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Some Remarks on Relatively Free Homotopy.
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Consider an arcwise connected topological space Z and select one of
its points * as a base point. Suppose furthermore that there is given an
arcwise connected subspace Y of Z containing the base point *. Given a
point #' of ¥, which may or may not be distinct from %, a path component
of ¥, i. e. a homotopy class of paths from * to %/, induces an isomorphism
between two 7-th relative homotopy groups 7,(Z, Y, %) and =,(Z, V, ),
attached to two points *, %/ respectively. If in particular * = ¥/, every
element of the fundamental group =;(Y, ¥) induces an automorphism of
the group 7,(Z, ¥, *x), and therefore, algebraically speaking, the former
may be regarded as a group of operators on the latter. Now I shall de-
fine a homotopy group ¢,(Z, ¥, *) for every integer 7 >3, containing
subgroups isomorphic to 7,(Z, V, %) and 7, (Y, *), in which the operation
of 7,(V, *) on m,(Z, ¥V, %) forms an inner automorphism. As is seen later, an
element of the group o, can be represented by a continuous mapping belonging

to Zﬂ\:vhich transforms  S""'=Z" into YV and to different points on S*7!
into the base point *. (£ means an 7n-dimensional cube, see foot note) The
pair (Z, Y) is usually called “ relatively z-simple,” if «*=u for any element
£ of 7,(V, #) and any « belonging to 7,(Z, ¥, ), and it is well known that
in such a pair of spaces a base point x can be arbitrarily selected in ¥, in the
sense that the isomorphism between two groups 7,(Z, ¥V, %) and 7,(Z,
Y, /) attached to an arbitraiily chosen point %/ in V is determined
indepently of the path connecting * to «’. Therefore the simplicity of a
pair of spaces may be considered as an intrinsic property of the pair. A
pair (Z, Y) which is relatively #-simple is characterized by the purely
algebraic relation in o¢,: 6,(Z, YV, %) is isomorphic to the direct product
of two groups 7,(Z, ¥, %) and m,(¥, *). This paper will contain these
and some other remarks obtained by applying M. Abe’s arguments in (1)
to the case of relative homotopy groups.
1. Definstion of 0.(Z, YV, %) for n=>=3.

Let e(x,), 1 > x,=0, be a %-based loop in Y. Denote by g, the

1) £n =am (x, xpymeeeee sy m-1); 12020, »—1=7/=0,

ag = (&5, Tigyers A1)
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collection of all the Z-valued functions of the #-dimensional cube E™ satisfy-

ing the following conditions :”

i) (&, 2", for 1 > 2 >0, represents an element of 7,_(Z, ¥, ¢(2,)),
ii) £, ™) =f(1, x)=x
Such a mapping f may also be described as follows;
JS(x*)=x  when z,(x,—1)=0,
=¢(x,) when (Z,.;—1) ZI; z;(x;—1)=0,

n—1

€ YV when [T x,(x,—1)=0.
=0

Two such functions f and g, belonging to a,, are multiplied together
according to the rule:

I (x9™) =/2xy x™) when %g x, =0,

=g(2x,—1, 27) when 12%2%,

and the resulting function f-g is again a member of the collection s,. The
elements of o, are classified by the homotopy concept, and the multiplica-
tion in o, induces a multiplication in the set of homotopy classes. Thus
the classes of elements of ¢, together with the multiplication defined bet-
ween them constitute a group, which I designate by 4,(Z, V, %). As an
immediate consequence of the definition, we remark that the identity of
the group may be represented by a mapping, which transforms E” into ¥,
such that ¢(2°), 1 = x,=>0, can be shrunk in ¥ into the base point *. For
convenience’ sake K™ is referred to as the point set {x"; af4-----. + 7,

=<1} and then the boundary K™ of K" is of course an (72— 1)-dimensional
sphere S™'. Now consider a mapping ¢ of E"™ onto K™ such that
o(x*(0, %)) =p, ¢(x"(1, 2}))=p,, where p,and p, are two distinct points

on K™; all the points of the same partial coordinate x, on the faces (#,_,
-2

—10) 71
C on 5‘7‘" joining p, to p,; and the interior of £ into the interior of A™.
(See figure 1, #=3) Then we have a mapping / of K" into Z such that
Ax")=F¢(x*) and designate by &, the set of all the mappings which trans-
form K" into Z, S™ ! into ¥, and two points on S™*! into x. It is easy

to see that two function spaces o, and g, are homeomorphic by the

#:(x;—1) =0 are mapped continuously by ¢ to a point of the arc
0
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correspondence ¢. For the reasons that an element of ¢, can be grasped in
an intuitive manner and also be compared quite clearly with a representative
of an element of the relative homotopy group 7,(Z, ¥, %), it seems advan-
tageous to refer to the function space ¢,. As is well known, an element
of #,(Z, ¥V, ¥*) may be represented by a mapping which transforms X”,
into £, S*" into ¥, and the arc C on S*! joining p, to p; into %. The
set of all such mappings will be denoted by /1,. In order to avoid con-
fusion we agree that the homotopic relation in" //, is described by the
symbolas, while in case of such a relation in 6, or o, the symbol~will be
used.

2. Algebraic structure of 6,(Z, Y, x).

First we shall prove that ¢,(Z, ¥, %) contains a subgroup 7,(Z, V, *)
isomorphic to 7,(Z, Y, %), and then that the factor group of ¢,(Z, ¥, *)
by 7,(Z, ¥, %) is isomorphic to the group 7,(Y, *), where 7,(V, x) denotes
a subgroup of ¢,(Z, ¥, k) isomorphic to (¥, *).

It is obvious that for two mappings f and g belonging to /7,, f~g, if
J/~g. In order to prove the first assertion it is sufﬁc1ent to show that if

J~g, then Jasg. Since f~g, there exists a mapping %(z, s) belonglng to
ka’"xl such that Z(x, o) =f(x) and /Z(x, 1)= q(x) for »r € K~

Furthermore /(x, s) € ¥, if x € S*' and s € [,

% Py $)=r(p,, s)=x for s € I

As a point set {Cx (0) +Cx (1) +#,x7} is a deformation retract of cx/i:
a deformation D, can be defined. (See figure 2) Let {s"'x (0) +s*'x (1)

+¢x 7} be denoted by 7, then a mapping ¢(#, s, #) of {S™1x7x ©0) +

8
I'x 7} into V is defined as follows;

o(x, s, 0)=rk(x, 5) when x € S*™1, s € 7,
z
o(x, o, £)=k(x, 0)=/(x) when » € S*, ¢ € ],

¢(x, 1, )=4(x, 1) =g(x¥)when x € S, ¢ ¢ 7,
s 14
o(x, s, )=%(D,(x, s)) when x € C, s € 7, and ¢ € 7,

then the continuity of the mapping ¢ is verified from the following
considerations. As an immediate consequence of the definition of 2,, we have
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e(x, 0, )=k(D,(x, 0))=4k(x, 0)=Ff(x)=*, o(x, 1, t)=g(x)=xifxr e C
and 7 € [f and ¢(x, s, 0)=/4(Dy(x, s))=A(x, s) If x € C and s ¢ Ié It
should be noted that ¢(x, s, 1)=/4(D,(x, s))=* when 2 € C and s € }
Since 7 is a subcomplex of S x }, {S* 7% ;x. ©O)+ Tx%} may be regarded
as a cslef ormation retract of S*~! x[ix 7 ‘éo that ¢ defined on {S”"lsx }; x (0)

+7'x [v} can be extended continuously to a mapping of S1x Ix T into

Y. This extended mapping ¢ can be extended again in the following
manner :

U=¢p on S""x}x},

T(x, o, ) =f(x) when z € K™ ¢ € ]V',
T(x, 1, H=g(») when ¥ € K" ¢ € f‘,
T(x, s, o)=nh(x, s) when » € K”, s € f,i

s s t ¢
thus & is defined on the complex {K"x Ix (0) +S*'x IxI[+K"x (0) x I
t z t 8
+Kx () xI}={S""x[+K*"x (0)+K*x (1)} x [+ K" x I'x (0) which is

8 ¢
a deformation retract of K™ x 7 x /. Therefore ¥ can be extended to a mapping

¢ z
of K" x Ix [ into Z, which we denote by the same letter ¥. Now the partial
mapping ¥ |K" x I (1) =y (x, s) is such that y(x, 0) =£(x), y(x, 1) =g(x),

and y(x, s)=x if x € C, s € }, and therefore the first assertion is
established.

The next part of our assertion was 0,(Z, V, %) |7, (2, V, %) ~7, (Y, ).
To every mapping f € o,, let there correspond an element f* defined by
the rule f7(x,)=f(x, 0,--:--- , 0). Then f* represents an etement of m,(¥,*).
As we can easily verify that f~g—f?~g® and (f-9)?=f%?-9% ¢
induces a homomorphism @ of ¢,(~7, Y, %) into 7, (¥, *). Next a correspon-
dence ¢ : a—a*, where a is a representative of an element § of = (Y), is
defined by the rule a*(x")=a(x,), and a* represents an element of
6.(Z, Y, *). As in case of ¢ it is easily verified that ¢ induces a homomor-
phism & of 7, (V, %) into 6,(7Z, ¥, %). Moreover (a*)?=a, so that @ is
a homomorphism of g, onto 7, and as @¥ =1, ¥ is an isomorphism of 7,
into ¢,. Hence it follows that ¢,(Z, YV, %) contains a subgroup 7,(Y, x)
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isomorphic to 7, (¥, x). Furthmore, it is easy to see that the kernel of
@ is contained in m,(Z, V, *) and conversely @ (7,(Z, V, %)) =1, so that
our assertion is completely proved.

3. Remarks on rvelatively free fomotopy.

By using the structure of the group ¢,(Z, ¥, %), we shall give some
remarks on relatively free homotopy. First we prove u*=%£ a §~', where
v € n,(Z, YV, ), £ € (V. x) and §=¥ (§) just used in the proof in the
last paragraph. From the definition of «*, two mappings f, ¢ representing
a and u® respectively, are relatively free homotopic with respect to the
path ¢(x,) so that a mapping F(2"**") of E"x 7 into Z can be defined as

follows :
F(x, 1)=£("), F(x", 0)=g(2x"), when zeZ",
F@a™h) e Y when 2" e E",

n-—-2
F(x**") =e(x,) when (x,_,—1) /1 x;,(x,—1)=0.
=0

Denote a system of curves drawn on the face x"*'(x,, O------ 0, »,) as in
figure 3 by a syst‘em of parametric equations, x,=¢,(s) and x,=¢,(s),
where for a fixed 4,1 =>#2>0, 2" (¢,(s),0:--,0 ¢,(s)) forms a curve accord-
ing as s varies from O to 1. Define i?(¢,(s), ERTRREE no1, $i(8)) =
%,(sy %4y Xn-y), then

(s, 20) =F(py(s), 21" $5(5)) =F (x5, 21, 0) =g (+7)

£(0, 2%, x,) if 3 =520,
(s, #1) =F(e:1(s), 21, ¢1(s))=1 £(2", 1) if 3 =>s52>3,
F(lL, 2%, z,) if 1 =5 >3

Since (2", 1) =f(="), F(0, 2%, x,)=c(x,), and F(1, 2%, x,)=¢(x,), it is
obvious that & « g“. Moreover we see that /%, belongs to o, from the

following considerations \
70, 2%) =F(¢.(0), 2%¢,(0))=F(0, #15,°0) =9 (0, 7)==,
/Zt(l! xyll) =F(¢t(1)r 257;', 9/15(1)):(]’ ﬂv’?, O) —’:9(1, x?)‘_‘.‘*)

n—2
/Zt(?s %) =F(§0¢ (*T): 20, v, (3_))=€(Wt(3r)) when (xn—l"—l)i[!lxi(xi—l) =0,

n—1
(s, 27) € ¥V when /I x;(x,—1) =0.
Z=1
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Thus it is concluded that g~/,=a « a', namely «*=§ « &', and the
proof is completed

If «*=ua for any € of m,(V, %), then a=F af~' so that an element
belonging to 7,(7, Y, %) commutes with every element of 6,(Z, ¥, *). Thus
it follows that 7,(~, Y, %) lies in the center of ¢, and that ¢,(Z, ¥V, x)
may be said to be isomorphic to the direct product of 7,(Z, ¥, %) and if 7,(V, %)
(Z,Y) is relatively n-simple. Conversely it is also proved that (Z, V) is
relatively 7z-simple when 6,(Z, V, *)~7,(Z, V, x) @7, (Y, *). Evident'y
the pair (Z, Y) is relatively simple in any dimension 7 for n=>3, 1f Yis
simply connected..
4. Case n = 2.

In case of #=1 the definition of the relative homotopy group =,(Z,
Y, %) is inapplicable unless Y=1#, and when Y=x and z=1, the discussions
are reduced to M. Abe’s ones. When #=2, the same results as in case
=3 will hold true if the definition of ¢,(Z, ¥, %) is slightly changed as
follows. Both homotopy and multiplication are defined as usual among the
set of all the mappings, each of which satisfies the condxtnons J@H)=

when x,(x,—1) =0 and f(#*) € Y when ﬂx,(x —1)= O Thus the homo- -

topy classes, together with the-multiplication, constitute a group ¢,(Z, ¥, %),
in which all the theorems mentioned above are proved in an analogus
way as in case # > 3.
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Nagoya University.
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