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Application to Green’s Formula
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The object of the present paper is to establish a generalization of
Fubini’s theorem in the theory of integrals and to apply it to the proof
of Greea’s formula under considerably general conditions.

The usual form of Fubini’s theorem is concerned with the traunsfor-
mation of the integral of a summable function over the Euclidean space
R,.,(# and ¢ natural numbers) into a repeated integral taken over R,
and R, successively, the space R,,, being the cartesian product of the
spaces R, and R,. But this last circumstance is not essential for the
validity of the theorem. In fact, we may take, roughly speaking, any
two spaces @ and ¥ with measures ¢ and v respectively, define a mapping
¢ of @ oato ¥=¢(@P), and denoting by @, the inverse image ¢~ () of
y € ¥ under the mapping ¢ and by g, a measure on @, we have the
formula (see Theorem 4) '

Lf(x) dp(x) = j \L[Lf(x) dp, (x) ]d,, (%)

v

for every f(x) non-negative and measurable on @, provided that certain
conditions involving the three measures g, v and g, are satisfied.

There is a research by P.R.Halmos along similar lines of idea,
but it seems to us that there is little point of contact between his paper
and ours, since Halmos’s interest lies chiefly in other directions.

Utilizing the generalized Fubini theorem thus established, we shall
be able to prove our main theorem (Theorem 7) on the transformation
of a Stieltjes integral into an ordinary one. In case the function G(x)
with respect to which we integrate is monotone, this is a well-known theorem
and in fact is taken by Hobson (see Hobson [8], p. 605) as the very
definition of the Stieltjes integral; but our theorem is concerned with a

general function G(x) of bounded variation and our result seems to be
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new. ,
We shall give here an account of the various conditions under which

Green’s formuld has been proved by several writers. We denotz dy C a
rectifiable closed Jordan curve in the plane and by £ the inner domain
bounded by C, and we take the formula under consideration in the form

Joarce D=, 57

dxdy, €))

where the iategral is takea round € in the positive sense.
W.Gross proved (1) under the condition that M(x, ) is continuous

on D=D+ C and that 831%[ is continuous and summable on /2. Then
¥

W. T. Reid proved tne validity of (1) under the following three
conditions :

(i) M(x, y) is continuous on 2 ;

(i) M(x,y,) is absolutely continuous in x on the intersection D(y,)
of the domain D and the line y=y,, for almost all values of 7,.

(iii)

The result of Reid was still extended by Tsuji [5] He gave three
conditions for the validity of (1), i. e. (ii) and (ili) of Reid, together
with the condition (iv) : M(x, y) is continuous and bounded on 2D, and
lim M(x, y) exists almost everywhere on C, when the point (#, ) tends
to C nontangentially.

Our result will show that Green’s formula holds under conditions (ii)
and (iii) of Reid, together with a new condition (see Theorem 8) which is
weaker than the conditioa (iv) of Tsuji, and which is satisfied automatically
if - M(x,y) is bounded in D. Our chief concern is, of course, the
definition of the boundary values of M(x, y), which is secured by the
absolute continuity of M(x, y) in .

Reid [4] has given also a proof of the “strong form* of Cauchy’s
Fundamental Theorem, but our present result adds nothing new to

is summable over .

Cauchy’s theorem since we assume the summability of over ).

Further research is necessary to justify the validity of this theorem under
more general conditions. We shallt treat this problem on another

opportunity.
It may be mentioned in passing that our main lemma (Theorem 8) may
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be deduced in a simpler way from Lusin’s Theorem (see Saks [9], p. 72)
on the approximation of a measurable function by a continuons one. But
we retain our present proof on account of the methodological interest.

Finally the author wishes to express his heaity thanks to Prof.
Tsuji and Prof. Y.Kawada for their valuable helps and criticisms on the
snbject of this paper.

We begin our subject with the following

Definition. Zez £ bz an abstract space. A class W of subsets of £ is
called a primitive class, if

() 2em;

(i) 2z A e M and B € W, then AB ¢ IN;

(iil) if A € W, then there is a disjoint sequence of sets A,e M(n=1,
2, 3,...... ) suck that : :

‘Q—A= i An-

n=1

Remark. Every primitive class It contains the empty set, for taking
A=29, we have 4,=0 (=1, 2, 3,...... ).

Theorem 1. 7w smallest additive class N containg a primitive class
W i a space 8 coincides with the smallest novmal class N containing IN.

Proof. The proof is the same as that for the Lemma of Saks [9],
p- 383. :

Theorem 2. Let @ and T be non-empty abstract spaces, X and %)
additive classes of sets in @ and ¥ respectively, p and v measures defined
Jor sets (X) and sets () respectively, with p(P) <+oco. Lot further ¢
be a mapping of D on ¥, whick is the image of @. For eack y € ¥ we
denote by @, the inverse image of y under ¢. Let X, be an additve class
of sets in D, for eack y e W, and lei p, be a measure defined for the sets
(X,).We denote by MM a primitive class af sets in @ and by N the smallest
additive class in @ containing I, so that we have NCX.

Now we suppose that the following iliree conditions hold for every A € M :

(i) AP,eX for any ye¥.

(i) ©,(A9P,) is, as a function of y, measurable (%)) on ¥.

(iii) We lave

©(A) =Lﬂy(ﬂ ?,)dv(y).

Then these three statemncnts hold also for every set A e N.
\ <
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Proof. Since N coincides with the smallest normal class i, containing
M by Theorem 1, it is sufficient to prove that the class R, of all sets
(X) satisfying the three conditions of Theorem 2 is normal.

Now let X,(z=1, 2, 3,...... ) be a disjoint sequence of sets () and

put X= %X Then for any ye &
X0,=33 Y, 0,¢ X,
and py(X(Dy)=§fzy(X,,(0y) is measurable (J)) on & ; and since p,(X,%2,)
=0 for all », we have
pQO) =3 p(X) =33 |, (Xu,)a( 5)
=, Sa@o)sm) = n(xo)a ().

Thus we find that X e 3N,. )
Next let x.(z=1, 2, 3,...... ) be a descending sequence of sets ()

and put XzﬁXn. Then for any y € &
n=1 . .
X0,=11 X, 0, X,
n=1

and p, (X)) =limp,(X,®,) almost everywhere (9, ¥) on ¥, since
p, (X0 ) <Zp, (P)=p,20) (n=1, 2, 3,...... ) and

+ o> u(2) :‘L#y(!zwy) ().

Hence g, (X®,) is, as a function of y, measurable (9)) on ¥ and we
have further, by I.ebesgue’s theorem,

p(X)=lin p(X) =lim|_p,(X,0,)dv(5)

= lim 1, (X0 @v(3) = |_py (XO) ().

¥ n-p»oo

Thus X is found tq be a sef (N), completing the proof of our
theorem. :



118 K. IsEkI.

Theorem 3. Let us assume, in the lypothesis of Theorem 2, that the
class X, is complete with respect to the measure p, for cvery y € U, and that
Sfor every AeX there is a set BeR suck that ACB and p(B—A)=0. Then
Sor every AeX |

(1) AP X almost everywhere (), v) on ¥ ;5

(i) - p,(ADP,)) as function of y is measurable () on ¥ if we neglect
a set of measure zervo (), V) ;

(iii)  we fave

pD) = _p(A9)d ().

Proof. First suppose pu(A)=0. Then pu(B)=0 and
Jm@)av(=0

by Theorem 2, hence g, (5®,)=0 almost everywhere (2), ¥) on ¥. But
¥, is complete with respect to g, by hypothesis, and so A%, €X, and
#,(AP,) =0 almost everywheie (%), ) on . Hence the result.

In the general case our theorem follows from the identity A=5—
(B—A) and Theorem 2 on account of p(B—A)=0.

Theorem 4. Let us assume, in the /ypothests of Thcorem 3, that f(x)
is a non-negative function measurable (%) on @. Then

G)  f(x) is measurable (X,) on @, for almost all (), v) values of
yevl.

(i) JQf(x)dpy(x) is, as a function of y, measurable (%)) on ¥, if we
y

neglect a set of measure sero (%), v) ;
(iii) jmf(x)d/l (%) =j‘w[§¢ f(x)d/zy(x)] av(y).

Proof. In case f(x) is a finite step-function, our theorem is an
immediate consequence of Theorem 3. In the general case f(x) is the
limit of an ascending sequence of finite non-negative step-functions f,(x)
(n=1, 2, 3,...... ) measurable (¥) on @, and the result follows from
repeated applications of Iebesgue’s theorem on integration of monotone
sequences of functions.

Examples. Now we shall give some examples of primitive classes
and Theorem 4.
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(I) Let R denote the set of all finite real numbers and let MM denote
the class of all closed intervals [, 4], open intervals (2, 4), and half-open
intervals [a, 6) or (a, 6] (where in all cases we suppcse — oo <a<b<
+ o), together with all one-pointic sets and the empty set. Then I is
clearly a primitive class. ‘

(IT) Let S and 7 be abstract spaces and let ¥ and ) be primitive
classes in S and 7 respectively. We denote by 83=1%9) the class of all
sets of the form X x V(XeX, YVe)) in the product space U=Sx 7. Then
the class 8 is primitive in /. For clearly Ue3, and if 4,=X,x7V,e3
for =1 and 2, then

Ady= (X, X;) x (V1V,) X)),

since X, X,eX and Y Y,€)); finally if A=Xx Ye3, then there are two
disjoint sequences {X,} and {V,} of sets (¥) and sets () respectively
(=1, 2, 3,...... ), such that

©

S—X=3'X, T=V=3 Y.
n=1

n=1

Hence we have

U—A=Xx (T=Y) +(S—X) x [=3 XVa+ 31 X.T, .
and this is a decomposition of U—4A into a disjoint sequence of sets (8).

(III) Let @=[0, 1]x[0, 1] be the unit square in the plane, ¥ the
class of all measurable sets in @, ¢ the Lebegue measure for the sets (%).
Similarly let &=[0, 1] be the unit linear interval, ) and v the Lebesgue
class and measure in ¥. Let further ¢ be defined by ¢(x, )=y for
every point (x, y)e®. For every ye¥ we put @,=7, %, =9, p,=v. We
denote by I the primitive class MM, (see Example II), where I, is the
class of all intervals, closed, open and half-open,; together with.all one-
pointic sets and the empty set, in the unit linear interval. Then the
smallest additive class 9 in @ containing I is clearly the class of all
Borel sets in @.

Now let f(x) be a non-negative function measurable (X) on @.
Then all the requirements of Theorem 4 are easily seen to be satisfied,
and we derive the following form of Fubini’s theorem :

A non-negative measurable function f(x, y) on the uniz square is, as @
frnction of x, measurable on [0, 1] for every ye [0, 1] except at most «



120 K. IsekiI.

lincar set of mmeasure zero, and we lcve

j ;s :f(x, y)dxdy ZJZUL f(x, ») zix]dy.

(IV) We can also deduce from our theory the following known
theorem : a function f(x, y) measurable (B) on the wunit square 7is
measurable (B) in x for every ye [0, 1]. This is an immediate consequence
of a theorem analogous to Theorem 4, to the following effect:

Let us assum:, in the hypothesis of Theoremn 2, that f(x) is a non-
negative function measurable (W) on ®. Tien

() f(x) is measurable (X,) on @, for cvery ye¥

(i) J S ()dp,(x) is, as a funciion of y, measurable () on ¥,
®
Yy

(iii) we Aave j‘(pf(’t)‘{"l('l’):v{w[j@ f(x)d,uy(x)]dv(y).

Theorem 5. Lot F be a coutinuous function on an interval [,=[a, 6]
and let s(y) denote for eack y the unmber (finite or infinite) of the points
of I, at wlick F assumes the ualue y. Then the function s(y) is measurable
(B) and we have

j_i(y)dy=w (75 1),

W (F; 1) denoting the total variation of I on I,

Proof. This theorem, due to S. Banach, is proved on p. 280 of
Saks [9] '

Theorem 6. Given a finite function I of a real variable, the set of the
points at wlick the function F assumes @ strict mnaximunr or miniinim  is '
at most countable. \

Progf. This is proved on p. 261 of Saks [9]

Theorem 7. Lot F be a continuous function of bounded variation on
an interval Iy=[a, 6], and let G be a function integrable in the Lebesgue-
Sticlties sense with respect to F. We construct a new function G(y) for all
finite values of y by the following wrule : if the function F assumes the value
Y an infinity of times on the open intevval (a, ) or if there is a point x of
(a, 6) at which F assumes a strict extremum, we put G( ) =0. Otherwise
the set of the points of (a, b) at whick F assumes the value y is a finite set
M, and at eack point x of M the function F'is strictly increasing or
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decreasing. Now we define a function A(x) equal to 1 or —1 according as
F is stricily z;zcrmszzzg or decreasing at xeM respeclively, zzmz’ using this

A(x) we a’ey’ine G(y) by

G(N=3 1@ E@).

Then G(p) is summable and we have
b o
j G(x)dF(x):j_mG(y)dy.

Proof. Clearly we may assume G (x) non-negative. ILet us denote
by F,(x) and F,(x) the positive and negative variations of #(a) on [a, x]
for a < x X & respectively.  We construct two functions G,(p) and G,(»)
as follows: they are the functions constructed from G(x) in a similar
way as G () was constructed from G (x), with the modifications that now
we take instead of A(x) the positive part 4,(x) of A(x) in the case of
G.(y) and the negative part 4,(x) of A(x) in the case of G,(»). Then
it is sufficient to prove

j: G(")‘Z‘L?n(")=§i§m(y)dy (m=1, 2).

Since the proofs are the same for both cases, we carry out the proof for
m=1 only, and this is done by application of Theorem 4. ‘
Let us put, in the notations of Theorem 4,

O=(a, 8), T=F(), ¢=F,

X and p the Lebesgue-Stieltjes additive class and measure with respect to
£, and ¥ and v the Lebesgue additive class and measure. Fuither let
X, be the class of all subsets of @, for each ye¥, and let us define the
measure p, by

mO=S4@ (Xco,),

if &, is finite and if F(x) is strictly increasing or decreasing at every
point of @,; otherwise we put y,(X)=0 identically.

Now let” I be the class of all closed, open, or half-open intervals
in @, together with the empty set and one-pointic 'sets in @.- Then
clearly I is primitive, and the class N coincides with the class of all
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Borel sets in @.

This being so, we shall show that the three conditions of Theorem
2 are also satisfied. Let us take, as a representative case, that of a closed
interval A=[#u, v] in @. Denoting by IW(x) the total variation of # on
[, #], we have, almost everywhere on ¥, on account of Theorems 5 and

6.

(A =F(@) = F, (@) = [I1(@) = W) + F (@) = F ()]

T 2@ | a

F(:r) =y F\z —y

L @D =] p A0,

Further the class X, is complete with respect to the measure p, for every
7, and it is well known that for every set 4 measurable in the Lebesgue-
Stieltjes sense in (@, &) there is a Borel set 24 with p(8—A4)=0.
Thus we can apply Theorem 4 and find immediately -

[l ewarm=[c.na.

Theorem 8. Lot C be a rectifiable closed Jordan curve in the (x,y)-
planc and let D denote the inner domain of C. Further let M(x, y) be a
continuous function in D with the following properties :

(i) M(x,yp) is absolutely continuous in x on the intcrscction of D ard the
line y=y, for almost all values of y,.

(i)

(il M(x. p) is integrable in the Lebesgue-Sticltjes sense with respect
to y=y(s) (s is the arc length measured in the positive sense along C)
around C, i we define M(x, y) on C as follows: if the intersection D(y,)
of D and the line y=y, consists of a finite number of linear open intervals,
evry two of whick have a positive distance, and if the point (x, 9,) is an
end-point of one of these intervals, then we define M(x,,3,) to be the limit of
M(x, p) as (x, y) approackes (x,,y,) through D(y,), if suck a limit exists
and is finite ; in all other cases (that is o say, if we cannot define the value
of M(xy, p,) in this way) we put simply M(x,, ¥,) =0 for (x, py)eC.

Tren we have

is summable over D.
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[ 2, ay=([ 2L ray,
the Stieltjes integral being taken in tw positive sense around C.

Remark. (I) The measurablity of #/(x, ») in the Lebesgue-Stieltjes
sense with respect to y(s) on C is an easy consequence of the continuity
and proyerty (i) of the function A7 and so we leave 1ts verification to
the reader.

(IT) The derivative %ﬂx{ exists almost everywhere in D and is a

measurable function. On this cf. Tsuji [5].
Proof. Applying Theorem 7 to M(x, y) we have

LM(x, ;/)a’;/:J_jW(’y)dy.
where M(y) is constructed from M(s) =M(x(s), y(s)) with respect to

y=y(s) in the way indicated in the proof of that theorem. But we find
easily '

~ oM
M(y) =j Bz
D(y)
for almost all values of p, hence
V. M
j M(p)dy = J aj[a’z 88 dady,

the last step being effected by the usual Fubini’s theorem.
Corollary. Lot M(x,y) bc a bonnded continuous function in D such that
(i) Mz, ») is absolutely continuous in x on the z7zz‘e;secz‘zo;z D(y,)
o D and the line y=y, for almost all y,
(ii) aai[ is summnable over D.
Then Green's formula lolds, if we define the value of M on C as in

Q
7Z Ol

Proof. Since M(x, y) is bounded, the condition (iii) of
is automatically satisfied.
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