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\S 1. Introduction.

It is well known that a function, which maps a circular disc or a
-half-plane onto the interior of a polygon, is given by the formula of
Schwarz-Christoffel. Let $’\iota=f(\approx)$ be such a function and let the image-
polygon, laid on w-plane, have $m$ vertices corresponding to the points $a_{\mu}$

$(\mu=1,\ldots, m)$ on 2-plane. Denoting by $a_{\mu}\pi(0<\alpha_{\mu}<2)$ the interior angle
at vertex $f(a_{\mu})$ , the Schwarz-Christoffel formula may be written as
follows:

$f(2)=C\int^{z}\prod_{\mu=1}^{m}(a_{\mu}-z)^{\alpha_{\mu}-1}d\approx+C^{\prime}$ , $(1\cdot 1)$

where $C$ and $C^{\prime}$ are both constants depending on position and magnitude
of image-polygon.

The present author has previously shown that this formula can be
generalized to the case of analogous mapping of doubly-connected domains.1)

We may take, as a standard doubly-connected basic domain, an annular
domain $q<|2|<1,-lgq$ being a uniquely determined conformal invariant,
$i$ . $e$ . the so-called modulus (Modul) of given polygonal domain. Let the
boundary components corresponding to circumferences $|2|=1$ and $|z|=q$ be
polygons with $m$ and $n$ vertices respectively. Let further $ a_{\mu}\pi$ and $\beta_{\nu}\pi$

denote the interior angles (with respect to each boundary polygon itself).
at vertices $f(e^{i\varphi_{\mu}})$ and $f(qe^{iw_{\nu}})$ respectively. The mapping function $w=f(2)$

is then given by the formula

$*)$ A preliminary report under the same title has been published in K dai Math. Sem.
Rep. Nos. 3-4 (1949), 47250.

1) Y. Komatu, Darstellungen der in einem Kreisringe analytischen Funktionen nebst den
Anwendungen auf konforme Abbildung uber Polygonalringgebiete. Jap. Journ. Math. 19 (1945),
203-215 $\cdot$
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$f(2)=c\int^{z}22ic^{*}-1_{\prod_{\mu=1}^{m}}-1/\nu^{n}=1II\sigma_{3}(ilg2+\psi_{\nu})^{\beta_{\nu}-1}\cdot d_{2}+C^{\prime}$ , $(1 \cdot 2)$

where the sigma-functions are those of Weierstrass with primitive periods
$ 2\omega_{1}=2\pi$ and $2\omega_{n,}=-2ilgq$ , and the constant $c^{*}$ is given by

$c^{*}=\frac{\eta_{1}}{\pi}(\sum_{\mu=1}^{m}(1-\gamma_{\mu})\varphi_{\mu}-\sum_{\nu=1}^{n}(1-\beta_{\nu})\psi_{\nu})$ ; $(1 \cdot 3)$

the constants $C$ and $C^{\prime}$ having similar meanings as before. It can be
shown moreover that Schwarz-Christoffel formula $(1 \cdot 1)$ for basic domain
$|_{\sim}\theta|<1$ may be regarded as being a limiting case of $(1 \cdot 2)$ when $q\rightarrow 0$ .

On the other hand, any function $w=f(\sim\alpha)$ which maps a circular disc
or a half-plane on ,,-plane onto the interior of a circular polygonal domain,
$i$ . $e$ . the interior of a polygon having circular arcs as sides, is linear-
polymorphic. A differential equation of the third order of the form

$\{f(\sim’\cdot), z\}=R(\sim^{\prime}’)$ $(1 \cdot 4)$

holds good always for such a function $f(\sim)$ . The left hand member of
the equation denotes, as usual, Schwarzian derivative of $f(-\prime\prime)$ with respect
to 2, $i$ . $e$ .

$\{f(\rightarrow^{\prime}’), \sim r\}\equiv\frac{f^{\prime\prime\prime}(\sim\sim)3}{f(\approx)2}(\frac{f^{\prime\prime}(2)}{f’(2)})^{2}=\frac{d^{2}}{d_{\sim}^{\alpha}}lgf^{\prime}(\sim)-\frac{1}{2}(\frac{d}{d_{\rightarrow}^{\sim}}lgf^{\prime}(\sim\sim))^{\underline{o}}$ ,

and $R(r)$ is a rational function $\backslash \iota^{r}$hich possesses, as poles of order two
at most, the points $a_{\mu}(\mu=1,\ldots, m)$ corresponding to the vertices of image-
polygon. More precisely, if we denote by $’/_{\mu}\pi$ the interior angle at $f(a_{\mu})$

of the image-polygon, we have, at poles in question,

$\lim_{z\rightarrow a_{\mu}}(r’-a_{\mu})^{\underline{o}}R(\approx)=\frac{1-\sigma_{\mu}^{2}}{2}$ .

The above mentioned results $(1 \cdot 1)$ and $(1 \cdot 4)$ are usually derived by
making use of analytic continuability of mapping function, that is, by
performing successive inversions with respect to boundary arcs. But the
author of this paper previously pointed out that Schwarz-Christoffel formula
$(1 \cdot 1)$ is deduced immediately also from Poisson’s integral representation
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of functions analytic in a circular disc.2) He then derived the formula
$(1 \cdot 2)$ by means of Villat’s integral representation3) of function\S analytic in
an annular domain. However it will be shown that the formula (1.2)
can also be derived by the classical method without difficulty.

We can, on the other hand, consider the problem of generalization
of $(1 \cdot 4)$ corresponding to that of $(1 \cdot 1)$ to $(1 \cdot 2)$ . In the present Note,
we shall $d^{\circ}.rive$ , from a more general stand-point, general relations corres-
ponding to $(1 \cdot 1)$ and $(1 \cdot 4)$ in the case of multiply-connected domains,
and then, by s,oecifying them to doubly-connected case, we shall obtain
the expression $(1 \cdot 2)$ again and $th\backslash $. sesult generalizing $(1 \cdot 4)$ too.

\S 2. Mapping onto circular polygonal domains.

Consider, in w-plane, an n-ply-connected domain $\Delta$ . whose boundary
consists of $n$ circular polygons $\Gamma_{j}(j=1,\ldots, n)$ , each $\Gamma_{j}$ being formed
by $rn_{j}$ circular arcs. We can now take several types of domains as standard
$7t$-ply-connected basic domains. But here we shall first take a domain $D$

bounded by $n$ full circles.4) Such a domain $D$ is uniquely determined
for the given domain $\Delta$ , except possible linear transformations. A domain
of this type is defined in general by $3n$ real parameters denoting the
coordinates of centres and the radii of $n\acute{b}$oundary circles. But, since a
linear transformation depends on 6 real parameters, essentially 3$n-6reaI$
conformil invariants belong to an n-ply-connected domain (with non-
boundary components) as moduli, provided $rz>2$ . In degenerating an
exceptional case $n=2$ , there exists just one invaliant, and in the case
$n=1$ there remains freedom corresponding to 3 real parameters.

Now, let the boundary circle of $D$ corresponding to $\Gamma_{j}$ be

$C_{j}$ : $|z-c_{j}|=r_{j}$ $(’=1,\ldots\prime 7l)$ , $(2 \cdot 1)$

2) Y. Komatu, Einige Darstellungen analytischer Funktionen und ihre Anwendrgen auf
konforme Abbildung. Proc. Imp. Acad. Tokyo 20 $(194l),$ $536-541$ .

3) For a brief proof of Villat’s representation, see Y. Komatu, Sur la repr\’esentation de
Villat pour les fonctions analytiques d\’efinies dans un anneau circulaire concentrique. Proc. Imp.
Acad. Tokyo 21 (1945), 64-96.

4) As to the possibility of taking such a domain, see $e$ . $g$ . R. Courant, Plateau’s problem
and Dirichlet’s principle. Ann. of Math. 38 (1937), 679-724; L. R. Ford, Automorphic functions.
New York (1929), p. 279 et seq.
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and the mapping function be, as before, $’\iota v=f(2)$ . Let further the points
corresponding to vertices of $l_{j}^{7}$ be $a_{j\mu}(\mu=1,\ldots, m_{j})$ and the interior angle
of $l_{j}^{\tau}$ at its $ve$rtex $f(a_{j\mu})$ with respect to $\Delta$ be $a_{j\mu}\pi(0\leqq a_{j\mu}\leqq 2)$ . The
function $f(.)$ remains, of course, regular cvcn on each interior part of $C_{j}$

divided by $a_{j\mu}$ . If we denote the inversion 2 $|\approx j^{*}$ with respect to $C_{j}$ by

$\approx J^{*}=\lambda_{j}(z)\equiv c_{j}+\frac{r_{j^{\underline{o}}}}{\overline{\sim_{\rightarrow}\sim}-\overline{c}_{j}}$ ,

then $\lambda_{j}(_{\sim})$ being all linear in $\sim\approx$ the composed functions

$l_{jk}(2)--\lrcorner_{j}(\lambda_{k}(z))$ $(J^{\prime}k=1,\ldots, r\iota)$ $(2\cdot 2)$

are also all linear with $re$spect to 2. The transformatIon 2 $|l_{jk}(z)$ is com-
posed of successive inversions with respect first to $C_{k}$ and next to $C_{j}$

Since operation of inversion is involutory, $i$ . $e$ . the identity $\lambda_{j}^{-1}(\approx)=\lambda_{j}(2)$

holds, we have $l_{jj}(2)=z$ and

$J_{jk}^{-1}(\sim\alpha)=\lambda_{k}^{-1}(\lambda_{j}^{-\rceil}(\sim\sim))=\lambda_{k}(l_{\backslash }j(2))=l_{kj}(2)$ .
The aggregate of all linear transformations corresponding to.inversions
repeated even times with respect to boundary circles (2 $\cdot$ 1) forms a group

$\mathfrak{G}$ generated thus by $(_{2}^{n})$ linear transformations $\sim|l_{jk}(\sim\alpha)(j<k)$ .
After these preparatory $consider_{c}^{\wedge}.tions$ , we shall now state a result

generalizing $(1\cdot 4)$ :
Theorem 1. Let $w=f(z)$ denotc a mapping function from $D01_{1}^{\backslash }to$

$\Delta$ . Then

$\{f(2), z\}d_{2^{\underline{o}}}$ $(2 \cdot 3)$

is an automorphic differential belonging to the group $\mathfrak{G}$ , whose $fundamer_{\wedge}ta1$

’domain may be composed of the basic domain $D$ itself and its inverse
image-domain with respect to any one of boundary circles of $D$ (speaking
more exactly, the fundamental domain must be the open kernel of closure
of the above mentioned one). The function $\{f(z), z\}$ , being meromorphic
in $\overline{D}\equiv D+\Sigma_{j}^{n_{=1}}C_{j}$ , is regular everywhere possibly except at $a_{j\mu}(\mu=1,\ldots,$ $m_{j}$ ;

$j=1,\ldots,$ $n$), where a pole of order at most two appears as shows the
following formula

$z-*a_{j\mu}\lim(\approx-a_{j\mu})^{\underline{\prime}}\{f(\approx), z\}=\frac{1-a_{u}^{\frac{o}{j}}}{2}$ . $(2\cdot 4)$
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Proof. The mapping function $’\angle v=f(z)$ can be analytically continued
to an in general, infinitely many-valued function. It maps thus a domain
which results from the original one, $D$ , by successive inversions with
respect to $C_{j}$ , onto a domain which results from $t\Delta$ by corresponding
inversions $\cdot$ with respect to $l_{j}^{7}$ . The Riemann surface of this analytic
function lying on $\rho\sim$-plane possesses, as its branch points, the points $a_{j\mu}$

and their equivalents obtained by the transformations of $\mathfrak{G}$ . These con-
tinu tions are performed on 2-plane by applying all transformations of $\mathfrak{G}$

to the join of $D$ and its inversion-image with $re$spect to any one of
boundary circles of $D$ . Let now $z|L(\vee \mathcal{P})$ be any transformation of $\mathfrak{G}$

The value of $f(L(z))$ is then obtained from $f(\alpha)$ by applying a linear
transformation which is causcd on zv-plane by successive inversions repeated
even times corresponding to $L(z)$ . We therefore have a functional
relction of the form

$f(L(\sim\alpha))=\frac{gf(r\prime)+\nearrow l}{g^{\prime}f((\sim^{-}\cdot)+h}$ , $(2 \cdot 5)$

the constants $g,$ $\nearrow\iota,$ $a^{\sigma^{\prime}}’\nearrow l^{\prime}$ being determined by the order of inversions
which constitute the transformation $L(\rightarrow\sim)$ . If we transform the variables
by $\xi^{\underline{\prime}}=,(x)$ and $\eta=\eta(y)$ , the Schwarzian derivative is transformed accor-
ding to the formula

$\{\eta, \xi\}=\{\eta,y\}(\frac{dy}{d\tilde{\sigma}})^{\lrcorner}9+\{y, x\}(\frac{dx}{0\xi})^{\underline{o}}-\{\xi, x\}(\frac{dx}{d^{\underline{-}}})^{\urcorner}\rightarrow$ $(2\cdot 6)$

Putting for brevit.$vz^{*}=L(2)$ , we hence have

$\{f(z^{*}), z^{*}\}=\{f(\sim r^{*}),f(\sim r)\}(\frac{df(z)}{d\approx^{*}})^{\underline{o}}+\{f(2), \sim r\}(\frac{\&}{d_{2^{*}}})^{\underline{o}}-\{z^{*}, z\}(\frac{d_{2}}{dz^{*}})^{\underline{o}}$

Now, since 2* is a linear function of $z$ and $f(\sim\sim‘)$ $i^{c}$ , by $(2 \cdot 5)$ , also
a linear one of $f(2)$ , we have $\{2^{*}, \sim\alpha\}=\{f(2^{*}),f(z)\}=0$ . Consequently,
the relation of automorphism

$\{f(\approx^{*}), \sigma*\}d\mathscr{C}^{*2}=\{\acute{f}(\sim\sigma), \sim\}cf_{\sim^{>}}^{2}$

holds good; namely any transformation $\sim\alpha*=L(\sim)$ of $\mathfrak{G}$ leaves the differen-
tial expression $(2 \cdot 3)$ invariant. Clearly, Schwarzian derivative $\{f(z), z\}$

can possess its singularities only at $a_{j\mu}$ and their equivalents with respect
to $\mathfrak{G}$ In the first place, if $//_{j\mu}$

“ $0$ , each branch of $(f(r)-f(a_{j\mu}))^{1/a_{j\mu}}$ is
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regular in a vicinity of $a_{j\mu}$ and possesses this own point as zero point of
the first order. Hence $f(2)$ is expressed there as

$ f(\sim\sim)=f(a_{j\mu})+[y_{j\mu}(2-u_{j\mu})^{\alpha_{j\mu}}+\ldots$ $(b_{j\mu\grave{5}}0)$ .

We calculate the successive derivatives of this expression and form the
Schwarzian derivative as follows:

$ f^{\prime}(’.\cdot)=b_{j\mu\cdot j\mu}//(\rho\ell-a_{j\mu})^{a_{j\mu}-1}+\ldots$ ,

$\frac{d}{d^{\alpha}}$Ig $ f^{\prime}(2)=\frac{r/j\mu-1}{z-a_{j\mu}}+\ldots$ , $\frac{d^{2}}{d_{\sim}^{\underline{o}}\prime}lgf^{\prime}(0\sim)=-\frac{a_{j\mu}-1}{(2-a_{j\mu})^{\underline{o}}}+\ldots,$ $(2\cdot 7)$

$)f(\sim\prime\prime),$ $\epsilon’$ } $=-\frac{r_{j\mu}/-1}{(\theta-a_{j\mu})^{\underline{o}}}+\ldots-\frac{1}{2}(\frac{a_{j\mu}-1}{\sim\sim-a_{j\mu}}+\ldots)_{(\sim-a_{j^{\underline{o}}\mu})^{\underline{o}}}^{1-a_{\mu}}2=\frac{1}{2}\sim+\ldots$ .

which $yi_{\vee}^{a}1ds$ the desired relation $(2 \cdot 4)$ . In the second place, if $a_{j\mu}=0$ ,
we use intermediately the expression exo $(b_{j\mu}^{\prime}/(f(\sim\alpha)-f(a_{j\mu})))$ in place
of $(f(z)-f(a_{j\mu}))^{1/a_{j\mu}}$ and can arrive again to the result $(2 \cdot 4)$ with $a_{j1}$.
$=0$ .

In a particular case, $n=1$ , that is, when $\Delta$ is simply-connected, $\mathfrak{G}$

degenerates to a trivial group composed of a unique transformation, the
identity. In virtue of this degeneration, the automorphic property $(2 \cdot 3)$

vanishes out, and the $Schwarzian\backslash $ derivative $\{f(2), z\}$ becomes an analy-
tic function possessing $a_{\mu}(\equiv a_{1\mu})(\mu=1,\ldots, m)$ as its poles of order at most
two, and hence becomes a rational function.

If the image-domain $\Delta$ is $particnlarl\grave{y}$ bounded by rectilinear polygons,
more concrete properties of mapping function $f(\sim r)$ can be delived. In
fact, we have the following theroem:

Theorem 2. If, in the theorem 1. the boundaly components of 4
are all rectilinear polygons, then the differential expression

$d_{2}lgd_{1}f(\approx)\equiv d_{2}lg(f^{\prime}(\sim’\cdot)d_{1,\backslash ^{\wedge l}}.)=(\frac{f^{\prime\prime}(2)}{f(2)}+\frac{d_{2}d_{1^{p}}}{a_{2}\sim d_{1}\leftrightarrow})d_{2^{2}}$ ( $ 2\cdot\delta\rangle$

possesses automorphic property, $d_{1}$ and $d_{2}$ both denoting differentiation
operators. The function $f^{\prime\prime}(z)/f^{\prime}(\approx)$ meromorphic in $D$ is regular except
at the point $a_{j\mu}$ which are poles of order one with residue $a_{j\mu}-1$ .

Proof. By virtue of the assumption on rectilinearity of the boundary
polygons, any successive inversion repeated even times with respect to $\Gamma_{j}$
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degenerates merely to a translation. Hence, for any transformation $z|L(z)$

of $\mathfrak{G}$ , the relation (2 $\cdot$ 5) takes a simpler form

$f(L(z))=gf(z)+fi$ $(|g|=1)$ .
Consequently we now have

$d_{1}f(\sim r^{*})=gd_{1}f(r)$ , $d_{2}lgd_{1}f(\rightarrow\sim*)=d_{2}lgd_{1}f(z)$ ,

putting $\sim r^{*}=L(z)$ . Any transformation $z|z^{*}$ belonging to $\mathfrak{G}$ leaves there-
fore the expression $(2 \cdot 8)$ invariant. Clearly, $f^{\prime\prime}(2)/f^{\prime}(z)$ is regular
except at the points $a_{j\mu}$ and at their equivalents. In a vicinity of $a_{j\mu}$ we
have

$\frac{f^{\prime\prime}(z)}{f^{\prime}(z)}=\frac{\sigma_{j\mu}-1}{\sim\sim-a_{j\mu}}+\ldots$ ,

as was seen in the proof of the preceding theorem (cf. (2 $\cdot 7)$ ), which
proves the present theorem.

In the particular case $n=1,$ $\mathfrak{G}$ consists of the identical transforma-
tion alone. The automorphic property thus vanishes out. and $f^{\prime\prime}(z)/f^{\prime}(z)$

becomes an analytic function in the entire plane, possessing $ a_{\iota}(\equiv a_{1\mu})(\mu$

$=1,\ldots,$ $m$) as poles of order one. Furthermore, since $f(\approx)$ remains evidently
$re$gular at $\infty(\neq a_{\mu})$ , we have

$\frac{f^{\prime\prime}(z)}{f(z)}=\sum_{\mu=^{\tau_{\wedge}}}^{m}\frac{(/_{\mu}-1}{z-a_{\mu}}$

which, by integration, implies just the Schwarz-Christoffel formula $(1 \cdot 1)$ .

\S 3. Specialization to doubly-coonnected domains.

In the case of doubly-connected domains, we can tak $e$ the annular
domain $D$ : $q<|z|<1$ as a standard basic domain of modulus $-lgq$.
Two general theorems of the last section then take more clear and
concrete forms. In the first place, by specializing theorem 1, we obtain
the following result:

Theorem 3. Any function $\prime tv=f(z)$ , mapping annular domain $D$ onto
a ring domain $\Delta$ bounded by two circular polygons, satisfies the differential
equation of the third order
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$\{f(z), \sim\sim=\}\frac{E(i1g.)}{\sim\leftrightarrow^{\underline{\circ}}}\succ$ $(3\cdot 1)$

$E(Z)$ being an elliptic function with primitive periods $ 2\pi$ and $-2ilgq$
(or being a constant). If we now denote by $e^{i\varphi_{\mu}}(\mu=1,\ldots, m)$ and $qe^{iy_{\nu}}1$

$(\nu=1,\ldots, n)$ the points corresponding to vertices of boundary polygons $\Gamma_{1}$

and $\Gamma_{2}$ of $\Delta re$spectively and further by $ a_{1\mu}\pi$ and $c/_{\wedge\nu}0\pi$ the intelior angles
of $\Gamma_{1}$ and $\Gamma_{2}$ at vertices $f(e^{i}\mu)$ and $f((\int c^{\prime}i1v_{\nu})$ respectively, then the function
$ E(\partial$ possesses at $Z=-\varphi_{\mu}$ and at $Z=-f^{b_{\nu}+ilgq}$ its primitive poles of
order at most two, and further satisfies

$\lim_{Z\rightarrow-\varphi_{\beta}}(Z+\varphi_{\mu})^{2}E(\swarrow_{d}^{\prime})=\frac{1-a_{1^{\frac{o}{\mu}}}}{2},\lim_{Z\rightarrow-\Psi\nu^{+ngq}}(Z+\psi_{\nu}-ilgq)^{-}E(Z)=\frac{1-(/^{2}\underline{9}\nu}{2}$ . $(3\cdot 2)$

Proof. Since the basic domain $D$ is supposed to be $q<|z|<1,$ $i$ iver-

sions with respect to its bounding circles are given by $\lambda_{1}(\approx)=1/\overline{\approx}$ and
$\lambda_{\eta}(2)=\mathscr{T}\gamma_{\overline{z}}$ . Hence, $\mathfrak{G}$ is a cyclic group generated by a unique trans-
formation

$z|l_{1^{\underline{\circ}}}(z)=\frac{2}{q}\underline{o}-$ ;

that is to say, all the transformations of $\mathfrak{G}$ are expressed in the form

$z|\frac{2}{q^{\underline{o}_{l}}}$ $(x=0, \pm 1, \pm 2,\ldots)$ .

Introducing now an auxiliary valiable $Z$, we put

$ Z=ilg\approx$ , $F(Z)=f(e^{-iZ})(=f(2))$ . $(3 \cdot 3)$

In virtue of one-valuedness of $f(\sigma)$ in $D,$ $F(Z)$ remains invaliant under
the transformation $ Z|/_{\vee}^{\prime}+2\pi$ . But the mapping function $f(\approx)$ is here
supposed to have been analytically continued over the pricked (punkliert)
plane $ 0<|_{\sim^{y}}i|<\infty$ , and is in general $infi_{11}i^{\vee}\llcorner ely$ many-valued function. Taking
account of the corresponding many-valuedness of $F(Z)$ , it must therefore
$b.e$ understood that $F(Z)$ is also subject to a linear transformation

$F(Z+2\pi)=\frac{g_{0}F(/\prime\prime)+h_{0}}{\mathscr{J}_{0}F(/\lrcorner)+\gamma_{l_{0}^{\prime}}}$ , $(3 \cdot 4)$

the coefficients depending on the manner of the continuation in question.
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This polymorphism appears even when is made the substitution $ Z|Z+2\pi$

corresponding to’the identical transformation 2 $|l_{11}(z)\equiv z$ of $\mathfrak{G}$ On the other
hand, since, to the generating li near transformation $\sim r|l_{12}(z)=2/q^{2}$ , corres-
ponds the substitution $Z|Z-2ilgq$ , we have a relation

$F(Z-2ilgq)=\frac{g,F(\nearrow_{\vee})+h}{gF(Z)+h^{\prime}}$ , $($3 $\cdot$ $b)$

coefficients depending on the manner of continuation. By virtue of \sim linear-
polymorphic properties $(3 \cdot 4)$ and $(3 \cdot 5)$ , the expression

$\Phi(Z)=\{F(Z), Z\}$ $(3\cdot 6)$

is a one-valued function of $Z$ possessing double periodicity
$\iota$

$\Phi(Z+2\pi)=\Phi(Z-2ilgq)=\Phi(Z)$ . $(3 \cdot 7)$

By a substitution of variables, Schwarzian derivative undergoes a transfor-
mation given by $(2 \cdot 6)$ . Now, since under the substitution $(3 \cdot 3)$ it holds

$\{F,f\}=0$ , $|\swarrow_{)}\bigwedge,2$ } $=\frac{1}{2\mathscr{S}}$ , $(\frac{dz}{dZ})^{2}=-\mathscr{J}^{o}$ ,

we have

$\Phi(Z)\equiv\{F(Z), Z\}=-\approx^{\underline{o}}\{f(\sim), z\}+\frac{1}{2}$ .

Putting $E(Z)=1/2-\Phi(/’\rightarrow)$ , we obtain the desired differential equation
$(3 \cdot 1)$ . That the function $E(Z)$ also possesses double periodicity $E(Z+2\pi)$

$=E(Z-2ilgq)=E(Z)$ , is an imrnediate consequence of $(3\cdot 7)$ . Clearly,
its primitive $period\dot{s}$ are $ 2\pi$ and $-2ilgq$ (if $\Delta$ itself is a circular ring, then
$E(Z)\equiv 0)$ . In order to investigate the singularities of $E(\prime Z)$ , we restrict
ourselves to the periodicity parallelogram (rectangle !)

$-2\pi\leqq \mathfrak{R}Z<0$ , 2 $lgq\leqq \mathfrak{J}’/\vee<0$ . $(3\cdot 8)$

This rectangle co.rresponds to the fundamental domain $q^{2}<|2|<1$ adjoined
by its interior circumference. The possible singularities of $F(2)$ belonging
to $(3 \cdot 8)$ appear only at $Z=-\varphi_{\mu}$ and at $Z=-\psi_{\nu}+ilgq$ which correspond
to $z=e^{i\varphi_{\mu}}$ and $z=qe^{i\Psi_{\nu}}$ respectively. The method used in the proof of
theorom 1 here also leads us immediately to the relations $(3\cdot 2)$ .
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By general theorem 1, the differential expression $(2\cdot 3)$ is to be auto-
morphic. If $D$ is in particular an annular domain $q<|z|<1$ , the group $\mathfrak{G}$

is generated, as was already seen, by the linear transformation 2 $|z^{*}=z/q^{2}$

alone. This transformation gives

$\{f(2^{*}), \approx*\}=\{f(2), r\}q^{4}$ $(\approx^{*}=\sim\sqrt q^{\underline{o}})$ ,

and hence $\{f(\approx*), z^{*}\}d_{\sim}^{p^{*\underline{o}}}=\{f(2), z\}d^{\ovalbox{\tt\small REJECT}}$, as is stated just in theorem 1.
On the other hand, the second member of (3.1) changes, on account of
the periodicity of $E(Z)$ , according as

$\frac{E(ilg\sim*)}{z^{*2}}=\frac{li(iJg\approx-2ilgq)}{(2/q)^{\underline{o}}}=\frac{E(i1g\sim\sim)}{\approx^{\underline{o}}}q^{4}(.=_{\sim/q^{o})}\sim$ ,

which $coIncides$ with the above relation. It may be remarked in passing
that the existence of another period $ 2\pi$ of $E(Z)$ corresponds to one-
valuedness of $\{f(z), z\}$ .

As was already stated in \S 1, if the boundary of doubly-conneted
domain $\Delta$ consists of two rectilinear polygons, the explicit representation
$(1 \cdot 2)$ is valid. This result has previously been obtained by the present
author by means of Villat’s integral representation, but we shall now try
to derive it again from general theorem 2.

Theorem 4. Any function, which maps the annular domain $q<|\approx|$

$<1$ onto a ring domain bounded by rectilinear polygons, is expressed by
the formula $(1 \cdot 2)$ , the constant $c^{*}$ being given by $(1 \cdot 3)$ .

Proof. Adopting the same notations as in the proof of the $pre$ceding
theorem, since the both boundary polygons are rectilinear, the relations
$(3\cdot 4)$ and $(3\cdot 5)$ become simply

$F(Z+2\pi)=g_{0}F(Z)+I_{l_{0}}$ , $F(Z-2ilgq)=gF(Z)+\gamma_{l}$ ;

$|g_{0}|=1$ , $|g|=1$ . $(3\cdot 9)$

Hence $F^{\prime\prime}(Z)/F^{\prime}(Z)$ is an elliptic function with periodicity parallelogram
$(3\cdot 8)$ . If we put $a_{1\mu}=a_{\mu}(\mu=1,\ldots, m)$ . $2-a_{2\nu}=\beta_{\nu}(\nu=1,\ldots, n)$ , its
residues at primitive poles $-\varphi_{\mu}$ and $-\psi_{\nu}+ilgq$ of order one are $a_{\mu}-1$

and $(2-\beta_{\nu})-1$ , respectively. This function can therefore be represented
in the form

$\frac{F^{\prime\prime}(Z)}{F^{\backslash }(Z)}=\sum_{\mu=1}^{m}(\ell/_{\mu}-1)\zeta(Z+\varphi_{\mu})-\sum_{\nu=1}^{n}(\beta_{\nu}-1)\zeta(Z+\psi_{\nu}-ilgq)+c$,
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ae being a constant. By $nleatlS$ of a well known formula $\zeta(\mu-ilgq)=\zeta_{3}(u)$

$+\eta_{3}$ , it may be written as

$\frac{F^{\prime\prime}(Z)}{F(Z)}=\sum_{\mu=1}^{m}(a_{\mu}-1)\zeta(Z+\varphi_{\mu})-\sum_{\nu=1}^{n}(\beta_{\nu}-1)\zeta_{3}(Z+\psi_{\nu})+c^{*}$ ,

.and thus, by integration,

$F^{\prime}(Z)=-iCe^{c^{*}\mathcal{Z}}J/\sigma(Z+\varphi_{\mu})^{a_{\mu}-1}\mu=1m/\prod_{\nu=1}^{n}\sigma_{n_{\partial}}(Z+\psi_{\nu})^{\beta_{\nu}-1}$ , (3 $\cdot$ 10)

-where $-iC$ denotes a constant resulting from the integration. A further
-integration and returning to original variables implies the desired formula.
Now it remains only to determine the value of constant $c^{*}$ In formulae

$\triangleleft n$ elliptic functions

$\sigma(u+2\omega_{1})=-e^{2\eta l(u+\omega_{1})}\sigma(u)$ , $\sigma_{3}(u\cdot|- 2\omega_{1})=+e^{2\eta_{1}(tl+\omega_{1})}\sigma_{3}(u)$ ,

$\sigma(u+2\omega_{3})=-e^{2\eta_{3}(u+\omega_{3})}\sigma(?’.)$ , $\sigma_{\mathfrak{n}_{\lrcorner}}(u+2\omega_{3})=-e^{2\eta_{3}(ll+\omega_{3})}\sigma_{3}(u)$ ,

we are here concerning with primitive periods $2\omega_{1}=2,\pi,$ $2\omega_{0_{J}}=-2ilgq$ .
Hence, remembering the relations between interior angles of each boundary
polygon

$\sum_{\mu=1}^{m}(//V-1)=_{\nu^{\frac{y}{=1}}}^{n}(\beta_{\nu}-1)=2$ ,

xve have from $(3 \cdot 10)$

$\frac{F^{\prime}(Z+2\pi)}{F^{f}(Z)}=e^{2\pi c^{*}}\prod_{\mu=1}^{m}(-e^{2\eta_{1}(Z+\varphi_{\mu}\dashv-\pi)(a_{\mu}-1)})/\prod_{v=1}^{n}e^{2\eta_{1}(Z+\phi\nu+\pi)(\beta_{\nu}-1)}$

$=(-1)^{m}\exp(2\pi c^{*}+2\eta_{1}(\Sigma^{m}-(\sigma_{\mu}-1)\varphi_{\mu}-\sum_{\nu=1}^{n}(\beta_{v}-1)\psi_{\nu}))$ .

a $d$

$\frac{F^{\prime}(\nearrow\vee-2ilgq)}{F^{\prime}(Z)}=exp(\eta_{\eta_{\lrcorner}}$ .

Th $e$ absolute value of left hand member of each of these relations is, by
$(3 \cdot 9)$ , equal to unity. Since $\eta_{3}$ is purely imaginary, $c^{*}$ must be a real con-

stant, because of $|g|=1$ . Further, since $\eta_{1}$ is real, we obtain from $|g_{0}|=1$
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$2\pi c^{*}+2\eta_{1}(\sum_{\mu=1}^{n}(\prime\prime_{\mu}-1)\varphi_{\mu}-\sum_{\nu=1}^{n}(\beta_{\nu}-1)\psi,)=0$ ,

which yields $(1 \cdot 4)$ .
Now, by substitution $(3\cdot 3)$ , we have

$\frac{F^{\prime\prime}(Z)}{F^{\prime}(\prime Z)}=-i(1+\sim\frac{f^{\prime\prime}(\sim.\sim)}{f(\sim)})$ .

Hence $4^{\prime\prime}(\sim\alpha)/f^{\prime}(z)$ must remain invariant under any transformatIon
$o\sim|2/q^{2x}$ of $\mathfrak{G}$ This fact will also be immediately confirmed from general
theorem 2. For this end, we have only to consider the generating trans-
formation 2 $|\sqrt q^{2}$ of $\mathfrak{G}$ together with the identical transformltio*l\sim r $|z$ . The
invariance of $zf^{\prime\prime}(\approx)/f^{\prime}(2)$ under the latter transformation is nothing but
the one-valuedness of th $e$ function. As to the invariance under the
former, putting $\approx^{*}=\approx/t]^{o}\rightarrow$ , we have

$d_{2}lg(f^{\prime}(’.\cdot*)d_{\iota^{\sim}}.*)=(\frac{f^{\prime\prime}(\approx^{*})}{f^{\prime}(\approx*)}+\frac{d_{2}d_{1^{\sigma^{*}}}}{d_{z^{\sim}}^{*}d_{1}\rightarrow\sim*})d_{2^{\prime}}^{*}=(\frac{1}{q^{\underline{o}}}\frac{f^{\prime\prime}(\sim\triangleright*)}{f(\sim^{\prime}\prime*)}+\frac{d_{2}d_{1^{2}}}{d_{2^{\prime\prime}}.d_{1}\sim\sim})\sqrt 2^{\sim}$

and hence, from theorem 2.

$\frac{1}{q^{\underline{o}}}\frac{\prime\prime(\prime.*)}{f^{\prime}(\approx)}=\frac{f^{\prime\prime}(\approx)}{f^{\prime}(\sim\sim)}f$ $\sim\varpi^{*}\frac{f^{\prime\prime}(\approx*)}{f^{\prime}(\sim\sim*)}=\approx\frac{f^{\prime\prime}(\sim\sim)}{f^{\prime}(\approx)}$

\S 4. Another basic domains.

As a standard multiply-connected domiin, we can take any on $e$ of
various possible types other than that used in \S 2. For instance, as are often
used, parallel slit $domlin^{6),f))}$ obtained from entire plane by cutting along
parallel segments, circular slit domain or radial slit domain which is
obtained from either entire plane, circular disc or annular ring by $cutt_{\dot{i}}ng$

along circular arcs or radial segments contained in its interior. For such
a basic domain, a group $\mathfrak{G}$ with analogous fundamental domain, eventually
extending over trvo sheets on a Riemann stlface, can also be constructed in

5) R. de Possel, Zum Parallelschlitztheorem unendlich-vielfach zusammenhangender Gebiete.
Gottinger Nachr. (1931), 192-202.

6) E. Rengel, $E$ xistenzbeweise fur schlichte Abbildungen mehrfach zusammenh\"angender
Bereiche auf gewisse Normalbereiche. Jaresber. Deutsche $M$ath.-Vereinig. 44 (1934), 51-55.
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quite similar manner as in theorems 1 and 2. These theorems themselves
remain to hold in almost the same form. We have only to carry out
a few modifications by considering that the regularity of boundary culves

is lost at end points of the slits.
Theorem 5. In any case of such a basic domain of above menti-

oned type, the conclusion of theorem 1 remains to hold with following
modifications. If an end point of a slit coincides with point $a_{j\mu}$ , the
relation $(2\cdot 4)$ is replaced by

$z\rightarrow a_{j\mu}\lim(2-a_{j\mu})^{2}\{f(\sim r), 2\}=\frac{4-//^{2}j\mu}{8}$ , $(4\cdot 1)$

and if an end poin.t, say $p$ , of a slit coincides with none of $a_{j\mu}$ , the
Schwarzian derivative has there a pole of the second order and s\’atisfies

$\lim_{z\rightarrow p}(z-p)^{2}\{f(2), z\}=\frac{3}{8}$ . $(4\cdot 2)$

Proof. It is only to prove the last part of the theorem concerning
with end points of the slits. Suppose in the first place that $a_{j\mu}$ is an end
point of a slit, then any branch of the function $(f(z)-f(a_{j\ovalbox{\tt\small REJECT}’\iota}))^{2/\alpha_{j\mu}}$ remains
regular around $a_{j\mu}$ and has a zero of the first order there. (In case of
$a_{j|A}=0$ an evident modification must be made.) Its effect is therefore to
put $c/j\mu/2$ in place of

$ a_{jJ}:.\cdot$

, which leads $(2 \cdot 4)$ to $(4 \cdot 1)$ . Next, if an end
$p_{Q}intp$ of a slit coincides with none of $a_{j\mu}$ , then $(f(z)-f(p))^{1/2}$ is
regular around $p$ and vanishes at this point in the first order. Hence, its
effect is as if there exists an image-veltex with interior angle $\pi/2$ , for
which it becomes $(1-(1/2)^{2})/2=3/8$ .

Theorem 6. If $\Delta$ is bounded by rectilinear polygons, the conclusion
of theorem 2 remains to be true, in any case of above mentioned basic
domains, with following modifications. If an end point of a slit coincides
with $a_{j\mu}$ , the relatio}l $(2\cdot 8)$ is replaced by

$z\rightarrow a_{j\iota\iota}\lim(z-a_{j\mu})\frac{f^{\prime\prime}(2)}{f(z)}=\frac{//j\mu-2}{2}$ , $(4\cdot 3)$

and if an end point $p$ of a slit coincides with none of $p7_{j\mu}$ , then $f^{\prime\prime}(z)/r^{r}(2)$

has the point $p$ as a pole of the first order with residue $-1/2$ , that is,
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$\lim_{z\rightarrow p}(z-p)\frac{f^{\prime\prime}(z)}{f^{\prime}(z)}=-\frac{1}{2}$ . (4 $\cdot$ 4)

Proof. We have again only to investigate the last part of the
theorem concerning with end points of the slits. And the quite same
reasoning will apply as in the proof of the preceding theorem.

In conclusion, we remalk that a circular disc with $n$ sheets may also
be taken as a standard type of n-ply-connected domains. ) $t$; The group $\mathfrak{G}$

considered in theorem 1 then consists of a unique $transf_{01}$ mation $4\sim|z$ , all
inversions 2 $|\lambda_{j}(\approx)$ referring to a common circumference. Hence, the $g\iota oup$

degenerates to a trivial one, while the mapping function becomes n-valued
one on the projection of the disc in question. $I_{l1}$ this case a corresponding
theorem may be stated as foollows:

Theorem 7. Let $’\iota v=f(z)$ be a function which maps a disc $1\iota\cdot ithn$

sheets covering a circle $D_{0}$ on 2-plane $0^{\prime}1to$ an n-ply-connected circular
polygonal domain $\Delta$ . Then, each branch $f_{j}(\sim)(f=1,\ldots, n)$ of $f(z)$ satisfies
a differential equation of the $thi_{1}do\iota$ der

$\{f_{j}(’), z\}=M_{j}(\sim)$ , (4 $\cdot$ 5)

where $M_{j}(\approx)$ is a one-valued meromorphic function. Denoting by $l^{\tau_{j}}$ a
boundary polygon of $\Delta$ mapped from boundary circle $C_{j}$ of $D$ by $’\iota U=f(\approx)$

( $i$ . $e$ . by $’\angle u=f_{j}(\approx)$ ), and by $a_{j\mu}$ a point lying on $C_{j}$ and corresponding
to a vertex of $I_{j}^{7}$ , the function $M_{j}(z)$ possesses at $a_{j\mu}$ a pole of order at
most two and satisfies

$z\rightarrow a_{j\mu}]im(’\cdot-a_{j\mu})^{\sim}M_{j}(\approx)=\frac{1-//j\mu^{\underline{o}}}{2}$ , $(4\cdot 6)$

where $a_{j\mu}$ denotes, as before, the interior angle at $f_{j}(a_{j\mu})$ with respect to
$\Delta$ . Let $fu\iota$ ther $t$ be a branch point of $D$ of order $\tau-1$ , then, for all the
branches $f_{j}(\approx)re$ lating to this branch point, the function $M_{j}(z)$ possesses
there a pole of order at most two and satisfies

7) L. Bieberbach, Uber einen Riemannschen Satz aus der Lehre von der konformen $A1$) $-$

bildung. Sitzungsber. preuss. Akad. Wiss. Berlin (1925), 6-9.
8) H. Grunsky, Uber die konforme Abbildung mehrfach zusammenhangender Bereiche

auf mehrblattrige Kreise. Sitzungsber. preuss. Akad. Wiss. Berlin (1937), 1-9.
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$\lim_{z\rightarrow t}(z-t)^{2}M_{j}(2)=\frac{\tau^{\underline{o}}-1}{2\tau^{2}}$ . (4 $\cdot$ 7)

Excepting those points, $M_{j}(\sim r)$ is regular everywhere.
Proof. By repeating inversions with respect to boundary circle, $f(z)$

is analytically continued to an infinitely many-valued $functio\iota$). By succes-
sive inversions repeated even times, though the affix 2 return back to its
original position, each branch of $f(z)$ undergoes a linear transformation
(the same for all). But the function $M_{j}(z)$ defined by $(4\cdot 5)$ remains
thereby invariant, and hence is a one-valued function. For the $\dot{r}elation$

$(4\cdot 6)$ , the reasoning is the same as in theorem 1. As to $(4\cdot 7)$ , since
$(f_{j}(\sim r)-f_{j}(t))^{\tau}$ is regular around $t$ and possesses this point as a pole of
the first order, can be there expressed in the form

$1$

$ f_{j}(\sim r)=f_{j}(t)+b_{j}(?-t)^{1/\tau}+\ldots$

Direct calculation will show that th $e$ relation (4 $\cdot$ 7) holds good.
Theorem 8. If, in the preceding theorem, $\Delta$ is bounded particularly

by rectilinear poiygons, then we have, for each branch of the mapping
function, an explicit expression of the form

$f_{j}(z)=C\int^{z}d2\exp\int^{z}JV_{j}(z)d_{2}+C^{\prime}$ , $(4\cdot 8)$

where $\lrcorner V_{j}(z)$ is a one-valued meromorphic function. Corresponding to
$(4\cdot 6)$ and $(4\cdot 7)$ we have, at its poles $a_{j\mu}$ and $t$, the relations

$z\rightarrow a_{j\mu}\lim(z-a_{j\mu})N_{j}(2)=a_{j\mu}-1$
, $(4\cdot 9)$

$]_{z\rightarrow t}im(z-t)\Lambda^{7_{j}}(z)=\frac{1-\tau}{\tau}$ , $(4\cdot 10)$

respectively. $1V_{j}(z)$ is, except those points, regular everywhere.
$p_{roo}r$ The theor$em$ relates to theorem 7 as if theorem 6 does to

theorem 5. We have only to $obse_{1}ve$ that $f_{j}^{\prime\prime}(z)/f_{j}^{\prime}(z)$ , having no branch
point, appears here as one-valued and meromorphic function.
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Tokyo University.
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