
Journal of the Mathematical Society of Japan Vol. 3, No. 2, Dec. 1951.

On the Measure-Preserving Flow on the Torus1)

Toshiya SAITO

(Received February 28, 1951)

1. Let us consider the one-parameter stationary flow $S_{l}$ on the eucli:
dean plane defined by the following system of differential equations

(1) $(\frac{dx}{\frac dy,dtdt}=X(x,y)=Y(x,y)$

,

$\cdot$ .

where $X$ and $Y$ are assumed to be real-valued functions having continuous
first derivatives. If we moreover assume $X$ and $Y$ to be periodic functions
of period 1 with respect to their arguments, they can be expanded into
uniformly convergent Fourier series in the following way.

(2) $\left\{\begin{array}{lllll} & & & & .\\ & & & & X=\Sigma a_{mn}e^{\underline{o}_{\pi i(nx+ny)}}\\ & & & & .\\ & & & & Y=\Sigma b_{mn}e^{2\pi^{i}(mx+ny)}\end{array}\right.$

Let us then suppose that our flow is measure-preserving, or, in other
words, differential equations (1) admit an integral invariant

$\int\int dxdy$ .

In this case, we have

(3) $\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}=0$ .

Then, by termwise differentiation, this relation can be written in the form

$ma_{mn}+nb_{mn}=0$ , $m,$ $\prime\prime=0,$ $\pm 1,$ $\pm 2,\cdots$ .
Hence we can find a sequence $\{c_{mn}\}$ such that

$a_{mn}=nc_{mn}$ , $b_{mn}=-mc_{mn}$ , $(m, n)\neq(0,0)$ .
Consequently we can write

$(2^{t})-$ $\left\{\begin{array}{lllll} & & & & X=a_{00}+\Sigma nc_{mn}\mathscr{S}^{\pi in_{l}+n_{J)}}(,\prime’\\ & & & & Y-\wedge j_{00}-\Sigma m_{mn}e^{2\pi i_{\backslash }(.rx+ny)}=\cdot-\end{array}\right.$
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If $\psi e$ identify all the points $P_{-}:$ $(x+i\#, y+:\iota),$ $m,n=\dot{o}-,$ $\pm 1,$ $\pm 2,\cdots$

on the $I$}$lane$ , differential equations (1) can be regarded as defining a measure-
preserving flow on a torus 9. The object of this paper is to establish a
criterion for the ergodicity of this flow.

2. Let $P=(x_{0}, y_{0})$ be a singular point of our flow (i.e. a point where
$X=Y=0)$ . According to Poincar\’e, singular points of 2-dimensional flow
are classified into four categories which are respectively called “ noeud”,
“foyer “, “ centre”, and “ col “.3) He has also proved that if $S$ is a sta-
tionary flow on a compact 2-dimensional manifold and $\Lambda^{7_{1}},$ $N_{2},$ $N_{3},$ $\Lambda^{\gamma_{4}}$ .
are respectively the numbers of noeuds, foyers, $cerlt\gamma es$ , and cofs of this flow,
we have

$N_{1}+N_{2}+N_{3}-N_{4}=2-2p$

where $p$ is the genus of the manifold
Now let us consider a small circle

$C=|Q=(x, y)$ ; dist. $(Q, P)=\sqrt{(x-x_{0})^{o}\sim+(y-y_{0}\grave{)}^{2}}=\delta>0$ }

around $P$ If $P$ is a noeud or a foyer, dist. $(S_{\ell}Q,P)\rightarrow 0$ as $ t\rightarrow+\infty$ or $ t\rightarrow$

- oo. For example let us suppose that dist. $(S_{\ell}Q,P)\rightarrow 0$ as $ t\rightarrow+\infty$ . Then
there exists a finite positive number $T(Q)$ such that

dist. $(S_{l}Q,P)<\delta$, for $t>T(Q)$ .
Since $C$ is compact and $T(Q)$ is finite for every $Q$ on $C$, there exists a
finite positive number $T$ such that $T>T(Q)$ for every $Q$ on $C$. Then
for $t>T,$ $dist.(SQ,P)<\delta$ for every $Q$ on $C$. Thus, if we denote by $V$

the domain bounded by the circle $C,$ $S_{\ell}V$ is entirely contained in $V$ for
$t>T$. But this contradicts with the assumption that our flow is measure-
preserving. Hence $P$ cannot be a noeud or a foyer. Evidently we obtain
the same result when dist. $(S_{\ell}Q,P)\rightarrow 0$ as $ t\rightarrow-\infty$ . So, in our case,. $\Lambda^{7_{1}}$

and N. must be zero and

$N_{3}-N_{4}=2-2p$ .
Moreover, 9 being a torus, $p=1$ and

$N_{s}=N_{4}$ .

1) The content of this work is roughly stated in StNgaku, Vol. 1, No. 4, 1949 (in Japanese)
2) $Poincar8$, Sur les courbes $d\epsilon finies$ par les $6quations\cdot diff6rentielles$, Chap. II and XI,

Oeuvre t.I. $\backslash r$

3) $Poincar\epsilon$, loc. cit. Chap. XIII.
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Hence if our floW has singular points, there exists at least. $cr\Re$ centre-type
singular $P_{\sim}^{oint}$. As the neighborhood of a centre is filled out with periodic,
trajectories, such a flow is obviously non-ergodic. So we hereafter assumQ

that $X$ and $Y$ have no common zeros.
We consider the real-valued function

$H=a_{\alpha}y-b_{\alpha},x+\frac{1}{2\pi i}\Sigma c_{m}.e^{7}\dot{r}l(mx+ny)$

Since Fourier series in this expression converges uniformly, we have, by
termwise differentiation,

$\frac{\partial H}{\partial x}=-Y$, $\frac{\partial H}{\partial y}=X$

Consequently

$\frac{\partial H}{\partial x}X+\frac{\partial H}{\partial y}Y=0$ ,

which shows that $H$ is an integral of the differential equations (1). In
general, $H$ is not one-valued on $\Omega$ because

$H(P_{mn})=H(P_{00})+a_{00}n-b_{00}m$ .
If $a_{00}=b_{00}=0$ , however, $H$ is a one-valued continuous integral of (1) on
$\Omega$ . Therefore the flow is non-ergodic.

If $a_{00}\neq 0$ and $b_{00}/a_{00}$ is a rational number, we can write $b_{00}/a_{00}$ in the
form $q/p$ where $p$ and $q$ are both integers. In this case, the function

$e^{\underline{\supset}}\pi i\frac{p}{a\infty}$ff

is a one-valued continuous integral of our flow. Hence the flow is also
non-ergodic. $q$

If $a_{00}=0,$ $b_{00}^{\Delta}\neq 0$ , we can show by a similar discussion that the flow is
also non-ergodic. Hence we have only to examine the case $a_{00}\neq 0,$ $b_{00}\neq 0$ ,

and $a_{w}/b_{00}$ is an irrational number. For that purpose, we first prove the
following theorem.

Theorem 1. $1fa_{00}\neq 0,$ $\delta_{h}\neq 0$, and $a_{\infty}/b_{00}$ is an irrational number, $no$

periodic $P^{\gamma a_{J}}ect\alpha\prime y$ exists on 2.
Proof. If there exists a period$ic$ trajectory $C$ on 2,

$\int_{a\}}dH=0_{\ovalbox{\tt\small REJECT} ff}$
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since $H$ is an integral of (1). On the other hand, as $X$ and Y.. are,-as-
sumed to have no common zeros, no $pe$ziodic trajectory can. be homotopic
to $zero^{4)}.$. Hence no periodic trajectory can. be homologous to zero as $\rho$

is a torus. Therefore there must exist a pair of integers $(m, n)\neq$( $0$ , o)

such that 1
$i\}^{s}3$

$rna_{00}+nb_{r}=0$ .

But this is contrary to the assumption of the theorem.
3. To simplify the statement, we here introduce the following definition.

Definition. A simple closed curve on $\Omega$ of finite lengS (in the sense
$J$

of Lebesgu $e$) is said to be acircuit $wit[lout$ contact if

(1) for any two different points $P,$ $Q$ on this curve

$\int_{P}^{Q}dH\neq 0$ ,

(2) for any point $P$ of $\Omega$ , the trajectory starting from $P$ at $t=0$

cuts this curve after a finite t-interval.
’

Lemma $1fXa’/dYi_{l}ave$ no common zeros on $\Omega$ , we can construct a
family of circuits without contact $\{C(a) ; 0\leqq a<1\}$ such that
(a) $C(a)$ and $C(\beta)$ have $\prime tO$ points in common if $ a\grave{\fallingdotseq}\beta$,
(b) for any point $P$ on $\Omega,$ $’/e$ can $al^{\prime}\iota vays\beta nd$ a circuit without contact of
$ t/a\prime\prime$ passing $throug/lP$.

Proof. If a circuit without contact $C(0)$ has been found, the desired
family can easily be constructed. In fact, consider a moving point whose
equation of motion is given by (1) where $t$ is regarded as time. Let $P_{t}$

be the position of such a moving point at $t$, that starts from $P$ on $C(0)$

at $t=0$. Such a point returns to $C(0)$ after a finite lapse of time. Le $t$

$T(P)$ be this time interval. Then the set of points

$C(a)=\{1_{l}^{y} ; t=aT(P), a=const. P\in C(0)\}$

forms a closed curve which is also a circuit without contact. Varying $a$

from $0$ to 1, we obtain a family. of closed curves. We can- easily show
that this family of curves satisfies the properties (a) and (b).

Thu.s, to complete the proof; we have only to construct $C(0)$ . For

4) Bendixon, Acta Math., $o_{4}(1m1J$ , pp. 148. esp. $Th\epsilon ordme$ III of Chap. I.



On the measure-preserving $fow$ on $t1_{l}e$ torus 283

that purpose, however, we can adopt the method giverc by Siegel in his
paper on the differential equations on the torus.b)

4. We now prove the following theorem which permits us to esta-
blish a criterion of ergodicity.

Theorem 2. $1fa_{00}\neq 0,$ $b_{00}\neq 0$ , and $a_{00}/b_{00}$ is an irrational number, our
Jozv is ergodic.

Proof. Let $P_{0}$ be an arbitrary fixed point on $C_{(}//.$), and consider the
function

$\int_{P_{0}}^{P}dH$

where $P\in C(a)$ and integration is always made along $C(a)$ and in the
increasing sense of the function $H(H$ is monotone on $C(a)$ because of
the property (1) of the circuit without contact.) The above function is
not uniquely determined since it admits the period

$\int_{C(\alpha)}dH$.

To avoid the ambiguity, we always take its minimum value. If we put

$\mu(P)=\int_{P_{0}}^{P}dH/\int_{c(\alpha)}dH$,

$\mu(P)$ is a Lebesgue measurable function on $C(a)$ . Let us introduce on
$C(a)$ a completely additive measure by putting

$\mu(M)=\int_{M}d\mu(P)$ ,

for every Lebesgue measurable subset .Mr Evidently, from the definition
of the circuit without contact, every set of positive Lebesgue measure has
positive $\mu$-measure.

Let $P^{\prime}$ be the first intersection point of the trajectory passing through
$P\in C(a)$ with $C(a)$ . We define an automorphism $U$ of $C(a)$ by putting

$P^{\prime}=U(P)$ .
It is easy to see that for every interval 1 on $C(a)$

$\mu(1)=\mu(U(1))$

since $H$ is an integral of our flow. According to the complete additivity
.

5) Siegel, Annals of Math., 46, (1945), pp. 423-428.
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of $\mu- mea_{\rightarrow}\S ure$ , the above formula is also $vali_{\wedge}\beta$ for every me surable set $I$.
Hence for any $P\in C(a)$

$\mu(1)=\gamma,$ $\prime 1=[P, U(P)]$

where $\gamma$ is a constant independent of $P$. Tl erefore, by use of $\mu- measure$ ,

the automorphism $U$ is reduced to the rotation of a circle by the angle
$ 2\pi\gamma$ .

$13y$ Theorem 1, $U^{n}(P),$ $n=0,$ $\pm 1,$ $\pm 2,\cdots must$ be all different. Conse-
quently $\gamma$ must be an irrational number. In such a case, it is $\backslash vell1_{\backslash ^{\prime}}nown$ that
the $\mu$-measure of tbe U-invariant subset must be equal to $\mu(C(u))=1$ as
long as it is positive.6) Therefore the Lebesgue measure $of$ .such a set
must be $e$qual to the total length of $C(a)$ as long as it is pos $t$ ve.

If our flow leaves invariant a measurable subset $A$ of positive $(2\rightarrow$

dimensional) Lebesgue measure, $A\cap C(a)$ is a measurable subset of $C(a)$

invariant under $U$. Hence from the fact stated above, its length must be
equal to the total length of $C(a)$ as long as it is positive. So, by the
theorem of Fubini, the area of $A$ must be equal to that of $\Omega$ . This proves
the ergodicity of the flow.

We have thus arrived at a criterion for ergodicity which can be stated
as follows.

For $t/u’\iota’ r_{L\backslash }^{\sigma}odicity$ of our $fo^{r}\iota v$ , it is necessary and su.fficierll lOtal
(1) $X$ and $Y$ have no $co\grave{m}$mon zeros, and

(2) $a_{00}=\int_{0}^{1}\int_{0}^{1}Xdxdy\neq 0,$ $b_{(n}=\int_{0}^{1}\int_{0}^{1}Ydxdy\neq 0$ , and

$a_{00}/b_{\alpha)}$ is an irrational $ jnmb.\gamma$ .

Tokyo Institute of $Te$chnology

6) For example, see von Neumann, Anpals of Math., 33, (1932), pp. $587-u2$.


	On the Measure-Preserving ...
	1.
	2.
	3.
	4.


