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On some properties of covering groups of a topological group.
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Recently C. Chevalley has developed in his book ” Theory of Lie
groups “ (cited with L.G.) the theory of covering groups of a connected,
locally connected and locally simply connected topological group with new
definitions of a covering space and of the simply connectedness of a space.

The purpose of this paper is to investigate some properties of covering
groups of a topological group with these new conceptions. In \S 1 we shall
give an algebraic characterization of the simply-connectedness of a topological
group and give another proof of the existence theorem of a simply-connected
covering group under usual conditions. In \S 2, \S 3 we shall consider the
generalized universal covering group under weaker conditions, i.e. for a
connected, locally connected topological group with the first countability
axiom.

\S 1. Simply connected topological groups.
We use here the following definitions from L.G., the definition that a

set $E\subseteqq X$ is evenly covered by $X^{*}$ with respect to a continuous mapping
$f$ of $X^{*}$ into $X$ (Chap. II, \S VI, Def. 2); the definition of a covering space
$(X^{*}, f)$ of $X$, where $X$ and $X^{*}$ are connected (conn.) and locally connected
(1.c.) space with a continuous mapping $f$ of $X^{*}$ onto $X$ (\S VI, Def. 3)
the definition of the simply connectedness of a conn. and l.c. space (\S IX,
Def. 2); and the definition of a covering group of a conn. and l.c. topolo-
gical. group (\S VIII, Def. 2).

Definition. 1. Let $G_{1},$ $G_{2}$ be two topological groups and $U_{1}$ $(U_{2})$

be a neJghbourhood of the unit element of $G_{1}(G_{2})$ respectively. We mean
by a $U_{1}- U_{2}$-local $iso$motphism of $G_{1}$ and $G_{2}$ a homeomorphism $f$ of $U_{1}$ onto
$U_{2}$ which has the following properties:
(i) the conditions $a,b,ab\in U_{1}$ imply $f(ab)=f(a)f(b)$ in $U_{2}$ .
(ii) the conditions $a,b\in U_{1},$ $f(nb)\in U_{2}$ imply $a/$) $\in U_{1}$ .

Now we construct a topolngical group $Gr(U)$ from a neighbourhood $U$

of the unit element $e$ in a topological group $G$ with the property $U=U^{-1}$

as follows. To each element $a(n\neq e)$ in $U$ take an abstract element $A$.
$Gr(U)$ has these $\{A\}$ as generators. If to $a,$ $a^{-1}(a\neq e)$ in $U$ correspond
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$A,$ $A^{*}$ , then we take as the defining relations of $Gr(U)A\cdot A^{*}=1(e\neq a$

$\epsilon U)$ and $ABC^{*}=1$ for every relation $ab=c$ in $U$. As the system of
neighbourhoods of the unit element of $Gr(U)$ we take $7^{r*}=\{A;$ $a$ $\epsilon V$

$\subseteqq U\}$ for every neighbourhood $V$ in $U$ of $e$ of $G$ . Then we have

Lemma 1 $T/le$ topological group $G_{r}(U)constrnct/\cdot d$ above has the
following propertits:
(i) $1fU$ is connecled, then $Gr(U)$ is also connected.
(ii) Let $U^{*}=$ { $A;$ a $\epsilon U$ }, $l/ren$ $Gr(U)$ and $G$ are $U^{*}- U$-local $isomorp\prime_{l}ic$ .
(iii) For any $topo_{\iota}^{f}ogical$ group $G^{\prime}$ whiclt is $U^{\prime}- U$-local isomorpthic wilh $G$

$G\cong Gr(U)/N^{\underline{o}})$ (1)

holds for a $ discre_{\ell}\nu$ normal subgroup of $Gr(U)$ .
Lemma 2 Let $G^{*}$ be a conn. and $l.c$ . topological group and $\Lambda^{\gamma*}$ Je

its discrete normal $su_{1}bgroup$. $1fG=G^{*}/\Lambda^{\gamma*}$ is also conn. and $l.c.$ , tiien for
the natural mappirlg $f$ of $G^{*}$ onto $G(G^{*}, f)$ is a $co\iota’ ering$ group of $G$.

Using these Lemmas we have the following characterization of the
simply connectedness of a topological group:

Theorem 1. A necessary and $su\sim fficierlt$ condition that a conn. and $l.c$ .
topological group $G$ be simfly-connected is $t1_{l}at$

$G\cong Gr.(U)$ (2)

holds for every connected $neighbourh\ell odU=U^{-1}$ of the unit element of $G$ .
Proof. (i) The necessity of the condition. From Lemma 1 follows

$G_{=}^{-}G,$ $(U)/\Lambda^{7*}$ for a discrete normal subgroup $N^{*}$ of $Gr(U)$ . Then follows
from Lemma 2 that $Gr(U)$ is a covering group of $G$ if $U$ is connected.
By the assumption that $G$ is simply connected, we conclude taht $N^{*}=1$

and $G_{=}^{-}Gr(U)$ .
(ii) The sufficiency of the condition. Let $U$ be a neighbourhood of

the unit element $e$ with $U=U^{-1}$ of a topological group $G$ . We call a set
of finite elements of $G$

$W=\{p,a_{1},a_{2},\ldots,a_{r},q\}$ $(p=a_{0}, q=a_{r+1})$

a U-chain if $a_{i}^{-1}a_{i+1}\in U(i=\cdot\cdot,r)$ hold. We identify two U-chains $W$

and $W_{0}=\{p,a_{1},\ldots,a_{k}, a_{k}, a_{k+1},\ldots,a_{r}, q\}$ . Let $\not\subset v^{\prime}=\{p, b_{1}\ldots.,b_{r}, q\}$ be another
U-chain. We denote $W\approx W(U)$ if $a_{i}b_{i}^{-1}\in U(i=1,\ldots r)$ hold. We call
two U-chains $W$ and $W^{f}$ U-liomotopic and denote $W\sim W^{\prime}(U)$ if $W\approx tV_{I}$

$\approx W_{2}\approx\cdots\approx W_{\epsilon}\approx W^{\prime}(U)$ holds. Now we have

Lemma. 3 $1fA_{1}^{6(1)}\ldots A_{r}^{\epsilon(r}$
)
$=B_{1}^{\delta(1)}\cdots B_{\epsilon}^{\delta(s)}(\epsilon(;)=\pm 1, \delta(J)=\pm 1)$ holds

in $Gr(U)_{*}$ then $U$-chains $W=\{1, A_{1^{\vee}}^{-(1)}, A_{1}^{5(1)}A_{2^{5\underline{(})}},\cdots,A_{1}^{8(1)}\cdots A_{r}^{8(r})\}$ and



On some properties of covering groups of a lopolagical group. 205

$W^{\prime}=\{1, B_{1}^{\delta(1)}, B^{\delta(1)}B^{\delta()}\underline{9} B_{1}^{\delta(1)}\cdots B_{\epsilon}^{\delta(S)}\}$ are U-homotopic in $Gr(U)$ .
Now let $G$ be a conn. and l.c. topological group satisfying the condi-

tion of Theorem 1. Let $(X^{*}, f)$ be any covering space of $G$ . For any $x_{0}$

$\epsilon G$ take $x_{1}^{*},$ $x_{2}^{*}$ from $f^{-1}(x_{0})\subseteqq X^{*}$ . If we can show $x_{1}^{*}=x_{2}^{*}$ , then $f$ is
univalent and $G$ must be simply connected.

For this purpose take $e^{*}\epsilon f^{-1}(e)\subseteqq X^{*}$ . For any element $x\in G$ we
can take an open and conn. neighbourhood $V(e,x)$ of $e$ in $G$ , so that
$x\cdot V(e,x)$ is evenly covered by $X^{*}$ . Then for an element $x^{*}\epsilon\Gamma^{1}(x)\subseteqq X^{*}$

there is a compoent $V^{*}(x^{*})=f_{\alpha}^{-1}(x\cdot V(!,x))$ of $f^{-1}(x\cdot\nabla(e,x))$ which con-
tains $x^{*}$ so that $V^{*}(x^{*})$ is open, conn. and homeomorphic to $x\cdot V(e,x)$ by
the mapping $f$. If we take an open and conn. neighbourhood $U(e,x)$ of $e$

in $G$ so that $U(e,x)^{3}\subseteqq V(e,x)$ , then $U^{*}(x)=f^{-1}(x\cdot U(e,x))\cap V^{*}(x^{*})$

$=f_{\alpha}^{-1}(x\cdot U(e,x))$ is also open, conn. and homeomorphic to $x\cdot U(e,x)$ by the
mapping $f$.

Since $X^{*}$ is conn. we can choose $y_{1’}^{*}y_{r-1}^{*}$ and $U^{*}(y_{1}^{*}),$ , $U^{*}(y_{r-1}^{*})$
from $X^{*}$ so that the finite set $C_{1}^{*}=\{e_{\iota}^{*}\gamma_{1}^{*},\ldots, y_{r-1}^{*}, x_{1}^{*}\}$ satisfies $y_{i+1}^{*}$

$\epsilon U^{*}\backslash (\gamma_{i^{*}})(i=0,1_{*}\ldots.r-1;y_{0^{*}}=e^{*}, y_{r^{*}}=x_{1}^{*})r$
Analogously we can choose

$C_{2^{*}}=\{e^{*},z_{1}^{*},\ldots, -1’ x_{2}^{*}\}$ so that $z_{j^{*}+1}^{\sim}\in U^{*}(2_{j}^{\times})(j=0,1,..rs-1;z_{0}^{*}=e^{*}$ ,
$z^{*_{S}}=x_{2}^{*})$ . From $C_{1}^{*},$ $C_{2^{*}}$ we have by the mapping $f$ two finite subsets of
G $C_{1}=\{e=y_{0}, y_{1}, ., y_{r+1}, x_{0},=y_{r}\},$ $C_{2}=\{e=\approx 0’ z_{1},\ldots,z_{\epsilon+1}, x_{0^{=}}\sim_{S}\}$ with $y_{i+1}$

$\epsilon U(y_{i})(i=0,1,\ldots,r-1),$ $2_{j+1}\in U(2_{j})(]^{=0,1,\ldots,s-1)}$ .
Now take an open and conn. neighbourhood $U_{0}$ of $e$ in $G$ such that

$U_{0}=U_{0}^{-1}\subseteqq\{n_{i}U(e, y_{t})\}n\{n_{j}U(e, z_{j})\}$ .
Since $U(e, y_{i}),$ $U(e, 2_{j})$ are conn. we can take $U_{0}$-chains

$U_{i}=\{y=y_{i0}, y_{i1}\ldots,y_{ir(i)}=y_{i+1}\},$ $y_{ik+1}\epsilon\rho/_{ik}U_{0}$

$U_{j^{\prime}}=\{\approx=\underline{\nu}_{j0}iz_{j1},\ldots, z_{jS(j)}=z_{j+1}\},$ $2_{jk+1}\epsilon 2_{jk}U_{0}$

$(\iota=0,1, .jr-1 ; i=0,1,\ldots, s-1)$

Since $y_{ik}\in y_{i}U(e,y_{i})$ and $y_{ik}\cdot U(e, y_{i})^{2}\subseteqq y_{i}U(e, y_{i})^{3}\subseteqq y_{i}V(e,y_{i})$ ,

$y_{ik}U(e,y_{i})^{2}$ is evenly covered by $X^{*}$ . Then put $U(e, y_{lk})=U(e, y_{i})$ ,
$V(e, y_{ik})=U(e,y_{i})^{2}$.

If we interpolate these $U_{0}$-chains $U_{i}(U_{j}^{\prime})$ between $y_{l}$ and $y_{i+1}(z_{j}$ and
$2_{j+1})$ in $C_{1}(C_{2})$ , we have two $U_{0}$-chains with the following properties.
(We denote these new $U_{0}$-chains and their elements with the same letters
as the old ones.)

(i) $C_{1}=\{e=y_{0}, y_{1},\ldots, y_{r-1}, x_{0}=y_{r}\}$ , $y_{i+1}\epsilon\gamma_{i}\cdot U_{0}$



206 Y. KAWADA

$C_{2}=\{e=2_{0},2_{1},\ldots,2_{\epsilon-1}, x_{0\sim}=z_{s}\}$ , $z_{j+1}\epsilon z_{j}U_{0}$

(ii) $U_{0}=U_{0^{-1}}\subseteqq U(e,y_{i}),$ $U_{0}\subseteqq U(e, 2_{j})$ .
(iii) $U(e, y_{i})^{2}\subseteqq V(t,y_{i})$ , $U(e, z_{j})^{2}\subseteqq V(e, 2_{j})$ ,

$V(e,y_{i})$ and $V(e, z_{j})$ are evenly covered by $X^{*}$ .
(iv) Let $U^{*}(y_{i^{*}})(U^{*}(2_{j^{*}}))$ be the component of $f^{-1}(y.U(e,y_{i}))$

$(\gamma^{-1}(2_{j}\cdot U(e, 2_{j}))$ which contains $t\gamma_{i}^{*}(z_{j^{*}})$ , then we have

$C_{1}^{*}=\{e_{1}^{*}\gamma_{1}^{*}, ,y_{r-1}^{*}, x_{1}^{*}\}$ , $y_{i^{*}+1}\epsilon U^{*}(y_{i^{*}})$

$C_{2^{*}}=\{e^{*}, z^{*},\ldots, z_{\epsilon-1}^{*}, x_{2}^{*}\}$ , $2_{j+1}^{\star}\epsilon U^{*}(2_{j^{*}})$

on $X^{*}$ .
Now we use the condition that $G_{=}^{\sim}Gr(U_{0})$ and apply Lemma 3 for

$C_{1}$ and $C_{2}$ . Then $C_{1}$ and $C_{2}$ are $U_{0}$-homotopic. Hence it is sufficient to see
that $x_{1}^{*}=x_{2}^{*}$ holds under the condition $C_{1}\approx C_{2}(U_{0})$ . Th $e$refore, let $r=s$

and $y_{l}^{-1}2_{i}\in U_{0}(i=1,\ldots,r)$ . Under these assumptions we shall prove

$z_{i}^{*}\epsilon V^{*}(y_{i^{*}})$ $(i=0,1,\ldots,r)$ (3)

by the mathematical induction on $i$ . For $i=0y_{0^{*}}=2_{0}^{*}=e^{*}$ . Hence we
assume that the relation (3) holds for $i-1$ . From $y_{i+1}\in y_{i}U_{0},2_{i+1}\in y_{i+1}U_{0}$

$\subseteqq y_{i}\cdot U_{0}^{2},$ $z_{i}\in y_{i}U_{0}$ follows that $\ovalbox{\tt\small REJECT}_{i-1},2_{t-1},2_{l}$ are contained in $y_{i}\cdot V(e, y_{i})$ .
Since $y_{l-1}^{*}$ and $y_{i^{*}},$ $y_{i-1}^{*}$ and $2_{i-1},2_{i-1}^{*}$ and $\underline{i}^{*}$ belong in the same component of

$f^{-1}(y_{i}\cdot V(e_{1}y_{i}))$ , we can conclude that $z_{i}^{*}$ and $y_{i^{*}}$ are in the same component
$V^{*}(y_{i^{*}})$ of $f^{-1}(y_{i}\cdot V(ey_{i}))$ . Thus (3) is proved. Hence $x_{1}^{*}=y_{r}^{*}$ and $x_{2}^{*}=$

$z^{*}$ belong to the same component and so $x_{1}^{*}=x_{2}^{*}$ holds, Q.E.D.

Theorem. 2. Let $G$ be a conn., $l.c$ . and locally simply connected to-
pological group. Let a $neig1_{l}bourheedU_{0}=U_{0^{-1}}$ of $t/\prime e$ unit element of $G$ be
simply connected. $T/lenGr(U_{0})$ is a simply connecled topological group.

Proof. For any covering space $(X^{*}, f)$ of $G$ sim.vly connected sets
$\dot{x}U_{0}$ are evenly covered by $X^{*}$ . Hence in the proof of Theorem 1 we
can choose as $V(e,x)$ for any $x\in G$ the simply connected neighbourhood
$U_{0}$ . Then we can prove Theorem 2 just in the same way as in the proof
of Theorem 1, Q.E.D.

From Lemma 1,2 follows that $Gr(U_{0})$ is connected. Hence we have
the following existence theorem of simply connected covering space for
topological groups (c.f. L.G. Cap. II, \S IX, Theorem 4) :

Corollary. Let $G$ be conn., $l.c$: and $loca[ly$ simply $co\prime l\pi ec\prime ed$ topological
group. Then $G/las$ a simply connected covering group.
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\S 2. Generalized universal covering group.
We shall consider here conn. and l.c. topological groups with the 1-

st countability axiom. Since we can not always expect the existence of
a simply connected covering group for such a group, we shall define the
following generalized covering group.

Definition 2. Let $G$ be a conn. and $l.c$ . topological group with the l-st
countability axiom. If there exists a topological group $G_{0^{*}}$ satifying the
following $condit_{\iota}ons$ we call $G_{0^{*}}$ a generalized universal covering group of $G$ :
P. I. $G_{0^{*}}$ is conn., $l.c$ . and simply connecled.
P. II. There exists a normal sulgroup $F_{0^{*}}$ in th, center of $G_{0^{*}}\tau vitk$

$G_{0^{*}}/F_{0^{*\sim}}G=$ (4)

P. III. $F_{0^{*}}$ is totally disconnected, and, moreover, every neibourkood $V^{*}$ of
$\mathscr{U}$ unit $elem^{p}nte^{*}$ contains an open subgroup $H^{*}$ of $F_{0^{*}}$ .

Now we shall define a group $G_{0^{**}}$ for a conn. and l.c. topological
group $G$ as follows. Let $\{U_{n};n=1,2,3,\ldots\}(U_{1}\supset U_{2}\supset U_{3}\supset\ldots\ldots)$ be a basis
of neighbourhoods of th $e$ unit element $e$ in $G$ . We can assume that $U_{n}$ are
open, conn. and $U_{n^{-1}}=U_{n}$ hold. Let $Gr(U_{n})$ be the topological group de-
fined in \S 1. From Lemma 1 follows that

$Gr(U_{m})/N_{n}^{m}\cong Gr(U_{n})$ $(n<m)$ (5)

for a discrete normal subgroup $N_{n}^{m}$ in the center of $Gr(U_{m})$ . The natural
mapping of this homomorphism shall be denoted by $\psi_{n}^{m}$ . Then the relation

$\psi_{n}^{m}\psi_{m}^{l}=\psi_{n}^{l}$ $(n<m<l)$ (6)

holds. Hence we have an inverse system of topological groups
$\{Gr(U_{n}), \psi_{n}^{m}\}$ (7)

Let its limit group be $G_{0^{**}}$ . Now let
$Gr(U_{n})/F_{n=}\sim G$ (8)

for a discrete subgroup $F_{n}$ in the center of $Gr(U_{n})$ . Then $\psi_{n}^{m}(F_{m})=F_{n}$ and
$\{F_{n}, \psi_{n}^{m}\}$ foims also an inverse system of topological groups. Let the limit
group of this system be $F_{0}^{*}$ . Then we have the relation $G_{0^{**}}/F_{0^{*}\cong}G$ .
Since $F_{n}$ lies in the center of $Gr(U_{n}),$ $F_{0}^{*}$ lies also in the center of $G_{0^{**}}$ .
Since $F_{n}$ is discrete, it is easy to see that $F_{0^{*}}$ satisfies the property P. III.

Now we assume that the group $G_{0^{**}}$ is conn. and l.c. Then we can
prov $e$ that

$G_{0^{**}}=Gr(U^{*})$ (9)

holds for any conn. open neighbourfood $U^{*}$ of $G_{0^{**}}$ with $U^{*}=U^{*-1}$ .
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For let the natural mapping of $G_{0^{**}}$ onto $Gr(U_{n})$ by th $e$ homomorphism
$G_{0^{**}}/N_{n---}^{*-}Gr(U_{n})$

be $\psi_{n}$ . Then the basis of neibourhoods of the unit element $e^{*}$ in $G_{0}^{**}$ is
$\{\psi_{n}^{-1}(U_{nk})\}$ where $\{U_{nk}\}$ are neighbourhoods of the unit element in
$Gr(U_{n})$ . Hence we can choose a group $Gr(U_{n})$ such that $\psi_{n}(U^{*})=U_{nk}\supset U_{n}$

in $Gr(U_{n})$ . Since $U_{nk}$ is open, conn., $U_{nk}=U_{nk}^{-1}$ the relation $Gr(U_{n})=$

$Gr(\zeta\gamma_{nk})$ hlods. Now it is also easy to see that we have $G_{0^{**}}=Gr(U^{*})$

from this relation. From Theorem 1 follows then that $G_{0^{**}}$ is simply
connected. Th $e$refore, we have the following theorem:

Theorem 3. $1f$ the group $G_{0^{**}}$ constrncted abare is conn. and $l.c.$ , thcn
$G_{0^{**}}$ is a generali2ed universal covering grovp of $G$ .

Now we shall consider the converse problem, $i$ . $e$ . $‘$ . if $G$ has a genera-
lized universal covering group $G_{0^{*}}$ , is $G_{0^{**}}$ then conn. and l.c. and is $G_{0^{*}}$

isomorphic with $G_{0^{**}}$? For this purpose we shall prove the following
Lemmas:

Lemma 4. Let $G^{*}$ be a topological group satisfying P. I, P. II. Then
for any conn. $a’\iota dl.c$ . topological group $G_{1}$ wliich is locally isomorphic with $G$

tlere exists a normal subgroup $H^{*}$ of $G^{*}$ such $t/lat$

$G_{1^{-}}G^{*}=/H^{*}$ (10)

kolds.
Proof. Let $G_{1}$ be $U_{1}- U$-locally isomorphic with $G$. We can assume

that $U_{1}=U_{1}^{-I}$ and open. Let $f$ be the natural mapping of $G^{*}$ onto $G$ by
(4). Let $U^{*}$ be the component of $f^{-1}(U)$ which oontains the unit element

$e^{*}$ in $G^{*}$ . Put $U_{0}=f(U^{*})\subseteqq U$. $U_{0}=U_{0^{-1}}$ is open and conn. From $Lemma\backslash $

$1$ follows then
$G_{1-}^{-}--Gr(U_{0})/H_{0^{*}}$ (11)

Now we shall apply the following Lemma:
Lemma 5. Let $G_{1}=Gr(U_{1}),$ $G_{2}=Gr(U_{2})$ and let $f$ be a continuous open

$map\dot{p}ng$ of $U_{1}$ outo $U_{2}$ wilh
$f(a^{\gamma}J)=f(a)f(b)$ ($a,b$ , ab $\epsilon U_{1}$).

$T/len$ we can always $exte\prime\prime d$ the mapping $f$ to a continuous open 1 $omm$urphism
of $G_{1}$ onto $G_{2}$ .

Hence the mapping $f$ of $U^{*}$ onto $U_{0}$ can be made to a continuous open
homomorphism of $Gr(U^{*})=G^{*}$ onto $Gr(U_{0})$ . Therefore, we h\^ave

$G^{*}/H_{1}^{*-}=Gr(U_{0})$ (12)
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Combining (11) and (12) we have (10), Q. E. D.
Lemma 6. Let $G_{0^{**}}$ be $t/le$ limit grovp defined by (7). Le$tG^{*}be$ any

topological group with $t/\iota e^{1}propertips$ P. I, P. II. Then for a suitable normal,
subgroup $H^{*}$ of $G^{*}$ the relatiou

$G_{0^{**-}}G^{*}=/H^{*}$ (13)

holds.

Proof. From Lemma 4 follows $Gr(U_{n})_{-}---G^{*}/N_{n^{*}}$ . Let $f_{n}$ be the na-
tural mapping for this homomorphism. It is easy to see that $f_{n}=\psi_{n}^{m}f_{m}$

$(n<m)$ holds, where $\psi_{n^{l}}^{\prime\prime}$ is the natural mapping defined in (5). Hence
by a well knewn theorem we have a continuous open homorphism $f$ of $G^{*}$

onto the limit gooup $ G_{0^{**}}of\bullet$ the inverse system of groups $\{Gr(U_{n}), \psi_{n}^{m}\}$ ,
Q. E. D.

Theorem 4. Let $G$ be a conn. and $l.c$ . topological group witk $tl_{l}e$ l-st
countabilily axiom. $1fG$ has a $generaliz_{t}\cdot d$ universal covering group $G_{0^{*}}$

then $tl\iota e$ group $G_{0^{**}}$ deJined by (7) is conn. and $l.c.$ , and hence $G_{0^{**}}$ is
also a generali2ed universal $co\prime v$ ring grtiup of G. Moreover, every generali2ed
universal covering graup of $G$ is topologically isomorpltic with $G_{0^{**}}$ .

Proof. Le $tG_{0^{*}}$ be a generalized universal covering group of $G$ . Then
we have $G_{0---}^{**-}G_{0^{*}}/H^{*}$ by Lemma 6. Since $G_{0^{*}}$ is conn. and l.c., $G_{0^{**}}$

is also conn. and l.c. Hence we have the first half of Theorem 4. Now
let $F_{0^{*}}$ be the normal subgroup defined by (4). Clearly $H^{*}$ is a subgroup
of $F_{0^{*}}$ . Hence it is easy to see that $H^{*}$ has also the property P. III. Let
$N^{*}$ be any open subgroup of $H^{*}$ . Then $H^{*}/N^{*}$ is discrete. Since $G_{0^{**}}$

$-=(G_{0^{*}}/N^{*})/(H^{*}/N^{*})$ holds, $G_{0^{*}}/N^{*}$ is a covering group of $G_{0^{**}}$ . Since
$G_{0^{**}}$ is simply connected, we can easily conclude that $H^{*}=\{e^{*}\}$ , that $is_{\nu}$

$G_{0=}^{*-}G_{0^{**}}$ , Q. E. D.

\S 3. Some properties of the gencralized universal covering group.
Definition 3. Le$pG$ be a comz. and $l.c$ . topological group with $ tk\ell$ l-st

$ countabilit\parallel$ axiom. We assumefurther $G/las$ the $generali^{\alpha}cd$ uuiversal covering
group $G_{0^{*}}$ . Let $f$ be the natural $mapl^{i}ng$ by $G_{---}^{-}G_{0^{*}}/F_{0^{*}}$ . $Tl_{l}etotali^{\gamma}y$ of
all the $/lomeomorpkisms\varphi$ of $G_{0^{*}}o\prime lto$ itself which satisJies

$f\cdot\varphi=f$ (14)

is called the Poincar\’e gtoup Of $G$ .
Theorem 5. Let $G_{0^{*}}$ be the generalizpd universal covering group of $tZ$

conn. and $l.c$ . topological gronp $G$ with the l-st $co’/ntabil_{l}t_{J}$ ’ axiom. Let $G_{---}^{-}$

$G_{0^{*}}/F_{0^{*}}$ . $T/len$ the Poincar\’e group $P$ of $G$ is algebraically iscmorphic to $F_{0^{*}}$ .
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Proof Let $y\in F_{0^{*}}$ . Then the homeomorphic mapping of $G_{0^{*}}$ onto itself
$\varphi_{y}(x)=x\cdot y(x\in G_{0^{*}})$ belongs clearly to $P$. Conversely we shall prove that
any $\varphi\in P$ is a $\varphi_{y}(y\in F_{0^{*}})$ . From $f\cdot\varphi(x)=f(x)$ follows $\varphi(x)=x\cdot y(x)$ ,
$y(x)\epsilon F_{0^{*}}$ . Then $y(x)=\varphi(x)\cdot(x)^{-1}$ is a continuous mapping of $G_{0^{*}}$ into
$F_{0}^{*}$ . Since $G_{0^{*}}$ is conn., so is its image in $F_{0^{*}}$ . On the other hand $F_{0^{*}}$

is totally disconnected. Hence $y(x)=y$ is independent of $x\in G_{0^{*}}$ , that is
$\varphi(x)=x\cdot y=\varphi_{y}(x)$ , Q.E.D.

The structure of the Poincar\’e group of an infinite product group is
very simple.

Theorem 6. Let $G_{n}(n=1,2,\ldots)$ and the infinite direct product group
$G=P_{n=1}^{\varphi}G_{n}h/\iota ve$ Me genealized universal covering goups $G_{n^{*}}a\prime ldG^{*}$ respec-
$tivel_{J}/$ . Let $G_{n=}-G_{n^{*}}/F_{n^{*}}$ , and $G^{-}G^{*}=/F^{*}$ . yen

$G^{*-}P_{n=1}^{\infty}=G_{n^{*}}$ , $F^{*-}=P_{n=1}^{\infty}F_{n^{*}}(algebraically)$ . (15)

Proof. It is easy to see that $G_{0^{*}}=P_{n=1}^{\infty}G_{n^{*}}$ satisfies the condition of
Theorem 1, that is, $G_{0^{*}}$ is simply connected. On the other hand it is also
easy to see that $F_{0^{*}}=P_{n=1}^{\infty}F_{n^{*}}$ is contained in the center of $G_{0^{*}},$ $G$

$\cong G_{0^{*}}/F_{0^{*}}$ , and $F_{0^{*}}$ satisfies the property P. III. Hence we have (15) by
Theorem 4, Q. E. D.

Example. Let $G_{n}$ be isomorphic to the additive group of real numbers
$mod$ . $1$ . and let $G=P_{n\Rightarrow 1}^{\infty}G_{n}$ . Then the generalized universal covering
group $G_{n^{*}}$ ot $G_{n}$ is isomorphic to the additive group of all the real
numbers. Then the generalized universal covering group of $G$ is given by
$G^{*}=P_{n=1}^{\infty}G_{n^{*}}$ .

Theorem 7. Let $G_{1}$ and $G_{2}$ have $t/legenerali2ed$ universal covering
groups $G_{1}^{*}$ and $G_{2^{*}}$ respectively. Let $G_{1^{-}}G_{1}^{*}=/F_{1}^{*}$ , and $G_{2^{-}}G_{2^{*}}=/F_{2^{*}}$ . $A$

necessary and sufficient condition for $ th\ell$ local-isomorphism of $G_{1}$ and $G_{1}$ is
$tha^{f}$

(i) $G_{1^{*-}}G_{2^{*}}=$

(ii) $T/lere$ are mutually isomorphic open subgroups $H_{1}^{*}$ and $H_{2^{*}}of$ $F_{1}^{*}and$

$F_{2}^{*}$ raspectively:

$H_{1=}^{*-}H_{2^{*}}$ , $H_{1}^{*}\subseteqq F_{1^{*}}$ , $H_{2^{*}}\subseteqq F_{2^{*}}$ . (16)

Proof Let $G_{1}$ and $G_{2}$ be $U_{1}- U_{2}$-locally isomorphic. We can assume
that $U_{1}=U_{1}^{-1},U_{2}=U_{2}^{-1}$ and are open, conn. Then $Gr(U_{1})-=Gr(U_{2})$ holds.
In general $Gr(U_{1n})\cong Gr(U_{2n})$ if $U_{1n}\subseteqq U_{1}$ and $U_{2n}\subseteqq U_{2}$ are locolly isomorphic.
Hence the limit groups $G_{1}^{*}$ and $G_{2^{*}}$ of $\{Gr(U_{1n})\}$ and $\{Gr(U_{2n})\}$ respectively
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are topologically isomorphic. Moreover, let $G_{1}^{*}/H_{1}^{*-}=Gr(U_{1})$ and $G_{2^{*}}H_{2^{*}}$

$-=Gr(U_{2})$ . Then $H_{1}^{*}$ and $H_{2^{*}}$ are open $\cdot subgroups$ of $F_{1^{*}}$ and $F_{2^{*}}respec-$

tively and $H_{1=}^{*-}H_{2^{*}}$ . The sufficiency of the conditions can be proved quite
analogously, Q. E. D.

Mathematical Institute,

Tokyo Bunrika Daigaku.
Revised March, 18, 1949.
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