
$J_{ourna}1$ of the $M_{a}thematica1$ Society of Japan Vol. 3, No. 1, May, 1951.

On the Algebraic Structure of Group Rings

Richard BRAUER

\S 1. Introduction

1. Let $\mathfrak{G}$ be a group of finite order $g$ . If $K$ is any given field of
characteristic $0$ , the group ring $\Gamma$ of $\mathfrak{G}$ with regard to $K$ is a semisimple
algebra. By Weddelburn’s theorems, $\Gamma$ is a direct sum of simple algebras
$A_{i}$ ;

(1) $\Gamma=A_{1}\oplus A_{2}\oplus\cdots\oplus A_{s}$ .
Each $A_{i}$ . is isomorphic to a complete matric algebra of a certain $degleeq_{i}$

over a division algebra $\Delta_{i}$ ;

(2) $A_{i}\cong[\Delta_{i}]_{q_{i}}$ .
The center $Z_{i}$ of $A_{i}$ may also be considered as the center of $\Delta_{i}$ . It is an
extension field of finite degree $r_{i}$ over K. Since $\Delta_{i}$ then is a central
simple algebra over $Z_{i}$ , its rank over $Z_{i}$ is the square of a natural integer
$m_{i}$ . Then $A_{i}$ has the rank $r_{i}q_{i}^{2}m_{i}^{2}$ over K. We shall call the numbers $n\ell_{i}$

the Sckur indice $s^{\neg}$ of $\mathfrak{G}$ , since they first occurred in the work of 1. $Sc/\iota ur$

on representations of $\mathfrak{G}$ by linear transformations.
2. The theory of representations of groups $of_{/}$ finite order was deve-

loped originally by Frobenius for the case that the coefficients of the
representing linear transformations belong to an algebraically closed field
of characteristic $i$). The case of an albitrary field $K$ of characteristic $0$

$was\neg:onsidered$ by I. $Sc/\iota ur^{1)}$ We quote the main results.
Every representation of $\mathfrak{G}$ is completely reducible. Two representations

of $\mathfrak{G}$ are similar, if and only if they have the same character. It is then
suflicient to consider the irreducible representations of $\mathfrak{G}$ in $K$ and their
characters. These irreducible representations $\mathfrak{T}_{1},$ $\mathfrak{T}_{2},$

$\cdots,$
$\mathfrak{T}_{s}$ are in one-to-

one correspondence to the simple algebras $A_{1},$ $A_{2},$
$\cdots,$

$A_{t}$ in (1).
If $\overline{K}$ is the algebraic closure of $K$ , then $\mathfrak{T}_{i}$ breaks up in $\overline{K}$ into $r_{i}$

1) Schur [1], [21. The connections with the theory of algebras are given in Brauer [1],
[21. See also Albert [1]; van der Waerden [1], Chapter XVII, [2] ; Weyl [1], Chapters UI
and X.
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distinct absolutely irreducible representations $\mathfrak{F}_{i},$ $\mathfrak{F}_{i},,$ $\mathfrak{F},,,$ $\cdots$ , each appearing
with the same multiplicity $m,$ . Here, $r$ and $m_{i}$ are the same numbers
which appeared in 1. Thus, if the character of $\mathfrak{F}_{j}$ is denoted by $\chi_{j}$ , the
character of $\mathfrak{T}_{i}$ is given by

$\prime n(\chi+\chi/+ )$ .

We now speak of $m$ as the Schur index of each of the characters $x,$ $x:’,$
$\cdots$

with regard to $K^{2)}$

The $r_{i}$ characters $\chi,$ $\chi_{i},$
$\cdots$ form a full family of absolutely irreducible

characters of $\mathfrak{G}$ which are algebraically conjugate with regard to K.
Conversely, each such family of characters appears in one and only $Oile$

$irredu\grave{c}ible$ representation $\mathfrak{T}_{i}$ of $\mathfrak{G}$ in K. Thus, if the characters of $\mathfrak{G}$ (in
the classical sense) are known, it $re$mains only to determine the Schur
indices $f$ in order to have a complete theory of representatIons of $\mathfrak{G}$ in
K. We then also $kno\iota v$ the number $s$ of terms in (1) and the numbers
$q_{s}$ in (2) because $q_{i}m_{i}$ is equal to th $e$ degree of $\mathfrak{F}_{i}$ . Furthe $\iota$ more, the
centers $Z_{i}$ are known, since $Z_{i}$ is isomorphic over $K$ to the field $K(\chi_{l})$

obtained from $K$ by adjunction of all values $\chi_{i}(G),$ $G\epsilon \mathfrak{G}$

According to a result of Scliur, the index $f_{i}$ can also be characterized
in th $e$ following manner. The $re$presentation $\mathfrak{F}_{i}$ can be wlitten in certain
extension fields J2 of K. In the language of the theory of algebras, these
fields $\Omega$ are the splitting fields of $A_{i}$ It is clear that a splitting field 9
must contain the character $\chi$ If a splitting field $\Omega$ has finite deglee over
$K(\chi_{i})$ , this degree is divisible by $m_{i}$ On the other hand, there exist
$splitti_{l}\prime g$ fields of exact degre$em_{i}$ over $K(\chi)$ . Thus,

$m_{\sim^{i}}$
is the minimal

value of the degrees of splitting fields 9 over $K(\chi_{i})$ .
If we are able to determine the Schur index of $\chi_{i}$ with regard to an

arbitrary field, we can decide whether or not a field $\Omega\supseteq K(\chi_{i})$ is a splitting
field of $A_{i}$ . This will be so, if and only if $\chi_{i}$ has the Schur index 1 with
regard to $\Omega$ .

3. The different characterizatIons of the Schur index do not provide
a method to determine $m_{i}$ , and this whole question remains open in Schur’s

2) In the case of fields of characteristic $y\neq 0$ , it follows $f$ rom Wedderburn’s theorem on
division algebras over finite fields that all Schur indices are 1, cf. Brauer [2]. However $\Gamma$ is
no longer $sen$ isimple in this case.



On $t/leal_{p}gbraic$ siruciure of $\delta\circ roup$ rings 239

theory.3). It is the purpose of the present paper to show that the problem
can be reduced to the case where the group is a soluble group of a very
special type $(\mathfrak{C})$ . Only groups of type $(\mathfrak{E})$ have to be considered which
are subgroups of the given group $\mathfrak{G}$ . The groups of type $(\mathfrak{E})$ shall be
treated in a subsequent paper.

Though no use of class field theory is made in this investigation, it
is perhaps pertinent to remark that the group theoretical methods used
were first developed in connection with a problem which arose in class
field theory. Thus, in an indirect way, we have benefitted from Takagi’s
fundamental work.

Notation

4. The order of the given group $\mathfrak{G}$ will be denoted by $g$ . For $G_{1}$ ,
$G_{2}\epsilon \mathfrak{G}$ , we write $G_{1}\sim G_{2}$ , if $G_{1}$ and $G_{2}$ are conjugate in $\mathfrak{G}$ . If $\mathfrak{A}$ is a
subset of $\mathfrak{G}$ , we shall denote by $\mathfrak{N}(\mathfrak{A})$ the normalizer of $\mathfrak{A}$ , i.e. the
$s\iota lbgroup$ of $\mathfrak{G}consisti\grave{n}g$ of those elements $G$ for which $\mathfrak{A}G=G\mathfrak{A}$ In
particular, this will be done, if $\mathfrak{A}$ consists of one element $A$ , we then
write $\mathfrak{N}(A)$ . The order of $\mathfrak{N}(A)$ will be $n(A)$ .

If $\psi=\psi(U)$ is a character of a group $\mathfrak{U},$ restliction of the argument
$U$ to a subgioup $\mathfrak{V}$ of $\mathfrak{U}$ yields a character of $\mathfrak{V}$ for which we use the
notation $\psi(\mathfrak{V})$ . By an irreducible character of a $glo\iota,p$ , we always mean
an absolutely irreducible character, that is, a character which is irreducible
in the algebraically closed field.

The letter $P$ will be used for the field of rational numbers and $\epsilon$ will
stand for a primitive g-th root of unity. The Galois group of $P(\epsilon)$ with
$1^{\cdot}egard$ to $P$ is denoted by $\mathfrak{L}$ Each $\sigma\epsilon \mathfrak{L}$ carries $\epsilon$ into a power of $\epsilon$ ;
we set

(3) $\sigma$ ; $\epsilon\rightarrow\epsilon^{\nu(\sigma)}$

Here, $\nu(\sigma)$ is an integer determined $(mod g)$ and prime to $g$ . The cor-
respondence $\sigma\rightarrow\nu(\sigma)$ defines an isomorphism of $\mathfrak{L}$ on the multiplicatIve
group of integers prime to $g(mod g)$ .

Each character $\psi$ of a subgroup $\mathfrak{U}$ of $\mathfrak{G}$ lies in $P(\epsilon)$ . An element

3) For instance, these characterizations do not show that all $m_{i}$ are equal to 1, if $K$

contains the g-th roots of unity.
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$\sigma\epsilon \mathfrak{L}$ carries $\psi$ into a character $\psi^{\sigma}$ . If we write $\psi(U)$ as $s\iota_{I}m$ of characteristic
roots for $U\epsilon \mathfrak{U}$ , we see that

(4) $\psi^{\sigma}(U)=\psi(U^{\nu(\sigma)})$ .
If $\psi$ is irreducible, so is $\psi^{\sigma}$ .

If $p$ is a fixed prime, the p-part of a rational integer $r$ is the highest
power $p^{\rho}$ of $p$ dividing $r$ Similarly, we speak of the $\mathfrak{p}$ -part of algebraic
integers $f$or suitable prIme ideals $\mathfrak{p}$ . If $\mathfrak{U}$ is a group of finite order, a
fixed $p$-Sylow subgroup of $\mathfrak{U}$ will often be denoted by $\mathfrak{U}_{p}$ . In particular,
$\mathfrak{L}_{p}$ will always stand for the unique $p$-Sylow subgroup of the group $\mathfrak{L}$ .
Thus, $\mathfrak{L}_{p}$ consists of those $\sigma\epsilon \mathfrak{L}$ for which $\nu(\sigma)$ in (3) belongs to an exponent
$(mod g)$ which is a power of $p$ .

An element $G$ of $\mathfrak{G}$ will be said to be p-regl/lar, if the older of $G$

is prime to $p$ .

\S 2. Group of type $(\mathfrak{E})$

5. Let $\chi=\chi(G)$ denote an irreducible character of the group $\mathfrak{G}$ .
In order to determine the Schur index $m$ of $\chi$ with regard to a given
field $K$ of characteristic $0$ , it is sufficient to determine the $p$-part $m_{p}$ of $\prime\prime l$

for every prime number $p$ . Since $m$ divides the degree of $\chi$ , we have $m_{p}$

$=1$ , if $p$ does not divide thc order $g$ of $\mathfrak{G}$ Our methcd will be based
on the following remark:

(2A) Let $K^{*}$ be a maximal snbfeld of $K(\chi, \epsilon)0_{t}^{\wedge}/erK(\chi)$ suclu that
$tJ\iota^{\rho}$ degree $[K^{*} : K(\chi)]$ is not divisible by the $prim_{c^{f}}p$ . If $\xi$ is an irredz cible
$c1_{l}aracler$ of a subgroup $\mathfrak{G}^{*}$ of $\mathfrak{G}snc/lt/lat\xi$ lies in $K^{*}$ and that ; appears
in $\chi(\mathfrak{G}^{*})wit/l$ a multiplicity $v$ prime to $p$ , tlien $t/\iota e$ p-par$f\mu_{p}$ of the index
$\mu$ of $\xi$ with regard to $K(\chi)$ is equal $lot/le$ p-part $\prime n_{p}$ of $t/\iota e$ index $m$ of $\chi$

$wit/l$ regard to K.
Proof:4) There exists a representation of $\mathfrak{G}$ in $K(\chi)$ whos $e$ character $\theta$

is $ m\chi$ . Then $\theta(\mathfrak{G}^{*})$ contains $\xi$ with the multiplicity $\prime lv$ and hence $\mu|mv$ .
Since $(v,p)=1$ , we have $/\ell_{p}|m_{p}$ .

On the other hand, there exists a representation of $\mathfrak{G}^{*}$ in $K^{*}$ with
the character $\mu;’-$ . The induced representation of $\mathfrak{G}$ then lies in $K^{*}$ and
its character contains $\chi$ with thc multiplicity $\mu v$ . Thus the illdex of $\chi$

4) For the method used here, cf. Scbur [1].
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with regard to $K^{*}$ divides $\mu v$ and this implies that $m|\mu v[K^{*} : K(\chi)]$ .
Since the last two $f$actors here are prime to $p,$ $m_{\rho}|\mu_{p}$ . This proves (2A).

6. It will be shown below that there always exist subgroups $\mathfrak{G}^{*}$ of
a very special $typ_{\vee}^{a}(\mathfrak{E})$ such that for a suitable character $\xi$ of $\mathfrak{G}^{*}$ the
assumptions of (2A) are satisfied. We now study subgroups of this type

$(\mathfrak{E})$ .
If $p$ is a given prime number we shall say that a group $\mathfrak{H}$ is of type

$(\mathfrak{E})$ (for $p$), if $\mathfrak{H}co_{-}ltains$ a normal cyclic subgroup $\mathfrak{A}=\{A\}$ of order $a$

prime to $p$ , such that $\mathfrak{H}/\mathfrak{A}$ is a $p$-group. It is clear that all such groups
$\mathfrak{H}$ are soluble. If $\mathfrak{P}$ is a Sylow subgroup $\mathfrak{H}_{p}$ of $\mathfrak{H}$ , we have

(5) $\mathfrak{H}=\mathfrak{A}\mathfrak{P}$ .
For each $X\epsilon \mathfrak{H}$ , we must have an equation

$XAX^{-1}=A^{\lambda}$

where $\lambda$ is an integer prime to $a$ which is determined $(mod a)$ . The
mapping $ X\rightarrow\lambda$ is a homomorphism of $\mathfrak{H}$ on a multiplicative group $A$ of
residue classes of integers $(mod a)$ . The kernel of this homomorphism
is the normalizer $\mathfrak{H}_{J}$ of $A$ in $\mathfrak{H}$ . If $\mathfrak{P}_{0}=\mathfrak{P}\cap \mathfrak{H}_{0}$ , then the product $\mathfrak{A}\mathfrak{P}_{0}$ is
direct and

(6) $\mathfrak{H}_{0}=\mathfrak{A}\times \mathfrak{P}_{0}$ .

Since $\mathfrak{H}_{0}$ is normal in $\mathfrak{H},$ $\mathfrak{P}_{0}$ is normal in $\mathfrak{P}$ . We have

(7) $\mathfrak{H}/\mathfrak{H}_{0}\cong \mathfrak{P}/\mathfrak{P}_{0}\cong\Lambda$ .
For given $p$ we shall call a group an elementary $\backslash (rronp$ , if it is the direct
product of a $p$-group with a cyclic group of an order prime to $p$ . We
now have

(2B) A group $\mathfrak{H}$ of type $(\mathfrak{E})$ for $pcon\iota^{X}ains$ an elementary normal
sulgroup $\mathfrak{H}_{0}suc/l$ tkat $\mathfrak{H}/\mathfrak{H}_{0}$ is an abelian p-group. Groups of type $(\mathfrak{E})$ can
be defined by $t/\iota isco\mathscr{A}itio\prime l$ .

We show next
(2C) $Tl\iota e$ degrees of the irreducible representations of a $g\cdot roup\mathfrak{H}$ of

type $(\mathfrak{E})$ for $p$ are all $po_{\iota}^{r}v_{\iota^{\circ}}rs$ of $p$ .
Ptoof: The corresponding statement is certainly true for $\mathfrak{H}_{0}$ since $\mathfrak{H}_{0}$ is
the direct product of a $p$-group with a cyclic group. If $\varphi$ is an irreducible
$Ch^{arac}t^{er}$ of $a$ group $1t$ and $\mathfrak{V}$ anormal subgroup of index2, then $\varphi(\mathfrak{V})$
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is either irreducible or it breaks up into $p$ irreducible constituents of
equal degrees. The statement is obtained if this is applied successively
to the groups of a composition series leading from $\mathfrak{H}$ to $\mathfrak{H}_{0}$ .

7. In ordcr to construct subgroups $\mathfrak{H}$ of type $(\mathfrak{E})$ of a given group
$\mathfrak{G}$ , we pick a p-regular element $A$ of $\mathfrak{G}$ . Since $\mathfrak{P}$ in (5) must be a
$p$-group contained in the normalizer $\mathfrak{N}(\mathfrak{A})$ of $\mathfrak{A}=\{A\}$ in $\mathfrak{G}$ , we obtain
the maximal subgroups of type $(\mathfrak{C})$ of $\mathfrak{G}$ by chcosing $\mathfrak{P}$ as Sylow group
$\mathfrak{N}(\mathfrak{A})_{p}$ of $\mathfrak{N}(\mathfrak{A})$ ard taking $\mathfrak{H}=\mathfrak{A}\mathfrak{P}$ .

We shall have to work only with these maximal subgroups of type
$(\mathfrak{E})$ ; subgroups $\mathfrak{H}$ and $\mathfrak{H}^{*}$ which are conjugate in $\mathfrak{G}$ are equivalent for
our purpose. Hence it will not matter, which Sylow group of $\mathfrak{N}(\mathfrak{A})$ is
chosen for $\mathfrak{P}$ . We may also replace $A$ by a conjugate element in $\mathfrak{G}$ .
Thus, for given $p$ , the number of groups $\mathfrak{H}$ to be considered is equal to the
number $l$ of classes of $p$-regular conjugate elements in $\mathfrak{G}$ If, $f$or each of
these $l$ groups $\mathfrak{H}$ , we know how the character breaks up into irreducible
characters of $\mathfrak{H}$ , we can decide at once which of these $\mathfrak{H}$ can be used $f$or
$\mathfrak{G}^{*}$ in (2A). Our principal result is that such gloups $\mathfrak{H}$ always exist.
However, this will be proved only at the end of \S 4.

We add here a few simple remarks concerning maximal subgroups of
$\mathfrak{G}$ of type $(\mathfrak{E})$ .

(2D) $1f\mathfrak{H}=\mathfrak{A}\mathfrak{P}$ is a maximal $su\ovalbox{\tt\small REJECT} roup$ of $\mathfrak{G}$ of type $(\mathfrak{C}),$ $\mathfrak{A}=\{A\}$ ,

then $\mathfrak{H}$ contains a $Sylo_{l}^{r}jy$ gronf $\mathfrak{N}(A)_{p}$ of $t/lenormali_{\sim}\sigma er\mathfrak{N}(A)$ of $A$ in $\mathfrak{G}$ .
We may take $\mathfrak{P}_{0}$ for $\mathfrak{N}(A)_{p}$ .
Proof: If we use the same notation as in 6, then $\mathfrak{P}_{0}$ will be contained
in a Sylow subgroup $\mathfrak{P}1$ of $?l(A)$ and $\mathfrak{P}_{1}$ in turn is contained in a Sylow
subgroup $\mathfrak{P}^{*}$ of $\mathfrak{N}(\mathfrak{A})$ . Since $\mathfrak{P}$ too is a Sylow-subgroup of $\mathfrak{N}(\mathfrak{A})$ , both
$\mathfrak{P}$ and $\mathfrak{P}^{*}$ are conjugate in $\mathfrak{N}(\mathfrak{A})$ , say, $\mathfrak{P}=\Lambda^{\gamma-1}\mathfrak{P}^{*}N$ with $N\epsilon \mathfrak{N}(\mathfrak{A})$ .
Hence $\Lambda^{\gamma-1}\mathfrak{P}_{1}N\subseteq \mathfrak{P}$ . As $1v^{-1}\mathfrak{P}_{1}\wedge^{\gamma}\subseteq \mathfrak{N}(A)$ , it follows that $\Lambda^{\gamma-1}\mathfrak{P}_{1}\Lambda^{\gamma}$ belongs
to $\mathfrak{P}\cap$ Yl $(A)$ . This intersection lies in $\mathfrak{P}_{0}$ . Thus the order of $\mathfrak{P}_{0}$ is at
least equal to the order of $\mathfrak{P}_{1}$ . Hence $\mathfrak{P}_{0}=\mathfrak{P}_{1}$ , and this proves (2D).

(2E) $1f$ $A$ is conjugate in $\mathfrak{G}$ to $A^{\lambda}$ and if $\lambda$ belongs to an exponent
$(mod a)w/\iota ick$ is a power of $p$ , then $A$ and $A^{\lambda}$ are conjugale $\prime vit/l$ regard to

$t/leSyl_{o^{\prime}i}v$ subgroup $\mathfrak{P}$ of $\mathfrak{N}(\mathfrak{A})$ .
Proof: If GAG $’=A^{\lambda}$ with $G\epsilon \mathfrak{G}$ , it follows that $G^{j}AG^{-j}=A^{\lambda^{j}}$ . If $j$ is
congruent to 1 modulo a sufficiently high power of $p$ , this becomes
$G^{j}AG^{-j}=A^{\lambda}$ . We may impose on $j$ the further condition that it is divisible
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by all prime powers dividing $g$ and prime to $p$. Then the order of $G^{j}$ is
a power of $p$ . SInce $G^{j}$ belongs to $\mathfrak{N}(\mathfrak{A})$ , it belongs to a conjugate
$N\mathfrak{P}^{N^{-1}}$ of the Sylow subgroup $\mathfrak{P};N\epsilon \mathfrak{N}(\mathfrak{A})$ . For $X=N^{-1}G^{j}N$, we have
$XAX^{-1}=A^{\lambda},$ $X\epsilon \mathfrak{P}$ , as stated.

In the case of a maximal subgroup $\mathfrak{H}=\{A\}\mathfrak{P}$ of $\mathfrak{G}$ of type $(\mathfrak{E})$ , the
set $\Lambda$ in (7) can now be characterized by the condition that it consists
of the $\lambda(mod a)$ such that
(I) $\lambda$ is prime to $a$ and belongs to an exponent $(mod a)$ which is a

power of $p$ .
(II) The elements $A$ and $A^{\lambda}$ are conjugate in $\mathfrak{G}$ .

For $e$ach $\lambda\epsilon\Lambda$ , we can choose an $X_{\lambda}\epsilon \mathfrak{P}$ such that

(8) $X_{\lambda}AX_{\lambda}^{-1}=A^{\lambda}$ .
These $X_{\lambda}$ form a complete residue system of $\mathfrak{P}(mod \mathfrak{P}_{0})$ and hence of
$\mathfrak{H}(mod \mathfrak{H}_{0})$ . For $\lambda,$ $\mu\epsilon\Lambda$ , we have

(9) $X_{\lambda}X_{\mu}=X_{\lambda\mu}P_{\lambda,\mu}$

with $P_{\lambda,\mu}\epsilon \mathfrak{P}_{0}$ , (The indices here are to be taken $mod a$).

\S 3. Association of the char\"acters of $\mathfrak{G}$ with $p$-regular elements

8. Let $\chi_{1},$ $\chi_{2},$ $\chi_{k}$ denote the irreducib!e characters of $\mathfrak{G}$ Suppose
that a fixed prime $p$ has been chosen. We wish to associate each $\chi_{i}$

with some $p$-regular element $A$ of $\mathfrak{G}$ in a fashion which will enable us
to show later that the corresponding maximal subgroup $\mathfrak{H}$ of type $(\mathfrak{E})$

has a character $\xi$ satisfying the assumptions of (2A).
Let $\mathfrak{K}_{1},$ $\mathfrak{K}_{2},$ $\mathfrak{K}_{k}$ be the classes of conjugate elements of $\mathfrak{G}$ and let

$G_{j}$ be a representative element of $\mathfrak{K}_{j}$ . Then $\mathfrak{K}_{j}$ consists of $g/n(G_{i})$

elements. The p-regular elements among $G_{1},$ $G_{2},$
$\cdots,$

$G_{k}$ will be denoted
by $A_{1},$ $A_{2}A_{l}$ . For each $A_{x}$ , we define the section $S(A.)$ as the set of
those classes $\mathfrak{K}_{j}$ which contain elements $A_{x}P$ such that $P$ belongs to a
Sylow group $\mathfrak{N}(A_{x})_{p}$ . Each class $\mathfrak{K}_{i}$ belongs to one and only one of the
sections $S(A_{1}),$ $S(A_{2}),$ $S(A_{l})$ . Thus, if $S(A.)$ consists of $k(A_{l\dagger})$

classes $\mathfrak{K}_{j}$ ,

$k=\sum_{\alpha=1}^{l}1z(A_{x})$ .
$W^{e}$ start $f^{io_{l^{1}}}!$ the $dert\eta nat$
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$D=|\chi_{i}(G_{j})|$ ; $(i,j=1,2, \cdots k)$ .
It follows $f$rom the orthogonality relations for characters that

(10) $ D=_{j=^{k_{1}}}IIn(G_{j})\not\in$

Now use the Laplace expansion of the determinant $D$ with regard to the
$l$ sections. In order to have a convenient way of writing the formula,

we introduce the $f$ollowing notation. Let $Z(A.)$ denote the set of $h(A_{?\iota})$

indices $j$ for which $\mathfrak{K}_{j}\epsilon S(A_{x})$ , taken in some fixed order. If $Y$ is an
ordered set of $h(A_{x})$ indices $i,$ $1\leqq i\leqq k$ , we set

(11) $D(Y, Z(A_{x}))=|\chi_{i}(G_{j})|$ ; $(i\epsilon Y, j\epsilon Z(A_{x}))$ .
Let $\mathfrak{S}$ denote the symmetric group of all permutations of 1, 2, $\cdots k$ and
let $\mathfrak{R}$ denote the subgroup which permutes the elements of each $Z(A.)$

among themselves. Then

(12) $D=\sum_{\pi}’\varphi(\pi)\prod_{\approx 1}^{l}D(Z(A_{x})\pi, Z(A_{x}))$

where $\pi$ ranges over a complete residue system of $\mathfrak{S}(mod \mathfrak{R})$ , and where
$\varphi(\pi)=+1$ for eve $n\pi,$ $\varphi(\pi)=-1$ for odd $\pi$ . If we denote the product
in (12) by $T(\pi)$ .
$(12^{*})$ $D=\sum_{\pi}’\varphi(\pi)T(\pi)$ ;

then $\varphi(\pi)T(\pi)$ remains unchanged, if $\pi$ is replaced by another element
of the same residue class.

Chose a fixed prime ideal divisor $\mathfrak{p}$ of $p$ in the field $P(\epsilon)$ . As shown
previously,5) the determinants (11) are divisible by a certain power $\mathfrak{p}^{*}(A_{\alpha})$

of $\mathfrak{p}$ which is defined by the condition that its square $\mathfrak{p}^{*}(A_{x})^{o}$
. is the $\mathfrak{p}-$

part of $J_{j}In(G_{j})$ where the product is extended over $j\epsilon Z(A_{x})$ . If we set

$\mathfrak{p}^{*\prod_{x=1}^{l}}=\mathfrak{p}^{*}(A_{x})$ ,

(13) $T(\pi)\equiv 0$ $(mod \mathfrak{p}^{*})$ .
9. On the other hand, as shown by (10), $D$ is not divisble by $\mathfrak{p}\mathfrak{p}*$ .

If we succeed in $distrib_{c1}titug$ the terms of $th^{\circ}$. sum $(12^{*})$ into disjoint sets

5) Brauer [3].
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such that the number of $te$rms in each set is‘ a power of $p$ and that any
two terms belonging to the same set are congruent modulo $\mathfrak{p}\mathfrak{p}*$ , it
follows that there $m\dagger_{-}\iota st$ exist a set consisting of only one term, such that
for this term and all $x$

(14) $D(\prime Z(A_{?t})\pi, Z(A_{x}))\equiv|\equiv 0$ $(mod \mathfrak{p}\mathfrak{p}*(A_{yt}))$

Every element $\sigma$ of the Galois group $\mathfrak{L}$ effects a permutation $\sigma^{*}$ of
the $k$ characters, $\chi_{i}\rightarrow\chi_{i}^{\sigma}$ . We write $\chi_{i}^{\sigma}=\chi_{i\sigma^{*}}$ where $i\sigma^{*}$ stands for one of
the indices 1, 2, $\cdots,$

$k$ . It follows from (4) that

(15) $\chi_{i\sigma^{\star}}(G)=\chi_{i}^{a}(G)=\chi_{l}(G^{\nu(\sigma)})$ .
Since $\nu(\sigma)$ is prime to $g$ , the mapping $G^{\nu(\sigma)}\rightarrow G$ is a permutation of

the elements of $\mathfrak{G}$ which maps a class of conjugate elements $\mathfrak{K}_{j}$ on a class
of conjugate elements $\mathfrak{K}_{\overline{j}}$ . Let $\overline{\sigma}$ denote this permutation of $\mathfrak{K}_{1},$ $\mathfrak{K}_{2},$

$\cdots,$
$\mathfrak{K}_{k}$ ;

we set $\overline{j}=J^{\leftarrow}\sigma$ . For $G=G_{\overline{jO}}$ , (15) implies

(16) $\chi_{i\sigma}*(G_{j\overline{\sigma}})=\chi_{i}(G_{j})_{\iota}$

Substitution of this in (11) yields

(17). $D(Y, Z(A_{\alpha}))=D(Y\sigma^{*}, Z(A_{\alpha})\overline{\sigma}).$ })

-The permutation $\overline{\sigma}$ will ca.rry the section $S(A.)$ into a section $S(A_{x},)$

where $A_{\alpha}$ is determined by the condition $A_{l}^{\nu(\sigma)}\sim A_{\iota}$ We can then set

(18) $ Z(A_{u})\overline{\sigma}=Z(A_{t^{\prime}})\tau$

with $\tau\epsilon\Re$ . It is seen easily that

(19) $\overline{\sigma}\mathfrak{R}=\mathfrak{R}\overline{\sigma}$ .
Now, (.17) for $Y=Z(A.)\pi$ becomes

$D(Z(A_{?t})\pi, \nearrow_{\lrcorner}’(A_{?\iota}))=D(Z(A_{t}\backslash )\pi\sigma^{*}, Z(A_{\mathfrak{n}\prime})^{\sim})=D(Z(A_{t^{\prime}})\tau\overline{\sigma}^{-1}\pi\sigma^{*}, Z(A_{yi})\tau)$ ,

Here, the factor $\tau$ can be removed, since it appears both in the rows and
in the columns. If $x$ ranges $f$rom l.to $l$, so does $\chi^{\prime}$ and multiplication
over $x$ yields

(20) $T(\pi)=T(\overline{\sigma}^{-1}\pi\sigma^{*})$

6) If $\tau$ is a permutation of a certain set $X$, and if $X_{0}$ is a subset of $X$, we write $ X_{0}\tau$

for the set obtained $i$ rom $X_{0}$ by application of $\tau$.
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where $T(\pi)$ is the same as in $(12^{*})$ .
This holds for all $\sigma\epsilon \mathfrak{L}$ We now restrict $\sigma$ to the Sylow group $\mathfrak{L}_{p}$

of $\mathfrak{L}$ . If $p$ is odd, both $\overline{\sigma}$ and $\sigma^{*}$ are even and hence $\varphi(\pi)=\varphi(\overline{\sigma}^{-1}\pi\sigma^{*})$ .
In any case, we have

(21) $\varphi(\pi)\equiv\varphi(\overline{\sigma}^{-1}\pi\sigma^{*})$ $(mod p)$

since for $p=2$ both sides are $\pm 1$ .
We call two permutations $\pi,$

$\pi^{\prime}\epsilon \mathfrak{S}$ equivalent, if there exists a $\sigma\epsilon \mathfrak{L}_{p}$

such that $\mathfrak{R}\pi^{\prime}=\mathfrak{R}\overline{\sigma}^{-1}n\sigma^{*}$ . Because of (19), this is an equivalence $re$ lation.
By (20), (21), and (13),

$\varphi(\pi)T(\pi)\equiv\varphi(\pi^{\prime})l’(\pi^{\prime})$ $(mod \mathfrak{p}\mathfrak{p}^{*})$

for equivalent $\pi,$
$\pi^{\prime}$ . For a fixed $\pi_{0}\epsilon \mathfrak{S}$ , the $\sigma\epsilon \mathfrak{L}_{p}$ with $\mathfrak{R}\pi_{0}=\mathfrak{R}\overline{\sigma}^{-1}\pi_{0}\sigma^{*}$ form

a subgroup $\mathfrak{L}_{p}^{0}$ of $\mathfrak{L}_{\rho}$ Then the number of ternis of $(12^{*})$ for which $\pi$

is equivalent to $\pi_{0}$ is equal to $(\mathfrak{L}_{p} : \mathfrak{L}_{p}^{0})$ , that is, it is a power of $p$.
If we collect the terms of $(12^{*})\backslash t^{r}hich$ belong to equivalent permuta-

tions, we now see that the conditions set down at the beginning of 9 are
satisfied. Hence it is possible to choose a permutation $\pi=\pi_{0}$ such that
(14) holds and that $\mathfrak{L}_{p}=\mathfrak{L}_{p}^{0}$ Hence $\mathfrak{R}\pi=\mathfrak{R}\overline{\sigma}^{-1}\pi\sigma^{*}$ for all $\sigma\epsilon \mathfrak{L}_{p}$ and this
yields $\pi\sigma^{*}\epsilon \mathfrak{R}\overline{\sigma}\pi$ . Now (18) shows that if $ i\epsilon Z(A.)\pi$ , then $ i\sigma^{*}\epsilon Z(A_{x})\pi$ .
We associate with $A_{x}$ the $h(A.)$ characters $\chi_{i}$ with $i\epsilon Z(A_{\alpha})\pi,$ $(x=1$ ,
2, $\cdots,$

$l$).
We .have thus shown
(3A) Let $A_{1},$ $A_{2}$ , $\cdot$ .., $A_{l}$ represent the dzfererlt classe$ s\phi$ p-regular

conjugate elements in $\mathfrak{G}$ . $1ft/le$ section of $A_{x}$ consists of $k(A.)$ classes, $we$

can associate $k(A.)$ \’irreducible characters of $\mathfrak{G}\prime vit/\iota A_{x},$ $(x=1.2. \cdots, l)$ ,
$suc/l$ that each characler $\chi_{i}$ of $\mathfrak{G}$ is associated with exaclly one $A_{x}$ and that
$t/l_{-}^{y}$ follozving $t^{\prime}\iota vo$ conditions $(a),$ $(\beta)/lold$

$(a)$ $1f\chi_{i}$ is associafed $’\angle vi^{f}kA_{x}$ , tken, for $\sigma\epsilon \mathfrak{L}_{p},$ $\chi_{i}^{\sigma}$ is associa&d’\mbox{\boldmath $\iota$}vitk that
element $A_{x}$ , for whiclt $A^{\nu(\sigma)}\sim A_{x}$ .
$(\beta)$ $1f\chi_{i}$ ranges $0^{\prime}t^{J}ert/ee$ characters associated wit/l- $A_{x}$ , and if $G_{j}$ ranges
$oz/er$ the representatives of $t/le$ classes of $t/le$ seclion of $A_{\alpha},$ $7ve$ have

(22) $|\chi_{i}(G_{j})|\equiv|\equiv 0$ $(mod \mathfrak{p}\mathfrak{p}^{*}(A_{x}))$

where $\mathfrak{p}$ is a prime ideal divisor of $p$ in the feld $P(\epsilon)$ and $\mathfrak{p}*(A_{x})^{2}$ is the
$\mathfrak{p}$ -part of $\prod_{j};(G_{j})$ .

The following statement is a special case of $(a)$ :
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(3B) Suppose that $\chi_{\overline{p}}$ is associated rvitk $A_{2t}$ . For $\sigma\epsilon \mathfrak{L}_{p},$ $tke$ ckaracter
$\chi_{i}^{\sigma}$ is assoeiated witb $A_{2C},$ $lf$ and only $lfA,\sim A_{\iota^{(\sigma)}}^{\nu}’$ . $1n$ parlicular, $lf\chi_{i}^{\dot{\sigma}}=\chi_{i}$

for $\sigma\epsilon t_{p}^{l_{l}}$ , then $A_{r}\sim A_{r^{(a)}}^{\nu}$ .

\S 4. Proof of the main result

10. Let $A=A$. be one of the elements $A_{1}$ , $\cdot$ .., $A_{\iota}$ . With $A$ there
are associated $k(A)$ characters $\gamma_{\vee}i$ and for suitable choice of $A$ , any given
irreducible character of $\mathfrak{G}$ appears among the $\chi_{i}$ . Changing the notation,
we may assume that the characters $\chi_{i},$ $i=1,2,$ $\cdots,$ $h(A)$ , are associated
with $A$ . If $A$ is now fixed, we construct a corresponding maximal sub-
group $\mathfrak{H}$ of $\mathfrak{G}$ of type $(\mathfrak{E})$ as described in 7. By ( $ 2D\lambda$ and (6), $\mathfrak{H}_{0}$ is
a direct product of $\mathfrak{A}=\{A\}$ and a Sylow subgroup $\mathfrak{P}_{0}=\mathfrak{N}(A)_{p}$ .

Let $\theta_{1},$ $\theta_{2},$
$\cdots,$

$\theta_{t}$ denote the irreducible character of $\mathfrak{P}_{0}$ . Each irreducible
character $\psi$ of $\mathfrak{H}_{0}$ then is a product of a linear character $\zeta$ of $\mathfrak{A}$ and one
of the $\theta_{i}$

$\psi(A^{\gamma}P)=\zeta(A)^{\gamma}\theta_{i}(P)$ ( $f$or $P\epsilon \mathfrak{P}_{0}$ ).

Since each $\chi_{i}(\mathfrak{H}_{U})$ must break up into characters $\psi$ , we can set

(23) $\chi_{i}(AP)=\sum_{j\approx 1}^{t}4\sim_{ij}\theta_{j}(P)$ ( $f$or $P\epsilon \mathfrak{P}_{0}$ )

where the $z_{ij}$ are algebraic integers, $z_{lj}\epsilon P(\epsilon)$ .
11. The elements $\sigma\epsilon \mathfrak{L}_{p}$ , for which $A\sim A^{\nu(\sigma)}$ , form a subgroup $\mathfrak{L}_{p^{*}}$ .

If we apply $\sigma\epsilon 11_{\lambda p}*to(23)$ and use the same notation as in (15), we find

(24a) $\chi_{i}(AP)^{\sigma}=\chi_{i\sigma^{*}}(AP)=\sum_{j=1}^{t}z_{i\sigma}^{\tau}d\theta_{j}(P)$ .

On the other hand, by (4), $\chi_{i}(AP)^{\sigma}=\chi_{i}(A^{\nu(\sigma)}P^{\nu(\sigma)})$ . For $\sigma\epsilon \mathfrak{L}_{p^{*}}$ , the
exponent $\nu(\sigma)$ satisfies the conditions (I), (II) in 7. Hence $\nu(\sigma)\epsilon\Lambda$ . By
(8), $A^{\nu(\sigma)}=X_{\nu(\sigma)}AX_{\nu(\sigma)}^{-1}$ and, consequently

$\chi_{i}(AP)^{\sigma}=\chi_{i}(X_{\nu(\sigma)}AX_{\nu(\sigma)}^{1}P^{\nu(\sigma)})=\chi_{i}(AX_{\nu(\sigma_{J}}^{1}P^{b(O)}X_{\nu(\emptyset)})$ .
Now (23) yields

$\chi_{i}(AP)^{\sigma}=\sum_{j=1}^{t}\sim r_{ij}\theta_{j}(X_{\nu(\sigma)}^{1}P^{\nu(O)}X_{\nu(\sigma)})$ .

Since, for fixed $\sigma$ , the mapping $P\rightarrow X_{\nu(\sigma)}^{-1}PX_{v(\sigma)}$ is an automorphism of $\mathfrak{P}_{0}$ ,

the expression
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$\theta_{j^{\prime}}(P)=\theta_{j}(X_{\nu(\sigma)}^{-1}P^{\nu(\sigma)}X_{\nu(\sigma)})=\theta_{j}(X_{\nu(\sigma)}^{-1}PX_{\nu(\sigma)})^{\sigma}$

is again an irreducible character of $\mathfrak{P}_{0}$ . Hence we have a permutation $\sigma^{\prime}$

of $\theta_{1},$ $\theta_{2},$

$\cdots,$
$\theta_{t}$ ; we set $ j^{\prime}=j\sigma$‘. Furthermore, it follows from (9) that for

$\sigma_{1},$
$\sigma_{2}\epsilon \mathfrak{L}_{p^{*}}$ , we have $(\sigma_{1}\sigma_{2})^{\prime}=\sigma_{1}{}^{t}\sigma_{2}^{\prime}$ ; the $\sigma^{t}$ foim a $re_{P}1esentation$ of $\mathfrak{L}_{p^{*}}$ by

peimutations. We can now write

(24b) $\chi_{i}(AP)^{\sigma}=\sum_{j=1}^{\ell}\approx ij\theta_{i^{\sigma\prime}}(P)$

and on comparing this with (24a), we obtain

. (25) $z_{j}=2_{i\sigma^{*},j\sigma t}(1\leqq i\leqq h(A), 1\leqq j<t=’\sigma\epsilon \mathfrak{L}_{p^{*}})$

Let $X$ denote any set of $h(A)$ iildices $j$ We can then $fo_{\wedge}^{\prime}m$ the
minor $W(X)$ of the $(h(A)\times t)$ -matrix $(\sim r_{ij})$ which contains the columns

$j\epsilon X(A)^{-)}$ We shall consider $X$ as an unordered set. Then $n\nearrow(x)$ is
determin$ed$ only apart from $a\pm sign$ . The method applied in an earlier
investigation together with (22) yields

(26) $\sum_{X}W(X)^{2_{\overline{\overline{\neg}}}1}\equiv 0$
$(mod \mathfrak{p})^{8)}$

On the other hand, (25) gives

$T,V(X\sigma^{\prime})=\pm W(X.)$

’

(for $\sigma\epsilon \mathfrak{L}_{p^{*}}$ ).

Now an argnment similar to that used in 9 in connection with the
sum $(12^{*})$ shows that there $m\cdot\iota st$ exist a minor $W(X)\equiv|\equiv 0(mod \mathfrak{p})$ such
that $\sigma^{\prime}$ permutes tbe corresponding $\theta_{j}$ among themselves. Taking the $\theta_{j}$

in suitable order, we may assume that $if^{\nearrow}(X)o_{\vee}^{\backslash }cupies$ the first $h(A)$

columns.

7) As shown in Brauer [3] , we have $t\geqq/\iota(A)$ .
8) We use tlie formulas (23), (24) in Brauer [4]. The deterJninant $\Delta$ there is the same

as the determinant (22) of the present paper. If $U$ in $(^{o}B)$ of the previous paper is specialized
suitably, we obtain a formula

a $It^{\nearrow}(X)=\pm\beta_{1}M(X)$ .
IIere, $M(X)$ is the minor of degree $t-\gamma_{l}(A)$ of $\theta_{1^{*}}$ which contains the characters $\theta_{t}$ with $!i^{X}$.
The numbers $a,$ $\beta$ are algebraic integers with $(\beta, \mathfrak{p})=1$ which do not depend on $X$ and which
can be given explicitly. On the other hand, the p-part of

$|\theta_{1^{*\prime}}\theta_{1^{*}}|=\sum 4\nu t(X)^{3}$

has been determined in Brauer [3], pp. $59-6J$ . It follows from (22) of the present paper that
$t^{his}$ si the same as the p-part of $\alpha^{2}$ and this

$g\vee$

ives the desired result.
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The square matrix
$(2_{ij})$ , $(i, j=1,2, \cdot.., k(A))$ ,

now has the following properties : (a) The coefficients are algebraic integers
of a certain nulnber field. (b) The determinant is not divisible by a
prime ideal divi.r.or $P$ of $p$ . (c) There exist two $perm_{-}\backslash \iota tation$ representa-
tions $\{\sigma^{*}\}$ and $\{\sigma^{\prime}\}$ of a certain $p$-group $\mathfrak{L}_{p^{*}}$ such that application of $\sigma^{*}$

to the rows and of $\sigma^{\prime}$ to $th_{\vee}^{a}$ columns maps each coefficient $2_{ij}$ on an
equal one, cf. (25). A simple lemma9) states that we then may arrange
the columns, in such an order that

(27) $2_{ii}\equiv|\underline{=}0$ $(mod \mathfrak{p})$

for $i=1,2,$
$A-$

$J\iota(A)$ and that the two equations $i\sigma^{*}=i,$ $i\sigma^{\prime}=i$ imply
each other.

12. Let $\chi=\gamma_{i}$ be a fixed character associated with $A$ and let $K^{*}$

have the same significance as in (2A). The Galois group $\mathfrak{M}$ of $K^{*}(\epsilon)$

with regard to $K^{*}$ may be considered as a subgroup of $\mathfrak{L}_{4},$ . Since $\chi_{i}$ lies
in $K^{*}$ , we have $\chi_{t\sigma^{*}}=\chi_{i}fo_{1}\cdot\sigma\epsilon \mathfrak{M}$ and (3B) shows that $\mathfrak{M}\subseteq \mathfrak{L}_{p^{\}^{\prime}}}$ Further-
more, the last statement in 11 gives

(28) $i\sigma^{\prime}=i$ (for $\sigma\epsilon \mathfrak{M}$ ).

If we break up $x_{t}(\mathfrak{H})$ into irreducible characters of $\mathfrak{H}$ , characters which
are algebraically conjugate with regard to $K^{*}$ appear with the same
$m.1]tiplicity$ . We write the formula in the $f_{01}m$

(.29) $\chi_{i}(\mathfrak{H})=\Sigma z/_{\nu}(\xi_{\nu}+\xi_{\nu^{\prime}}+\xi_{\nu^{\prime\prime}}+\cdots)$

where the $\xi_{\nu},$ $\xi_{\nu^{/}},$ $\xi_{\nu^{\prime\prime}}\ldots$ are irreducible chalacters of $\mathfrak{H}$ and $wLele$ in each
parenthesis characters have been collected which are algebraically conjugate
with regard to $K^{*}$ . Hence the number of characters in each parenthesis
is a $p_{01}ver$ of $p$ , and each character in the parenthesis containing $\xi_{\nu}$ has
the form $\xi_{\nu}^{\sigma}$ with $\sigma\epsilon \mathfrak{M}$

${\rm Re}_{i)}1acc$ for a moment $\mathfrak{G}$ by $\mathfrak{H}$ . For $-\xi_{\nu}(AP)$ , we must have formulas
analogous to (23), say

$\xi_{\nu}(AP)=\overline{2}_{-}^{\urcorner}\tilde{z}_{\nu j}\theta_{j}(P)$ .
Applying (24b) in this case, we have

9) The proof of the lemma is not difficult. It will be given in the $c$ontinuation of the
paper.
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(30) $\xi_{\nu}(AP)^{\sigma}=\sum_{j}\approx_{\nu,j}\sim\theta_{jO^{\prime}}(P)$ .

In $p^{a1}$ ticular, for $\sigma\epsilon \mathfrak{M}$ , the term $\theta_{i}(P)$ appears with the coefficient $\tilde{z}_{\nu i}$

because of (28). Substitute (30) in (29) for the element $AP\epsilon \mathfrak{H}_{0}\subseteq \mathfrak{H}$ .
On comparing the coefficient of $\theta_{i}(\mathcal{P})$ in $\chi_{i}(AP)$ here and in (23), we
have

$z_{ii}=\sum_{\nu}’\angle_{\nu}^{\prime(.++\cdots)}\approx_{ti}\approx\sim\nu i$

Now, (27) shows that there must appear at least one $\xi_{\nu}$ in (29) such that
$v_{\nu}\equiv|\equiv 0(mod p)$ and that there is only one term in its bracket. The latter
statement means that $\xi_{\nu}$ belongs to $K^{*}$ .

We have now shown that $\xi_{\nu}$ satisfies the conditions of (2A) and hence
(2A) can be used to find the $p$-part of th $e$ index $m$ of $\chi$. The result
(2C) yields a slight simplification: We must have $\mu_{l},=\mu$ , since the degree
of $\xi_{\nu}$ is a power of $p$ .

We thus have
Theorem: $ 1f\chi$ is an $ir’\prime edncible$ charactcr of $ tk\ell$ gronp $\mathfrak{G}$ , if $K$ is a

field of characteristic $0,$ $t/\iota en$ for $e_{L^{\prime}}^{r}erylri/nep$ there exists a $su/\prime group\mathfrak{H}$

of $tyl^{\iota i}(\mathfrak{E})$ and an irreducible $ charac_{l^{\iota}\mathcal{L}}’ r\xi$ of $\mathfrak{H}$ such that $\iota ke$ p-part $(7ftke$

Schur index of $\chi’\iota vi/hr_{t’}.gard$ lo $K$ is equal $lo$ the Schur index $\mu$ of $\xi wit/\iota$

rcgard to $K(\chi)$ .
If we take $K=P$ and detelmine the character $\xi$ in this case, the

same characte $ r\xi$ can be used for every field of characteristic $0$ . Hence
we have the

Remark: The character $\xi$ in the Theorem can be chosen independ-
ent of the field K.

As already remarked, the selection of $\xi$ can be made if we know how
$x(\mathfrak{H})$ breaks up into irreducible characters of $\mathfrak{H}$ for every maximal
subgroup of type $(\mathfrak{E})$ of $\mathfrak{G}$

Thus, the whole problem of the Schur indices has been reduc $ed$ to
the case where the group is of type $(\mathfrak{E})$ .

University of MichIgan.
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