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On the Sequence of Additive Set Functions
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(Received September 4, 1949)

In this note we shall discuss three problems on the sequence of ad-
ditive set fuuctions. In § 1 we prove the Vital-Hahn-Saks theorem in the
space with infinite measure and, as its application, Schur’s theorem on the
equivalence of the strong and the weak convergence in the space (/).
We shall remark some convergence theorems on the sequence of Riemann
integrals in § 2 and Lebesgue integrals in § 3.

1. The Vitali-Hahn-Saks theorem.

The Vitali-Hahn-Saks theorem [5] is formulated in the following form.

Theorem 1. et M be the family of all measurable sets E of an abstract

space M with total measure p(M) <eoo. [If VF,(E)} is completely additive

(c.a.) and absolutely continuous (a. c.) with respect to p(E) and lim F,(E)
n>co

=F(E) for all E ¢ W, then {F,(E)} is uniformly absolutely continuous and
F(E) is ca. and a.c.

This theorem is also valid in the case p#(M)= o, that is,

Theorem 2. [f there is a sequence (M, wth finite measure such as
M=UM,, then the conclusion of Theoremn 1 is valid, i.e.,if {F,(E)} is ca.

n=1

and a.c. and lim F,(E)=F(£E) for all E € I, then for any positive e, there

are 0(€), m, (€) and n,(€) such that for p(EnM) <d (1=12,---,m,), we
have Fo,(E) <e for all n> n,.

Proof. We have E=U (EnM,) for any E ¢ M. If we put
n=1

—s_ M(ENM)
Y = e uat + 13

then v(M) <eo and v(E) is c.a. and a.c. with respect to u(£). Since F,
(£) is c.a. and a.c. with respect to ¥(E), applying Theorem 1 to F,(E)
and v(£), we get the theorem.

As an application of Theorem 2, we can prove Schur’s theorem. In
Banach’s book , the theorems of linear transformation of infinite sequences
are proved from a general theorem (the Banach-Steinhaus theorem which is
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essentially a category theorém), but Schur’s theorem is only proved by the
direct calculation. Since Theorem 1 is proved by a category theorem, our
way of establishing Schur’s theorem may be of some interest.

Theorem 3. (I. Schur [6] cf. Banach p. 137). In the space (2),
the weak convergence is equivalent to the strong convergence.

Proof. By the Banach-Steinhaus theorem a necessary and sufficient
condition for the weak convergeece of the sequence {x™} € (/) where

x(n);. {ql(n)’ (zz(").-",a;(-"),'f'}

is that

(1) ' i]aﬁ")léﬂl, for- all 7,
i=1

(2) lim > a™ exists where E is any subset of ‘natural numbers. If

n»>0 i ¢ E

we give measure 1 for any natural number, then the set A/ of all natural
numbers has an infinite measure and M= U M;, where M; is a sét consis-
ting of a natural number and pu(M;)=1. Put F,(E)= Za(”) then {#,(E)}

converges for all £ by (2). From Theorem 2, we get for n> #,,

(3) S|am| <e/2.

2=Nn0
If {af}=+" converges weakly to 0, then we have evidently

(4) lim a™=0 (1=1,2,---11,).

n->o

From (3) and (4), we get

lim Z |a{™| =

By f=1

this means that #™=={a{™} converges strongly to 0. The case where the
weak limit is s#0, is reduced to the above case.

Theorem 4. When the limit F,(E) cxists for all E € WM, the limit
Junction hm Fo(E)=F(E) is ca. and a.c., even f p(M)=o0 and M is not

an enumerable sum of sets with finite measure.

(If p(M) <0 or p(M)=c0 and M is an enumerable sum of sets with
finite measure, the theorem is above pxoved)

Proof. If we put

= V(B
B =T b + 10
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where V,(£) denotes the total variation of #,(E), then v(E) is c.a., v(E)
<eoo and ¥(E) is a.c. with respect to u#(£). Applying Theorem 1 to {F,
(£)} and v(E), we get the theorem.

Theorem 5. If p(M)=-co, j f,.'-(‘n;)dpt(x) converges as n—> for all
E

E € W, then the limit function is the indefinite integral.
Proof. For our purpose it is sufficient to observe the set

E= {xiuplf,,(x) 1750}.

Since U £ satisfies the condition of Theorem 2, we get the theorem.

N.B. If u(M)=e0 and M is not an enumerable sum of sets with finite
measure, then A,(E) are not necessarily indefinite integrals. So Theorem
4 and Theorem 5 is not equivalent.

2. .Helly’s theorem for separable metric space.

Helly’s theorem has been extended to n-dimensional Euclidean space
by Bochner and Frostmann . Kryloff-Bogoliouboff have discused
the convergency of {jf(x)dp,(x) where Mis a compact metric space. We
shall consider this theorem from the convergency of the sequence {g,(£)},
after Helly.

Definition 1. Lz p(E) bc a c.a. set-function and E; and E, be closure
and interior of E, vespectively. If p(E;—Ep)=0, then E is said to be a
continuous set of p. If p,(E) converges to p(E) for all continuous set of p,
then p,(E) is said to converge to p(E).

Definition 2. e skall call W a net in a metric space M provided that
W consists of finite or enumerable sets measurable (B), mutually exclusive and
covering the space M. The sets constituting a nct will be called its meshes. A
sequence {W,} of ness will be -term:d regular, if cack mesk of Wno1 (where
n>0) is contained in a mesh of WM, and furth:r the maximum of diameter of
meshes of W, converges to O as n—sco.

Then it is easy to see that there exists a regular sequence of nets in
a separable metric space, by Lindel6f’s convering theorem. Further we
shall denote meshes of nets by I.

Theorem 6. Let M be a separable metric space. If 0, (E) X K for
n=12,---, and sets measurable (B) are all p-measurable, then w: can select
ta, (E) such that pn, (E) —p(E) as n—>oo.

Proof. Since meshes are enumerable in all, we can select g, ~such
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that g, (/,) and g, (7;) exist for all I. Let O and F be arbitrary open

and closed sets respectively, and put

w(0)=Lub {1im s, ()},
r CO k»o

#(F) =gl lim s, (D}

Then we have

#(0) = lim g, (0), p(F)= li—rﬁ ta, (F7). Tt is also easy to see that p are

PR
monotone and finitely additive functlons of any O and #, respect'lvely Re-

lation between #(0) and p(F) is given by
£(0)=lub{p(F)}, p(F)=glb{u(0)}.
FCO OCF

For any set £, we put #(E€)=Lub{u(F)}, p(E)=g.lb {#(0)}, which are
= FCE 05 7

termed inner and outer measures of Z. If L(E) =p(E), then £ is called

to be measurable. Then evidenly any Borel set is measurable. - If £ is any
continuous set, then we have

#(E)=p(E) < lim pro, (By) <lim s, (£) Zlim g, (E)

k> . kro Xrow

hm ta, (Ep) =p(Ep) =p(E).

Thus pa, (E)—>p(E) as k—> oo, which proves the theorem.

Theorem 7. [f M is a compact metric space and pn(E)-—>;1(E) as n
—>00, then, for any continuous function f(x),

i ) ()= [ ) ),

where the infegral is taken in the Riemann sense.
Proof. Riemann integral can be approximated by Riemann sums where
the sets of division are continuous sets.

Theorem 8. (Kryloff-Bogoliouboff [4]). Zet M ¢ a compact metric
space. If O, (E) =K for n=12,---, then we can select p, (E) suckh that

Jor any continuous f(x),

tim| £} dta, ()= () dix(),
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wheve the integral is taken in the Riemann sense.
Proof. This theorem is immediate from the above two theorems
3. Convergence of the seqnence of Lebesgue integral.
Theorem 9. Lot f(x) be bounded and Borel-measurable Sfunction, and

{pa(E)} be a sequence of c.a measure functions (positive or not) such that
the set measurable (B) is po-measurable. If §y|d (fnu—pn)|—0 as mn—
oo, then there exists a c.a. set function p(E) suck that

lim( £ dum(2) = f2) (o).

wheve the integral is taken in the Lebesgue sense.

Proof. Since the sequence {,(£)} converges for all Borel sets, p£(E)
is c.a. by Theorem 1. Since

| 7@ dm@={ r@d GammI2lf A0 (1mr)

=[ @ ldm-mI= ] 1 amp)-0.

we get the theorem.

Theorem 10. Zet {P,(E)|E € B} be a sequence of c.a. measure functions
such as

L Ia’/ | < oo,

n=1

then %P,, (E) converges to a measure function P(E). Further if f(x) is
n=1

bounded and Borel-measusable, then

F@d P = flx)d Ps).

'11

Proof. Let us put
Eﬁt (E) =/“n(E)’
then

| 1eGa—p =] 14 442

= §3|dp,1-—>0, as m,n—>co,

M f=n+1
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Thus the theorem is reduced to the above theorem.
This theorem is proved by F. Yagi [7], in case M is the one-dim-
ensional Euclidean space,
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