Some Remarks on Relatively Free Homotopy.

Hiroshi Uehara.

(Received April 28, 1950)

Consider an arcwise connected topological space Z and select one of its points * as a base point. Suppose furthermore that there is given an arcwise connected subspace Y of Z containing the base point *. Given a point *' of Y, which may or may not be distinct from *, a path component of Y, i. e. a homotopy class of paths from * to *', induces an isomorphism between two *n*-th relative homotopy groups $\pi_n(Z, Y, *)$ and $\pi_n(Z, Y, *')$, attached to two points *, *' respectively. If in particular * = *', every element of the fundamental group $\pi_1(Y, *)$ induces an automorphism of the group $\pi_n(Z, Y, *)$, and therefore, algebraically speaking, the former may be regarded as a group of operators on the latter. Now I shall define a homotopy group $\sigma_n(Z, Y, *)$ for every integer $n \geq 3$, containing subgroups isomorphic to $\pi_n(Z, Y, *)$ and $\pi_1(Y, *)$, in which the operation of $\pi_1(Y, *)$ on $\pi_n(Z, Y, *)$ forms an inner automorphism. As is seen later, an element of the group o_n can be represented by a continuous mapping belonging to Z^{E^n} which transforms $S^{n-1} = \dot{E}^n$ into Y and to different points on S^{n-1} into the base point *. (E^n means an *n*-dimensional cube, see foot note) The pair (Z, Y) is usually called "relatively *n*-simple," if $\alpha^{\xi} = \alpha$ for any element ξ of $\pi_1(Y,*)$ and any α belonging to $\pi_n(Z,Y,*)$, and it is well known that in such a pair of spaces a base point * can be arbitrarily selected in Y, in the sense that the isomorphism between two groups $\pi_n(Z, Y, *)$ and $\pi_n(Z, Y, *)$ Y, *') attached to an arbitrarily chosen point *' in Y is determined indepently of the path connecting * to *'. Therefore the simplicity of a pair of spaces may be considered as an intrinsic property of the pair. A pair (Z, Y) which is relatively *n*-simple is characterized by the purely algebraic relation in σ_n : $\sigma_n(Z, Y, *)$ is isomorphic to the direct product of two groups $\pi_n(Z, Y, *)$ and $\pi_1(Y, *)$. This paper will contain these and some other remarks obtained by applying M. Abe's arguments in (1) to the case of relative homotopy groups.

1. Definition of $\sigma_n(Z, Y, *)$ for $n \geq 3$. Let $e(x_0)$, $1 \geq x_0 \geq 0$, be a *-based loop in Y. Denote by σ_n the

¹⁾ $E^n = x^n (x_0, x_1, \dots, x_{n-1}); 1 \ge x_1 \ge 0, n-1 \ge i \ge 0,$ $x^n_i = (x_i, x_{i+1}, \dots, x_{n-1})$

collection of all the Z-valued functions of the n-dimensional cube E^n satisfying the following conditions:1)

- i) $f(\bar{x}_0, x_1^n)$, for $1 \ge \bar{x}_0 \ge 0$, represents an element of $\pi_{n-1}(Z, Y, e(\bar{x}_0))$, ii) $f(0, x_1^n) = f(1, x_1^n) = *$

Such a mapping f may also be described as follows;

$$f(x^{n}) = * \text{ when } x_{0}(x_{0}-1) = 0,$$

$$= e(x_{0}) \text{ when } (x_{n-1}-1) \prod_{i=1}^{n-2} x_{i}(x_{i}-1) = 0,$$

$$\epsilon Y \text{ when } \prod_{i=0}^{n-1} x_{i}(x_{i}-1) = 0.$$

Two such functions f and g, belonging to σ_n , are multiplied together according to the rule:

$$f \cdot (xg^n) = f(2x_0, x_1^n) \quad \text{when } \frac{1}{2} \ge x_0 \ge 0,$$
$$= g(2x_0 - 1, x_1^n) \quad \text{when } 1 \ge x_0 \ge \frac{1}{2},$$

and the resulting function $f \cdot g$ is again a member of the collection σ_n . The elements of σ_n are classified by the homotopy concept, and the multiplication in σ_n induces a multiplication in the set of homotopy classes. the classes of elements of σ_n together with the multiplication defined between them constitute a group, which I designate by $\sigma_n(Z, Y, *)$. As an immediate consequence of the definition, we remark that the identity of the group may be represented by a mapping, which transforms E^n into Y, such that $e(x^0)$, $1 \ge x_0 \ge 0$, can be shrunk in Y into the base point *. For convenience' sake K^n is referred to as the point set $\{x^n; x_0^2 + \cdots + x_{n-1}^2\}$ ≤ 1 and then the boundary K^n of K^n is of course an (n-1)-dimensional sphere S^{n-1} . Now consider a mapping φ of E^n onto K^n such that $\varphi(x^n(0, x_1^n)) = p_0, \ \varphi(x^n(1, x_1^n)) = p_1, \ \text{where} \ p_0 \ \text{and} \ p_1 \ \text{are two distinct points}$ on K^n ; all the points of the same partial coordinate x_0 on the faces (x_{n-1}) -1) $\prod_{i=0}^{n-2} x_i(x_i-1) = 0$ are mapped continuously by φ to a point of the arc C on S^{n-1} joining p_0 to p_1 ; and the interior of E^n into the interior of K^n . (See figure 1, n=3) Then we have a mapping \bar{f} of K^n into Z such that $f(x^n) = \bar{f}\varphi(x^n)$ and designate by $\bar{\sigma}_n$ the set of all the mappings which transform K^n into Z, S^{n-1} into Y, and two points on S^{n-1} into *. It is easy to see that two function spaces σ_n and σ_n are homeomorphic by the

correspondence φ . For the reasons that an element of σ_n can be grasped in an intuitive manner and also be compared quite clearly with a representative of an element of the relative homotopy group $\pi_n(Z, Y, *)$, it seems advantageous to refer to the function space σ_n . As is well known, an element of $\pi_n(Z, Y, *)$ may be represented by a mapping which transforms K^n , into Z, S^{n-1} into Y, and the arc C on S^{n-1} joining p_0 to p_1 into *. The set of all such mappings will be denoted by Π_n . In order to avoid confusion we agree that the homotopic relation in Π_n is described by the symbol \approx , while in case of such a relation in σ_n or σ_n the symbol \approx will be used.

2. Algebraic structure of $\sigma_n(Z, Y, *)$.

First we shall prove that $\sigma_n(Z, Y, *)$ contains a subgroup $\pi_n(Z, Y, *)$ isomorphic to $\pi_n(Z, Y, *)$, and then that the factor group of $\sigma_n(Z, Y, *)$ by $\overline{\pi}_n(Z, Y, *)$ is isomorphic to the group $\overline{\pi}_1(Y, *)$, where $\overline{\pi}_1(Y, *)$ denotes a subgroup of $\sigma_n(Z, Y, *)$ isomorphic to $\pi_1(Y, *)$.

It is obvious that for two mappings f and g belonging to Π_n , $f \sim g$, if $f \approx g$. In order to prove the first assertion it is sufficient to show that if $f \sim g$, then $f \approx g$. Since $f \sim g$, there exists a mapping h(x, s) belonging to $ZK^n \times I$ such that h(x, o) = f(x) and h(x, 1) = g(x) for $x \in K^n$.

Furthermore $h(x, s) \in Y$, if $x \in S^{n-1}$ and $s \in I$,

$$h(p_0, s) = h(p_1, s) = * \text{ for } s \in \tilde{I}$$

As a point set $\{C \times (0) + C \times (1) + \rho_0 \times \widetilde{I}\}\$ is a deformation retract of $c \times \widetilde{I}$, a deformation D_t can be defined. (See figure 2) Let $\{s^{n-1} \times (0) + s^{n-1} \times (1) + c \times \widetilde{I}\}\$ be denoted by T, then a mapping $\varphi(x, s, t)$ of $\{S^{n-1} \times \widetilde{I} \times (0) + T \times \widetilde{I}\}\$ into Y is defined as follows;

$$\varphi(x, s, o) = h(x, s) \quad \text{when } x \in S^{n-1}, s \in \overset{s}{I},$$

$$\varphi(x, o, t) = h(x, o) = f(x) \text{ when } x \in S^{n-1}, t \in \overset{t}{I},$$

$$\varphi(x, 1, t) = h(x, 1) = g(x) \text{ when } x \in S^{n-1}, t \in \overset{s}{I},$$

$$\varphi(x, s, t) = h(D_t(x, s)) \quad \text{when } x \in C, s \in \overset{s}{I}, \text{ and } t \in \overset{t}{I},$$

then the continuity of the mapping φ is verified from the following considerations. As an immediate consequence of the definition of D_t , we have

 $\varphi(x, o, t) = h(D_t(x, 0)) = h(x, 0) = f(x) = *, \varphi(x, 1, t) = g(x) = * \text{ if } x \in C$ and $t \in I$, and $\varphi(x, s, 0) = h(D_0(x, s)) = h(x, s)$ if $x \in C$ and $s \in I$. It should be noted that $\varphi(x, s, 1) = h(D_1(x, s)) = * \text{ when } x \in C \text{ and } s \in I$. Since T is a subcomplex of $S^{n-1} \times I$, $\{S^{n-1} \times I \times I \times (0) + T \times I\}$ may be regarded as a deformation retract of $S^{n-1} \times I \times I$ so that φ defined on $\{S^{n-1} \times I \times I \times (0) + T \times I\}$ can be extended continuously to a mapping of $S^{n-1} \times I \times I$ into Y. This extended mapping φ can be extended again in the following manner:

$$\Psi \equiv \varphi \qquad \text{on } S^{n-1} \times \overset{s}{I} \times \overset{t}{I},
\Psi(x, o, t) = f(x) \qquad \text{when } x \in K^n, t \in \overset{t}{I},
\Psi(x, 1, t) = g(x) \qquad \text{when } x \in K^n, t \in \overset{t}{I},
\Psi(x, s, o) = h(x, s) \qquad \text{when } x \in K^n, s \in \overset{s}{I},$$

thus Ψ is defined on the complex $\{K^n \times I \times (0) + S^{n-1} \times I \times I + K^n \times (0) \times I + K^n \times (1) \times I \} = \{S^{n-1} \times I + K^n \times (0) + K^n \times (1)\} \times I + K^n \times I \times (0) \text{ which is a deformation retract of } K^n \times I \times I \text{.}$ Therefore Ψ can be extended to a mapping of $K^n \times I \times I \text{ into } Z$, which we denote by the same letter Ψ . Now the partial mapping $\Psi | K^n \times I \times (1) = \chi(x, s)$ is such that $\chi(x, 0) = f(x)$, $\chi(x, 1) = g(x)$, and $\chi(x, s) = *$ if $x \in C$, $s \in I$, and therefore the first assertion is established.

The next part of our assertion was $\sigma_n(Z,Y,*)|\overline{\pi}_n(Z,Y,*) \underset{=}{\cong} \overline{\pi}_1(Y,*)$. To every mapping $f \in \sigma_n$, let there correspond an element f° defined by the rule $f^{\circ}(x_0) \underset{=}{\cong} f(x_0, 0, \dots, 0)$. Then f° represents an element of $\pi_1(Y,*)$. As we can easily verify that $f \xrightarrow{} g \xrightarrow{} f^{\circ} \xrightarrow{} g^{\circ}$ and $(f \cdot g)^{\circ} = f^{\circ} \cdot g^{\circ}$, φ induces a homomorphism φ of $\sigma_n(Z,Y,*)$ into $\pi_1(Y,*)$. Next a correspondence $\varphi: a \xrightarrow{} a^{\psi}$, where a is a representative of an element ε of $\pi_1(Y)$, is defined by the rule $a^{\psi}(x^n) \underset{=}{\cong} a(x_0)$, and a^{ψ} represents an element of $\sigma_n(Z,Y,*)$. As in case of φ it is easily verified that φ induces a homomorphism Ψ of $\pi_1(Y,*)$ into $\sigma_n(Z,Y,*)$. Moreover $(a^{\psi})^{\circ} = a$, so that φ is a homomorphism of σ_n onto π_1 and as $\varphi \Psi = 1$, Ψ is an isomorphism of π_1 into σ_n . Hence it follows that $\sigma_n(Z,Y,*)$ contains a subgroup $\overline{\pi}_1(Y,*)$

isomorphic to $\pi_1(Y, *)$. Furthmore, it is easy to see that the kernel of Φ is contained in $\pi_n(Z, Y, *)$ and conversely $\Phi(\overline{\pi}_n(Z, Y, *)) = 1$, so that our assertion is completely proved.

3. Remarks on relatively free homotopy.

 $h_t(s, x_1, \dots, x_{n-1})$, then

By using the structure of the group $\sigma_n(Z, Y, *)$, we shall give some remarks on relatively free homotopy. First we prove $u^{\xi} = \xi \ a \ \xi^{-1}$, where $u \in \pi_n(Z, Y, *), \xi \in \pi_1(Y, *)$ and $\overline{\xi} = \Psi(\xi)$ just used in the proof in the last paragraph. From the definition of u^{ξ} , two mappings f, g representing a and a^{ξ} respectively, are relatively free homotopic with respect to the path $e(x_n)$ so that a mapping $F(x^{n+1})$ of $E^n \times I$ into Z can be defined as follows:

$$F(x^{n}, 1) = f(x^{n}), F(x^{n}, 0) = g(x^{n}), \text{when } x \in E^{n},$$

$$F(x^{n+1}) \in Y \text{when } x^{n} \in \dot{E}^{n},$$

$$F(x^{n+1}) = e(x_{n}) \text{when } (x_{n-1} - 1) \prod_{i=0}^{n-2} x_{i}(x_{i} - 1) = 0.$$

Denote a system of curves drawn on the face $x^{n+1}(x_0, 0 \cdots 0, x_n)$ as in figure 3 by a system of parametric equations, $x_0 = \varphi_t(s)$ and $x_n = \psi_t(s)$, where for a fixed t, $1 \ge t \ge 0$, $x^{n+1}(\varphi_t(s), 0 \cdots, 0, \psi_t(s))$ forms a curve according as s varies from 0 to 1. Define $\mathring{F}(\varphi_t(s), x_1, \cdots, x_{n-1}, \psi_t(s)) =$

$$h_0(s, x_1^n) = F(\varphi_0(s), x_1^n, \psi_0(s)) = F(x_0, x_1^n, 0) = g(x^n)$$

$$h_1(s, x_1^n) = F(\varphi_1(s), x_1^n, \psi_1(s)) = \begin{cases} F(0, x_1^n, x_n) & \text{if } \frac{1}{3} \ge s \ge 0, \\ F(x^n, 1) & \text{if } \frac{2}{3} \ge s \ge \frac{1}{3}, \\ F(1, x_1^n, x_n) & \text{if } 1 \ge s \ge \frac{2}{3}. \end{cases}$$

Since $F(x^n, 1) = f(x^n)$, $F(0, x_1^n, x_n) = e(x_n)$, and $F(1, x_1^n, x_n) = e(x_n)$, it is obvious that $\bar{\xi}$ \bar{u} $\bar{\xi}^{-1}$. Moreover we see that h_t belongs to σ_n , from the following considerations

$$\begin{split} h_t(0,\ x_1^n) = & F(\varphi_t(0),\ x_1^n, \psi_t(0)) = F(0,\ x_1^n,\ 0) = g(0,\ x_1^n) = *, \\ h_t(1,\ x_1^n) = & F(\varphi_t(1),\ x_1^n,\ \psi_t(1)) = (1,\ x_1^n,\ 0) = g(1,\ x_1^n) = *, \\ h_t(\overline{s},\ x_1^n,) = & F(\varphi_t(\overline{s}),\ x_1^n,\ \mathcal{F}_t(\overline{s})) = e(\mathcal{F}_t(\overline{s})) \text{ when } (x_{n-1}-1) \underset{i=1}{\overset{n-2}{\coprod}} x_i(x_i-1) = 0, \\ h_t(\overline{s},\ x_1^n) \in Y & \text{when } \underset{i=1}{\overset{n-1}{\coprod}} x_i(x_i-1) = 0. \end{split}$$

Thus it is concluded that $g \sim h_1 = a \ a \ a^{-1}$, namely $a^{\xi} = \overline{\xi} \ a \ \overline{\xi}^{-1}$, and the proof is completed.

If $a^{\xi} = a$ for any ξ of $\pi_1(Y, *)$, then $a = \xi$ $a \xi^{-1}$ so that an element belonging to $\bar{\pi}_n(Z, Y, *)$ commutes with every element of $\sigma_n(Z, Y, *)$. Thus it follows that $\bar{\pi}_n(Z, Y, *)$ lies in the center of σ_n and that $\sigma_n(Z, Y, *)$ may be said to be isomorphic to the direct product of $\bar{\pi}_n(Z, Y, *)$ and if $\bar{\pi}_1(Y, *)$ (Z, Y) is relatively n-simple. Conversely it is also proved that (Z, Y) is relatively n-simple when $\sigma_n(Z, Y, *) \cong \pi_n(Z, Y, *) \oplus \pi_1(Y, *)$. Evidently the pair (Z, Y) is relatively simple in any dimension n for $n \geq 3$, if Y is simply connected.

4. Case $n \geq 2$.

In case of n=1 the definition of the relative homotopy group $\pi_1(Z, Y, *)$ is inapplicable unless Y=*, and when Y=* and n=1, the discussions are reduced to M. Abe's ones. When n=2, the same results as in case n=3 will hold true if the definition of $\sigma_2(Z, Y, *)$ is slightly changed as follows. Both homotopy and multiplication are defined as usual among the set of all the mappings, each of which satisfies the conditions: $f(x^2)=*$ when $x_0(x_0-1)=0$ and $f(x^2) \in Y$ when $\prod_{i=0}^1 x_i(x_i-1)=0$. Thus the homotopy classes, together with the multiplication, constitute a group $\sigma_2(Z, Y, *)$, in which all the theorems mentioned above are proved in an analogus way as in case $n \geq 3$.

Institute of Mathematics, Nagoya University.

Bibliography

1) Abe, M., Über die stetigen Abbildingen der n-Sphäre in einen metrischen Raum. Jap. J. Math. 16 (1940) 169-176.