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On some properties of covering groups of a topological group.
Yukiyosi Kawapa
(Received Sept. 20, 1948)

Recently C. Chevalley has developed in his book ‘ Theory of Lie
groups ”’ (cited with L.G.) the theory of covering groups of a connected,
locally connected and locally simply connected topological group with new
definitions of a covering space and of the simply connectedness of a space.

The purpose of this paper is to investigate some properties of covering
groups of a topological group with these new conceptions. In §1 we shall
give an algebraic characterization of the simply-connectedness of a topological
group and give another proof of the existence theorem of a simply-connected
covering group under usual conditions. In § 2, § 3 we shall consider the
"generalized universal covering group under weaker conditions, i.e. for a
connected, locally connected topoloo1ca1 group with the first countability
axiom. )

§ Y. Simply connected topological groups. :

We use here the following definitions from L.G., the definition that a
set EC X is evenly covered by X* with respect to a continuous mapping
f of X* into X (Chap. II, § VI, Def. 2); the definition of a covering space
(X*, f) of X, where X and X* are connected (conn.) and locally connected
(1.c.) space with a continuous mapping f of X* onto X (§ VI, Def. 3)
the definition of the simply connectedness of a conn. and 1.c. space (§ IX,
Def. 2); and the definition of a covering group of a conn. and 1.c. topolo-
gical group (§ VIII, Def. 2).

Defmltlo_n. 1. Let G, G, be two topological groups and U; (U,)
be a neighbourhood of the unit element of G, (G,) respectively. We mean
by a U,-Uy-local isomorphism of G; and G, a homeomorphism f of U, onto
U, which has the following properties:

(i) - the conditions a,6,a6 € U, imply f(ab)——f(a) f(&) in U.,.
(ii) the conditions @,6 € U,, f(abd) € U, imply ab € U,.

Now we construct a topolngical group G7({) from a neighbourhood U
of the unit element ¢ in a topological group G with the property U=0"1!
as follows. To each element @ (as%¢) in U take an abstract element A.
Gr(U) has these {4} as generators. If to @, a=' (as¢) in U correspond
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A, A*, then we take as the defining relations of Gr(U) A-A*=1 (e #a
€ /) and ABC*=1 for every relation ab=c in U. As the system of
neighbourhoods of the unit element of G#»(U) we take [*={A4; a e¢ IV
C U} for every neighbourkood V in U of ¢ of G. Then we have

Lemma 1.° Tle topological group G,.(U) constructcd above has the

following properties :

(i)  If U is connected, then Gr (U) is also connected.

(i) ZLet U*x={A; a € U}, then Gr(U) and G are U*-U-local isomorphic.

(iii) For any topological group G’ whick is U'-U-local isomorphic with G
G=Gr(U)/N? ' (1)

holds for a discrese wormal subgroup of Gr(U).

Lemma 2.2 [Let G* be a coun. and l.c. topological gronp and IN* ée
its discrete novmal subgroup. If G=G*/N* is also conn. and l.c., then for
the natural mapping f of G* onto G (G*, f) is a covering group of G.

Using these Lemmas we have the following characterization of the
simply connectedness of a topological group :

Theorem 1. A necessary and sufficient condition that a conn. and l.c.

topological group G be stmply-connected is that
G=Gr.(U) (2)

holds for every comnected neighbourkhood U=U"" of the unit element of G.

Proof. (i) The necessity of the condition. From Lemma 1 follows
G—G:;(U)/N* for a discrete normal subgroup NV * of Gr(U). Then follows
from Lemma 2 that Gr(U) is a covering group of G if U is connected.
By the assumption that G is simply connected, we conclude taht NV*=1
and G=Gr(U).

(ii) The sufficiency of the condition. Let U be a neighbourhood of
the unit element ¢ with U=U"! of a topological group G. We call a set
of finite elements of G

W={p,a,,0--,2,,9} (p=a, g=a,.)

a U-chain if aj'a;,, € U (G=...) hold. We identify two U-chains W
and Wy= {2,y -s@ @rs Qpsire-rtys gt. Let @' =1{p, by....,6,, g} be another
U-chain. We denote W~ (U) if ab;' € U (i=1,...r) hold. We call
two U-chains W and W' U-komotopic and denote W~W' (U) if W~ IV,
~Wo~...~W~W’' (U) holds. - Now we have '

Lemma. 3.9 [fAFO.. . AP=BV . B ()=+1, 6()==1) kolds
in Gr(U), then U-chains W=1{1, A", AP Af®,... 4AFD... 4"} and
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W= {1, B®, BIORED .. BED... BV ape U-homotopic in Gr(U).

Now let G be a conn. and l.c. topological group satisfying the condi-
tion of Theorem 1. Let (X*, f) be any covering space of . For any ux,
€ G take x*, x,* from f'(x,) CX* If we can show x*=ux,%, then f is
univalent and G must be simply connected.

For this purpose take e¢* € f~'(¢) C X*. For any element x € G we
can take an open and conn. neighbourhood V(e,x) of ¢ in G, so that
x+-V(ex) is evenly covered by X*. Then for an element 2* € f~'(x) C X*
there is a compoent I*(x*)=f,"(x-V(e,x)) of f~'(x-V(e,x)) which con-
tains x* so that I"*(x*) is open, conn. and homeomorphic to x-1(e,x) by
the mapping /. If we take an open and conn. neighbourhood U(e,x) of ¢
in G so that U(e,x)C V(e,x), then U*(x)=f""(xU(e,x)) NnI*(x*)
=f.(x-U(e,x)) is also open, conn. and homeomorphic to x-U(¢,x) by the
mapping f.

Since X* is conn. we can choose y,*,....p*,_; and U*(3,*),...,0*(y*,_,)
from X* so that the finite set C*={e*p.*,..., y*,_1, 2™} satisfies p*,,,
e U*(p*) (¢=0,1,..., r—1; py*=¢*, y*=x*). Analogously we can choose
Co¥={e*2/%,..., 2%, 1,*} so that 2%, € U*(2}) (=0,1,...,s—1; z*=¢%*,
2¥,=x,*). From C/*, C,* we have by the mapping f two finite subsets of
G C={e=Ws Visores Jrr1s %=}, Cy={=20, Z1,-1%0s1y 2e=2%} with
€ U(y:) (E=0,1,....,r.—1), 2;,1 € U(z;) (F=0,1,...,s—1).

Now take an open and conn. neighbourhood U, of ¢ in G such that

Uy=U"tCinU(e, pinin, U (e z)}

Since U(e, ), U(e, 2;) are conn. we can take U,-chains
Ue={y= Jio» Viroos Virty=Yss1}» Yirr1 € Y Uy

Uf={2;=2400 2Z31,0++» Z3sp=2%j01f> Zn+1 € Zz U,

(:=0,1,...; r—1; j7=0,1,..., s——l)

Since y;, € ﬂ’z‘U(", ¥:) and Jir* U (e, J’t)e_—c=)’iU(€s 22 Cy:V (e, Y

YalU (¢, 3)* is evenly covered by X*. Then put Ule, y)=U(e, 7)),
Ve, Iin)=U (e, AR

: If we interpolate these U,~chains U; (U,) between y, and y;.;(¢; and
2;41) in G (CG,), we have two U,-chains with the following properties.
(We denote these new U,-chains and their elements with the same letters
as the old ones.) )

€)) Ci={e=Ys, Vir-ss Voet» Zo=D1}, Y1 € Y00,
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Co={e=24 2yees%m1y X=25:1}, 2501 € 2; Uy
(ii) U=U,"'CU(e, 35), UyCU(e, 2y). 4
(iif) - U0 W(e,35), Ule, 2,)°C V(e 2y),
e, ;) and V(e z;) are evenly covered by X*.
(iv) Let U*(y,*) (U*(2,*)) be the component of f~'(y.U (e, y:))
(f~'(z;-U (e, z;)) which contains y,* (z;*), then we have
Cl*={"*171*:'j"yf-u n* Yi € U*(J/;*)
CX={e*, z%,..., 2354, 2%}, 2f, € U*(zj*)

on X*.

Now we use the condition that G=G»(U,) and apply Lemma 3 for
C, and C,. Then C, and C, are U,-homotopic. Hence it is sufficient to see
that x,*=1,* holds under the condition C,~C,(U,). Therefore, let r=s
and y;'z, € U, (¢=1,...,»). Under these assumptions we shall prove

z¥ € V*(y‘*) (=0, 1,...,») (3)

by the mathematical induction on z. For /=0 py*=z*=¢*. Hence we
assume that the relation (3) holds for i—1. From p,,, € %.U,, 241 € YU,
C 5:-US, z; € 3,U, follows that g,_,, 2;_,, 2; are contained in y;- (e, 7,).
Since y¥, and p;*, ¥, and z;_;, ¥, and 2,* belong in the same component of
S (- V(eys)), we can conclude that z,* and »,* are in the same component
*(y*) of f7'(y;- V(ew;)). Thus (3) is proved. Hence x*=y,* and x,*=
2,* belong to the same component and so x,*=ux,* holds, Q.E.D.

Theorem. 2. Let G be a conn., lc. and locally simply connected to-
pological group. Let a neighbourieced U,=Uy™" of the unit element of G be
simply connected. Then Gr(U,) is a simply connected topological group.

Proof. For any covering space (X*, /) of G simply connected sets
xU, are evenly covered by X*. Hence in the proof of Theorem 1 we
can choose as V(e,x) for any x € G the simply connected neighbourhood
U, Then we can prove Theorem 2 just in the same way as in the proof
of Theorem 1, Q.E.D.

From Lemma 1,2 follows that G»({/,) is connected. Hence we have -
the following existence theorem of simply connected covering space for
topological groups (c.f. L.G. Cap. II, §IX, Theorem 4) :

Corollary. Let G be conn., lc. and locally simply conmected topological
group. Then G has a simply connected covering group.
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§2. Generalized universal covering group.

We shall consider here conn. and 1.c. topological groups with the 1-
st countability axiom. Since we can not always expect the existence of
a simply connected covering group for such a group, we shall define the
following generalized covering group.

Definition 2. Zet G be a conn. and lc. topological group with the 1-sz
countability axiom. If therve exists a topological group G.* satisfying the
Jfollowing conditions we call G* a generalized universal covering group of G :

P. L G* is conn., lc. and simply connected.
P. II.  There exists a normal subgroup F* in the center of Gy* with
Go*[F*=G | 4)

P. I11.  E* is ttally disconnected, and, moreover, every neibourkhood V* of
the unit element e* contains an open subgroup H* of Fy*.

‘Now we shall define a group Gy ** for a conn. and l.c. topological
group G as follows. Let {{/,;»=123,...} (U,DU,DU;D...... ) be a basis
of neighbourhoods of the unit element ¢ in G. We can assume that U, are
open, conn. and U,;'=U, hold. Let Gr({,) be the topological group de-
fined in § 1. From Lemma 1 follows that

Gr(U,)/Nr=Gr(U,) (n <m) (b)
for a discrete normal subgroup V7 in the center of Gr»(U,,). The natural
mapping of this homomorphism shall be denoted by ¢7. Then the relation

o Pn=9n (2 <m <) (6)
holds. Hence we have an inverse system of topological groups

{Gr(U), ¢} (M
Let its limit group be G,**. Now let

Gr(Un) /26 ®)

for a discrete subgroup £, in the center of G#(U,). Then ¢ (F,)=2~F, and
{F, ¢} forms also an inverse system of topological groups. Let the limit
group of this system be #,*. Then we have the relation G, **/F*~G.
Since F, lies in the center of Gr(U,), F,* lies also in the center of Gy**.
Since £, is discrete, it is easy to see that F,* satisfies the property P. III.
Now we assume that the group G,** is conn. and l.c. Then we can
prove that ~
G**=Gr(U*) , ’ ' €))
holds for any conn. open neighbourfood U* of G** with U*=U*"",
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For let the natural mapping of G,** onto G»(U,) by the homomorphism
G}/ V¥ = Gr(U,)

be ¢,. Then the basis of neibourhoods of the unit element ¢* in G ** is
{¢2(Unx)} where {U,} are neighbourhoods of the unit element in
Gr» (U,). Hence we can choose a group Gr(U,) such that ¢, (U*)=0,, > U,
in G»(U,). Since U,, is open, conn., U,,=U;} the relation Gr(U,)=
Gr({/,;) hlods. Now it is also easy to see that we have G, **=Gr(U*)
from this relation. From Theorem 1 follows then that G,** is simply
connected. Therefore, we have the following theorem :

Theorem 3. If the group G ** constructed above is conn. and l.c., then
G ** is a generalized universal covering grovp of G.

Now we shall consider the converse problem, 7. ¢. “ if G has a genera-
lized universal covering group G,*, is G,** then conn. and l.c. and is G,*
isomorphic with G,**?” For this purpose we shall prove the following
Lemmas :

Lemma 4. Let G* be a topological group satisfying P. 1, P. 11. Then
Jor any conn. and lc. topological group G, whiclk is locally isomorplic with G
there exists a normal subgroup H* of G* such that

G,=G*/H* (10)
holds.

Proof. Let G, be U,-U-locally isomorphic with G. We can assume
that U,=U,"" and open. Let f be the natural mapping of G* onto G by
(4). Let U* be the component of f~'(U) which oontains the unit element
e* in G*. Put U,=f(U*)CU. U,=U,™" is open and conn. From Lemma
1 follows then :

GG (U [ Hy* (11)
Now we shall apply the following Lemma :

Lemma 5. Lot G,=Gr(U,), G,=Gr(U,) and let f be a continuous opern

mapping of U, onto U, with
S(ad) =f(a)f(6) (2,6, ab € U,).

Then we can always extend the mapping f to a continuous open hommorplism
of G, onto G,.

Hence the mapping f of U* onto U, can be made to a ccntinuous open
homomorphism of G»(U*)=G* onto Gr(U,). Therefore, we have )

G*/ H*=Gr(U,) a2
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Combining and ‘we have [10), Q. E. D.

Lemma 6. Let G** be the linut grovp a’eﬁned by (7). Let G* be any
topological group with the properties P. 1, P. 1. Then for a suitable normal,
subgroup H* of G* the relation

G+ oG H* (13)
holds.

Proof. From Lemma 4 follows Gr(U,)=G*/N,*. Let f, be the na-

tural mapping for this homomorphism. It is easy to see that f,=¢2 f,
(n <m) holds, where ¢ is the natural mapping defined in (5). Hence
by a well knewn theorem we have a continuous open homorphism f of G*
onto the limit gooup G,** of the inverse system of groups {G»(U.,), ¢n},
Q. E. D.
" Theorem 4. Lot G be aconn. and lc. topological group with the 1-st
countabilidy axiom. If G has a generalized universal covering group Gy*
then the group G** defined by (7) is comn. and lc., and hence Gy** is
also a generalized universal covering grcup of G. Moreover, every generalized
universal covering graup of G is topologically isomorphic with G,**.

Proof. Let G,* be a generalized universal covering group of G. Then
we have G **Z=G,*/H* by Lemma 6. Since G,* is conn. and l.c.,, G **
is also conn. and l.c. Hence we have the first half of Theorem 4. Now
let /,* be the normal subgroup defined by (4). Clearly A* is a subgroup
of F,*. Hence it is easy to see that A * has also the property P. III. Let
N* be any open subgroup of A*. Then A*/N* is discrete. Since G,**
=(Go*/N*)/(H*/N*) holds, G,*/N* is a covering group of G **. Since
G,** is simply connected, we can easily conclvde that //*={¢*}, that is,
Gy*=G,**, Q. E. D. _

§ 3. Some propertics of the gencralized universal covering group.

Definition 3. Lec2 G be a conn. and l.c. topological group with the 1-s¢
countability axiom. We assume further G has the generalized uuiversal covering
group Gy *. Let f be the natural mapping by G—=Gy*/F*. The totality of
all the homeomorplisms ¢ of G,* onto itself whick satisfies ' ‘

fe=f (14)
ts called the Poincaré group of G.

Theorem 5. Let G*- be the generalized universal covering group of a
conn. and l.c. topological group G with the 1-st countability axiom. Let G
G*/F*. Then the Foincaré group P of G is algebraically iscmorpliic to Fy*.

]
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Proof. Let y € F*. Then the homeomorphic mapping of G,* onto itself
¢, (x)=x-y (x € G,*) belongs clearly to P. Conversely we shall prove that
any ¢ € Pis a ¢, (y € F*). From f-¢(x)=f(x) follows ¢(x)=x-y(x),
y(x)eF*. Then y(x)=¢(x)-(x)~" is a continuous mapping of G,* into
F*. Since G,* is conn., so is its image in Z*, On the other hand F*
is totally disconnected. Hence y(x)=y is independent of x € G,*, that is
¢(x)=1-3=9,(x), Q.ED.

The structure of the Poincaré group of an infinite product group is
very simple.

Theorem 6. /Lot G, (n=12,...) and the infinite direct product group
G=P%_, G, Lave the gencalized universal covering goups G,* and G* vespec-
tively. Let G,2G.*/F.*, and GZG*/F*. Xgen

G*=Py., G.%, F*=Pg_, F.*(algebraically). (15)

Proof. 1t is easy to see that G *=P;_, G,* satisfies the condition of
Theorem 1, that is, G,* is simply connected. On the other hand it is also
easy to see that F*=Py_, F* is contained in the center of G,*, G
=G,*/Fy*, and F,* satisfies the property P. III. Hence we have (15) by

Theorem 4, Q. E. D.

Example. 1et G, be isomorphic to the additive group of real numbers
mod. 1. and let G=PZ., G,. Then the generalized universal covering
group G,* of G, is isomorphic to the additive group of all the real
numbers. Then the generalized universal covering group of G is given by
G*=P;_, G,*.

Theorem 7. Let G, and G, have the generalized wuniversal covering
groups G* and G,* respectively. Let G, ZG*/F*, and G, —”G*/F,*. A4
necessary and sufficient condition for the local-isomorplhism of G, and G, is
that
@ G *2Gy*

(i)  There are mutually isomorplic open subgroups H* and Hy* of Fi* and
F* raspectively -

H*ZHY, HFXCE*, HFXCF* (16)

Proof. Let G, and G, be U,-U,-locally isomorphic. We can assume
that U, =U,",U,=U,™" and are open, conn. Then Gr(U,)=Gr(U,) holds.
In general Gr(U,,) =Gr(Uy,) if U, CU, and U,, C U, are locolly isomorphic:
Hence the limit groups G,* and G,* of { G#(U4a) } and {Gr(U,,) } respectively
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are topologically isomorphic. Moreover, let G*/H*2=Gr(U,) andG,*H,*
=Gr(U,). Then H* and H,* are open -subgroups of /,* and F,* respec-
tively and A *—=H,*. The sufficiency of the conditions can be proved quite
analogously, Q. E. D.
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