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On the Differential Forms of the First Kind
on Algebraic Varieties.

SHOJI KOIZUMI.

(Received April 10, 1949).

In his book‘ Foundations of algebraic geometry ”J) A. Weil proposed
several problems concerning differential forms on algebraic varieties. In
this note we shall take up some of them. Especially we shall discuss
differential forms of the first kind which are defined on a complete abstract
varieties without multiple point. Here the field of dcfinition is assumed to
be arbitrary.

1. Let $K=k(x_{1},\ldots\ldots, x_{n})=k(x)$ be a field, generated over a field $k$

by a set $(x)$ of quantities; the totality $\mathfrak{D}$ of all derivations in $k(x)$ over
$k$ forms a finite K-module. Every element 2 of $K$ d\’efines a linear functIon
$d_{2}$ from $\mathfrak{D}$ into $K$ ; we call this linear function the differential of 2, and
we can define multiplication between a differential and an element of $K$

as usual. The set $\mathfrak{F}$ of those linear functions, which are sums of the pro-
ducts thus obtained, forms the dual K-module of $\mathfrak{D}$ , and therefore the di-
mensions of $\mathfrak{D}$ and $\mathfrak{F}$ are equal.

As usual we can form the Grassmann algebra from the finite K-module
$\mathfrak{F}$ . An homogeneous element, of degree $m$ , is called a differential form of
degree $m$, belonging to the extension $k(x)$ of $k$ .

$PROPOS1TIO\Lambda^{7}1$ . Let $K=k(x)$ be a separably generated extention of
$k$, and $dim_{k}(x)=n$ . If $(u_{I}, \ldots.,u_{n})$ is a set of elements of $k(x)$ , such
that $k(x)$ , such that $k(x)$ is separably algebraic over $k(u)$ , then every
differential fom belonging to the extention $k(x)$ of $k$ can be expressed in
one and only one way, as polynomials in $du_{1},\ldots\ldots,du_{n}$ with coefficients in
$k(x)$ .

PROOF. Let $z$ be an arbitrary element of $K$ ; it is sufficient to prove
that $d_{2}$ is expressed uniquely as a linear form in $du_{1}\ldots\ldots.,du_{n}$ with co-
efficients in $k(x)$ . As 2 is separably algebric over $k(u)$ , there exists a
polynomial $P(U, Z)$ in $k[U_{1},\ldots\ldots,U_{n}, Z]$ such that $ P(u, z)=0,.P_{Z}(u,z)\neq$
$0$ ,

During my investigation I have received kind criticisnis from Mr. Igusa to whom I express
my hearty thanks.

1) In this note we shall stick throughout, in terminologies and notations, to Weil, 1. $c$ .
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$(P_{Z}(U, Z)=\frac{\partial P(U,Z)}{\partial Z}$ ). Therefore

$dP(u.\approx)=\sum_{i\Rightarrow 1}^{n}P_{U:}(u, z)du_{j}+P_{z}(n, \approx)d\approx=0$

$d.\sim=-\frac{\sum_{i}P_{Ut}(u,2)du_{i}}{P_{z}(u,2)}$

Considering dImension we see readily that, this expression is unique.
The above dcfinitions can be applied to the case in which $k$ is a field

of definitition for an algebraic variety V and $(x)$ a $ge1\iota$ eric point of $V$

over $\mathcal{L}^{\prime}$ ; then the above defined differential forms are called differential forms
on $\nabla$. Similarly for abstract varieties.

In order to study the local properties of differential forms at a simple
Poit of a $Vaiety^{\underline{o})}$ , we shall introduce local uniformiziug parameters at that
$1^{\supset}oint$ of the Variety.

$DF_{\vee}^{\backslash }FI\Lambda^{7}1TIO_{1}V1$ . Let $k$ be a field of definition for a Variety $U^{n},$ $P$ be
a generic Point of the Variety $U$ over the field $k$ , and $P$‘ be a simple
Point on the Variety $U$, $U_{\alpha}$ be a representative of $U$ in an ambient
space $ S^{v}\perp$ in which $P^{\prime}$ has a representative $P_{\alpha}^{\prime}=(x^{\prime})$ , and $P_{\alpha}=(x)$ be the
representative of $P$ in $U_{\alpha}$ . We shall call th $e$ set of quantitIes $(t)=(t_{1},\ldots\ldots,t_{n})$

the set of uniformizing parameters at $P^{\prime}$ , if every $t_{\ell}$ is contained in the
specialization ring of $p/$ in $k(P)$ and there exist polynomials $F_{i}(T_{1},$ ,
$T_{n}$ ; $X_{1},\ldots\ldots,X_{A^{r}}$) in $/_{\iota}\cdot[T, \swarrow Y](i=1,\ldots\ldots, N)$ , which fulfil the next condi-
tions:

$F_{l}(t, x)=0$ $(i=1,\ldots\ldots, 1V)$

$det(\frac{\partial F_{i}}{\partial\prime l^{\prime}/_{j}})\neq 0$
$(i, j=1,\ldots\ldots, \Lambda^{7})$

It is evident that the above definition is equivalent to Weil’s one.
And we can easily see also that: if $(t^{\prime})$ is the specialization of $(t)$ over
$(x)\rightarrow(x^{\prime})$ with referenc $e$ to $k,$ $(x^{\prime})$ is the proper specialization of $(x)$

over $(t)-(1)$ with reference to $k$ , of multiplicity 1; and vice versa.
The above defintions are independent of the choice of the representative

of U. Moreover, as the field $k(x)$ is separably algebraic over the field $k(t)$ ,
every differential form can be expressed in one and only one way as a

2) As in Weil, 1. $c$ . we distinguish abstract varieties by the use of capitals, and also by
thc use of bold face capitals to denote tbcm. Sinlilarly for related notions, as points, subvarie-
ties, etc.
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homogeneous polynomial in $dt_{1},$ $.,dt_{n}$ with coefficients in $k(x)$ .
$PROPOSITIO_{4}V2$ . Let $k$ be a field of definition for a variety $U^{n},$ $P=$

$(x)$ be a generic point of the variety $U$ over a field $k$. If the set $(t)=$

$(t_{1},\ldots\ldots,t_{n})$ is uuiformizing parameters of the veriety $U$ at a simple point
$P^{\prime}=(x^{\prime})$ on $U$, then every $dx_{i}(i=1,\ldots\ldots, N)$ can be expressed as $dx_{i}=$

$\sum_{\alpha=1}^{n}w_{t\alpha}di_{\alpha}$ such that $w_{i\alpha}$ is contained in the specialization ring of the point

$P^{f}$ in $k(P)$ .
PROOl’. Suppose that $F_{i}(T_{1}, \ldots..,T_{n},\ldots\ldots,X_{A})$ are the polynomials

which are defined in the def. 1. Then we have

$\sum_{j-1}^{n}\frac{\partial F_{f}}{\partial x_{j}}dx_{j}+\sum_{\alpha\approx 1}^{n}\frac{\partial F_{i}}{\partial t_{\alpha}}dt_{\alpha}=0$
$(i=1,\ldots\ldots,N)$

and therefore

dnt, $=\frac{\sum_{\alpha\approx 1}^{n}H_{\alpha}(t,x)dt_{\alpha}}{det(\frac{\partial f_{i}^{i}}{\partial x_{j}})}$
, $H_{\alpha}(T, X)\in k[T, X]$

By the def. 1

$det(\frac{\partial F_{i}}{\partial x^{;_{j}}})\neq 0$

which proves our proposition.
The next proposition is an immediate consequence of the preceeding:
$PROPOS1TIO\Lambda^{\gamma}3$ . Under the same assumptions as those in the prop.

2, if 2 is contained in the specialization ring of the point $P^{\prime}$ in $k(P)$ , then

the differential $d_{2}$ can be expressed as $dz=\sum_{\alpha=1}^{n}w_{\alpha}d_{\alpha}$ such that $ w_{\alpha}(a=1,\ldots$

..., $ 7\iota$ ) is contained in the specielizetion ring of $P^{\prime}$ in $\prime t^{\prime}(P)$ .
$DEFI\Lambda^{\gamma}1TIO\Lambda^{7}2$ . Let $k$ be a field of definition for a Variety $U^{n},$ $P$ be

a generic Point of the Variety $U$ over $k$ , and $(t)$ be a set of uniformizing
parameters at a simple Point $P^{\prime}$ on the Variety U. Let a differential form
$\omega$ on $U$ be expressed as a homogeneous $t^{\chi)}1ynomia1$ in $dt_{1},$ $\ldots.,dt_{n}$ . When
its coefficients are all contained in the specialization ring of $p/$ in $k(P)$ ,

then we say that $\omega$ is finite at the Point $P^{\prime}$ .
It is easily seen from the prop. 3 that the def. 2 is independent of the

choice of a set of uniformizing parameters at $P$‘.
$DEFI_{1}V1TIO_{1}V3$ . A differential form $\omega$ which is finite at every Point

on a complete Variety $U$ without multiple Point, is called a differential form
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of the first kind on the Variety U.
It is desirable that this definition is invariant on the birationally

equivalent Variaties. In \S 2 we shall prove this proposition, which settles
one of Weil’s problems.

2. First we shall prove
$PROPOSITIO\Lambda^{7}.4$ . Let $U$“ and $V$“ be birationally equivalent varieties

defined over a field $k,$ $P=(x),$ $Q=(y)$ be, respectively, their generic points
over $k$, and $T$ a bitational correspondence between $U$ and $V$ with $P$ and
$Q$ as mutually corresponding generic points. If a simple $(n-1)$ –dimensional
subuariety $X^{n\sim 1}$ of $U$ and a simple subvariety $Y^{m}(m<n)$ correspond by $T$

and a differential form $\omega$ belonging to the field $k(P)=k(Q)$ over $k$ is finite
at a generic point $B$ of $Y^{m}$ over $k$, then $w$ is also finite at a generic point
$A$ of $X^{n-1}$ over $k$ .

PROOF. We shall treat the case when $\omega$ is of degree 1. The other
cases may be proved similarly.

Let $(t),$ $(u)$ be, respectively, a set of uniformizing parameters at the
point $B,$ $A$ on $V,$ $U$.

$\omega=\Sigma^{n}Z_{i}dt_{p}$

where 2, are contained $i_{t1}$ the specialization ring of $B$ in $k(Q)$ . As the $y_{i}$

$(t=1,\ldots\ldots,N)$ are contained in the specialization ring of $A$ in $k(P)$ , the spe-
cialization ring of $A$ in $k(P)$ contains that of $B$ in $k(Q)$ . Therefore $z_{i},$ $f_{i}$

$(i=1,\ldots\ldots,n)$ are contained in the specialization ring of $A$ in $k(P)$ . By
the prop. 3 we can -easily verify the proposition.

$PROPOSIT1O_{1}V5$ . If a differential form $\omega$ on a variety $U^{n}$ is finite at
the generic point of every simple $(n-1)$ –dimensional subvariety of $U,$ $\omega$

is finite at every simple point of $U$.
$\rangle$ PROOF. Let $k$ be a field of definition for $U$ and $P=(x)$ a generic
point of $U$ over $k$ . If $P=(x^{\prime})$ is a specialization of $P$ over $k$ and $P^{\prime}=$

$(x^{\prime\prime})$ is that of $P$ over $k$ , then a set of uniformizing parameters at $P^{\prime}$ on
$U$ becomes also that at $P^{\prime}$ .

We shall treat the case when $\omega$ is of degree 1.
If we suppose that this proposition is not true, there exists a simple

point $Q=(y)$ on $U$ such that $\omega$ is not finite at $Q$ . Let $(t)$ be a set of
uniformizing parameters at $Q$ . Then $\omega$ is expressed in a form $\omega=\sum_{i=1}^{n}z_{i}dt$

with at least one $z_{i}$ , say, $2_{i0}$ not contained in the specializalization ring of
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$Q$ In $k(P)$ . As $(y, \infty)$ is a specialization of $(x, \sigma_{l0})$ over $k$, there exists
a component of $(2_{i_{0}})_{\infty}$ which contains Q. This gives a contradiction.

By the prop. 4 and the prop. 5 we have the following theorem.
THEOREM 1 If $\omega$ is a differential form of the first kind on a com-

plete Variety $U$ without multiple Point, $\omega$ is always finite at every simple
Point of a Variety which is birationally equivalent to U.

3. In the rest of the paper we shall consider several properties concern-
ing differential forms of the first kind.

$PROPOSITIO\Lambda^{\gamma}6$ . Let $k$ be a field of definition for a Variety $U^{n},$ $P$ a
generic Point of the Variety $U$ over $k$, and $Q$ a simple Point on U. If a
differential form $\omega$ on $U$ is finite at $Q$ , then $\omega$ induces uniquely a differen-
tial form on a Subvariety V which has $Q$ as a generic Point over $\overline{k,}(\overline{\tilde{k}}$

denotes an algebraic closure of $k.$)
PROOP We shall treat the case when $\omega$ is of degree 1. The other

case may be treated similarly. Without loss of generality we can assume
$\overline{k}=k$ . In a representative $U_{\alpha}$ of $U$ two Points $P$ and $Q$ have, respectively,
representatives $P=(x)$ and $Q=(x^{\prime})$ . Let $(t)$ be a set of uniformizing
parameters at Q. Then we obtain

$\omega=\sum_{\Rightarrow 1}^{n}R_{i}(x)dt_{i}$,

where $R_{i}(X)\in k(X)$ , and $t_{i},$ $R_{(x)}(i=1,\ldots\ldots, n)$ are included in the specia-
lization ring of $Q$ in $k(P)$ . Furthermore $\omega$ is represented as follows:

$\omega=\sum_{\mu=1}^{N}S_{\mu}(x)dx_{\mu}$ ,

where $S_{\mu}(X)(\mu=1,\ldots\ldots,N)$ are included in the specialization ring of $Q$

in $k(P)$ . Next we want to show that $\omega^{\prime}=\sum_{r}S_{\mu}(x^{\prime})dx_{\mu}$ and $\omega^{\prime\prime}=\sum_{i}R_{i}$

$(x^{\prime})dt_{0}^{\prime}$ (where (t) represents a specialization of $(t)$ over $(x)-(x^{\prime})$

with reference to $k.$) are equal. From our proo$f$ to the prop. 2

$dx_{\mu}=\frac{\sum_{i}H_{\mu i}(x)dt_{p}}{F(x)}$ , $d\mathcal{X}_{\mu}^{\prime}=\frac{\sum_{l}H_{\mu}(x^{\prime})dt_{i}^{\prime}}{F(x)}$

where $H_{\mu i}(X)$ and $F(X)$ are the rational functions with coefficients in $k$ .
Then we obtain

$\frac{\Sigma_{\mu}S_{\mu}(x)H_{\mu i}(x)}{F(x)}=R_{t}(x),\frac{\Sigma S_{\mu}(x^{r})H_{\mu i}(x^{\prime})}{F(x^{\prime})}=R(x^{\prime})$ .

3) This result has been obtained also by Van der Waerden, as was communicated to the
writer by K. Kodaira.



278 S. KOIZUMI.

Therefore
$\omega^{/}=\omega^{//}$

We have proved that $\omega$ induces the uniquely determined differential form
$\omega^{\prime}$ on V.

$PROPOSITIO\Lambda^{7}7$ . Under the same assumptions and notations as in the
above proposition, $R$ is a simple Point on both $U$ and V. If $\omega$ is finite at
$R$ on $U$ , then $\omega$

‘ is also finite at $R$ on V.
PROOF. Let $(t)$ be a set of uniformizing parameters at $R$ on U. It

It follows that

$\omega=\sum_{i\approx 1}^{n}R_{i}(x)dt_{i}$

where $t_{i}=T_{i}(x)$ and $R_{t}(x)T_{i}(X)$ are rational functions with coefficients
in $k$ and $R_{i}(X),$ $T_{i}(x)$ are included in the specialization ring of $R$ in $k(P)$ .
Similarly we have

$\omega^{\prime}=\sum_{i=1}^{n}R_{i}(x^{\prime})dt_{i}^{\prime}$

where $f=T_{i}(x^{\prime})$ , and $R_{i}(x^{\prime}),$ $T_{i}(x^{\prime})$ are included in the specialization ring
of $R$ in $k(Q)$ .

From the prop. 3 follows that $dt_{i}^{\prime}(i=1,\ldots\ldots,n)$ are finite at $R$ on V,
and this proves the proposition.

From the above two propositions follows immediately.
THEOREM 2. Let $U^{n}$ be a complete Variety without multiple Point,

and let $V^{m}$ be complete Subvariety of $U$ without multiple Point. Then every
differential form of the first kind on $U$ determines a differential form of the
first kind on V.

Next we shall consider differential forms on a Product-Variety. The
following proposition can easily be seen.

$PROPOSITIO\Lambda^{7}8$ . Let $P$ and $Q$ be respectively, simple Points on
Varieties $U$ and V. If $(t)$ and $(u)$ are sets of uniformizing parameters at
$P$ and $Q$ on $U$ and V respectively, then $(t, u)$ is a set of uniformizing
parameters at a Point $P\times Q$ on a Product-Variety $U\times V$ .

EVery differential form on a Variety $U$ or a Vari $e$ty V determines a
differential form on a Product-Variety $U\times V$ , in the natural manner. Then
a sum of differential forms of the first kind on $U$ and V determines a differen-
tial form of the first kind on $U\times V$ . The converse of this statement for the
case of differential forms of degree 1, will be proved in the following.

$PROPOSIT1O_{A}V9$ . Let $U^{n}$ and $V^{m}$ be Varieties defined over a field $k$
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and let $P$ and $Q$ be algebraically independent generic Points over $k$ of $U$

and V respectively. $\omega$ is a differential form of degree 1 on a Product-Variety
$U\times V$ and is represented as follows:

$\omega=\tau+\sigma$

with $\tau=\sum_{i=1}^{l}v_{i}dx$ where $x_{i}\in k(P)$ , $v_{i}\in k(P, Q)$

$\sigma=\sum_{\iota=1}^{k}w_{i}dy_{j}$ where $x_{\dot{f}}\in k(Q)$ , $w_{j}\in k(P, Q)$

If $\omega=0$ , then $\tau=0$ and $\sigma=0$ .
PROOF. If $k(P)$ and $k(Q)$ are, respectively, separably algebraic over. $k(t_{1},\ldots\ldots,t_{n})$ and $k(u_{1},\ldots\ldots,u_{m}),$ $k(P, Q)$ is separably algebraic over $k(t,u)$ .

Then

$\tau=\sum_{\mu=1}^{n}v_{\mu}^{\prime}dt_{\mu}$ $\sigma=\sum_{\nu=1}^{m}w_{\nu}^{\prime}du_{\nu}$

$\omega=\sum_{\mu}v_{\mu}^{\prime}d\prime_{\mu}+\sum_{w}w_{\nu}^{\prime}du_{\nu,\bullet}$

and $v_{\mu}^{\prime},$ $w_{\nu}^{\prime}$ are uniquely determined. Therefore, if $\omega=0$ , we have $v_{\mu}^{\prime}=0$ .
$w_{\nu}^{\prime}=0(\mu=1,\ldots\ldots,n;\nu=1,\ldots\ldots, m))$ thus the proposition is proved.

THEOREM 3. Let $U^{n}$ and $V^{m}$ be complete Varieties without multiple
Point. Every differential fornl $\omega$ of the first kind and of degree 1 on a
Product-Variety $U\times V$ is represented as a sum of those of $U$ and V.

PROOF. $U\times V$ and $\omega$ are defined over a field $k$ . Let $P,$ $Q$ , be generic
Points of $U,$ $V$ over $k$ , and $(t),$ $(u)$ be sets of uniformizing parameters at
$P,$ $Q$ on $U$, V. Then

$\omega=\tau+\sigma$

$\tau=\sum_{i=1,\iota}^{n}v_{i}dt_{i}$

$\sigma=\sum_{j=1}^{m}’\angle v_{j}du_{j}$ where $v_{i},$ $’\ell v_{j}\in k(P, Q)$

If $v_{f}$ for a certain $i$ is not contained in $k(P),$ $(P, 0)$ is a specialization of

$(P, \frac{1}{v_{i}})$ with $referen^{1}ce$ to $k$ . This specialization can be extended to a

specialtzation $(P, 0, Q‘)$ of ( $P,$ $\frac{1}{v_{i}}$ , Q) with reference to $k$ . This means

that $\omega$ is not finite at a Point $P\times Q$ ‘ on $U\times V$ which is absurd since $\omega$ is
of the first kind. The proposition is thus proved.
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$PROPOSJTIO_{l}V1.0$ . Let $U^{n}$ be a Variety, defined over a field $k$, and
let $K$ be an overfield of $k$. Let $\tau_{\lambda}$ be differential forms on $U^{n}$ having $k$

as a common field of definition; and the $c_{\lambda}$ be linearly independent quantities
over $k$, which is contained in $K$ If the differential form $\omega=\sum c_{\lambda}\tau_{\lambda}$ is finite
at every simple Point on $U$, then each $\tau_{\lambda}$ is also finite at every simple Point

PROOP. Let $(t)$ be a set of uniformizing parameters at a simple Point
$Q$ of $U^{n}$ in $k(P)$ and, $P$ be a generic Point of $U$ over $K$. Then

$\tau_{v}=\sum_{i}\vee\sim_{\lambda i}dt_{i}$

where 2 is quantities in $k(P)$ and therefore
$\omega=\sum_{i}(\sum_{\lambda}c_{\lambda}2_{\lambda})dt_{i}$

$(l)$ is also a set of uniformizing parameters at each one of the conjugates
of $Q$ over $\chi$ . As $\omega$ is finite at every conjugate of $Q$ over $k,$ $\sum c_{\lambda}z_{\lambda i}$ are
contained in the specialization ring of every conjugate of $Q$ over $k$, in $K$

(P). From Weil, l.c. IV, prop. 8 $c_{\lambda i}$ are contained in the specialization
ring of $Q$ in $l^{\prime}(P)$ , which proves the proposition.

THFOR$EM4$ . Let $U^{n}$ be a complete Variety without multiple Point,
defined over a field $k$, and let $K$ be an overfield of $k$ . Let $u$ be a differen-
tial form of the first kind on $U$ , having $1$\langle as a field of definition. Then
the differential form $\omega$ is represented as a linear combination with coeffici-
ents in $K$, of differential forms of the first kind on $U$ , having $k$ as a field
of definition.

PROOF. If $\omega$ is represented as a linear combination as above, its terms
are of the first kind, by the above proposition.

Let $P$ be a generic Point of $U$ over $K$, and $(t)$ be a set of uniformizing
parameters (contained) in $k(P)$ at the Point $P$ on U. Then

$\omega=\sum_{i}y_{i}dt_{i}$

where $y_{i}$ are contained in $K(P)$ . A generic Point ofia ( $n$ –l)-dimensional
Subvariety over $K$ being non-algebraic over $k$ is a generic Point of $U$ over
$k$. Therefore $(t)$ is a set of uniformizing parameters at such Point. As
$\omega$ is a differential form of the first kind, the quantities $y_{f}$ are all contained
in the specialization ring of such Poiut in $K(P).$ A divisor $(y_{i})_{\infty}$ is a
algebraic U-divisor over $k$ . By Weil, l.c. VIII, theorem 10, it follows

$y=\sum c_{\lambda}2_{i\lambda}$

where $z_{i\lambda}$ and $c_{\lambda}$ are respectively contained in $k(P)$ and $K$ It follows that
$w=\sum c_{\lambda}(\sum 2_{\lambda}dt_{\ell})$ . This proves the proposition,
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