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Some Remarks on Relatively Free Homotopy.
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Consider an arcwise connected topological space $Z$ and select one cf
its points $*as$ a $ba_{\backslash }se$ point. Suppose furthermore that there is given an
arcwise connected subspace $Y$ of $Z$ containing the base point $*$ . Given a
point $*^{\prime}$ of $Y$, which may or may not be distinct $from*$ , a path component
of $Y,$ $i$ . $e$ . a homotopy class of paths from $*to*’$ , induces an isomorphism
between two n-th relative homotopy groups $\pi_{n}(Z, Y, *)$ and $\pi_{n}(Z, Y, *^{\prime})$ ,

attached to two points $*A^{\prime}$ respectively. If in particular $*=*^{\prime}$ , every
element of the fundamental group $\pi_{1}(Y, *)$ induces an automorphism of
the group $\pi_{n}(Z, Y, *)$ , and therefore, algebraically speaking, the former
may be regarded as a group of operators on the latter. Now I shall de-
fine a homotopy group $\sigma_{n}(Z, Y, *)$ for every integer $n\geqq 3$ , containing
subgroups isomorphic to $r_{n}(Z, Y, *)$ and $\pi_{1}(Y, *)$ , in which the operation
of $\pi_{1}(Y, \{’\cdot)$ on $\pi_{n}(Z, Y, *)$ forms an inner automorphism. As is seen later, an
element of the group $0_{n}$ can be represented by a continu ous mapping belonging
to $ZW_{hich}$ transforms $S^{n-1}=\dot{E}^{n}$ into $Y$ and to different points on $S^{n-1}$

into the base $point*$ . ( $L^{\backslash }n$ means an n-dimensional cube, see foot note) The
pair ($Z$, Y) is usually called “ relatively n-simple,” if $a^{\xi}=a$ for any element
$\xi$ of $\pi_{1}(Y, *)$ and any $a$ belonging to $\pi_{n}(Z, Y, *)$ , and it is well known that
in such a pair of spaces a base $point*can$ be arbitrarily selected in $Y$, in the
sense that the isomorphism between two groups $\pi_{n}(Z, Y, *)$ and $\pi_{n}(Z$,
$Y,$ $*^{\prime}$ ) attached to an albitralily chosen point $*^{r}$ in $Y$ is determined
indepently of the path connecting $*$ to $*^{\prime}$ . Therefore the simplicity of a
pair of spaces may be considered as an intrinsic property of the pair. A
pair $(Z, Y)$ which is relatively n-simple is characterized $b\dot{y}$ the purely
algebraic relation in $\sigma_{n}$ ; $\sigma_{n}(Z, Y, *)$ is isomorphic to the direct product
of two groups $\pi_{n}(Z, Y, *)$ and $\pi_{1}(Y, *)$ . This paper will contain these
and some other remarks obtained by applying M. Abe’s arguments in (1)
to the case of relative homotopy groups.
1.{?}Definition of $\sigma_{n}(Z,Y,*)$ for $n\geqq 3$ .

Let $e(x_{0}),$ $1\geqq x_{0}\geqq 0$ , be a $\star$ -based loop in $Y$. Denote by $\sigma_{n}$ the

1) $E^{n}=x^{n}$ ($x_{0},$ $ x_{1},\ldots\ldots$ , Xn-l); $1\geqq x_{1}\geqq 0$ , $n-1\geqq\iota\geqq 0$ ,
$x_{i}^{71}=(x_{i}, x_{i+1}\cdots\cdots x_{\tau\prime-l})$
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collection of all the Z-valued functions of the n-dimensional cube $E^{n}$ satisfy-
ing the following conditions:1)

i) $f(\overline{x}_{\cup}, x_{1}^{n})$ , for $1\geqq\overline{x}_{0}\geqq 0$ , represents an element of $\pi_{n-1}(Z, Y, e(X_{0}))$ ,
ii) $f(0, x_{1}^{n})=f(1, x_{1}^{n})=*$

Such a mapping $f$ may also be described as follows;

$f(x^{n})=*$ when $x_{0}(x_{0}-1)=0$ ,

$=e(x_{0})$ when $(x_{n-1}-1)\prod_{i^{\leftarrow}1}^{n-2}x_{i}(x_{i}-1)=0$ ,

$\epsilon Y$ when $\prod_{i=0}^{n-1}x_{i}(x_{i}-1)=0$ .

Two such functions $f$ and $g$ , belonging to $\sigma_{n}$ , are multiplied together
according to the rule:

$f\cdot(xg^{n})=f(2x_{0}, x_{1}^{n})$ when $\frac{1}{2}\geqq x_{0}\geqq 0$ ,

$=q(2x_{0}-1, x_{1}^{n})$ when $1\geqq x_{0}\geqq\frac{1}{2}$ ,

and the resulting function $f\cdot c/$ is again a member of the collection $\sigma_{n}$ . The
elements of $\sigma_{n}$ are classified by the homotopy concept, and the multiplica-
tion in $\sigma_{n}$ induces a multiplication in the set of homotop$y$ classes. Thus
the classes of elements of $\sigma_{n}$ together )$\iota^{r}ith$ the multiplication defined bet-
ween them constitute a group, which I designate by $\sigma_{n}(Z, Y, *)$ . As an
immediate consequence of the definition, we remark that the identity of
the group may be represented by a mapping, which transforms $E^{n}$ into $Y$,
such that $e(x^{0}),$ $1\geqq x_{0}\geqq 0$ , can be shrunk in $Y$ into the base point $’\backslash $ For
convenience’ sake $K^{n}$ is referred to as the point set { $x^{n}$ ; $x_{0}^{2}+\cdots\cdots+x_{n-1}^{2}$

$\leqq 1\}$ and then the boundary $\dot{K}^{n}$ of $K^{n}$ is of course an $(n-1)$ -dimensional
sphere $S^{n-1}$ . Now consider a mapping $\varphi$ of $E^{n}$ onto $K^{n}$ such that
$\varphi(x^{n}(0, x_{1}^{n}))=p_{0},$ $\varphi(x^{n}(1, x_{1}^{n}))=p_{1}$ , where $p_{0}$ and $p_{1}$ are two distinct points
on $K^{n}$ ; all the points of the same partial coordinate $x_{0}$ on the faces $(x_{n-1}$

$-1)$ $\prod_{i\Rightarrow 0}^{n-2}x_{i}(x_{i}-1)=0$ are mapped continuously by $\varphi$ to a point of the arc
$C$ on $S^{n-1}$ joining $p_{0}$ to $p_{1}$ ; and the interior of $E^{n}$ into the interior of $K^{n}$ .
(See figure 1, $n=3$ ) Then we have a mapping $\overline{f}$ of $K^{n}$ into $Z$ such that

$f(.x^{n})=\overline{f}\varphi(x^{n})$ and designate by $\overline{\sigma}_{n}$ the set of all the mappings which trans-
form $K^{n}$ into $Z,$ $S^{n-1}$ into $Y$, and two points on $S^{n-1}$ into $\dagger^{\prime}\backslash $ It is easy
to see that two function spaces $\sigma_{n}$ and $\sigma_{n}$ are homeomorphic by the
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correspondence $\varphi$ . For the reasons that an element of $\sigma_{n}$ can be grasped in
an intuitive manner and also be compared quite clearly with a representative
of an element of the relative homotopy group $\pi_{n}(Z, Y, *)$ , it seems advan-
tageous to refer to the function space $\sigma_{n}$ . As is well known, an element
of $\pi_{n}(Z, Y, \star)$ may be represented by a mapping which transforms $K^{n}$ ,
into $Z,$ $S^{n-1}$ into $Y$, and the arc $C$ on $S^{n-1}$ joining $p_{0}$ to $p_{1}$ into $*$ . The
set of all such mappings will be denoted by $\Pi_{n}$ . In order to avoid con-
fusion we agree that the homotopic relation in $1I_{n}$ is described by the
$symbol\approx$ , while in case of such a relation in $\sigma_{n}$ or $\sigma_{n}$ the $symbol\sim will$ be
used.
2. Algebraic structure of $\sigma_{n}(Z,Y,*)$ .

First we shall prove that $\sigma_{n}(Z, Y, *)$ contains a subgroup $\pi_{n}(Z, Y, *)$

isomorphic to $\pi_{n}(Z, Y, \star)$ , and then that the factor group of $\sigma_{n}(Z, Y, *)$

by $\overline{\pi}_{n}(Z, Y, *)$ is isomorphic to the group $\overline{\pi}_{1}(Y, *),$ where $\overline{\pi}_{1}(Y, *)$ denotes
a subgroup of $\sigma_{n}(Z, Y, *)$ isomorphic to $\pi_{1}(Y, *)$ .

It is obvious that for two mappings $f$ and $g$ belonging to $\Pi_{n},f\sim g$ , if
$f\approx g$ . In older to prove the first assertion it is sufficient to show that if
$f\sim g$ , then $f\approx g$ . Since $f\sim g$ , there exists a mapping $h(x, s)$ belonging to

$ ZJ\zeta n\times J^{\vee}\epsilon$

such that li $(x, 0)=f(x)$ and rk $(x, 1)=g(x)$ for $x\in K^{n}$ .

Furthermore $h(x, s)\in Y$, if $x\in S^{n-1}$ and
$s\in\check{1^{\epsilon}}$

,

$h(p_{0}, s)=h(pl’ s)=*$ for
$s\in\check{1^{\epsilon}}$

As a point set $\{C\times(0)+C\times(1)+p_{0}\times\dot{I}s\}$ is a deformation retract of $c\times\check{1^{s},}$

a deformation $D_{t}$ can be defined. (See figure 2) Let $\{s^{n-1}\times(0)+s^{n-1}\times(1)$

$+c\times 1\}\vee s$ be denoted $\mathfrak{t}$ )$yT$, then a mapping $\varphi(x, s, t)$ of $\{S^{n-1}\times\check{1}\times s(0)+$

$ T\times 1^{s}\}\vee$ into $Y$ is defined as follows;

$\varphi(x. s, 0)=h(x, s)$ when $x\in S^{n-1},$
$s\in\check{1^{s}}$

,
$t$

$\varphi(x, 0, t)=h(x, 0)=f(x)$ when $x\in S^{n-l},$ $t\in\check{1,}$

$\varphi(x, 1, t)=h(x, 1)=g(x)$ when $x\in S^{n-1},$
$ t\in 1^{s}\vee$

$\varphi(x, s, t)=h(D_{t}(x, s))$ when $x\in C,$
$s\in\check{1^{l},}$ and $t\in\dot{1^{t},}$

then the continuity of the mapping $\varphi$ is verified from the following
considerations. As an immediate consequence of the definition of $D_{t}$ , we have
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$\varphi(x, 0, t)_{t,\vee}=h(D_{t}(x, 0))=1_{l}(x, 0)=f(x)=*,$ $\varphi(x, 1, t,)=g(x)=*ifx_{\epsilon}\epsilon C$

and $l\in 1$, and $\varphi(x, s, 0)=J_{l}(D_{0}(x, s))=h(l, s)$ if $x\in C$ and $s\in\check{1.}$

$I_{s}t$

should be noted that $\varphi(x, s, 1)=h(D_{1}(x\$’ s)s)=*$ when $tx\in C$ and $s\in\check{1}$.
Since $T$ is a subcomplex of $S^{n-1}\times\check{1},$ $\{S^{n-1}\times\dot{1}\times. $(0) $+T\times l\vee\}$ may be regarded

as a deformation retract of
$ S^{n-1}\times 1^{\epsilon}\times 1^{l,}so\vee$

that $\varphi$ defined on $\{s_{s}^{n-1}\times\check{1_{t}}\times(0)$

$+T\times I^{l}\}\vee$ can be extended continuously to a mapping of $S^{n-1}\times\check{I}\times\check{I}$ into
$Y$. This extended mapping $\varphi$ can be extended again in th $e$ following
manner:

on
$S^{n-1}\times\check{1^{*}}\times\check{1^{t}}$

,$\Psi\equiv\varphi$

when $x\in K^{n},$
$t\in\check{1^{l},}$

$\Psi(x, 0, t)=f(x)$
$t$

$\Psi(x, 1, l)=g(x)$ when $x\in K^{n},$ $l\in\check{1,}$

when $x\in K^{n},$
$s\in 1^{\vee}l$

$\Psi(x, s, 0)=h(x, s)$

thus $\Psi$ is defined on the complex $\{K^{n}\times 1^{\vee}\times l(0)+S^{n-1}\times\check{1^{s}}\times I^{t}+K^{n}\vee\times(0)\times\check{1^{t}}$

$+K^{n}\times(1)\times\check{I^{t}}\}=\{S^{n-\rceil}\times\check{1}+K^{n}t\times(0)+K^{n}\times(1)\}\times 1^{t}+A^{\prime n}\vee\times 1^{\vee}\times\epsilon(0)$ which is

a deformation retract of
$K^{n}\times\check{1^{s}}\times/^{\ell}$. Therefore $\Psi$ can be extended to a mapping

$t$ $t$

of $K^{n}\times\check{1}\times\check{1}$ into $Z$, which we denote by the same letter $\Psi$ . Now the partial

mapping $\Psi|K^{n}\times 1^{\vee}\times s(1)=\chi(x, s)$ is such that $\chi(x, O)=f(x),$ $\chi(x, 1)=g(x)$ ,

and $\chi(x, s)=*$ if $x\in C,$ $s\in\check{1}$, and therefore the first assertion is
established.

The next part of our assertion was $\sigma_{n}(Z, Y, *)|\overline{\pi}_{n}(Z, Y, *)=\sim\overline{\pi}_{1}(Y, *)$ .
To every mapping $f\in\sigma_{n}$ , let there correspond an element $f^{\prime}$ defined by
the rule $f^{\mathcal{P}}(x_{0})\equiv f(x_{0},0,\cdots\cdots, 0)$ . Then $f^{\varphi}$ represents an $er_{ement}$ of $\pi_{1}(Y,*)$ .
As we can easiiy verify that $f\sim q\rightarrow f^{\varphi}\sim g^{\epsilon}$ and $(f\cdot g)^{\varphi}=f^{\varphi}\cdot g^{\varphi}$ , $\varphi$

induces a homomorphism $\Phi$ of $\sigma_{n}(Z, Y, *)$ into $\pi_{1}$ (Y. $\star$ ). Next a correspon-
dence $\psi:a\rightarrow a^{\Psi}$ , where $a$ is a representative of an element $\xi$ of $\pi_{1}(Y)$ , is
defined by the rule a’ $(x^{n})\equiv a(x_{0})$ , and $a^{V/}$ represents an element of
$\sigma_{n}(Z, Y, \star)$ . As in case of $\varphi$ it is easily verified that $\psi$ induces a homomor-
phism $\Psi$ of $\pi_{1}(Y, *)$ into $\sigma_{n}(Z, Y, *)$ . Moreover $(a^{\Psi})^{\varphi}=a$ , so that $\Phi$ is
a homomorphism of $\sigma_{n}$ onto $\pi_{1}$ and as $\Phi\Psi=1,$ $\Psi$ is an isomorphism of $\pi_{1}$

into $\sigma_{n}$ . Hence it follows that $\sigma_{n}(Z, Y, \sim,+)$ contains a subgroup $\overline{\pi}_{1}(Y, I^{l}\cdot)$
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isomorphic to $\pi_{1}(Y, *)$ . Furthmore, it is easy to see that the kernel of
$\Phi$ is contained in $\pi_{n}(Z, Y, *)$ and conversely $\Phi(\overline{\pi}_{n}(Z, Y, *))=1$ , so that
our assertion is completely proved.

3. Remarks on relatively free homotopy.
By using the structure of the group $\sigma_{n}(Z, Y, *)$ , we shall give some

remarks on relatively free homotopy. First we prove $ a^{\xi}=\xi$ a $\xi^{-1}$ , where
a $\epsilon\pi_{n}(Z, Y, *),$ $\xi\in\pi_{1}$ (Y. $*$ ) and $\overline{\xi}=\Psi(\hat{\sigma})$ just $\cdot$ used in the proof in the
last paragraph. From the definition of $a^{\epsilon}$ , two mappings $fg$ representing
$a$ and $\alpha^{\xi}$ respectively, are relatively free homotopic with respect to the
path $e(x_{n})$ so that a mapping $F(x^{n+i})$ of $E^{n}\times 1$ into $Z$ can be defined as
follows:

$F(x^{n}, 1)=f(x^{n})$ , $F(x^{n}, 0)=g(x^{n})$ , when $x\epsilon B^{n}$ ,

$F(x^{n+1})\in Y$ when $x^{n}\in\dot{E}^{n}$ ,

$F(x^{n+1})=e(x_{n})$ when $(x_{n-1}-1)i0f\overline{/}x_{i}(x_{i}-1)=0n_{=}2$

Denote a system of curves drawn on the face $x^{n+1}(x_{0},0\cdots\cdots 0, x_{n})$ as in
figure 3 by a system of parametric equations, $x_{0}=\varphi_{t}(s)$ and $x_{n}=\psi_{t}(s)$ ,

where for a fixed $t,$ $1\geqq t\geqq 0,$ $x^{n+1}(\varphi_{t}(s),0\cdots,0\psi_{\ell}(s))$ forms a curve accord-
ing as $s$ varies from $0$ to 1. Define $\dot{F}(\varphi_{t}(s), \chi_{1}\cdots\cdots,\chi_{n-1} \psi_{t}(s))=$

$h_{t}(s, x_{1},\cdots,x_{n-A})$ , then
$/l_{0}’(S, x_{1}^{n})=F(\varphi_{0}(s), x_{1}^{n}, \psi_{0}(s))=F(x_{0}, x_{1}^{n},0)=g(x^{n})$

$h_{1}(s, x_{1}^{n})=F(\varphi_{1}(s), x_{1}^{n}, \psi_{1}(s))=\left\{ & & & & F(0_{\prime},x_{X_{1}^{n_{1}},X_{n}}F(lF(\prime\tau n1_{n})^{x_{n})_{)}}ififif\#\geqq\ovalbox{\tt\small REJECT}\geqq s^{\frac{>}{--\geqq}}\not\in 1=^{s0}>s\geqq\ovalbox{\tt\small REJECT}.\right.$

Since $F(x^{n}, 1)=f(x^{n}),$ $F(O, x_{1}^{n}, x_{n})=e(x_{n})$ , and $F(1, x_{1}^{n}, x_{n})=e(x_{n})$ , it is
obvious that $\xi^{-}a$ $\overline{\xi}^{-1}$ . Moreover we see that $fi_{t}$ belongs to $\sigma_{n}$ , from the
following considerations

$h_{t}(0, x_{1}^{\prime}n)=F(\varphi_{t}(0), x_{1}^{n},\psi_{t}(0))=F(0, x_{1}^{n},0)=g(0, x_{\perp}^{n})=*$ ,

$h_{t}(1, x_{1}^{n})=F(\varphi_{t}(1), x_{1}^{n}, \psi_{t}(1))=(1, x_{1}^{n}, 0)=g(1, x_{1}^{n})=*$ ,

$h_{t}(\overline{s}, x_{1}^{n},)=F(\varphi_{t}(\overline{s}), x_{1}^{n/}I_{t}^{J}(\overline{s}))=e(/I_{t}(\overline{s}))$ when $(x_{n-1}-1)_{i=}^{n_{1^{-}}}I_{1}^{2}x_{i}(x_{i}-1)=0$ ,

$h_{t}(\overline{s}, x_{1}^{n})\in Y$ when $l^{/\overline{\gamma}_{x_{i}(x_{i}-1)}^{1}}n_{=1}=0$ .
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Thus it is concluded that $g\sim h_{1}=a$ a $a^{-1}$ , namely $a^{t_{=}\xi^{-}a}\overline{\xi}^{-1}$ , and the
proof is completed.

If $a^{\mathfrak{k}}=a$ for any $\xi$ of $\pi_{1}(Y, *)$ , then $a=\sim a\xi-1$ so that an element
belonging to $\overline{\pi}_{n}(Z, Y, *)$ commutes with every element of $\sigma_{n}(Z, Y, *)$ . Thus
it follows that $\overline{\pi}_{n}(Z, Y, *)$ lies in th $e$ center of $\sigma_{n}$ and that $\sigma_{n}(Z, Y, *)$

may be said to be isomorphic to the direct product of $7\sim\overline{r}_{n}(Z, Y, *)$ and if $\overline{\pi}_{1}(Y, *)$

$(Z, Y)$ is relatively $n$-simple. Conversely it is also proved that $(Z, Y)$ is
relatively n-simple when $\sigma_{n}(Z, Y, *)\cong\pi_{n}(Z, Y, \backslash ^{\prime}\prec)\oplus\pi_{1}(Y, *)$ . Evident‘ $y$

the pair $(Z, Y)$ is relatively simple in any dimension $n$ for $n\geqq 3$ , if $Y$ is
simply connected.
4. Case $n\geqq 2$ .

In case of $n=1$ the definition of the relative homotopy group $\pi_{1}(Z$,
$Y,$ $*$) is inapplicable unless $ Y=\dotplus$ , and when $Y=*andn=1$ , the discussions
are reduced to M. Abe’s ones. When $n=2$ , the same results as in case
$n=3$ will hold true if the definition of $\sigma_{2}(Z, Y, *)$ is slightly changed as
follows. Both homotopy and multiplication are defined as usual among the
set of all the mappings, each of which satisfies the conditions: $f(x^{2})=*$

when $x_{0}(x_{0}-1)=0$ and $f(x^{2})\in Y$ when $\prod_{i\Rightarrow 0}^{1}x_{i}(x_{i}-1)=0$ . Thus the homo-

topy classes, together with $the\cdot multiplication$ , constitute a group $\sigma_{2}(Z, Y, *)$ ,
in which all the theorems mentioned above are proved in an analogus
way as in case $n\geqq 3$ .
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