On some properties of covering groups of a topological group.

Yukiyosi Kawada

(Received Sept. 20, 1948)

Recently C. Chevalley has developed in his book "Theory of Lie groups" (cited with L.G.) the theory of covering groups of a connected, locally connected and locally simply connected topological group with new definitions of a covering space and of the simply connectedness of a space.

The purpose of this paper is to investigate some properties of covering groups of a topological group with these new conceptions. In § 1 we shall give an algebraic characterization of the simply-connectedness of a topological group and give another proof of the existence theorem of a simply-connected covering group under usual conditions. In § 2, § 3 we shall consider the generalized universal covering group under weaker conditions, i.e. for a connected, locally connected topological group with the first countability axiom.

§ 1. Simply connected topological groups.

We use here the following definitions from L.G., the definition that a set $E \subseteq X$ is evenly covered by X^* with respect to a continuous mapping f of X^* into X (Chap. II, § VI, Def. 2); the definition of a covering space (X^*, f) of X, where X and X^* are connected (conn.) and locally connected (1.c.) space with a continuous mapping f of X^* onto X (§ VI, Def. 3) the definition of the simply connectedness of a conn. and 1.c. space (§ IX, Def. 2); and the definition of a covering group of a conn. and 1.c. topological group (§ VIII, Def. 2).

Definition. 1. Let G_1 , G_2 be two topological groups and U_1 (U_2) be a neighbourhood of the unit element of G_1 (G_2) respectively. We mean by a U_1 - U_2 -local isomorphism of G_1 and G_2 a homeomorphism f of U_1 onto U_2 which has the following properties:

- (i) the conditions $a,b,ab \in U_1$ imply f(ab) = f(a) f(b) in U_2 .
- (ii) the conditions $a,b \in U_1$, $f(ab) \in U_2$ imply $ab \in U_1$.

Now we construct a topological group Gr(U) from a neighbourhood U of the unit element e in a topological group G with the property $U=U^{-1}$ as follows. To each element a $(a \neq e)$ in U take an abstract element A. Gr(U) has these $\{A\}$ as generators. If to a, a^{-1} $(a \neq e)$ in U correspond

A, A^* , then we take as the defining relations of Gr(U) $A \cdot A^* = 1$ ($e \neq a \in U$) and $ABC^* = 1$ for every relation ab = c in U. As the system of neighbourhoods of the unit element of Gr(U) we take $V^* = \{A; a \in V \subseteq U\}$ for every neighbourhood V in U of e of G. Then we have

Lemma 1.1) The topological group $G_r(U)$ constructed above has the following properties:

- (i) If U is connected, then Gr (U) is also connected.
- (ii) Let $U^* = \{A : a \in U\}$, then Gr(U) and G are U^*-U -local isomorphic.
- (iii) For any topological group G' which is U'-U-local isomorphic with G

$$G \cong Gr(U)/N^{2} \tag{1}$$

holds for a discreve normal subgroup of Gr(U).

Lemma 2.3 Let G^* be a conn. and l.c. topological group and N^* be its discrete normal subgroup. If $G = G^*/N^*$ is also conn. and l.c., then for the natural mapping f of G^* onto G (G^*, f) is a covering group of G.

Using these Lemmas we have the following characterization of the simply connectedness of a topological group:

Theorem 1. A necessary and sufficient condition that a conn. and l.c. topological group G be simply-connected is that

$$G \simeq Gr.(U)$$
 (2)

holds for every connected neighbourhood $U=U^{-1}$ of the unit element of G.

- *Proof.* (i) The necessity of the condition. From Lemma 1 follows $G \equiv G_I(U)/N^*$ for a discrete normal subgroup N^* of $G_I(U)$. Then follows from Lemma 2 that $G_I(U)$ is a covering group of $G_I(U)$ is connected. By the assumption that $G_I(U)$ is simply connected, we conclude that $I_I(U)$ and $I_I(U)$.
- (ii) The sufficiency of the condition. Let U be a neighbourhood of the unit element e with $U=U^{-1}$ of a topological group G. We call a set of finite elements of G

$$W = \{p, a_1, a_2, \dots, a_r, q\}$$
 $(p = a_0, q = a_{r+1})$

a *U-chain* if $a_i^{-1}a_{i+1} \in U$ (i=...,r) hold. We identify two *U*-chains W and $W_0 = \{p, a_1, ..., a_k, a_k, a_{k+1}, ..., a_r, q\}$. Let $w' = \{p, b_1, ..., b_r, q\}$ be another *U*-chain. We denote $W \approx W'$ (U) if $a_i b_i^{-1} \in U$ (i=1,...r) hold. We call two *U*-chains W and W' *U-homotopic* and denote $W \sim W'$ (U) if $W \approx W_1 \approx W_2 \approx ... \approx W_s \approx W'$ (U) holds. Now we have

Lemma. 3.4) If $A_1^{\varepsilon(1)} \dots A_r^{\varepsilon(r)} = B_1^{\delta(1)} \dots B_s^{\delta(s)} (\varepsilon(t) = \pm 1, \ \delta(j) = \pm 1)$ holds in Gr(U), then U-chains $W = \{1, A_1^{\varepsilon(1)}, A_1^{\varepsilon(1)} \ A_2^{\varepsilon(2)}, \dots, A_1^{\varepsilon(1)} \dots A_r^{\varepsilon(r)}\}$ and

 $W' = \{1, B_1^{\delta(1)}, B^{\delta(1)}B^{\delta(2)}, \dots, B_1^{\delta(1)} \dots B_s^{\delta(s)}\}\$ are U-homotopic in Gr(U).

Now let G be a conn. and l.c. topological group satisfying the condition of Theorem 1. Let (X^*, f) be any covering space of G. For any $x_0 \\in G$ take x_1^* , x_2^* from $f^{-1}(x_0) \subseteq X^*$. If we can show $x_1^* = x_2^*$, then f is univalent and G must be simply connected.

For this purpose take $e^* \in f^{-1}(e) \subseteq X^*$. For any element $x \in G$ we can take an open and conn. neighbourhood V(e,x) of e in G, so that $x \cdot V(e,x)$ is evenly covered by X^* . Then for an element $x^* \in f^{-1}(x) \subseteq X^*$ there is a compoent $V^*(x^*) = f_{\sigma}^{-1}(x \cdot V(e,x))$ of $f^{-1}(x \cdot V(e,x))$ which contains x^* so that $V^*(x^*)$ is open, conn. and homeomorphic to $x \cdot V(e,x)$ by the mapping f. If we take an open and conn. neighbourhood U(e,x) of e in G so that $U(e,x)^3 \subseteq V(e,x)$, then $U^*(x) = f^{-1}(x \cdot U(e,x)) \cap V^*(x^*) = f_{\sigma}^{-1}(x \cdot U(e,x))$ is also open, conn. and homeomorphic to $x \cdot U(e,x)$ by the mapping f.

Since X^* is conn. we can choose y_1^*, \dots, y^*_{r-1} and $U^*(y_1^*), \dots, U^*(y^*_{r-1})$ from X^* so that the finite set $C_1^* = \{e^*, y_1^*, \dots, y^*_{r-1}, x_1^*\}$ satisfies $y^*_{i+1} \in U^*(y_i^*)$ $(i=0,1,\dots,r-1; y_0^*=e^*, y_r^*=x_1^*)$. Analogously we can choose $C_2^* = \{e^*, z_1^*, \dots, z^*_{r-1}, x_2^*\}$ so that $z_{j+1}^* \in U^*(z_j^*)$ $(j=0,1,\dots,s-1; z_0^*=e^*, z^*_s=x_2^*)$. From C_1^* , C_2^* we have by the mapping f two finite subsets of G $C_1 = \{e=y_0, y_1, \dots, y_{r+1}, x_0, =y_r\}$, $C_2 = \{e=z_0, z_1, \dots, z_{s+1}, x_0=z_s\}$ with $y_{i+1} \in U(y_i)$ $(i=0,1,\dots,r-1)$, $z_{j+1} \in U(z_j)$ $(j=0,1,\dots,s-1)$.

Now take an open and conn. neighbourhood U_0 of e in G such that

$$U_0 = U_0^{-1} \subseteq \{ \cap_i U(e, y_i) \} \cap \{ \cap_j U(e, z_j) \}.$$

Since $U(e, y_i)$, $U(e, z_j)$ are conn. we can take U_0 -chains

$$U_{i} = \{ y = y_{i0}, y_{i1}..., y_{ir(i)} = y_{i+1} \}, y_{ik+1} \in y_{ik} \ U_{0}$$

$$U_{j}' = \{ z_{j} = z_{j0}, z_{j1},..., z_{js(j)} = z_{j+1} \}, z_{jk+1} \in z_{jk} \ U_{0}$$

$$(i = 0, 1, ...; r-1; j = 0, 1, ..., s-1)$$

Since $y_{ik} \in y_i U(e, y_i)$ and $y_{ik} \cdot U(e, y_i)^2 \subseteq y_i U(e, y_i)^3 \subseteq y_i V(e, y_i)$,

 $y_{ik}U(e, y_i)^2$ is evenly covered by X^* . Then put $U(e, y_{ik}) = U(e, y_i)$, $V(e, y_{ik}) = U(e, y_i)^2$.

If we interpolate these U_0 -chains U_i (U'_j) between y_i and $y_{i+1}(z_j)$ and z_{j+1} in C_1 (C_2) , we have two U_0 -chains with the following properties. (We denote these new U_0 -chains and their elements with the same letters as the old ones.)

(i)
$$C_1 = \{e = y_0, y_1, ..., y_{r-1}, x_0 = y_r\}, \qquad y_{i+1} \in y_i \cdot U_0$$

$$C_2 = \{e = z_0, z_1, ..., z_{s-1}, x_0 = z_s\}, \qquad z_{j+1} \in z_j U_0$$

(ii)
$$U_0 = U_0^{-1} \subseteq U(e, y_i), \ U_0 \subseteq U(e, z_i).$$

(iii)
$$U(e, y_i)^2 \subseteq V(e, y_i), \quad U(e, z_j)^2 \subseteq V(e, z_j),$$

 $V(e, y_i) \text{ and } V(e, z_j) \text{ are evenly covered by } X^*.$

(iv) Let
$$U^*(y_i^*)$$
 $(U^*(z_i^*))$ be the component of $f^{-1}(y_iU(e,y_i))$

 $(f^{-1}(z_i \cdot U(e, z_i)))$ which contains $y_i^*(z_i^*)$, then we have

$$C_1^* = \{e^*, y_1^*, \dots, y_{r-1}^*, x_1^*\}, \qquad y_{i+1}^* \in U^*(y_i^*)$$

$$C_2^* = \{e^*, z^*, \dots, z^*_{s-1}, x_2^*\}, \qquad z^*_{j+1} \in U^*(z_j^*)$$

on X^* .

Now we use the condition that $G \cong Gr(U_0)$ and apply Lemma 3 for C_1 and C_2 . Then C_1 and C_2 are U_0 -homotopic. Hence it is sufficient to see that $x_1^* = x_2^*$ holds under the condition $C_1 \approx C_2(U_0)$. Therefore, let r = s and $y_i^{-1}z_i \in U_0$ (i=1,...,r). Under these assumptions we shall prove

$$z_i^* \in V^*(y_i^*)$$
 (i=0, 1,...,r) (3)

by the mathematical induction on i. For i=0 $y_0^*=z_0^*=e^*$. Hence we assume that the relation (3) holds for i-1. From $y_{i+1} \in y_i U_0$, $z_{i+1} \in y_{i+1} U_0 \subseteq y_i \cdot U_0^2$, $z_i \in y_i U_0$ follows that y_{i-1} , z_{i-1} , z_i are contained in $y_i \cdot V(e, y_i)$. Since y_{i-1}^* and y_i^* , y_{i-1}^* and z_{i-1} , z_{i-1}^* and z_i^* belong in the same component of $f^{-1}(y_i \cdot V(e_i y_i))$, we can conclude that z_i^* and y_i^* are in the same component $V^*(y_i^*)$ of $f^{-1}(y_i \cdot V(e_i y_i))$. Thus (3) is proved. Hence $x_1^*=y_r^*$ and $x_2^*=z_r^*$ belong to the same component and so $x_1^*=x_2^*$ holds, Q.E.D.

Theorem. 2. Let G be a conn., l.c. and locally simply connected to-pological group. Let a neighbourheed $U_0 = U_0^{-1}$ of the unit element of G be simply connected. Then $Gr(U_0)$ is a simply connected topological group.

Proof. For any covering space (X^*, f) of G simply connected sets xU_0 are evenly covered by X^* . Hence in the proof of Theorem 1 we can choose as V(e,x) for any $x \in G$ the simply connected neighbourhood U_0 . Then we can prove Theorem 2 just in the same way as in the proof of Theorem 1, Q.E.D.

From Lemma 1,2 follows that $Gr(U_0)$ is connected. Hence we have the following existence theorem of simply connected covering space for topological groups (c.f. L.G. Cap. II, § IX, Theorem 4):

Corollary. Let G be conn., l.c. and locally simply connected topological group. Then G has a simply connected covering group.

§2. Generalized universal covering group.

We shall consider here conn. and 1.c. topological groups with the 1-st countability axiom. Since we can not always expect the existence of a simply connected covering group for such a group, we shall define the following generalized covering group.

Definition 2. Let G be a conn. and l.c. topological group with the 1-st countability axiom. If there exists a topological group G_0^* satisfying the following conditions we call G_0^* a generalized universal covering group of G:

- **P.** I. G_0^* is conn., l.c. and simply connected.
- **P.** II. There exists a normal subgroup F_0^* in the center of G_0^* with

$$G_0^*/F_0^* \stackrel{\sim}{=} G \tag{4}$$

P. III. F_0^* is totally disconnected, and, moreover, every neibourhood V^* of the unit element e^* contains an open subgroup H^* of F_0^* .

Now we shall define a group G_0^{**} for a conn. and 1.c. topological group G as follows. Let $\{U_n, n=1,2,3,...\}$ $\{U_1 \supset U_2 \supset U_3 \supset\}$ be a basis of neighbourhoods of the unit element e in G. We can assume that U_n are open, conn. and $U_n^{-1}=U_n$ hold. Let $Gr(U_n)$ be the topological group defined in § 1. From Lemma 1 follows that

$$Gr(U_m)/N_n^m \cong Gr(U_n)$$
 $(n < m)$ (5)

for a discrete normal subgroup N_n^m in the center of $Gr(U_m)$. The natural mapping of this homomorphism shall be denoted by ψ_n^m . Then the relation

$$\psi_n^m \ \psi_m^l = \psi_n^l \qquad (n < m < l) \tag{6}$$

holds. Hence we have an inverse system of topological groups

$$\{Gr(U_n), \, \psi_n^m\} \tag{7}$$

Let its limit group be G_0^{**} . Now let

$$Gr(U_n)/F_n \simeq G$$
 (8)

for a discrete subgroup F_n in the center of $Gr(U_n)$. Then $\psi_n^m(F_m) = F_n$ and $\{F_n, \psi_n^m\}$ forms also an inverse system of topological groups. Let the limit group of this system be F_0^* . Then we have the relation $G_0^{**}/F_0^* \cong G$. Since F_n lies in the center of $Gr(U_n)$, F_0^* lies also in the center of G_0^{**} . Since F_n is discrete, it is easy to see that F_0^* satisfies the property **P.** III.

Now we assume that the group G_0^{**} is conn. and l.c. Then we can prove that

$$G_0^{**} = Gr(U^*) \tag{9}$$

holds for any conn. open neighbourfood U^* of G_0^{**} with $U^*=U^{*-1}$.

For let the natural mapping of G_0^{**} onto $Gr(U_n)$ by the homomorphism $G_0^{**}/N_n^{*} \subseteq Gr(U_n)$

be ψ_n . Then the basis of neibourhoods of the unit element e^* in G_0^{**} is $\{\psi_n^{-1}(U_{nk})\}$ where $\{U_{nk}\}$ are neighbourhoods of the unit element in $Gr(U_n)$. Hence we can choose a group $Gr(U_n)$ such that $\psi_n(U^*) = U_{nk} \supset U_n$ in $Gr(U_n)$. Since U_{nk} is open, conn., $U_{nk} = U_{nk}^{-1}$ the relation $Gr(U_n) = Gr(U_{nk})$ hlods. Now it is also easy to see that we have $G_0^{**} = Gr(U^*)$ from this relation. From Theorem 1 follows then that G_0^{**} is simply connected. Therefore, we have the following theorem:

Theorem 3. If the group G_0^{**} constructed above is conn. and l.c., then G_0^{**} is a generalized universal covering group of G.

Now we shall consider the converse problem, *i. e.* "if G has a generalized universal covering group G_0^* , is G_0^{**} then conn. and l.c. and is G_0^* isomorphic with G_0^{**} ?" For this purpose we shall prove the following Lemmas:

Lemma 4. Let G^* be a topological group satisfying **P.** I, **P.** II. Then for any conn. and l.c. topological group G_1 which is locally isomorphic with G there exists a normal subgroup H^* of G^* such that

$$G_1 \stackrel{\smile}{=} G^* / H^* \tag{10}$$

holds.

Proof. Let G_1 be U_1 -U-locally isomorphic with G. We can assume that $U_1 = U_1^{-1}$ and open. Let f be the natural mapping of G^* onto G by (4). Let U^* be the component of $f^{-1}(U)$ which contains the unit element e^* in G^* . Put $U_0 = f(U^*) \subseteq U$. $U_0 = U_0^{-1}$ is open and conn. From Lemma 1 follows then

$$G_1 \underline{\underline{\hspace{0.1cm}}} Gr(U_0)/H_0^* \tag{11}$$

Now we shall apply the following Lemma:

Lemma 5. Let $G_1 = Gr(U_1)$, $G_2 = Gr(U_2)$ and let f be a continuous open mapping of U_1 onto U_2 with

$$f(ab) = f(a)f(b) \qquad (a,b, ab \in U_1).$$

Then we can always extend the mapping f to a continuous open hommorphism of G_1 onto G_2 .

Hence the mapping f of U^* onto U_0 can be made to a continuous open homomorphism of $Gr(U^*) = G^*$ onto $Gr(U_0)$. Therefore, we have

$$G^*/H_1^* \underline{\underline{}} Gr(U_0) \tag{12}$$

Combining (11) and (12) we have (10), Q. E. D.

Lemma 6. Let G_0^{**} be the limit group defined by (7). Let G^* be any topological group with the properties **P.** I, **P.** II. Then for a suitable normal, subgroup H^* of G^* the relation

$$G_0^{**} \cong G^*/H^* \tag{13}$$

holds.

Proof. From Lemma 4 follows $Gr(U_n) = G^*/N_n^*$. Let f_n be the natural mapping for this homomorphism. It is easy to see that $f_n = \psi_n^m f_m$ (n < m) holds, where ψ_n^m is the natural mapping defined in (5). Hence by a well knewn theorem we have a continuous open homorphism f of G^* onto the limit gooup G_0^{**} of the inverse system of groups $\{Gr(U_n), \psi_n^m\}$, Q. E. D.

Theorem 4. Let G be a conn. and l.c. topological group with the 1-st countability axiom. If G has a generalized universal covering group G_0^* then the group G_0^{**} defined by (7) is conn. and l.c., and hence G_0^{**} is also a generalized universal covering group of G. Moreover, every generalized universal covering graup of G is topologically isomorphic with G_0^{**} .

Proof. Let G_0^* be a generalized universal covering group of G. Then we have $G_0^{**} \equiv G_0^{*}/H^*$ by Lemma 6. Since G_0^{*} is conn. and l.c., G_0^{**} is also conn. and l.c. Hence we have the first half of Theorem 4. Now let F_0^{*} be the normal subgroup defined by (4). Clearly H^* is a subgroup of F_0^{*} . Hence it is easy to see that H^* has also the property \mathbf{P} . III. Let N^* be any open subgroup of H^* . Then H^*/N^* is discrete. Since $G_0^{**} \equiv (G_0^{*}/N^*)/(H^*/N^*)$ holds, G_0^{*}/N^* is a covering group of G_0^{**} . Since G_0^{**} is simply connected, we can easily conclude that $H^* = \{e^*\}$, that is, $G_0^{**} \equiv G_0^{**}$, Q. E. D.

§ 3. Some properties of the generalized universal covering group.

Definition 3. Let G be a conn. and l.c. topological group with the 1-st countability axiom. We assume further G has the generalized universal covering group G_0^* . Let f be the natural mapping by $G_0^*=G_0^*/F_0^*$. The totality of all the homeomorphisms φ of G_0^* onto itself which satisfies

$$f \cdot \varphi = f \tag{14}$$

is called the Poincaré group of G.

Theorem 5. Let G_0^* be the generalized universal covering group of a conn. and l.c. topological group G with the 1-st countability axiom. Let G_0^* G_0^* . Then the Poincaré group P of G is algebraically isomorphic to F_0^* .

Proof. Let $y \in F_0^*$. Then the homeomorphic mapping of G_0^* onto itself $\varphi_y(x) = x \cdot y$ ($x \in G_0^*$) belongs clearly to P. Conversely we shall prove that any $\varphi \in P$ is a φ_y ($y \in F_0^*$). From $f \cdot \varphi(x) = f(x)$ follows $\varphi(x) = x \cdot y(x)$, $y(x) \in F_0^*$. Then $y(x) = \varphi(x) \cdot (x)^{-1}$ is a continuous mapping of G_0^* into F_0^* . Since G_0^* is conn., so is its image in F_0^* . On the other hand F_0^* is totally disconnected. Hence y(x) = y is independent of $x \in G_0^*$, that is $\varphi(x) = x \cdot y = \varphi_y(x)$, Q.E.D.

The structure of the Poincaré group of an infinite product group is very simple.

Theorem 6. Let G_n (n=1,2,...) and the infinite direct product group $G = \mathbf{P}_{n=1}^{\varphi} G_n$ have the genealized universal covering goups G_n^* and G^* respectively. Let $G_n = G_n^* / F_n^*$, and $G = G^* / F^*$. Then

$$G^* \underline{\underline{\hspace{0.1cm}}} \mathbf{P}_{n=1}^{\infty} G_n^*, \qquad F^* \underline{\underline{\hspace{0.1cm}}} \mathbf{P}_{n=1}^{\infty} F_n^* (algebraically).$$
 (15)

Proof. It is easy to see that $G_0^* = \mathbf{P}_{n=1}^{\infty} G_n^*$ satisfies the condition of Theorem 1, that is, G_0^* is simply connected. On the other hand it is also easy to see that $F_0^* = \mathbf{P}_{n=1}^{\infty} F_n^*$ is contained in the center of G_0^* , $G \cong G_0^*/F_0^*$, and F_0^* satisfies the property **P.** III. Hence we have (15) by Theorem 4, Q. E. D.

Example. Let G_n be isomorphic to the additive group of real numbers mod. 1. and let $G = \mathbf{P}_{n=1}^{\infty} G_n$. Then the generalized universal covering group G_n^* of G_n is isomorphic to the additive group of all the real numbers. Then the generalized universal covering group of G is given by $G^* = \mathbf{P}_{n=1}^{\infty} G_n^*$.

Theorem 7. Let G_1 and G_2 have the generalized universal covering groups G_1^* and G_2^* respectively. Let $G_1 \subseteq G_1^*/F_1^*$, and $G_2 \subseteq G_2^*/F_2^*$. A necessary and sufficient condition for the local-isomorphism of G_1 and G_1 is that

$$G_1^* \subseteq G_2^*$$

(ii) There are mutually isomorphic open subgroups H_1^* and H_2^* of F_1^* and F_2^* raspectively:

$$H_1^* \cong H_2^*$$
, $H_1^* \subseteq F_1^*$, $H_2^* \subseteq F_2^*$. (16)

Proof. Let G_1 and G_2 be U_1 - U_2 -locally isomorphic. We can assume that $U_1 = U_1^{-1}, U_2 = U_2^{-1}$ and are open, conn. Then $Gr(U_1) \supseteq Gr(U_2)$ holds. In general $Gr(U_{1n}) \cong Gr(U_{2n})$ if $U_{1n} \subseteq U_1$ and $U_{2n} \subseteq U_2$ are locally isomorphic. Hence the limit groups G_1^* and G_2^* of $\{Gr(U_{1n})\}$ and $\{Gr(U_{2n})\}$ respectively

are topologically isomorphic. Moreover, let $G_1^*/H_1^* \supseteq Gr(U_1)$ and $G_2^*H_2^* \supseteq Gr(U_2)$. Then H_1^* and H_2^* are open subgroups of F_1^* and F_2^* respectively and $H_1^* \supseteq H_2^*$. The sufficiency of the conditions can be proved quite analogously, Q. E. D.

Mathematical Institute, Tokyo Bunrika Daigaku.

Revised March, 18, 1949.

References

- 1) For the proof of Lemma 1, c.f. O. Schreier, [1] Abstrakte kontinuierliche Gruupe, Hamb. Abh., 4 (1925), 15-32, [2] Die Verwandtschaft stetiger Gruppen im Grossen, ibid. 5 (1926) 233-244.
- 2) \cong means topological isomorphism.
- 3) For the proof of Lemma 2, c.f. L.G. Chap. II, § X, Prop. 4, Cor. 2.
- 4) For the proof of Lemma 3 c.f. Y. Kawada, Ueber die Ueberlagerungsgruppe und die stetige projektive Darstellung topologischer Gruppen, Jap. Jour. Math., 17 (1940), 139-164, § 1, 3 Hilfssatz.
- 5) C. f. S. Lefschetz, Algebraic topology, (1942), p. 54.
- 6) C. f. O. Schreier, [1] and [2].