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Since the publication of ARTIN'S monumental Quadratische Kérper
im Gebiete der héheren Koncruemen, one of the central problems in the
theory of algebraic function-fields has been to prove an d@nalogy of RIEMANN
hypothesis for “ congruence ¢-functions.” Although in * elliptic ” case this
problem had been solved by Hassg, the general case was beyond the
scope of his arithmetical method ; and it was André WEIL who first insighted

the deep connection between the HurwiTz formula in the theoty of »

algebraic correspondences and the RiemMaNN hypothesis in function-fields.
By this discovery a new way to the solution of the RiEMaNN Hypothesis was
opened ; he sketched' the outline of it in a C. R.-note in 1940, and
a year later he published the outline of another proof in a P. N. A. S.
-note, depending only on the SEgVERI's theory of algebraic correspondences.
In this paper we:shall develope the algebraic the01y of correspondences,
centering around the SkvERI’s formula on the *virtual degree ” of divisors

on the product of two algebraic curves, in a most general form based on the

WEIL's Foundations of algebraic geometry (A. M. S. Coll; v. XXIX, 1946),
and as its application, we shall prove. the RIEMANN hypothesxs followmg
the idea of WEIL’s P. N. A. S. -note.!

’ During the whole period of my investigation, I was encouraged by
Prof. Y. Axkizukr and by Dr. K. Iwasawa, to whom I express my sincere
gratitude, and I wish to dedicate this paper to Prof. S. Ivanaca. '

I Multiplicatioh Ring.

1. The curve. We shall fix once for all a * universal domain” K
of characteristic p (p is therefore elther zero or a positive prime number).
Let X be a 1egula1 extension of dlmensmn 1 over a perfect field %,, or,

1) After my investigation had been completed (in November' 1948), I noticed by another
P. N. A. S. -note of WEIL (m ]049) that he had also published a detailed’ proof of his notes
in Pub. Inst, Strassbourg (N. S., no. 2), pp. 1-85 (1948).
- ") We shall use the same terminologies and notatioqs in WEIL’s book ; the results in the
same book will be used without mentioning. i
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in the usual terminology, an algebraic function-field . of one variable over

/,; since K is separably generated over 4, there exists a variable x over

%, in K such that & is separably algebraic over 4, (x); set . |
[K : 2 ()]=n. ‘

Let K, be the subring of K consisting of all ‘elements », which are finite
over every finite specialization of x with reference to 4; K, is nothing
but the set of all integral elements of K over the ring £ [#]. By a well-
known elementary procedure, we can find a minimal base p;,.ueee s Ya of
K, over & (x); set '

(K : £ (x)]=7z.

Let X, be the subring of X consisting of all elements y, which 'are,ﬁnite_
over every finite specialization of x with reference to %,; XK, is nothing but
the set of all integral elements of K over the ring 4 [#]. By a well-
known elementary procedure, we can find a minimal bas€ 7 ,...... y Yo of
K, over % [x]; put then | :

~ PE (e, )= i 7).

Since %, (P)=K is regular over 4, the point P in (%+ 1)-space has a locus
C of dimension 1 over 4, such that for every point P of C, the specializa-
tion ring of P in 4, (P) is integrally closed ; since 4, is a perfect field, this
implies that every point of C is simple. Consider similarly the ring X,
for #’=1/x and take a minimal base P e , 7a of K over & [#],
then the point ‘ :
| PI=( V= s Fareees )
in (72+1)-space has a locus C’ of dimension 1 over %, such that every point
of C' is simple on C'. Now since 4, (P)=K=4#4, (P'), the point Px P in
the product C x C’ has a locus T over 4, which is a birzztional.corr,espon-
dence between C and C’ over 4,; since C and C’ have no multiple points,
if a point PxP’ in CxC' is on T, P and P’ are regularly corresponding
points of G and C’ by T. Therefore this .T and the varicties C and C
together with their empty frontiers define a, Varicty C of dimension 1
and without multiple Point. Moreover if P=(x,») is a pseudopoint of C,
we have r=oo , and P’ is finite over the specialization P—P with reference
to 4,; this shows that C is a complete Variety. In this paper, every cor-
plete Variety of dimension 1 and without multiple Point will be called a

’ R . . . \

Curve.
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Now if a Curve (7 is given a priori, ' has a perfect field of definition
by, €. g. the “perfect clogure ” of any fiedd of definition of C’; take generic
Point /77 of ' over ,{50 , then 4, (P)=K is a regular extension of dimension
1 over 4,, to’ which belongs therefore a Curve C as above. If P is the
generic Point of ¢ over £, (as defined above), we have 4, (P)=K=4, (P),
so that the Point P/x P in €' C has a Locus T over £, in C' x C, whlch
is an everywhere biregular birational cotres spondence between 7 and C.
It follows that the algebraic geometry on €’ is the same as that on ('
thus we may assume, if necessary, that every Curve is constructed as our C.

2)  Correspondences. Let C; and C; be two Curves, then their Product
G x G, is a (special type of) Swrfaw, by which we mean a complete. Variety
of dimension 2 and without multiple Point. As in.the classical case, every
divisor X on this Surface is called a correspondence between and Gy, in
particular if X is reduced to a Variety, it is called an zrreducille 601’7’851)0.72- ,
dence. The irreducible correspondence may have a finite number of multiple
Points on it,*so that it is not Curve in general.  Now torevery correspon-
dence X between C, and C,, we shall attach two rational integers 1(X)
and r(X) by . |

‘ pr & (X.);-‘J(X) C, pre (X):r(X) G.
If X is irreducible and if 1¢(X)=0 or r(X)=0, there exists a Point P of
C, or a Point Q of G, such that ) '
XY=Px(C or X=CxQ; -
more generally a correspondence X of the form 4x C, or of the form
x B, where 4 or B is a (-divisor or €,-divisor, is called the 4. /. (dege-
nerate on the left-hand side)-correspondence or the a’ 7. —corresponde;zce

respectively.
Now let X be any meducxble cmrespondence between C; and C;, and

Pa Poirt of C, such that the mtersectlon-product X(Px () is defined on
Clx G, , then we shall define the C,-divisor X(P) by
‘ X (P) pr Go (A’ (ljx Cg))
X- (Px Cy) is not defined if and only if X=27x C,. Since we have (O x C})
(P)=0 for every Point O P of C,, it will be natural to set
(Px Cq) (P)=0;

and in general we shall define X (4). ‘for any correspondence X between
C'1 and C;, and for 'my G;-divisor A by linearity in X and in 4, i.e. we put
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' X (A= 3 ; a b; X (Pj)
for the expressions X==Ea,- X; 'a,'nd A=37,; Z’j l_’j; it holds
X (@=pra (XAx0)),
whenever the intersection-product X-(Ax () is defined on G, x ;. More-
over by the “principle of conservation of number’, we have
deg. X (A)=UX) deg.4;

fhus the ¢ correspondence’

A

is an additive operator of the group of all Cj-divisors (of degree zero)
into the group of all Cydivisors (of .degree zero). Let /> be a generic
Point of ; over some common field of definition for ¢; and C,, over
which ' X is rational, then X (P) has a uniquely determined specialization

>»X (A)

X. (P) over every specialization P—>P with reference to above mentioned
- field ; thus X (4) is uniquely determined by X (/°) only.

3) Product of corvespondences. Now let "X be an irreducible corres-
- pondence between two Curves C, and (;, and Y an irreducible correspon-
dence between two Curves (; and (C;, then we shall define their produst
YOX by '

Yo X=pr €%z ((C] x ¥)- (X% G3)),

“whenever the intersction-product (G x ¥)-(X'x C) is defined on C,x G X
Ci; YoX is a correspondence between ¢ and (;, whenever it is defined.
Prorosirron 1. The intersection product (Cyx VY- (Xx C) is  not
defined on Cix Cox Gy, if and only of X is of the form CixXP and Y of the

form Px C, with the same Point P o C;.
Proof. (Cix Y)-(Xx () is not defined, if and only if C,x Y—Xx G

our condition: is thus sufficient. Conversely if GxYV=XxC;, we have

Cixpr e, (V)=pr axa (Gx V)
=pr axeae (Xx (;)=0,
whence pr ¢ (Y) 0, Y=Px (C, with some Point P of C,, and X—C,
P with this P .
Now since we have (@ x CS)O(C}XP) =0 for every I\omts P and Q
(PxQ) of C,, it will be natural to set —
(Px a,)o(a P)=0;

AN
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and in general we shall define the product YoX for ‘any cor-respondence X
between C. and G, and for any co1respondence Yy between C, and C; by
llneallty in X and V', i. e. we put

. YVoX= 20, it 51 (YOX’L) _
for the expressions X=3], @; X; and Y——Z. &; Yy; it holds

o YoX=pr e;x e (6% V)-(Xx G)),
whenever ‘the intersection-product (C’,XY) (X x Gy is defined on C’GCg
%X Cy.  We shall show that our product 'Yo X induces the * product’ of two’
operators’ X and Y between the groups of divisors on the corresponding
Curves (cf. 2)). To this purpose take a common field of definition for (i,

G, and C;, over which both X and Y are rational ; and take a generic
Point F of C, over this field; we only to show '

(Vo X) (P)=Y (X (P)). |
’ 'By linearity we may assume that both X and Y. are irreducible; if YV is'
a d. l.-correspondence, YoX is also a d. l.-correspondence, and both sides
are zero; otherw1se we have
(P (P)=pr-cr [[pres X 1(Cx V- (X x G T-(Px 6]
=pr ¢ [(Cix V)-(Xx C)]- ((PxGx 6]
=pr c; [(Cix V) {(Xx C)-(Px CGx Gyt ]
~=pr ¢ [V-(X (P)X [83)
=Y {X ()} - o
Since the interchange of factors in (} x (; is an-everywhere biregular
birational correspondence between C;x C, and G, x (y, it transforms the
correspondence X into a correspondence between (; and (;, which we
shall denote by X*; similarly ¥Y* and (YO/Y)* are defined as correspon-
- dences between C; and C?, , and between C, and () respectively ; we shall
show : :

\

*

(Vo )*——X*OV* o . _ |
By linearity we may assume that both X and Y are irreducible ; if X— G
x P and Y=Px C, with the same Point Pof G, 'both sides are Z€ro ; other-
wise we have : .
(Yo X)*=(pr ¢;Xc3 ((Clx Y) - (X x Cg)))*
=pr e x¢; (V*x ) - (GGx X*))
=pr e;x¢; ((Cox X*)-(Y*x (Y))
= X*o YV .
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4)  Associativity of the product. X Y being as before," let .2 be a
correspondence between two Curves (€, and C,, we shall prove the 'Issoc1a—,
tlvxty of our pnoduct
‘ ZO(YOA’)z(ZOY)OA’." ;

"By lineerity .we may assume that X", YV and Z are all irreducible. If the
intersection-products (€3 X ¥ x ) (Xx Gox ) and (X% Cox 2)- {(Cix VX
Cy) - (Xx Gx )} are defined on G x G, X Gy x Cy, the intersection-prodycts
(Clx GXx2)(GxYxC) and (OxGXxZ) - (GxYx()).- (Xx CxCy) are
also defined on G x C.x C;x Cy, and by the “principle of associativity ”,
we ‘have .,

(GXxGx2Z) - (CGx Y% () - (X% Cx ()
| =(Cx Cox Z) - (Crx VX)) - (XX Cyx ).
Since it holds ' :
pr axe (CixCoxZ) - ((Cix YxCy) - (X x Cyx Cy))),
=preXe, (CyxZ) pr eyXeyxey (Cox VX C';)-@‘x"x Csx Cy)))
=Ppreé; X ¢, (G xZ) (pr exX ey ((Ci % V) - (A% Cy))x Cy))
= Zo(VoX) .
on one hand and
p1¢1X€4(((C1X62X/) (C1X )’X Cq)) (A.,XC XC4))
=(pr c;x¢; ((Cyx Gx X¥)(Cyx Y*x C)-(Z*x C,x CY))*,
=X*o(V¥o ¥ =(ZoV)o X
on the other, we have Zof(YoX)=(ZoV)o X .

Next, if the intersection-product (Cy;xVxC,) - (Xx Gx ) is not
. deﬁned on Cyx CyX C}x C,. , the intersection-product (C;x V) (XX (}) is
not defined on C,XC»XC;, by prop. 1, X is of the form CoxP, YV of
’the form Px C, with the same Point 2 of C,, and we have '
’ ZO(YO.X)=O . _ )
(ZoV)oX=pr cxc((CoxZ)-(Px Cyx C))oX
) =1(2)-(Px Cy) o (C, x P) =0.

Thus, as-easily seen, we have only to examine the case; where the
intersection-products (C;x V) - (Xx ) and (Cox 2) -(Y'x () are defined
on (71X (;xCy and on C,x Gy x C, respectively, but the intersection-products
(G GXZ)(CxY)(XxC)xCy) and (X (Cox ) (Vx CH (XX C3x Cy) .
are not defined on Cix CGoxCyx (. It follows that X x Cox €y must
contain some component of the cycle (Cix(GxZ)(1'x(y)), so that X

-
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must contain the projection of that component on CGCz, since every such
component is either Cyx C, or or of the form C; x P with some Point
P of C,, X itself must be of the form C.xP, In the same way
Z must be of the form O x C; with some Point O of C;. Now if it happens
(V)=0, we have (C,x ¥) (Xx Cs)=0,.s0 that theintersection-product (C; -
XCoxZ) o (G1xY) (XX Xy is defined on Ci %X Cex Cyx Cy; it must
be 1(¥)x0, and, by the same reason, r (¥)=0. It follows

ZO(YOX)——':(QX C)o(CixY (P))=O»
(Zo VYo X=(Xo (Vo })=01 .

which completes the proof of our associativity formula.

Now let A,, be the diagonal of Cyx (;, i. e. the Locus of the. Point
Px Pover some field of definition 2 of €, where P is a generic Point of
C, over £ similarly let 4o be the diagonal of C,x C; ; then for every corres-
pondence ‘X between C; and Gy, it holds ‘ .

dypo X=Xody=X.

In order to prove this fact, we may assume that X is 1rred11C1ble let
%2, be a field of definition for X, contammO' %, and let Px P x Q be. a ge-
neric Point of some component ¥ of the intersection (ClxX) N (dy xCy)
over %,, then the Locus of the Point P x O in ;%X C, over él is nothing
but X. It follows that

(CxX) - (dux C)=alW
: WIth some’ rational 1nteder a. Smce however
pr ¢ (second l'actor)xc2 ((ClxX) (4yx Cy))
=X (Cx )=
=pr ¢ X¢ (a W)=a X,.
we must have a=1; and it holds
Xody =prq (ﬁrst factor) X ¢ ((CIXX) (AnxCQ))
_ =pr ¢ X ¢ (W)=X;
moreover it holds ' .
dygo X = (X*o o) =(X*)*=X
D) Correspondences with walence zero. Every correspondence X, be-
tween C: and G, ‘which is linearly equivalent to a sum of d. 1. -and of

d. r. -correqpondences is called a correspondence with valence zevo (between
C; and Cy); to every such correspondence X, , there exist therefore a C,
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-divisor A4 and a C,-divisor B such that
Xo=(AxCy)+(Cex B);

= means thereby the linear equivalence.

PROPOSITION 2. Let X, be a correspondence with walmce zero, then
Xo* s also a corvespondence with valence zero.

Froof. We have only to show that the linear equivalence on C,x Ci
is invariant by % ; we shall prove more generally ‘the following pro-
position : -

An * equivalence theory” being given, let U and V be two complete Va-
rieties withont mu[tzp[e Point, whicl zorrcspona’ by some everywhere bivegular -
birational correspondence T ; and let X and 'V be tivo ** equivalent” U-cycles,
then (X)) and T (Y) are equivalent on V. :

In fact since we have

T (X)—-T (¥V)=T (X-Y) -
=pr {7 (X—V)x )},
T X)-7 (V) is equlvalent to zero on V' by the propositions (A) (C) of
the eqmvalence theory, (Weil's book)

PROPOSIFION 3. X, being as before, let X be a ‘corvespondence  be-
tween C and Gy, and 'Y a corvespondence between Cy, and C, , then éot/z Xo
oX and Y o X, are correspondences with valence zeyo.

Frogf. By prop. 2, we have only to show that ¥ o X, is a correspon-
dence with valence zero; thereby we may assume that ¥ is 1rreduc1b1e
Let 4 be a ¢, -divisor and B a Cs-divisor such that ' \
| | X<,=((A><Cs)+(Cz><B); -
then we have
‘ Vo (AxCa)_r(Y) (AxC);

and if 1 (Y)=0; we have ¥ o(C,x B)=0, otherwise we have
Vo(CoxB)=C,xY (B).

Thus we have only to show for every function ¢ on CoXC',, Yo (gp) is a
‘correspondence w1th valence zero. By what we have proved above and by
prop. 2, we may assume that 1 (¥), r(¥)3 O ;then we shall show that ¥ o(g) -
is linearly equivalent to zero. Since r (Y);O C:x Y has the projection
Cox Cy on (3% Cy; since 1(¥V)*0, the intersection-product (C,x V). ((p) x
(') is defined on Cox Cyx C,; it follows from postulates (A) (C) of the
equivalence theory that '

Vo(p)=pr xé (G:x V) - (9)xC) =0
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Now if we consider only the correspondences between a Curve C and

itself, they form a.module % over the ring of rational integers.; moreover -

X forms a non-commutative ring by O-mult1p11catlon, and the mappmoh
X——X* is:an involution of % such that

(Vo X)*—-X* o V*
The ring X has a unit 4, and the correqpondences with valence zero form
a two-sided ideal %, in ¥ ; thus we may consider the residue-class ring R
of ¥ modulo X,; we shall denote its elements by the small Germann letters.
Historically R arose- from the study of the ¢ sigular multiplication” of
. RIEMANN matrices so that we may call it as the ’multz'p!z'mtz'on ring at-
tacked to C. R has a unit e, which is the class of 4. Let X be a representa-
tive of an arbitrary element g of R ; since the ideal %, is {avariant by x ,
the' class of X* is uniquely determined by g; we shall denote this class
by g*. The.mapping g--—¢* is. an involution of R such that

(y » D*=¢* "D*
II. Linear Series.
6) Dqﬁizztzmz of the lincar series. Let C be an arbltzuy Cmve, and let
: Pos P1 seereens Pr r=0) _
be (r+1) functions on C, all defined over a field £; we shall consxder the
r-dimensional projective space L,. Let II'x P be a generic Point of the
Product L ><C over #, and put ‘
P=x 9o + 7 sol+ ------ +2a, Pr> '

where (2)=(a5, &1 ,eereeey &,) is representative of I ; then ¢ is a function
~on C, defined over the field 2 (IT) Consider a function @ on L"xC, de-
fined over £ by

@ (11 x P)=¢ (P) .
" then the (L7 x C)-divisor (@), and the C- divisor (¢), are mdependent of the
choice of the representative (x) of IT, and it holds

(e = pr d(@) (HIXC)=(P), (ITxC)=(®), (I);
moreover (¢), is a rational C-divisor over 2 (/).
PrOPOSITION 1. The functions _
DPos Prsereere ’ 50,-

are l?'ﬂ%lfb/ independent (over the abstract field of constants), i and only if
(@), does not contain the Variety Il x C. for every Point Il of L',

/
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Proof. Take a O'enerlc Point P of C over the ﬁeld /é (7T), and a re-

presentatlve @) = (x0, ZFipeee-.. , ) of T, then IT x C is contained ‘in (D),
if and only if it holds

0=@ (ITx P)y=x, (po( Py + x gpl(P) +oeeens + ;,'gp,.(P); but this is equ-
valent to S

;0900"‘;]9024' ...... +Z€0r =O.

In the following we set the additional assumption .that ¢,, ¢;,......
¢, are linearly independent.

.

Now we shall determine the components of (@), ; let fIx P be a ge-
neric point of some component of (¢)0 over #. If P is algebraic over
%, this component must be Z"x P; if P is is a generic Point of C over

#, such components will be denoted by F”; I has the projection
L on L, for otherwise -W must have the form Z,_;x C with some linear
Subvariety Z,_, of Z”, which contradicts to.our assumption (cf. prop. 1).
It follows that ’

(P)=3) a (I'xP) +32 6 W,

where a and b are positive integers. Let / be a generic Point of C over '
4, and let I’y be the graph of @ ; let D be the so-called ““ projective straight
line ” then we have

{(?), x (0))- (L’xPx D)
="y - (LI'xCx(0))-(L"x Px D)
=l - (L'x Px(D)))- (L' x Cx(0))
=L""xPx(0),- _
where L' is the linear Subvariety of L7, defined over the field 4 (P) by
the equation : '
@0 (P) Xo+ ¢ ('P)'Xl e +o, (P) X,= 0.
It follows that -
| (¢)o (L% P)= E 5 iW(f”XP)E
Lr'—l x ]) ~
since I/V (Lrx D) >-O and since b > 0, there exists only one w
and b = 1; in particular ¥ must be defined over £ Thus if we put

A=Xa P, W (Il)=pr ¢ {W(ﬂxC)§ s

we have
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(9 =A+W D), ,
where W (IT) is a prime rational C.-divisor over %2 (II). Moreover since
A=(¢)y— W (/1) is algebraic over %, and is rational over the regular
- extension & (/I) of %, it must be rational over 4 We have thys proved
the following theorem ; in the classical case, the latter part of which is
known as the first BﬁPTlN[’s Z‘/zeorem

THEOREM -1, We have
(¢)o—(L’ x4 + W,
where A'is a rvational C _divisor over k, and W is a st& variely of I'xC,

defined over k, such z‘/zat it has the projection L on L7 zmd C on C. It
fol[ows that : '
(Pho=A4+ W I),
wheve W ([l is a prime vational C-divisor over £ (ID).
"Now let B be an arbitary C-divisor ; take a common field of dcﬁmtlon
£ of C and W, over which 2 is rationdl, and a generic Point /I of L~
over 4 ; then the set of all the specializations of the C-divisor

B+ wdh

over %, constitutes a Zinear series of dimension v on C with a generic element
B+ W (Il) over ky; A is called a field of definition of this linear series.
Since all the elements of such linear series have the same degree, ie. (B
-+ W (1)), it is called the degree of the linear series ; moreover B is called
the fix-part of the linear series. : .

7Y Properties of the linear sevies. Let k£ be a common field of defini-
tion of C and W, over which A is rational; let // b¢ a generic Point of
L ovet £, and IT dny Point of Z” then A+ W (/) has a uniquely determined
specialization

A+ w D _‘—_A+pr c (W - (ﬁ'xC)) a
wover the specialization [[-—»17 with reference to £, which is rational over
& (1. We shall show

. TaroREM. 2. Let (x)=xp #y-eeees X,) be a representative of I, and
set

then we have

3
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. A+ WD = (p) + (9)a>
and (@)’ ts rational over k. : -
Proof. Let {F} be the set of Points, which appear in some (¢@p)w, -
(@) () » then we may put .
(Po=231: a.l;
with some rational integers a;; (¢)« is'thus an aloebraié C-divisor over £,
‘so that it is rational over A Now let JIx.Z be a component of the in-

tersection I’y N (fIx C x D) , and [T x Px (z) a generic Point of I x
Z over the field £ () . If PXP; for every 7, we have :

=90 BP)+m ¢ (P) +ooeeit 2 9, P)=p (P)
so that Z._Igo ; on the other hand, if P=7P; ,.we have Z=P, x D
Thus we have ‘

Io-(ITx Cx Dy=a (Il x I'p)+ 3, 6, (I x P,x D),

where 2 and "4, are rational integers ; taking the algebraic prOJectlon
on I'xC, we get a=1 . It follows, :

(Fo + (TIxCxD)) - (L'xC'x(O))
"'HX(?)OX(O)'*'Zf 2 ([[xP % (0)
on one hand and - ‘
([' (IIxC‘xD)) (L7x Cx(0))
=(I (I'xCx©0)-(TIx C x D)
--=(((D)ox£0)) (IIx C x D)
=((?), ({1 x C)) % (0)
on the other ; whence we hane
| (@)% (D)= (h+3s & B .

In the samc way we have

- (D)o (ID=(9)o+ 2 th 7y
since (@)o(I1) is the spec1ahzat10n of (0)0, (II) (go)m over £, we have

. (90)09—(59)@‘*’ E{ 6&
It follows that

(@) ([l + 7 (17>=<«,?>o—(s3>; +@o=@+ @

which completes our proof.
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CororLzarY 1. The fiz-part A is the “G. C. D of (¢ (2o ,

------ s (@ and (P is the “ L. C. M7 of (@0)a) (@oreevs () -
In fact‘since xy, #yy-....: :x, are linearly mdependent over %, and since

A is rational over £, we have

G. C. D. {9 @ileereres (@} >4
on the other hand it holds in general

) A>G. C. D. {(o, (so])o,-..-u-, (GO
By the same reason we have
v —(fp)w G. C D { (%)m (Spl)m """ (Spr)m -

Coror LARY 2. Awy two efemem‘s o a lmmr series are always li-
. nearly eguwalmt
This is an immediate consequence of th. 2.

C OROLLARY 3. Let Pi,...... P, be all the distintt Points in W n,
then we have ‘ : - : ,

in particular it must be ,
r<d<deg. W (II) .

Slnce P...., P, are algebraie ove £ (II), we have
dim- , (Py,..--. PH dim , (D)=~ ‘
" On the other hand let Z,,...... P be » ihdependent generic Points of C

- over %, then we can find a Pomt IT of L with a reprcsentatlve €3] such
that for every ¢ it holds

¢ (Pr=3 g0 (B) +7 o BYt oot 7o g (P)=0;
then ,...... , P. are contained in (¢),, hence in A+W (II) (cf. th. 2);
since A is rational over %, and since P, ,...:..P,. are not algebraic over %,
they must be contained in W (/). It follows that (1] yoeree,B) is a spe-
cialization of some (Fiye---- , P,) over %, so that we have '
dim;, (Pyeeee-y P)dim; (Piyeereen,Pr)
gdimk(ﬁ]’ cccccc > ﬁr)=r .

‘Now we shall show
TarorREM 3. Let B+ W (Il) e a generzc element over a field (con-

mlnm‘b E) of a linear series, defined over ky; let Il be a’gmerzc Point over
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ki of a linear Subvariety L* of L, defined over ki, then
B+ W ()

. : - N . - . . . . M
is a genevic clement over ky of some linecar series of dimension s , whick is
also defined over k.

Proof. Let ()= (%, ;‘1,...‘;,) (#»=1) be a representative of /I then
we may set A
) .

x,_Z},_l a; ¥; +a, (z*-;z_,,),
where 2,9 (og]gs, z =% 4,) are elements of £, and y;, (1=7 = s)- are
independent variables over £, ; above equation holds alsd for 7=i4,, if wc
set : ) ’ ’

ﬂm— 0(1l <7 =), (Zao—l Jo=1.

1

Now consider the Point /I, in L, with the ‘ homogeneous coordinates ’

‘ (algj)’ a{j))"";') ar('j)) (0=<-_—-.]. g&),
and gonsider the s-dimensional projective space L'*; then (g, pi, eeee- A

.can be considered as a representative of a generic Po.mt Il of L” over
£ . We put

¢j=z o @9 @ O=/=5)
then ¢y, @,,..., d, are linearly independent functions' on C, all defined over
#,; we put further
¢—J’0 d0'*‘ yl ¢1+ """ '+J/.s ¢_.s ’
Q= xogoo+x @Y1 +.eeen :+x,go,.

Let P be a generic Point of C over the field 2 (/I')=#, (II), and consi-
der a function @ on L"xC , defined over % by

o x P)=¢ (P);

!

- as in 6), there exists a rational C-divisor A’ over ki,and a Subvarlety wre
of L”x C , defined over ,él, such that

(@) (") = 4" +W I .
On the other hand, since ¢ (P)=¢ (P) , we have

. (@) () =@)o=@)o=A{(9)e—@)a} + WUD) ;
it follows T
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(D (@) + A + W' (Il)=A+ WD) -
qmce (P)e~9)e>0 and since w’ (I1) has no- Points in common. with 4,
((99)”—(§D)w)+A’———A =A is 'a positive C-divisor over 4, and we
 have W({l)y=4+ W' (II') ; it follows ’
B+ W (= (A+/J)+W' ourh ,

which proves our ‘therem. :

CoroLIARY 1. Let B+ W (II) be a generic elemem‘ over k, of @
lincar seriesi defined over k, , and let P b¢ a Point of W (Il) , then B+ W
(II) is @ generic clement over ly (P) of some linear series of dimension.
r— |, whick is defined over ,él ) .

Let (1)=(x0 #y,.ee... x,) be a representative of I, then we thC
% ¢ P)+x ¢ (P)+...... +x, 0, (P)-—_"O;
and the linear equation ¢, (P) x+¢; (P) xi+..ee.. +o, (P) #,=0 defines

a linear Subvariety L' of L with a generic Point /T over 4 (P) .
Since we shall not use the following result, we omit its proof ;
. CororrARY 2. Let P be a Pownt of C, then the sct of all elements
of a lincar serics, whick contains P, forms also a linear sevies. " Moreover if
by is a field of definition of the original lincar sevies, the field k, (P) is one
Sor the ‘ derived’ linear series. ) . .
8) Complete linear series. In the following we shall consider only
the linear series with positive fix-part. If a linear series is ‘ large’ enough
' such as every positive C- d1v1sor, which is linearly equivalent to some (then
to all) clement of the linear series, is already contained in it, such linear
series is ‘called to be complete If G is an arbitrary element of a complete
linear series on C , it is uniquely determined by G; so we may denote
it by |G|. Now the following proposition is an immediatc consequcnce
of the * principle of conselvatxon of number ”’ .
Proposirron 2. Let P be a generic Point qf C over its field cf de- -
: ﬁmtzo;z k, and let ¢ be a non-constant Junction on C, dqﬁngd by

\ s=p (P)
over k, then we have ‘
deg. (ph=deg. (Pla=[£ (P): % (] .
Now let G be a positive C-divisor, which is rational over a field £,
then the set of functions on C satisfying”
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’ ‘ @)>—G

form a K-module L (G) where K means the “ universal domain ” of ‘our
" algebraic creometry Let ) ‘

' Pos P1yeseePy (900——_1)
be (» +1) linearly independent functions in L (G), all defined over £; we
shall apply the results in 6) and 7) to. this set of functions. ' ‘

Since @y=1, we have A=0 (cf. cor. 1 to th. 2); since G>(go)°, , We
have deg. G = deg. (¢)s , so that ,

r< deg. W (II)=deg. (¢)o=deg. (9)o=<" deg. G.
It follows that there exists a maximal set of such functions; we may

assume that our set is .already maximal ; then this set forms a base for

the K-module L (G). Now set

| B=G—(p).>0,
and consider the linear series on € with the generic element

B+w (I

»

over 4 let .G be a positive C-divisor, which is linearly— equivalent’ to G.
‘Then there exists a function ¢ on C such that (¢)=G—G. we can find a
Point . /T of Z, with a representative (#) such that o

=7 @ +5—f1 @1 Feeeen +% ¢ ;
by th. 2 we have then ‘

o WD+ B=@) + @).+B=C
Thus the following result is obtained:.

TurorenM 4. The complete lincar serics is unignely determined by its
arbitrary clement; for any positive C-divisor G, there cxists a complete, ?zizear
series, whick contains G. p

We ‘shall denote the dimension of |G| by 4G); we have always

' : deg. G—1 (G)=0;

»

 we shall show L

LEMMa 1. Let Gy and G be two positive C-divisors sdtz'sfyiné G>
Gy , then we have
l (GO)+deG (G— Go) > 4G) =1 (G‘o)
" Proof. Since G>Ga , we have —Go>— -G so that Z (G) o L (Gy),
AG)=2(Gy). Assume now that £(G)>/(Gy)+deg. (G-Gy) and take a field
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of definition £ of C, over which both G, and G are rational ; then a generic
element of |G| over # contains at least deg. (G-Go)+ (£ (Go)+ 1) independent
generic Points of C over k. We fix / (Go)+1 of them, and specialize deg.
(G-Gy) of them to G -G, over £ ; the rest of Points among the generic
element of |G| over %2 has at least one specialization over that speciali-
zation. It follows that there exists a positive C-divisor G, which con-
tains at least # (Gy)+1 independent generic Points of C over £, and which
is lincarly equivalent to. G,; this is impossible.

| LEMMA 2. There cxists an wnteger g such that, for every positive C-.
divtisor G, we have :

deg. G—/ (G) glg’.
Proof. By a r_é:mark in 1), § I (and in the proof of prop. 2, § I), we

.

may use the same rotation as in that place. Let ¢, @,,..-... y Pye bE B4+
1 functions on C, defined over £, by ’
=0, (P), y1 = P (P)yeeerie, Jn = 04n (P),
there exists a poéitive integer 2, such that
(@) seeveees (o) =—(mo+ 1) o (£2)en -

‘ Then for any integer m greater than #z,, the functions
0.0 0 O e <m—my; 1 i n)

are lincarly independent and belong to L (#(¢.,).); it follows
L (o (p) )< 7 (m—ms) . |
Set gf—-n m,; we shall show that g’ satisfies the requirement of our lemma.
A positive C-divisor G being given, take so large as :
ne-m=mn-m + deg - G;

N\

then a generic element,of | 7 (¢,)s | contains at least deg G independent
generic Points of C over £,, so that that there exists a positive C-divisor
R such that .
' m (go,,)mEG +R.
It follows
deg G-I (G) < deg. (G+R) Z(G+R) (¢f. lem. 1)
= deg. (m (?z)m) —f (m (¢x)°’)
= on. o my=g’,

as asserted.
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'Now the following definition . of the genus.”’ of a Curve is due to

WEIERSTRASS : ' _ ‘ '

DEpINiTION [f. G runs over all positive C-divisors, the 7zéﬂ-‘;26g -
tive integer deg -1 (G) has a maximal value g, whick is called the genus
of C; ewr,l/ positive C-divisor G, whick attains g, is called to be non-special.
Moreover a Curve C with g=0 is called to be ratzomzl a Curve C with
g=1 is called clliptic. '

We shall use the celebrated RIEMANN- ROCH s theorem in the following
special form: ‘ '

Proprosirioy 3. [f G is non-special, every C- dzwsor G suc/z that
G> G, is nlso non-special. Thus every positive Cidivisor G suckh that
] ' ‘deg. G = deg. G+ g . ' o
is non-speciad., . | ’ '
Proof. Since wc have

g>deg. G- I(G)>dcg Go(G)=g,

G is non-special. If deg. G=deg. G, + g’ , we have l(G)>deo Go ,
so that | G| contains a G’ w1th G'>G,; thus G is non- specxal which com-
pletes the proof.

Now for every non-special C-divisor G,, it holds

deg. Go=1(G)+g=>g;

“we shall see later (in § V) that there exists a non-special C-diviser G,,
which attains this minimal degree g. If we assume this fact, we have the
following corollary : ' '

COROLLARY. ]f @ positive C—a’zmwr G satisfies
deg. G > 2g-2
- we have always -
7(G)=deg. G — g. |
In fact if deg.G=>2g, our relation follows from prop. 3; if dég G=
2¢-1, and if deg.G-2(G) <g, we have /(G)=g, so that G is equivalent
to a non-special C-divisor, t‘ns is a contradiction. g

In particular every positive divisor on the rational or elliptic Curve is
non-special ; clearly the converse is also true.
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II. Faithful Représen?ation of the
Multiplication Ring.

-

.9) Primitive divisor. Let C be a Curve and & a positive C-divisor,
then a Point P of G is contained in the. ﬁx-part of |G| if and only if we
have :

| L(G) =L (G-P), i. e ¢ (6)= 1(G-P).
In fact if L (G)=L (G- P) every function ¢ in L (G) satisfies —P >(¢).,
so that we have

G-L. C.M (so)> §<¢)w'>ﬁ

and -conversely ; this proves our assertion (cf, 8), II). :
Now a positive C-divisor G is called primitive, if |G| has no fix- -part ;
every positive C-divisor is surely prxmltlve. only if its degree is sufficiently
large (cf. prop. 31 § ID). . - o _
LemMA. Lot W,......, W, be Subvaricties of a projective space. L7,
none of - whick coincide with L7, then for any non-finite ficld k, we can ﬁ;m’
a rational Point Il of L™ over é w/iich does not lie on ' w

This is a consequencevof the following statément, which can be proved
by induction on »:
Let F (:;) =F (xyyeeee.. , #,)>=0 be a polynomial with coefflcients in some
~ field, then ~for any non- -finite field 4, there exists ‘a set of » quantities (x)
=(r,".... %,) of £ such that 7 (x)é?O :

The followmg pr0p051t10n 1s useful in some occa51on

Prorosirion 1. Let G be a primitive C-divisor aﬂa’ Pl, ...... Pl
a set of m Points of C, then theve exists a positive C-divisor G, which is
linegrly cquivalent to G, and whick does not contain any of the P, (1 <i < o
m) . Moreover if ) “

deg. G=0 (mod. p) y

G can be taken suckh thaf it comsists of distinct Points. Theveby if G is ra-
tional over a non ﬁmte Jield of definition % of C,G can é/’ taken as rational
over k.

Proof. Let W (IN=G0i+...... + @, (d=deg. G)> be a generic elément
‘of |G| over the field £ (2,,...... ,P,) then W (IT) satisfies all the require-

\
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ments except tﬁ_e‘ last one. Let U™ (r=/(G)) be the Locus of the Point
NnxQ,%...... x Q, over £ '

LI'xCOP=I"xXCX...... xC ((a’+1) - factors) ;

then U is not cotained in any of the Varieties L"x Zy, ‘and L% Z,, if d
—,—O (mod ?), where :

G0N - ‘ ' - :
Zy=C = xPxC? (1<i<m; 1S7<d),

and where Z, is the Subvariety of C®, which corresponds to 4x C®® by
~ the possible interchange 7 of factors in C. Let W......., IV, be the Sub-
varieties of L7, which are the projections on " of the components of the
intersections (L"x Z;) N U, and (L"xZ,) N U, if d5=0 (mod. p); then
Wiyeiinnn W, are all different from Z~. It follows that there exists a rational
Point 1] of 17, which does not he on I, U...... U Wn, then the ratlonal

C-divisor W (I) over # satisfies all the reqmrements

Cororrz4ary 1. Let {D,...... , P} be a set of m Points of C, then
we can find a C-divisor A;, whick docs not contain any of the P, am{ which
satisfies ' '

_ \
A, =P (1<i<m) .
Let O be a Point of C other than P,, then for a sufficiently large 2,

P, + m Q is primititive; thus there exists.a C-divisor G, which does
not contain any of the P, such that G, = P+ m 0 ; set

A‘ = (I - ‘Q .
COROLLAR y 2. Let G be a rational C- divisor and Q a rational Point
" of C over a non-finite ﬁela’ of deﬁmz‘zon k. of C, then we can find a positive

integer m and a positive C-divisor G , conststing of distinct Points, whick is
rational over Ry and safisfies . s

G+m§EG
in fact let G=G,—G. (Gl, G: > 0) be the reduced -expression bf G,

then we can take »z, as ‘ ‘
! (Gy +mQ)=deg . G.;

there exists a positive C-divisor G,, which we can assume to be rational .
. v e
over 4, such that
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G1+m0Q"—'G2+G391 e. G+moQ——Gs

Now if m, is sufﬁc1ently large, Gi+m, O is prlmxtxve and we may assume '
that deg - (Gs + 7,0) == 0 (mod. p); there exists a rational C-divisor
G (G>0) over % consisting of distinct Points such that Gs+m, 0 = G ;
put m= Moty .

10)  Properties of z’/ze co;’respondmces In the followingm“}e shall con-
sider the correSpondences between two Curves C; and C;. The following
'proposxtlon is known as the “ Homomorphiesatz ” in HASSEs school :
| PROPOS[TIQN 2. Let X be any corvespondence, then for every Cy-
divisor A suck that A=0 , we have X (A)=0 . '

~ Proof. By the linearity of X (A4) in X, we may assume that X is
irreducible. If X is a d. l.-correspondence, we have X (A4)=0 for every
Cy-divisor 4; if X is of the form Ci % P with some Point P of ¢, _Wé

have . |
| X (A)=prC{(G x P) - (Ax C))=(deg. A)P=0
and if 1(X), 1(X)%0, we have X(4)=0 by the postulates (A), (C’) of
th_e’ equivalence themy : B

It /follows from prop. 2 and from

deO' X (A)=1(X)deg.4, ‘

where A4 is an arbitary C divisor, that X induces an operator of the divisor-
class group of degree zero on () into the similar group on Cs.

Now we shall prove the “ Additionssatz ”’

Proposrrron 3. Letr X be mzy correspondence with valence zero,
then for edery Gy-dwisor A -of degree zero, we have X (A)=0 .

Proof. At first we may assume that X does not contain any d. 1. -
correspoudence ; since X is of valence zero, we may put '

1 X=(¢)+Z,a¢(l3; X Co)+(Cyx B).

Let A be a C,-divisor, which does not contain any of the P, thén the
intersection-product (¢) - (A% () is defined*on CixC, It follows from
the postulates (C) of the equlvalence theory that
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X (A)=pr c; ((¢) - (AX )+ (deg. 4) - B
' ==(dco' A) B. )

Now let A; be the C,-divisor as stated in cor. 1 to prop. 1, then by prop.
2 and by what we have proved above, we have

X (B)=X (4)=7;
so that X (A)=(deg. A) - B for every C,-divisor 4, and this completes
our proof. s

~ We conclude from prop. 3 that every correspondence with va-

lence zero induces a zero.operator of the divisor-class group of degree zero
on (; into the similar group on C,; we shall prove the converse :

PropPOSITION 4. Let X be any correspondence such’ that X (P)=
X (B) for infinisely many Poinds P and for fixed Point Py of C,, then X
is a correspondence with valence sero.
Proof. Let %2 be a common field of deﬁmtlon of C; and C, » over which |
both 7, and X are rational. We put :

Y=_A"_ (CI X ‘X;(F)o)):

then Y is also rational over 4 such that V' (P)EEO for infinitely many Points
P of G ; we shall show that ¥ is a correspondence with valence zero :

If there exists a generic Point P of C, over £ among the P, we can
find a function § on C., defined over the field £ (2) such that ¥V (P)=(6)
Let Q be a generic Point of C, over 2 (P), then we can find a function
¢ on C;xC,, defined over. £, by ¢ (PxQ)=0 (Q); we have

() - (PxCo)=Px (@)=Y .- (Px(C,) .

It follows that (¢)— YV is a d. 1. -correspondence, and ¥ is a correspondence
with valence zero; this is the trivial case of our proposition (and later we
shall use only this case). In the general case, all the Points P are alge-
braic over /%; taking if necessary a suitable extension of £, we may assume
that there exists a rational Point-Q of C, over 4. Let P be a generic
Point of C; over #, then since the field 4=4 (P) is not a finite field, we
can find a positive integer » and a positive Cy-divisor: O, +.....,+Qm,
which is rational over 2 (#) such that

Y(P)-i-mQEQ, Foereens + Qs
and such that
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00, GCxy), Q=0 <i<m)
(cf. cor 2 to prop. 1). There exists a correspondence 2, thch is rational
over % and which does not contain any d. L fcorlespondellce such ‘that

Z(P)=Crt e +On;
now if we can show
- Z (P)_—_m@ -

we have Y (P)_O , and by the trivial case, Vi a cmrespondence Wlth
valence zero. :
In order to. Jprove that linear equwalepce, let ¢, , 901,...'.'.., ¢, be y+
1 functlons on Cz, which are, defined over # and which form a base for
L (m Q). ¥ Z (P)=lzmQ , we have rank || ¢, (Q;) || >7 and the set of
m (r+1) quantities || ¢; (Q;)|| has dimension 1 over 4. Let P be a specia-
lization of P over any spec:alxzatlon

e (@)1~ lew (Q,) I
. with- reference ‘to £, then we have ¢; (Q,) & (Q, , where
Z(P)= Oi+...... +On

Since every spécialization |l ¢; (@) Il = Il ¢; (O) Il over & such that rank
Il (ps (O Il <7 is not generic, whence algebraic over £, such specializa-
tions are in finite number. By a similar reason, the specializations of P
over every one of such specializations are in finte number. . Since every
Point P of C, such' that '

Z (P)=mQ,i. eV (P)——O . | Y

.

ts one of such spec1ahzatlons, there are only a finite number of such P;
thls is a contradiction. 4 .

Now if we consider only the correspondences between a , Curve C and
itself, i. e. the elements of the ring ¥, and if we note that the product in
X induces the prodiuct of the corresponding operators on the divisor-class
group of degree zero on C, we have proved again that, ¥, is a two-sided
ideal in ¥ together with the following result:

TrEOREM. ~ The -multiplication ving attached 2o & C urve C can be
mpm’sem'ed faithfully in t/ze operator -mizg of the divisor-class group of degree
zero on C.
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In the classical case this representation is explicitely obtained by the
Abelian zm‘egrals of the firs? ,éma' attached to C.

IV. A Generalization of Schubert’s Formula. o

11) A general vemark. Let P be a simple Point of a Variety v,
defined over a field 4, then P determines uniquely a prime rational V-cycle
with a generic Point P over 4; we 'shall denote this P-cycle by (P;4).
Moreover it is sometimes convenient to genera:hze the symbol

(£ (2): 4]
for non-algebraic set of quantities (x) over %, as being zero.

- PrOPOSITION L. Let U, V-be two Varieties, defined over a ﬁela’ &y .
2een for every simple Foint Px Q of Ux V", it holds . :

pro (PX QO A)=[#(F, Q): £ (P)] -(P; #).
Progf. The set of all generic specializations of the Point P over 4 sphts

mto several classes over ,Z: two such specializations are put into the same
cllass if and only if they are also generic specializations of each other over
£. Take a representative P° from each one of these ,classes; thén the
Varieties (P°; %) are exactly all the distinct conjugates of the Variety (P,
#) over £. Let Q° be a geniric specialization of Q over the specialization
P—P° with reference to #4; then the set of all generic specializations of
- Q° over 4 (P°) splits, as above, into several classes over £ (P°); take a
representative (°° from each one of them. It is easily seen that every
generic. specialization 7’ x Q' of Px Q over £ is a generic specialization of
some P°x Q° over £; so the Varieties (P°>< Q°T, /E‘) are exactly all the
distinct conjugates of the Variety (Px Q; #) over %. It follows

Py By=[£ (P): £ -0 (P B,
(Px Q5 H=[4(P, Q): ] - Tow (P°x 0”5 &)

so that we have ,
Cpry (PxQ; B=(F (P Q): 21,
<A (7, 0]k (PP 4. |
Now if it holds [£:(2, Q): 4 (P)]=0, Q is not algebraic over # () ; since
°x Q° is a generic specialization of Px Q over %, Q° is not algebraic

over % (P°), hence also over its algebraic extension 2 (P°). It follows [#
(P°, Q) : £ (P°)]=0 for every o, 7, so that we have pr , (PxQ; #)
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—0. On the other hand in o is.algebraie over £ (P), we have |
(4 (P, Q): & (PY)=[£ (P°, O7): £ (P7)] o cot
=3 (£ (P Q) : £ (P?))s (£ (P, Q)i £ (P))
=& (P, Q): &1 /(A (P): £)) - 2 [£ (P°. O7): E(P")] ;

so that we. have
pry (Px Q; A)=[£(P, Q): % (P)] ["6‘ (P): k). 2o (P°; #)

=[% (&, Q) £E(P)]- (P A);

which completes our proof.

We note that prop. l. is nothing but the deﬁmtlon of the algebraic
projection of PxQ; 4k, if this prifhe rational cycle over 4 is reduced to -
a Variety; in the same manner some other formulae in WEIL’s book
remain to hold, if we replace the Varieties by the prime rational 'cycles
(over some field).

12) ‘Algebraic series. Let Cy, C, be two Curves, deﬁned over a field
% ; since C; plays merely a subordinate part, C, will be denoted also as
C. Let X be a correspondence between C'1 and C,, which does not. con-
tain any d. 1. -correspondence, and which is rational over £; let P be a
generic Point of C; over £, then the set of all the specializations of the
C-divisor, X (P) over % constitutes an algebraic scries on C w1th a generic
elemmz X (P) over %; the integer

- m=deg. X (P)=1(X) , _
is called the degree of the algebraic series. ~The linear series of dimension -
‘1'on C is a special type of the algebraic series. In the followmc we
shall restrict our algebraic series by the following condition :

(A1) X is a positive divisor on CGCo, and if we pm‘ the Point-set
{Qpeeeee » Ot is composed of distinct Points.
It follows from (A 7) that X is of the form

X=X +...... + X,

where X; 1< i < d) are mutually distinct prime, rational divisors on Cj X
€e (which are all different from d. 1. -correspondenges) such that the field
£ (P, Qiyeeee-. y Om) -is separable over # (P); conversely this condition
implies (4 1) .

Now at first .we shall c0n91de1 the specxal case, where d=1; in this '
case it holds '

*

4
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X=(PxQy; #),
and the Point-set $Oueenee. y Ot is a complete set of conjugates of O, over
% (P) so that we have '

(4 (P, 0 : & (PYl=m. -
Let ® be the Galois group of 2 (P, Q......, O,) over % (P); we shall
consider & as a (transitive) permutation group on $O1eeen.. y Q..

The elements ¢ in & such .that Q‘{---Q1 constitute a dubgroup g of &
which is a Galois group of £ (P, Q,,...... y On) over % (P, Q). Every
element of & induces an automorphism of the field £ (Q,, ...... , On) over
%#; Let L be its ‘ invariant subfield ”’, i. e. the largest subfield of %2 (Q,...

.» Om), every element of which is invariant by all -automorphism of .
Then & and ¢ are the Galois groups of 2 (Qi,.....- y Om) over L and over
L (Q,), respectively ; it follows from this the following identities :

X (o, y On): LI=[£ (L, Queeeeey Q) : £ (P)]=(®),
LL (D) : L]=[£ (P, Q) : £ (P))=(B: g)=m
We shall denote the common value
(2 (P, Qiee-.-- y Om) i 2 (QOryeesen. s Om)]
. ' =[£ (P, Q) : L (@)]=[KP): L]
by ¢ (X), and we put e
[L. (@) : £ (Q)]=v (X) )
then we have

p(X) - U X)=[#(P, Q) : H(Q))=r(X)

(cf. prop. 1). We note that ¢ (X) may be zero, but ¥(X) is always a posi-
tive integer; we shall call ¥(X) the Zudex of the algebraic series, deter-

- mined by X 'on C.

Now in the general case, we put
Xe(P)=0u+ .- +Oim; (151 4d),
then we have o |

- . QL + ... + Qm= 2 t=‘f' Zj;";‘ Qij

‘ m=my+...... + 2,;. . .
Let & be the Galois group of the field £(~, Q;...... » Om) over £(P), and
let &; be the Galois group of the subfield £2(P, Q,e----- v Qim;) of B(P, O,

...... » @) over £(P) (1X7=<d). Let L be the igveriant subfield of 2(Q;,...
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On) by @, and put

4(P) : )= ,U-(X)
Now ,u(Xi) and v (Xf) being deﬁ' ied for X; as ‘before (17 <d) we
* shall assume that

A1 w(X)= ﬂ(Xi) (1<Z<d)

this condition is equivalent to the assumption that Z is at the same time

the iuvariant subfield of *£(Qgyees-.. y OQimy) by &; (1=<:<d). Inthis case
we shall define the index of the algebmic series, determined by X on C, by
W(X)=0(X,) + ooone +5(X0).

13)  Mudiiple- divisor of the algebraic series. Conserving the notations
in 12), we shall consider the cycle U' on C™:

U=31(0F X ... XOn; k), o
where. 7 runs over all permutations of # Points Q,,...... , O, mudulo &;
we put ’ :
i S: Pfexe (ﬁrst and secon(i' faetorsj ([]).
Now the z; Points Qy,......, Ojm; are, in general, no more conjugate to

each other over £ (P, Oun), but they split into several complete sets of
con_]udates over £ (P, Qu):

() (%)

{Qj Lap—Lrtreses ’ ijap } (1< p =), o

~where ¢,=0 (17, jg d). ThereEy if =7, @, has only one conjugz‘ite,

e Qg itself, over % (P, Ou); we put ‘ '
OR =0y (15 <d).

Let ®®be the Galoés group of & (P, Quye-v... » Q) over £ (P, Qu) (1Z¢
<), then U can be writtn as ' ‘ . '
U=3"% ns (O X OF % cveiee X Oy X eeenene X Qs £),
where 7, runs over all permutations of (i2—1) Points
Qllr """ » éil) """ Odml ) )
-modulo @?( A means to omit that element). Let & and ® “P be the
Galois O'IOUI)S of £ (P, OL, ...... , O.) over /(1 , Qo O)) and over £(P,
Qi ) respectively, then we have - ’

2im (an Qﬁix X QOnX eodee X Qa5 #)
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=234=t pm‘jp(Qu X Q;;)p X Qi X ... X Qz; X --'Q(fz) X Qs k)

o + e, mip (O x Oy x OB x . X Qu X e X QIR X oo X Qi #)
Since we have I ‘
(8 : BUR)=[£ (P, Qu, Q) : 4 (P)],
o (®: @D =[P, Qu, Q) : A(P)],
it follows from prop. 1 that ’ S
S=2i,,ﬁ'—fp['€(Ql .Qm) 1 &(Qu. Q;fl)p)]

AGn2) /(B : 1)} (i x 02,5 /1’)
+ 335 pr1 [£ (Qieees On) : £(Qu, J" )]
(m~2)‘/(®(ip) )§ (Qzlx ng) y ) ,
(7”-2)'/H(X) § 206 gar, o[ A(P Qi OFF) ) D B(Qa, Qo) ]
. ' _ (Qzlx Qja ’ ’{’)
c e er2)1 e [L(On, OF)) : A(Qu, OFF )] (qu Qf(?p, %)
{(m_2)'//‘(X)}Zi ixt, p Prexe (Px Qi x Q(jﬁ &)
! + (m-2)! 22 1/(m2)! S, '
Siz(mi—2) ! Ep-’l‘-l [L(Q 1, ng)p) Pk (Qﬂ, 1(:;)[1 )](Qu X Qz%)p 5 /é)
and where the first sum must be omited if u(X)=0; S 'will be reduced
to S, if X is reduced to X (1I£:<4d). S

Let R be a generic Yoint of C over £(P), then we have
(PxQuxR; k)- (PxRijl, £y
_—'prpf (Px Qi x Q0 )

jap »

I

with x,=> 1; taking the algebraic projection on C;x C,, we get
o myXy (Cix G)=3%, (a, a,,_l) X,
(cf. prop. 1), so that
my=3),x, (ap—a,_ 1)>Lp (ap—a,)=m;;
sincé a,>a,_, we have x,=1 for every p. It follows -
pre (Zp{prexe (£x Qi x Que 5 #}-4)
=prd Do (Px Qux O 5 £) - (Cux D))} |
=pr{(PXQuxR; &) - (PXxRXQyu; A)} - (Gx )Y
=pr.[(PX QuxR; k) - {(PXRxQﬂ; £) - (Cyx 4)}]
=pr{(Px QuxR; k) - (Px On*x Qs £)}
=pr{(Px Ou; £) - (Px Oy ; #)}
=Pl‘c(Xi'Xj) ’ ‘
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thus we }1ave“ . i : o .
. pre (S - A)={'(m—2) V/pu(X)} - Zi, s Pre (X Xp)
+(m2) ! 33 1/(m;—2) ! - pr.(S; - ) .
. Now ' the C-divisor : ' o
J=300 i Pre (X - Xp) + 323 p(X)/(mi=2) ! - pre(Ss - 4)
may be called the mulsiple divisor of the algebraic series, difined by X on
C; if X is reduced to X, / will be reduced to /;;
' Ji= (X /(m=2) ! hpr, (Si - 4,
so that we may wrlte : '
f’_‘Et j%i PYe (Xi X})"‘Ziﬁ -
14) Jacobian divisor. We shall consider a special case, where
d=1, v»(X)=1;
_in such case we have
[Z(Qu» © ‘“) £ (Qu )J—l
so that
S"“(WZ-'Z)' ZP—-\'—J (Qzl X Qui;) 3 )

In partlcular if Cis a Curve as defined in 1), § I, and'if (%) is a generic
Point of the projective straight line D, the correspondenece X

X=={(J:) XP; &}
betyveen D and C is irreducible and satisfies t(X)=1, hence
m(X)=v(X)=1

Let (P, Ps,..-... , P,) be a complete set of conjugates of Pover ,é(x) and”
S=(m2)! E, :
then we have E(P)=P,+...... + P, . Since every D-divisor of degree zero

is linearly equivalent to zero on D), X* is a correspondence with valence
zero ; it follows that X is a correspondence with valence zero. Thus X(x)=

P+P+...... P, determines an algebraic series on C, whose elements are
linearly equlvalent to each other on C. Since o
(E+ 4) (P) P+Pt...... + 2P0,

E+4dis a corlespondence with valence zero ; the correspondence E 1s called
an elemmmr_j/ corvespondence, and the multiple C-divisor

J=tm(X) /(=2 1} - pr, (S - d)=pr, (E A)
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‘is called a Jacobian' divisor on C. . , .

15) Scavpzrrs formula. Comming back to our general case, we
shall omit the trivial cases, where C is a rational Curve or u(X)=0. We
shall consider a linear series of dimension 7, defined over- &, on C; let
P+...... + 2, be a generic element of it over #, where A,...... P, are in-
dependent generic Points of C over % then the C-divisor 2, +...... + P,
is rational over ,é (Pe..... P.). We shall assume that _

(L) Pog+io... + P, consists of zz’zsfmw L mts and is prime rational over
£ (.Pl’ ...... y B .

" or equivalently that £ (Z,...... » P,) is separable over 2 (A,,...... ,P,) and
_its Galois group $ is transitive on B, ,...... » P,. (L ) isindependent of
the choice of the generic element over 4, and the linear series with a
‘ge'neric element P+ ...... +P+...... + P, over £ (P,) satisfies also (L /)
(over £ (P,)). Moreover since € is not a rational Curve, our lmear series -
has no fix-part for » > 1, and is “simple ” for » >2 . ‘
Now consider the following C™-cycle I’ :

V=3, (P x...... P X P X ... x P7; £),

where 7 runs over all permutations of (#—) - Points P,q+1, ...... » 2, modulo
$. Let Q be a generic Point of C over 4, then the specialization -
Ou—>0

over %4 can be extended in v (X;)-way (where the same specialization is
counted [L(Q:) : #(Q; ) i-times) to the specla[lzatlons
' o JE T + 004 Qo +2even. Orim
(<2 <u(X); 1< < d)
over £ Moreover the set of ¥(.X;)-(E®) Points

(QX OFga X wenne X Qs T € B9, 1< ¥ < (X))}
forms a complete set of cor{jugates of the Point O x Qix; X ...... x-Qix,, over
#(Q4), so that we have : : N
N (Qux OFx ...... ,,ml; ,{) (Qx Co= 1))
,=ZZ.W(Q><Q§;2X.--XQ11-X X thum) )
where 7 runs over all permutations of (#-1) Points Q,,,...... , Qi

In. the following we shall assume that
(L IT) the intersection-product
(CorDx ). (Ux C("" ")
is defined on Cm¥vTD L
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it follows that the intersection-product I-{(pr c"*°U ) x =1}
is defined on C™ ; we put
deg{ V(pr ¢"*PU) x Cor=D }
=@+1)! (m—r—1)1 (n—r—="1)" Z(ry ). .

Let ¥ be the Subvariety of 'C ™7, *which corresponds to C™*"~77? x 4
by the interchange of the first and the last fdctors of C™**7; then the in-
tersection-product (Ux C™ ). W is defined on C™**"_ By our assumption
(L I7), the intersection-product (C™~ " x ) - {(Ux C® ") . W} is defined
on C™**=7, such that its algebraic projection on C@®*=r-0f — ({x
C O s (CO U x ) (U x C@7D) it follows in particular that the in-

telsect,ton-product (Cmx V) . (Ux C‘" 7) is defined on C+"7 | Thus if
we put

T=proxo (first and last factors){ (C(m")x YU % C("_r))}
we have
deg. (7 dy=deg. [{(Cx )" (Ux C‘""’)} W)
=deg. {(C V%) . (UxC™"D)}
=deg. {1 - (pr ¢+ U) x C- b}
=@#+1)! - (m—r—1)! - (n—r—1) " - Z(rn).
On the other hand since the 1ntelsect10n—product (Cm <) A (Ux C™™)
(Q x Com+n= r—l))}_{((‘(m—r) x V) (U x C- r))}(Qx C‘(m+n— =DY is defined -on
Cm+r=n we have
(Cm I x ) (U C ) (Qx Cm¥n=r=D) |}
=3 wm 7(OX OFs X e X Qe X REy X oenee x R%),
" where 7 runs over all permutations of (n—r). Points &R, 1. e.--- , R,. In the
following we shall calculate the number Z(r, n); at first a generalization
of CHASLES formula : ‘
Proposirion 2. Let X b a corvespondence with valence zevo bet-
ween a Curve C and itself such that the intersection-product X-d. is a’efiﬂea’
on Cx C, then we lave
deg. (X-d)=1(X)+r(X).
Proof. Put X=(¢)+(Ax C)+ (Cx B), then the mtersectlon-ploduct
(¢)-4 is defined on Cx C; it follows
pr(X-d)= A+B+P; A(p) - d}=A+B." :
Let 2 be a field of definition of ¢, over which both A4 and B are rational,
and let P be a gereric point of C over £, then we have - »
- X(P)y=(e)(P)+B=B,
so that deg: X(P)=1(X)=deg B; in the same Wdy, we have r(X)=deg.
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A; it follows .
deg. (X-d)=deg. pr, (X-d)=deg: A+deg.B .
=1 (X)) +r(X). - |
Now we can prove the following theorm, which is a denelahzatxon of
SCHUBERT's formula in the classical case: s
THEOREM 1. The number Z(r. un) has the followmg value

2 my=w(x) (T )00 /2) (2T
=D(X)=deg. J/p#(X).
In parsicular, Z (7, n) depends only upon X, » ana’ .
Proof. Uf »=0, we have
deg:{ V- (pr.(U)x C"P} =deg-EV-'{v(X) c(m—1).1-C™}]
=v(X) (m—1)! n'=(m-—1)"-Z(0. 7), ’
so that Z(0, n)=v(X)n; this is the SCHUBERT's formula for »=0; we
may therefore use induction on #, assuming » < 1: '
A Since the algebraic series determined by 7'+#:(n—»— 1)' S on C
consists of equivalent C-divisors, it is a correspondence with valence zero.
It follows from CHASLES formula that '
deg. (T-d)+r(n—r—1)! deg. (S-4)
=1 (D) +r(D) +r(n=r—1) {1 (S) +1(S)}, i e
P+ D)V (m—n—=1) ' (n—r—=1) - Z(s, n) +r(n—r—1)! (m—2)ID(X)
- =r(D) +3(X) - (w———l)' (n—r—1)1-2. (m——l)' v(X).
Let ¢(7) be the least integer such that Py, is algebraic over, /é(Pn, P,

...... y Pginy—1) ; since P7 can not be algebraic over %4, we have (7,
and the Points '

Pp ------ ’ P¢(ar.)—1r P¢(n)+1) """" ’ Pr! PZ‘

are independent generic Points of C over Z. Let

Pix...... XP.XPF X eene. X Py —

Prx...... X Ppimy1 X PET X Pyiny X evnnen x P x P,
be a generic spcialization over #, then ¢(7) is a uniquely determined per-
mutation of (z—7) Points £, 4,.....: , P, modulo $; moreover if 90(71'1)——

¢(m,) modulo , we have 7,=m, modulo 9 ; it follows
V=300 (PiX ore X Pymyy X PRy X Pyay X oo X Py X PEyX oo X PEX P, F).
Since the intersection-product {(C™ ™ x V)(C“’”"""‘“ xP)YHUx C™ )
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(C"""’ x V) (Ux ce Yy} (C‘"‘*”"“l’ xP,) is defined on C*"~", and
since U is invariant by any interchange of factors of C™, we have
b T*(P,)=pr c (ﬁr.rffactar){ (C(m—r) x V) (UX C(n_r))} C(m+"_'_1) XP)
=pr,[{Cm %3 (PX...... X Po i XPEX, o XP5 5 B(B)) } (UxC‘"‘”‘“ ).

The linear series with a generic ¢lement P1+-.‘--.-+ﬁ,+ ...... + P, over.

the field 2 (A,.) satisfies both (Z 7) and (L I7); so that if we out -
[7'—1=Z“{P1x.;..;.xP,_le;‘+1>< ------ xXPr; 2 &)t

we have o |

’r(T) deg T*(F.)
=deg (V{(pr ¢"U)x C"~ "”)} .
=r! (m—r)!-(n—r—1)-Z(r—1, n—1),
It follows that '

(7+1)' (m—r—1)!. (n —r—1)!. Z(rn)+7f (ﬂz——r—])' c(m—2)D(X).
=v(X) - (m—=D)-(n—r—D)\.(n+7») +#\:(m—n) (n—r—1)1-Z(r—1,n—1);
this formula holds also for »=0. Thus ‘adding ’ for »=0,1,...... , 7, we get
+D)!(n— r— l)'(n—r—l)' Z(rn) + (n—r—D)(m—2)-D(X)-}-7- (r+1)

=v(X)(m—1)!- (n—r=1)(r+1D)n; i e
‘ Z(ran)y=v(X)n(m—1)/ (m— r—l)' 7 1-(D(X)/2) (-2 / (12— r—-l)'(r—l)'

1 1
=v(x)u (") - D(@)/2)- (”
which proves our theorem

V. Additive Function on the Multlphcatlon Ring.

16) Abelian fzmctzonﬁeld Let C be a Curve as defined in J) § 1,
" and let Pl, ...... P,i be a set of d independent generic Points of C over a

field £, containig 4,. 'Let P, be the representative of #; in C, and let .T
be ‘an indeterminate ; we put

A P,;-,=(*x(‘), PACIRTER (“)(lg ; < d);
Hisl(T—x(’)) 7% —s, T4 ...... +(—=1)%s,
IS (T—y$) = Th—25 T ..., + (-1)* ty;
| ()=Cnorennnysa)s (D=(Bugevvns fna)-
" Then at first we have ‘ . ;‘

E’é(})h ------ ,Pd) . /%(x‘”, ...... ,x(d)')]::n'i
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we shall show

k(Py,...... , P)=~(zD,...... AP |
Let (#,...... ,7;:) be a complete set of conjugates of conjugates of y,
over the field £(x®?), then two polynomials o

kal (T"'J’j/;(i))’ 11,4 (T“'J/;i)) _ C '
have their coefficients in £(x@,...... x?P, ). Since T'—yp,® is the G. C. D.
of them, 2, must be in A(x®,...... 290 (17 n; 1<i<d).

~ Now let Z be' the invariant subfield of £ (Piyeeeens ,P;) by the symme-

tric group &,, operating on {FP...... Py}, then we have

(A(Pyeeeen- P L1=(S,)=d!;
we know that £(s) is the invariant subfield of £(x©,...... ™) by, &, It
follows that L=#4 (s, #) ; we shall denote this field by # (Pyxeennn. *P,).

In particular if & is equal to the genus g of C, the Point (s, #) in
g(n+1)-space has a locus A, over £, which depends only upon g, the abs-
tract field of all functions on A, is called the fleld of Abelian functions at-
“tached to C; the set of all Abelian lelicti011s, defined over 4, constitutes

an abstract field, which is isomorphic to £ (Z;......R)).
We shall show .
ProposrrioN 1. Let Pi,...... , P, be g independent genevic Points of
C over k, then the C-divisor ’
GO;P1+ ...... + Pg> [ '

is non-special. , .
Proof. 1If d is sufficiently large, the C-divisor

G=P1+ ...... +]Ig+])g+1+ """" +Pd " .

is non-special (cf. prop. 3, § II). Since Z(Z *...... «P) is a field of de-
finition of | G|, any ohe of the Points A,......,P, can not be contained in
the fix-part of | G|, unless, /(G) =d—-g=0. It follows that /(G—PF,)=d-
g-1, so that P +...... P,.,=G’ is non-special; repeating this reasoning,

we.see that G, is pon special. \

17) Cé;zzﬁlemmz‘my correspondence. et € and C,=C be two Curves
with genus g; and go=g¢ rcspecti.vely; we shall assume that € is not a
rational Curve, I e. g > 1. Lct X be a positive divisor on ()X (,, and
let 2 be a Poiut of ;. Take a common ficld of definition % of C,and G,
over which both 2 and X are rational; then take a generic Point Pof (;
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over %, and a set of g independent generic Points {&,...... ,).'ég} of Cover

#£(P): Consider the complete linear series, determined by
X(P) +R1 +]_€yE@;

since R+ ...... +R is non- spec1a1 we have / (&) =deg. X(P)—I(X)

There exists at least one Cdlvxsor Ri+...... + R such that i
XP)+Ri+-..... R=G.

Let R Foenn +'R;" be a specialization of R, + ... + R, over the specialization
P—P with reference to 2 (Ry* ...... * R)) ; since |G| is defined over this
field, we have X(P) + Rf+...... +R¥—G, whence Rf+...+Rf=R, + ...
-+ R ; since Rl...;..RQ is non-special, we have R{*+ ... +R;"=R:+ .. +R;
It foliows that {R,,...... R} is a set of independent generie Points of Cover £,
so that R4 ...... + R, is .non-special; thus there exists one and only one
C-divisor R +......+R, such that |
X(P)+R1/+ ...... R=GC.
Moreover R;+...... +R, is rational over A(Rx ...... *R) (P), so that
there exists a co1resiaondence YV, between (, and C, which does not

contain any d. l.-correspondence, and which is rational over # (R ...... *
R), such that : o

] Y(P) =R‘1 + e + R
Since (X—I—Y)(f) =G, X+Vis a Lorrespondence Wlth valence zero, and
we have

) ' 1(Y)=g;
the correspondence YV is called a gemeric complementary correspondence to X

over £; any correspondence Y, which satisfies the last two conditions is
called a complementary corvespondence to X.

Proposirion 2. The C-divisor "V (P) z's non-special  for. every
Point P a9 C.

Proof. f Pis a ‘generic Point of G, over ,{(R1 ...... *R) Y(P)
the generic specxahzatxon of ¥V (P) over the specialization P—2 with re-
ference to' & (R ...... *R ,), so that ¥V (P) is non-special. If P s alge-
braic over £ (R* ...... *Rd) and if we have 1 (V (P))>1 there exists a
C-divisor R§‘+...:..+R‘ in |V (P)[ such that
XP)+R +...... +R=X(P)+R}+...... + R,
dim 2 (RBipe-ryf0) (Rfyeenne. R} =1
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Isinf:e. Ri¥...... +Eg is non-specia],' it is rational over ,€ (Zﬁ, Ri,...... RY)
hence we have , ,
) £ (P, RifyeeesRY) DB (Ri% e *R) .
It follows that - . '
dim & (B, R¥eero, R¥) >g +1,
so the {RFf,...... ZRX} is a set of g independent generic Points of C over

%, which brings a contradiction., v

Froposirron 3. YV is prime rational over every ﬁela’ by, whick is
lincarly disjoint to k (R,.....,R) over B(R;% ...... * R).

Proof. Let V=3, a;¥;(a;=1) be the unique expression of Yas a.sum
of prime rational components Y, over 4, and let P be a generic Point of
C, over #,; then we have ’

. V: (P)=Ruy+-...... + R,,,
where {7,..... _.,'z's} is a subset of {1,......, g}. Since ¥;(P) has a uniquely
determined specialization Y, (P) over the specialization 7”— P with reference
to %4, we have-

. YQ(P)=R11+ ''''' +‘Rj8!

.

where {]'1,.,....]'3.} is a subset of (1,...... &) .- -Since however N
(2 (R7) : A]=[A(Rx ...... *R) (Ry) : B(Rx ... *R);

" we must have s > g, so that V=1Y,.
ProposSirion 4. Let P be -a generic Point of C, over the field k,

deen by (P, Ry,...... R)) is se;)arzzble over ky(P), and its Galois group is
the symmetric group S, ; _
- Proof. Since the C-divisor R+ ...... +Rg is rational over 4,(P), the
C@-cycle .
S (REX ennns x R} ,

where 7 runs over &,, is rational over £,(P); it follows that there exists
a rational (C;x C“)-cyble W over £, every component of which has the

projection C; on (j, such that
W(P)=3p (RFEX eennnn X R7) .

Since W (P) is prime rational over /4, by a similar argument as before,
we see that I¥(P) is prime rational over £(/); which proves our assertion.
We shall not repeat the similar proof for the following: proposition :

T
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Proposirion 5.  Let P+ eoeu+ Pixyy, be a generic element  of
| G | over By and let ' '
APy, Puxo
be a set of independent generic Points of C' over ki, z‘/zen Ei(Piyeennn. WPz +g)
is separable over foy(Fy,...... 1(X)) and its. Galois group is the syminetric
group S, ' ’

It follows that | G| satisfies the condition (L /) with reference to
such field 4. )

18) Eguivalence defect of the algebraic series. In the following we
shall assume that the correspodence X satisfies the conditions (4 /) and
(4 IT) in § IV ; we shall also omit the trivial case, where p#(X)=0.
Let 7 be a generic Point of (| over the field 4;; we put ‘

X(P):Q1+ ------ + O,
(=1 (PX OF X e X Q%3 B,
where 7 runs over all permutations of s Points O,...... ,0,, modulo the
Galois group of 2 (P, Q,,------ .Q,,) over k& (/) moreover, P4 ..cc... + Py
being as in prop. 5, we put .
Pme= (Pyx e X Py By). '
Then the intersection-product U(Px C™) is defined on (X C("" such that
0. (Px C™) =3 (PXOF X eeeren x Or), '
where 7 runs over all permutations of 7z Points O,..-... ,O.. ; thus the in-

tersection-product (&7 X Y4 (Ux C?) - (Px C™*2)} is also defined on
x C™*9 ‘such that

(CIX l/){((/x C\g)) (PX C(m+g))}
=2 Z(PXOTX e x On X RF % ....'..><_RZT),
where 7 runs- over all permutations of g Points Rj,...... R,, which are de-

fined as before. In particular the mtersect;on-product (Gx 1) ((]x c?)
" is defined on C;x C™*9 ; we put .

T=p1‘cl X(:(last factor){ (€, % L~') '(Z/,x C)}.

By prop. 2, 7 does not contain any d. l.-correspondence, and we have.
7 (Py=m!-(g—1)! ¥V (P); |

‘it follows that
T=m l(g—1)' Y.
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On the other hand the linear series with a generic element‘) P4.e...- + By
over £ (P,,,) satisfies the condition (Z 7) in § IV ; moreover if we put
V=(PX ...... X Priois A (Pura))s, |

the intersection-product . ' . '
{(UxCo™) (Cx V)} % Py,
={(UxC")-(Cx V)}-(Gx Cmr P x P, )
is defined on C;x C™*9. Thus if we put
| U= (O x...... x 0% &), ,
where 7 runs over all permutations of 2 Points (Q,,...... ,O,, modulo &, the
intersection-product - (/' x €% ) is defined on C™*% " ; since U is invari-
ant by the interchange of factors in €™, we may assume that &,,...... 2

are independent generic Points over £,(Z2,.,). It follows that our linear.
series satisfics also ‘the condition (Z 77) in § IV ; and we have
‘ r(7)=deg. {(UxCM).(C,x V)}
=p(X) deg. {P-(Ux CoM)}
=pu(X)m! (g—=1)! Z(im—1, m+g—1);
hence B ‘
r(V)=p(X)-Z(m—1, m+4+g—1)
=r(X)(m+g—1)—3% deg. /.
The number Z(m—1, m+g—1)-
Z(n=1, mtg—1)=w(X)(m+g—1)—} D(X)
is called the equivalence defect of the algebraic series, determined by X on
C. In fact we have Z=0 if and only if r(¥)=0, ie. ¥V is a d. r.-corres-
rondence so that X is a correspandence with valence zero. In particular
if X is the correspondence with valence zero, considered in 14), § IV, we
have '
deg./—2n=20+2,
where /is a Jacobian divisor on C; thisis known as RIEMANN-HURWITZ
velation in the classical case. :
_ 19)  Virtual degree of the corvespondence. let C,-and C,=C be two
‘Curves with genus gy and g»=g. We shall prove the following formula,
which is known as Hurwirz formula in the classical case :

Proposrrrion 6. Ler X and Y be two correspondences between C,
and C; such that the insrsection-product X-Y is defined on C,x Cy, then the
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intersection-product (XoV*) -4 is albso defined on CiX Gy suck that

prc(X' Y)=prc{ (Xo Y*)A}

Proof. By linearity we may assume that both X and Y are irreducible.
Let %# be a common field of definition for &, € X and V; let PxQ be
a generic Point of C,x G, over £, and let Px Qbe a generic Point of X
over 2 Let W be the Locus of the Point Qx Px Q in X Cix G over
/4 then the intersection-product (G x X)W is defined on ;% Cyx C, and
we have W-(C,x X)=2Z (cf. 4),§1). Since we have Z3 Y* x C,, the intersec-
tion-product Z(¥* x () is defined on Cox €% G, ; it follows that the in-
tersection-products { (G, x X)-(Y*x &) },W-{(Gx X)- (Y*x G)} are de-
fined on C,x C, % C, such that

Z (VX G) =W (Gx X)-(Y*x )]}
Taking. the algebraic projection on ;% &, we get
prexe(Z-(Y*x G))=(Xo¥V*)-4;
taking one more the algebraic projection, we get
pr{(XoV*).d}=pr, (first factor) (PrexciZ- (Y*x G)Y)
=prlproe{ Z(V*x €)1

=pr(X*-Y*)
. =prc(X ‘ Y)'
The following proposition will be used in the next §:
ProposiTion T. Let X be an irreducible corvespondence between (,
and C, such that l(A’ V=1, then we have ' '
Xo X*=r(X)4.
Proof. Let % be a common field of definition for C;, C; and X; and

let O x Px R be a generic Point of some component Z of the intersection
(G:x X)N(X*x () over % then the Points PxR and Px(Q are in X.

Since 1(X)=1, it holds
Q=X(ﬁ)-—.=1—?

so that Px O is a generic Point of X over #, and we have
(Gx X)) (X*xG)=aZ.

Taking the algebraic projection on (;x () we get a=1; taking the alge-

v
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braic projection on C,x G, we get
Xo X*=r(X)d.

Now we can develope the most important part of the theory of cor-
respondences between ( and G,: ‘

At first we shall express the “ continuous equivalence” by «—, as the
linear equivalence has been expressed by =. Then for any Points 72, O of
Ci, G, respectively, it holds

X—1(X)- (% D)+ 1(X)(Px G,
whenever X is a coirespondence with valence zero. Now if C is rational,
every X is a correspondence with valence zero, so that for every X it
holds X—I(X)-(C,x Q)+1(X) (Px C); moreover (C,x 0) and (Px G,)
are linearly independent in the sense of — over the ring of rational integers.
In the following we shall omit this trivial case, where is nothing to prove ;
moreover we shall denote by @, ¥,......the classes of the correspondences

by «—, and by g, y,...... the classes of the correspondences modulo the cor-
respondences with valence zero.

LEmMA. Every x contains a representative X suck that X>0; hence
every & contains a wepresentative X, such that

Xi=X+6(Ci%x0) +a(PxC), X>0.

Proof. Let % be a common field ot definition for C, and C, over which
a representative X’ of g and a Point Q of C2 are rational; let P be a
generic Point of C; over £ Then for a sufficiently large 2, there exists
a rational Cyp-divisor G over £(P) such that

X'(P) +mQ=G, G>0;
we may put G=X(P) with some correspondence X such that X >0 ; and
X is a representative of 1.

Now let X;, X, be any two representatives of 2 such that X, X2>0;
let ¥; be a generic complementary correspondence to X, for 7=1, 2. Let
4 be a common field of definition of C, and C, over which both ¥; and ¥,
are rational, and let 7 be a generic Point of C, over 4; then there exists
~ a rational Cy-divisor B (of degree zero) over %" such that

("= 13)(P)=A5.
It follows that

Y,—Vi=C,xB;
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and in particular r(¥;)=r(¥;) ; we shall denote this non-negative integer,
which depends only upon g, by 0(x); we have d(g)=0 if and only if x=0.
TrrOREM 1. Let %, Y be arbitary given, then we can find a represen-
tative X, V of ¢, Y such that X(X, Y) is defined. Moreover X, Y) is
independent of 8he choice of such representatives, so that we may put
. l(w, ’!I)=X(X, Y)s
whenever X (X, V) is defined ; we shall put
} WX, V)=X(x, v),
even if X(X, Y) is not defined.
Proof. Let
‘ X=X+6(C,x Qf)+a,(12x G).
Y= y1+by' (C‘lx Qv) +ay(ﬁyx Q)
be two representatives of 2, ¥, as stated in the lemma; we may assume
that P, 3 py, 0, > :_,,, and that (C\ % Q—,,) and (‘53/?‘ ;) are not contained
in X.. Let # be a common field of definition for C, and C,, over which
X,, Vi and four Points 7, P, Q., O, are all rational ; and let Y be a ge-

neric complementary correspondence to Y; over %, and let Y” be a generic -
complementary correspondence to ¥” over Z(Ruix ...... #Ry), Then we have

| Y, — V" +6,/(GxD,) + a/(Bx C)
with some rational integers &,/ and @,/ ; moreover the intersection-product
X-Y" is surely defined on C;x (. Thus if we put
V=Y" 4 (8,48, (Cix 0,) + (a,+a)) - (P, x C),

the intersection-product X-Y is defieed on C,%x Cy, and Y is also a repre-
sentative of ¥. ‘

Now let X, X, and YV, YV, be the representatives -of a¢ and ¥ snch that
¥y (X, Y) and y(Xy,Y;) are defined; by a similar argument as above, we
can find a representative V; of ¥ such that the intersection-products X-¥, and
X,-V, are defined on C;x C,. It follows from the postulates (D), (S) of
the equivalence theory that
which proves our assertions.

Now let X; and X, be two represntives of &, then we have 1(X))=
1(X2), r(X)=r(X); thus 1(¥) and r(x) have a definite meaning. We
shall prove the following theorem, which is known as SEVERDs formula
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in the classical case: :

THEOREM 2. Let X be an arbitary corvespondence between C, and G,
and let x¢ and ¢ be the classes of X, then it holds

2(2, ) =2 1(20)r(ac) -~ {3 (x) +3(—p) }.
Progf. We may assume that X is of the form
 X=X+6(Gx Q) +a (PxC)

with X; >0 take a common field of definition # of C, and C,, over which
X, P, Q are rational. Let P be a generic Point of C, over £, and let

{Ryye..... Rs, } be a set of independent generic Points of C over £2(P); let
Y be a generic complementary correspondence to X, defined over # by

X(P)+R +-..... + R=X,(P) +V(P) :
let Z be a generic complementary correspondence to ¥V, defined over 4
(Ry% ...... *R,) by

V(P)+ R,y 4. +R,, =Y (P)+Z(P).
Then

X'=Z+8(Cix Q)+ (PxC)
- is also a representative of a for some rational integers. & and a/. Now if we
put

Bi=k(R»x ...... * Ry Ryui% ooou. * Ry, ), V
£, is linearly disjoint to Z(R,,...... » R) over A(R* ...... *R,);: and if we
put

V(P)=R,+...... +R, Z(P)=Rg+1+ ...... + R, ,

the Galois group of £(P, R,...... R,,) over k£, (P) is the direct product of
the symmetric groups, operating on {R,,...... R,} and on {R,.,...... Ro,} s
moreover the invariant subfields of 4,(R,,...... Ry Ai(Ryppseen--- Ry,) and 4,
(Ry,e.-... R,,) are the same: :

A(R* ...... -x-R.g) =A (Rye1* oevens *Rs,)

=£(R* ...... *R,, R,p1% «oe... *Rs).

It foollows that the correspondence Y'+Z satisfies the conditions (A4 7)
and (A4 I7) in §IV (over 4,); thereby we may assume that

/I(Y+Z)5? o,

for otherwise X, is a correspondence with valence zero, and our formula
holds trivially. Thus we can apply to ¥+ Z the results on the equivalence
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defect of the algebraic series; it is a correspondence with valence zero,
we have
r(V+2)(3g—1)— }deg. /=o;
thereby
3dg. /= 3deg. Jr+ideg. Jr+x(V, 2)
=(8 (1)(2g—1)—9(—1))
+{0(—p)(2g—1)—d(x) } +x(¥- 2)
={0(x)+o(—1)}(2g—2)
+H{x(Y+2, 2)—x(Z, 2)}
On the other hand, since we have
Y+2Z =28 (Gx Q) +{0(x) +8(—) H(Px &),
by HURWITZ formula we get -
¥(Y+2Z, 2)=y{(Y+2)oZ* 4}
=2g. (=) +{6(®)+d(—1)}. g;
moreover since Z=X'—¥& (Cyx Q) —a' (Px (), we get
x(Z, Z2)=y(aac) —2r(axc) —21(ac)a’ +2a'%
=y(aaxc) —20(—1x)& —21(x)a.

1t follows
{8(r) +0(—p)}Bg—1)={a(x) +(—p)}. (2g—2)
+2g-0(—x) +{0(x) +d(—x)}-g+o(—yr)¥
+21(x) 2’ — x(ox);
hence

X (@0, @) =2 3(—y)-(g+5)+24 1 ()
—{0(x) +o(—n)}
=2 1(®){3(—x)+a'}—{0(x) +6(—z)}
=2 1) -r(x)—{0(x)—0(—1) }.
COROLLARY. X is a corvespondence with valence zero, if and only if
¢ holds
X—6(Cx Q)+ a(PxCy).
In fact if we put
Y=X—6(C;x Q)— a (PX C),
we have V=0, so that
1Y, ¥)= —{8(y)+(—y)}=0,
whence d(y)=0(—y)=0, and y=0.
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We can derive an interesting consequence from this corollary, as it will
be given in the appendix.

Now if we consider the special case of (;=C(C;=C, the elements j, Y,
......... form the multiplication ring attached to C. For every correspondence
X between C and itself, we put ’

o(Z) =1(X)+r(X) —y(X, 4);
since a{6(Cix Q) +a(Px C)}=a+é—(a+46)=0,0 depends only upon the
class 1 of X, therefore we may put

o(x)=0(X);
o is an additive function R, and it holds
o(*)=0a(y).

By HURWITZ formula, we have

o (XoV¥) =1(X)r (M) +1(Nr(X) (X, V)
—1(V ) () +1(Xr(1) — (Y%, X*)
=o(Y*oX),

so that it holds

a (% p)=a(y, L)
for exery g, y in R.
Moreover by RIEMANN-HURWITZ relation, we get

o(me)=moao(e)=—ma(E)
=—m{2(n—1)—deg. J{=2mg;

this is known as C4VZEY-BRILL'S formula in the classical case.
Furthermore since we have

o(xr*) =o(XoX*)
=2.1(X) r (X)—y(X, X)
=8(g) + (1),

a(xr*) is a positive definite function on R. It follows
o{2gx—o(g)eH2sr* —a(x)e}=0.

so that it holds
o(gr)*=>0(r)*/2¢ =0.
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V1. Riemann Hypothesis.

20) {Sfunctions. In this §, we shall assunme exclussively that our
Curve C is defined as in 1), § T over a finite field &,=4, with ¢ elments.
Let 4£,, for m=1,2,...... , be the cyclic field of degree » over 4, and let
P be a generic Point C over 4, then the (-function ¢(,(s) of the
function-field £,,(P) over %, is defined by

Cm(s) = 2A>0 (Qm) - dego(A)’

where A4 runs over all positive rational C-divisors over £,. We know that
C.(s) is “divisible ” by the {-function ¢, (s) of the rational function-field
kn(x)over £, : :

Cn()=Lu() Ln(s), 1/Cu(s)=(1—=(g™)™")-(1—(g™)"™), '
and if we put
g'=Z,
(¢™)*. L.(s) is a polynomial of degree 2¢ in Z™ with integral rational
coefficients of the form :
Cn(Zm)=(g™)"L, (s)=2"— (14 g™ —v,) - Z™® Dt ... g™,

where g means the geuns of C, and v, means the number of rational
Points of C over %, - Since {(s)3>0 for every complex value of s, the
RIEMANN hypothesis, i. e. the statement that *all the zero points of
C:(s) are of the torm ‘

3+V—1 -7 (Z'real number)”

is equivalent to the assertion that * all the roots

of G,(Z) satisfy
7| *=g.”
From the functional equation
(g™ La(s)=(g")"" ™" L(1—5)

of £,(s), me conclude the following equation

See e.g. Hasse, H.,, Ueber die Kongruenzzetafunktionen, Sitz. Ber. Berlin, 1934.
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s (Z—n)=M,(Z—q/n,);
we put '
nr=g/mn, (1=:X2g). '
Since Lm(s) can be expressed as a product of L-functions of the * basic
field” £(P) in the form
L,.(s)=1II, yog.nl(s—27Y—1-¢/m-log q),
we conclude

Gn(Z™)y=I12(2"—=7),

hence
Sp-(a™) =33, ar=14¢"—v,,
(m=1,2,......).
22)  Frobeniusean correspondence. Now let
P=(x/ pieee-e. Fa) P'=(y y) ... y Vn')

be the representatives of P in C, C’ respectively (cf. 1), §I, then the
points

m

m . m m m
m=(,1:'9 yl'q ...... » FuT ), Pm’=(x'q , _y’lq gesecas , J/'nq )
in (#+1)-space are the specializations of P, P’ over %, respectively, since
every element of % is equal to its ¢g-th power. By the same reason P,, x

P,/ is a spcciaiization of Px P’ over £, so that it defines a Point 2, on
C; furthermore 4, (P,) is a subfield of 4(2) such that

[£:(P) : (P ]=[A(5) : £a(a ) ]=g™
Let F,, be the Locus of the Point Px P, in C x C over £, then F,, is an
irreducible correspondence between C and itself, defined over £, such that
1([?m)'=1’ r(Fm)-:?m ) .
it follows
F,oF*=g"-d, F,=Fo...... o (mm—factors).
In its clpse connection with the ‘ Frobeniusean substitution’ in algebraic

number field, it may be called the Frobeniusean correspondence between C and
itself.

ProposirionN 1. Let
Pr - d)=3] e3P .
be the reduced expression for the C-divisor on the left-hand side, then P are
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exactly all the rational Points of C over k, ; moreover it holds ep=1
Jor every P so that we haxe

1(Fn d)=v, (m=1,2.....).

Proof. Let P=(a, &y,-...... ,5,) be a representative of the Point 2,
then Px P is a specialization of PxP,, or of P’ x P/, over %4 so that we
have

” m m

& =0, 8 =bpyeennes 8 =by.
this meas however £,(P)=#%,(P)=4%,; and conversely.

In order to show ez=7z, we may assume e.g. that P is the representa-
tive of P in C; let F,, and 4’ be the representativeg of F, and 4in Cx
C respectively. We shall prove '

i(Fn-d4'PxP; CxC)=1
by the ¢ criterion of multiplicity one”. Let
(X, Y, X', V)=(X, Yipeors Yar Xy ¥y V)
be the indeterminates for (27+2)—space, and let
PX, V)=0 (1 <i<N)
be a set of equations for C over £, then the set of equations
P(X, V)=0 (1 ZiZN),
O(X, Y, X, Y)=x —X =0
O(X, YV, X', ¥)=Yy —¥/=0 (1< < )
is contained in the ideal deﬁning.F,,, over 4, and
P(X, V)=0 (1<i< M)
R(X;, V, X, V)=X—X=0
R(X, Y, X,YV)=V,—V/=0 Q.27
is a set of equatiens for 4’ over £ Since P is simplf: on C, the rank
of the matrix

I(87%/8.X,) (8F:/3Y),|
is 7, so that the rank of the matrix

(8P,/3X). (3P/3Y), 0 0 ‘
(00,/0X)a (3Q,/3Y), (30,/8X"), (3Q,/3Y")s -
(0F/8X)s (BF,/3Y), 0 0]
0 0 ‘e 1
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is (2z+1). It follows that PxP is simple on F,,; since it is simple on
CxC and on 4, and since the rank of the matrix

(8F£/3X), (8F/3Y), -0 0

(8Q,/8X) (80,/3Y), (3Q:/3X)a (3Q,/3Y")s
(BR:/3X)a (BR,/3Y), (3R./3X"). (3R:/3Y"),

(3P/3X). (8P/3Y), __ O 0
0. 0 »

1 —1
) 1 _'_1

is (22+2), F,, and 4’ are transversal to each other at PxP on CxC,
which proves our assertion.

Now let f be the element of R with the representative F, then F, is a
representsive of f~, and we have

o(f)=0(Fn)=1+g¢"—y(F,, 4)

=14+¢"—v,=Sp (7)) (m=1,2,...... ).
22) Solution of the RIEMANN hypophesis. Let
Fx)=3 a, X*
be any polynomial with integral rational coefficients, then
Ff=2 au

is defined as an element of R ; since {*:f=f-f*=ge, we have
F()-F()*=(Zuap ¢") e+ Zucauang™{ (F*)**+ 4}
Furthermore since o(m-¢) =2mg, o{ (j*)"}=0(f")=Sp(7™), we have
o{ F(f)-F(f)*} = Zpad’d"2g + Ty v 2aparg” - Sp- (7°7%).
On the other hand we have
F(m) - F(n*) = 3,4, °¢" + Spaapang*{ (7*)'* + 7" 7%}
siece Sp-{(@*)™}=Sp-(a™), we have
Sp- { Fm)F(z*) } =a{ F(]) £(F)*}.
Since o(x-x*) is non-negative for every g in R, we have

o{ F(f) - F() *} =0, whence Sp{#(z)-F(a*)}20
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for all integral rational g, ; since Sp{F(n)-F(x*)} is a quadratic form in
ay, this implies Sp{F(x).-F(n*)}>0 for all rational valees of a,, hence
also for all real values af q,.

Now we shall prove the RIEMANN hypothesis in the form that *if
we have |7, = ¢ for some root m; of G,(Z), we can find a polynomial
F(X) (of degree at most 2¢) wsth real coefficients such that

Sp{F(x) - F(z*)} < 0.”

At first the following trivial lemma : .

LEMMA I. Lot @, and w, be two diffevent veal numbers, then we
can find a polynomial

J(X)=4+4X
with real coefficients suckh thar J(w,) and J(wsy) take two preassigned veal
values.

We shall prove a similar statent:
LEMMA 2. Lot wy, wy ws and w, be four different complex numbers
satisfying
O =w; W=,
Yhen we can find a polynomoal
(X)) =4+ A X+ 4,X+ 4: X+ A.X°

with real coefficients such that ] (w,)) and J(w;) take two preassigaed
complex values.
Proof. We have only to show that the rank of the matrix
1 R(w) R(w?) R(w®) R(w)
I(w) Iowp) ') (o)
R(w,) R(v)) R(o®) R(w')
I(w) I(0f) (o) 1 (y")

is four. By ‘elementary operations’, which leave invariant the rank in

e

question, we can transform this matrix in the form

1 1+y=1 o o o' o
14yl w, @ 0w
1+4y—-1 o o o o
1+y-1 o o of o,

»
- o> ®»

-

and the determinant
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2 3 4 —_

W Wy W W = wwyw,4 11, j(‘”‘ - wj)
0, W' w w,

W3 ‘0‘;2 a)33 w3

| 0y w0 o o
can not be zero by our assumptions.
Now assume that |7’ % ¢ for some 7, and put
O, =T, w=m¥, w3=;;: (04=;4*,
then according to @, =®; ‘or @ *xw,; the assumptions in lem. 1 or in
lem. 2 are satisfied by ;, @, or by w, w, @, w, Let a...... , o, be
- all the distinct roots of G,(Z), which are equal to none of the w,, then
the polynomial
H(X)=II,_{ (X—a,) |
has real coefficients. Let /(X) be the polynomial of degree one (w,=w;)
or four (w;*xw;) with real coefficients such that

o) =1/H(w), J(w:)=—1/H (),
and put
FX)=/(X) -H(X),
then F(X) has also real coefficients and we have
SP{F(”)-F(”*)}={—2P (i=wy),
—4p (X wy),

where p means the common multiplicity of the roots @, @;, w; and e,

in G,(Z) ; it follows that
Sp{F(n) - F(z*)} <O,
which proves the RIEMANN hypothesis.

Appendix.

We shall now give an application of our theory to the algebraic
geometry on the Snrface

S=C/x G,

where C; and G, are two Curves with respective genus gl‘ and g,. Let U
be any complete Variety without multiple Point; let &(0), &.(U) and
®,(U) be respectively the group of all U~divisors, the group of the U—divisors
which are continuously equivalent to zero, and the group of the U~divisors
which are linearly equivalent to zero. If an S-divisor X belongs to @,
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(S), it foollows from SEVERIs formula (th. 2, § V) that X is a corres-
pondence with valence zero:

X= () + (4% &) +(Cx B),

where 4 € G(C)) ; Be ®; (Cy) conversely such X belongs to Gc(S).
Thereby X belongs to &,(S) if and only if we have

- de §,(C), Be B(G);
it follows that the factor—group @,(.S)/®,(S) is the direct product of the
factor-groups ,(C,)/@,(C) and G(CG)/®,(C,). Since the elements of
the latter groups are in a one-to-one correspondence with the Points of the
¢ Jacobian Varieties ” V((), V(G) of €, C, respectively, the * Picard
Variety ” I7(S) of S is the Product of 'V(C}) and N(G):

V(S)=V(Cy) x V(6);

in particular we have

dim V(S)=dim V(&) +dim V()

=£1+&e.
Moreover the module of the differential forms of degree one of the first kind
on S is the direct sum of the similar modules attached to €, and (; it
follows that the dimension of P(S) is equal to the number of linearly
independent differential forms of degree one of the first kind on S. Furthermore
from the arithmetical structure of the Jacobian Variety, and from the
results in §III, we can prove that the factor-group &,(S)/®.(S) has a
finite number of éndependent generators. This number is usually denoted
by ©(S), and is called the “ Picard number” of the Surface S ; p(S) is
‘in general’, i.e. for ‘ general’ Curves (i, G, equal to 3, and at most 4g;-
&+2: .
2=p(S)=4515:+2.
Thus we can solve the WEILs conjecture on Picard Variety in the case

of this special type of Surface ; this might be regarded as a first step in
this important conjecture. :
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