R, ;. ,
and so, substituting this in [5.6), we have
(IXz) Keo R;2;,=K;%pp R.% jo—K; 2 Ro e
U, k>7; b,c=1,~ ,7;a=1,---,n).
Conversely, if (IX,) be satisfied, we have, contracting (I1X;) by K¢,
™R, p=Hir (K® H} R,% ;.)—Hi; (K® H} R, 1) .
Hence we put

(9-5) i= J*KCngRaqjc (.7>'7'; b,C:].,"‘,'T; a:]-,""n),

.
which satisfies the equation
R,‘.ojk:HikHj_‘Hink (j:k>7'; i=1,'"9n)'
Finally, from (9.4) and we have
R;,=H;r Hi—H;; Hz
—_— . 1 bc a 0 .. 1 bc a 0
—Hgk K HbRa-jc —sz “K H};Ra-kc
1 T

T—
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(k>7; b, C,jzl, v, T, 4, Z.=1, 9”)’
and hence we obtain by

(IX3) R;%;,=K?b (*']1‘ K% R, jo— % K;2j Rach)

—
(k>7; b’ C,].:l, L, T, Q, i:l’ cee ,n).
Conversely, if (IX;) be satisfied, from (9.4) and we get
Rw=HiuxH;—H;;H. (j=1,-,7; k>7; i=1,--,n).

Thus, if or (IX; ,3) is satisfied, there exists a system of func-
tions H; (i=1, --- , n) satisfying [5.6). Therefore we have the

THEOREM IV : If an n (= 3)-dimensional space with symmetric
projective connection Prn is of type v (= 3), there exist three systems of
real functions H;; (=Hj;), H} and H; (i,j=1, ---,n) satisfying (5.5)
and (5.6) if, and only if, the inequalities (II) and (I1II), and the equa-
tions (1), (IV), (V), (VI), (VID), and (IX') are satisfied, where we
mean by (IX') either (IX) or (IX],, 3).

We get, in accordance with the type number of +, the condition
that may have a solution H; ({=1, ---, n). For our purpose is to
find a concrete expression of H;. But we see that the condition can
be written in only one system of equations.

If Px is of type (n—1), of course, (IX,) is unnecessary.

It is clear that the general solution of and (56) is given by

(9.6) Hij=r¢Hij, Hj= —I—H’}. H=1H,.
K K

10. The first Codazzi equation.

Finally, let us find a system of functions H;; satisfying and
(5.7). From we get ,

(10.1) Lij=H;;-H (H=H3),
where we put
(10.2) L;j=K;?;,.

The known tensor L;; is clearly symmetric by (VII). If the quantity
H is equal to zero, the tensor L;; vanishes. Conversely if L;; does
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not vanish identically, the matrix || Li; || has the rank o equal to one
of the matrix || H:;||. In this section we shall confine our considera-
tions to such a domain in P, that L;; does not vanish.

Then, the rank of || L;; || is not less than that of || K;;||, that is,
the type number. From we have H==0 and put

(10.3) Hij=e’ L;;,

where H=e™". Let us find such a function p that H;; defined by
satisfies (5.7). Substituting this expression in we obtain

(10.4) prLij—pj Lir+ L;;;,=0;
where we put
(10-5> Lz'j}e:Lii k_Lz'k, i
(10.6) pi= 2108 p

oxt

Let us write (10.4) in the homogeneous form, namely
(104’) Pk Lij—Pj Lik+tL,~jk=0 .

We represent by R.(L) the resultant system of [(10.4”), which is a set
of polynomials in the components L;; and L;;, such that the vanishing
of these polynomials is necessary and sufficient for the existence of a
non-trivial solution. Then it follows that

(X) Rn(L)=0

is a necessary condition for P» to be of class one.
Assume (X) be satisfied and let (p;, ) be a non-trivial solution of
(10.4"). Suppose #=0 in this solution. Then we have

(10.7) Pk Lij_pj sz:O ’

from which we can prove that all of p; are equal to zero contrary to
the hypothesis of the non-trivial solution as follows.

Suppose the determinant | L;;| 5=0. Let || L/ || be the inverse
matrix of || L;; | ; contracting (10.7) by L/ we have (n—1) pr=0, which
shows that all of pz (=1, -, n) vamsh

[2] Suppose the matrix || L;;|| has the rank a(n>a T =>3).
Transform the coordinates x¢ in P» such that in the origin the matrix
Il L;; || has the form
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IL,i=| L, t O [,  [Ll=| Ly L,

0. 0 | FT L.

and let || Li7 || (i,7=1, -, o) be the inverse matrix of || L, ||. Taking
,7, k=1, ,o in we obtain similarly pz=0(k=1, - ,0). Next
taking £ >o; 7,7=1,--,0 in we get pr L;;=0, from which it
follows pr=0 (k> o).

Therefore, our proposition is proved. Consequently we must have
t == 0 so that the quantities p;/t can be defined and these constitute a

solution of [(10.4). Further it is easily seen that the solution of
is uniquely determined. In fact, assume both p; and p; are solutions

and put
pi=pitvi,
and then by substitution in [10.4), we have
v Lij—v; Lir=0,

from which we obtain v.=0(k=1, ---, #) in the same way as we have
proved above pr=0 for ¢=0.

Now we consider the differential equation [10.6), by which the
quantity p will be determined, where in this equation p; is the solution
of above found. The integrability condition of [(10.6), that is,

0 (76 log p ) _ 0 ( o log p):O
ox’ ox? oxé ox’

is written in a covariant form

(XI) pi, i— P i=0.

This equation, which is necessary for P» to be of class one, is con-
stituted from L;; and its covariant derivatives of first and second
orders. Conversely, if is satisfied and we give an initial value p,
in the point (xf), then we obtain a solution p of Now, define
a system of functions H;; (i,7=1, ---, n) by [10.3); then it is clear from

that H;; so defined satisfy [5.7) :

Since all of L;; are not equal to zero, say L;; 5= 0, we obtain H;; 3=0
from [(10.3). From we get

(10.8) K]_.alb:Hu Hz (a, b=1, ,n).
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This gives H¢ (a, b=1, ---,n), and from [(VIII) we see
K7 K%, |=0.
K% K&

Contraction with respect to k2 and / gives L, K; ¢;,=L:; K; %, by means
of and substitution of and gives e * Hy K; ;=
e ® H;; H;, H%, and hence we have [7.1). Finally, making use of those
H;; and H¢, we obtain H; by the method in §4.

Consequently, just now, we attain to the following main theorem
of this paper. ‘

THEOREM V: If an n (= 3)-dimensional space with symmetric
brojective connection Pn is of type v(=3) and the tensor L;; does not
vanish, P» is of class one if, and only if, the inequalities (I1) and (III),
and the equations (1), (IV), (V), (VI), (VII), (VIIL), (IX'), (X) and
are satisfied.

It is easy to write polynomials (V) and (X) concretely, but is not
necessary for our discussions.

Though we excluded in our discussion such a space that L;; is
identically equal to zero, we easily see that this condition imposes no
restriction in space with symmetric normal projective connection of
type +(=2). In fact, we have for the normal connection R;?;,=0

and from
Rz.a]a:-K;.aaj_-K;-aja__—'Ka?ij—'K.l'a]'a ’

and hence, if L;;=K;?;,=0, K,?;;=K,;=0 in contradiction to the
assumption concerning the type number. Consequently, a space with
symmetric normal projective connection of type = (= 3) is of class one
if, and only if, the conditions of V are satisfied.
Faculty of Science,
Kyoto University
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