Galois theory for uni-serial rings.

Gòrô Azumaya.

(Received Dec. 29, 1947)

In a previous paper1), I have given a new method to the theory of simple rings, which enables us in particular to prove the fundamental theorem of simple rings in a quite natural way as well as to extend the Jacobson's Galois theory 2 from quasi-fields to simple rings; our principal method was in fact to embed the simple ring into an absolute endomorphism ring (of a certain module) and take commuter ring in it. In this paper we shall show that by means of the similar method these results can be extended completely to the uni-serial case30 and shall obtain some other detailed results which have significance even in the case of simple rings. Further, after establishing the Galois theory, we shall give a new and simpler proof to the existence theorem of normal bases4).

Throughout the present paper, we mean by a ring always one possessing an unit element and by a subring always one whose unit element coincides with that of the original ring, and when we deal with a module with operator-ring we assume always that the unit element of the latter operates on the former as the identity endomorphism. Further, when S is a subring of a ring \Re , we denote by $V_{\Re}(\mathfrak{S})$ the commuter ring of \mathfrak{S} in \Re .

For the sake of completeness, let us begin with the following consideration concerning moduli with operator-ring:

Moduli with operator-ring and their submoduli.

Lemma 1.5) Let R be a two-sided simple ring 6) with the center Z7 and

Azumaya [2]. Cf. also Nakayama-Azumaya [13].

Jacobson [6].

³⁾ While their extention to irreducible rings is treated in Nakayama-Azumaya [13].

⁴⁾ In case of quasi-fields, this theorem was proved in Nakayama [12]. The same method can readily be transferred to the case of simple rings. However, it can no longer, as it seems to the writer, apply to our case.

^{· 5)} Cf. Kurosh [8].

⁶⁾ By a two-sided simple ring we understand a ring which possesses no non-trivial twosided ideal, while if a two-sided simple ring satisfies the minimum condition for right (or equivalently left) ideals we call it a simple ring.

⁷⁾ Z forms a (commutative) field.

let there be given an \Re - \Re -two-sided-module \mathfrak{M} such that $\mathfrak{M}=\Re\Re$, where \Re is the Z-module consisting of all elements of \mathfrak{M} which are element-wise commutative with \Re . Then

- 1) \mathfrak{M} is the direct product of \mathfrak{N} and \mathfrak{R} (over Z): $\mathfrak{M} = \mathfrak{N} \times \mathfrak{R}$.
- 2) Between \Re - \Re -submodult, \mathfrak{M}_0 of \mathfrak{M} and Z-submoduli \mathfrak{N}_0 of \mathfrak{N} , there is a one-to-one correspondence by the following relation:

$$\mathfrak{M}_0 = \mathfrak{N}_0 \mathfrak{R}, \quad \mathfrak{N}_0 = \mathfrak{M}_0 \mathfrak{R}.$$

3) An element $u \in \mathbb{M}$ satisfies $\Re u = u\Re$ if and only if there exists a regular element c in \Re such that $xu = u(c^{-1}xc)$ for every $x \in \Re$.

Proof. First it is to be observed that an $(\Re -\Re -)$ submodule m of M is (non-zero and operator-homomorphic whence) operator-isomorphic to the simple module \Re if and only if there exists an element $v \neq 0$ in \Re such that $m = v\Re$; and, when this is the case, the isomorphism is given by $x \to (xv =)vx \ (x \in \Re)$. Now since $\mathfrak{M} = \mathfrak{N} \mathfrak{R} = v \in \Re v \Re^{8}$ is completely reducible, M is indeed expressed as the direct sum of a number of simple submoduli $v\Re$, that is, we can find a subset $\{v_{\mu}\}$ of \Re linearly independent over \Re such that $\mathfrak{M} = \sum_{n} v_{\mu} \mathfrak{R}$. Then we have readily $\mathfrak{N} = \sum_{n} v_{\mu} Z$, which shows the the assertion 1). Further, since every submodule \mathfrak{M}_0 of \mathfrak{M} is also completely reducible, Mo is the (finite or infinite direct) sum of simple submoduli of the form $v\Re(v\in\Re)$, i.e. $\mathfrak{M}_0=\mathfrak{N}_0\Re$ provided $\mathfrak{N}_0=\mathfrak{M}_0$. Conversely, since the product $\mathfrak{N}_0 \mathfrak{R} = \mathfrak{N}_0 \times \mathfrak{R}$ is direct for any (Z-) submodule \mathfrak{N}_0 of \mathfrak{N} , it follows $\mathfrak{N}_0 = \mathfrak{M}_0 \subset \mathfrak{N}$ when $\mathfrak{M}_0 = \mathfrak{N}_0 \mathfrak{R}$. Thus 2) is proved. To prove 3), let $u \neq 0$ satisfy $\Re u = u\Re$. Then this is simple, as \R-\R-two-sided-module, and hence operator-isomorphic with \Re i.e. there exists an element v in \Re such that $u\Re = v\Re$; this means also the existence of a regular element c in \Re such that u=vc whence $xu=xvc=uxc=uc^{-1}xc$ for every $x \in \Re$. converse is evident.

From this lemma we have immediately

Theorem 1. Let \mathfrak{P} be a ring and \mathfrak{R} be a two-sided simple subring of \mathfrak{P} whose center Z is contained in the center of \mathfrak{P} and let \mathfrak{S} be the commuter ring of \mathfrak{R} in \mathfrak{P} : $\mathfrak{S} = V_{\mathfrak{P}}(\mathfrak{R})$. If $\mathfrak{P} = \mathfrak{R}\mathfrak{S}$, then

- 1) \mathfrak{P} is the direct of \mathfrak{R} and \mathfrak{S} (over Z): $\mathfrak{P} = \mathfrak{R} \times \mathfrak{S}$.
- $^{(9)}$ Between two-sided ideals $\mathfrak p$ of $\mathfrak P$ and two-sided ideals $\mathfrak s$ of $\mathfrak S$, be-

^{8).} U means module sum.

⁹⁾ Cf. Noether [14], Kurosh [8].

tween left [right] ideals \$\pi\$ of \$\Pi\$ which are right-[left-]allowable with respect to \$\inftig\$ and left [right] ideals \$\infty\$ of \$\infty\$, or between subrings \$\pi\$ of \$\Pi\$ which contain \$\Pi\$ and subrings \$\infty\$ of \$\infty\$ which contain \$Z\$, there exists a one-to-one correspondence by the following relation:

$$\mathfrak{p} = \mathfrak{s} \times \mathfrak{R}, \quad \mathfrak{s} = \mathfrak{p} \subset \mathfrak{S}.$$

3) An automorphism of \Re can be extended to an inner automorphism of \Re if and only if it is already inner in \Re .

Now we may refine readily Nakayama-Azumaya [13], Lemma 1 as follows:

- **Lemma 2.** Let \mathfrak{M} be a right module of a ring \mathfrak{R} and let $\mathfrak{M} = \sum_{\mu} m_{\mu}$ be a direct decomposition of \mathfrak{M} into mutually operator-isomorphic \mathfrak{R} -submoduli \mathfrak{m}_{μ} . Take an arbitrary direct summnd \mathfrak{m}_{0} and let \mathfrak{R}^{*} and \mathfrak{R}_{0} be the operator-endomorphism ring of \mathfrak{M} and \mathfrak{m}_{0} respectively. Then
- 1) There exists a one-to-one correspondence between \Re^* -submoduli \Re of \Re and \Re_0 -submoduli \Re_0 of \Re_0 by the following relation,

$$\mathfrak{N}\!=\!\textstyle\sum_{\pmb{\mu}}\!\mathfrak{n}_{\pmb{\mu}}$$

where n_{μ} is, for each μ , the submodule of m_{μ} corresponding to n_0 . Further, for any element a in \Re , \Re is allowable with respect to a if and only if n_0 may be.

2) Remay be considered as the \Re^* -endomorphism ring of \Re if and only if \Re is considered as the \Re_0 -endomorphism ring of m_0 . The "if" part also holds even in case when every m_μ is (not necessarily operator-isomorphic but) operator-homomorphic to m_0 .

Now, let us say that a right module \mathfrak{M} of a ring \Re is (right-) regular (with respect to \Re) if there exists a (direct summand) right ideal \mathfrak{r}_0 of \Re such that both \mathfrak{M} and \Re directly decomposable into submoduli each of which is operator-isomorphic to \mathfrak{r}_0 .

Theorem 2. Let \mathfrak{M} be a regular right module of \mathfrak{R} and let \mathfrak{R}^* be its operator-endomorphism ring. Then

1) There exists a one-to-one correspondence between \Re^* -submoduli and left ideals I of \Re by the following relation:

¹⁰⁾ Conversely, I is characterized by $\mathfrak N$ as the set of all elements a in $\mathfrak R$ such that $\mathfrak M a \subseteq \mathfrak R$.

Further, when $\mathfrak{N} \longleftrightarrow \mathfrak{I}$, \mathfrak{N} is allowable with respect to an element a in \mathfrak{R} if and only if \mathfrak{I} is so.

- 2) \Re may be considered as the \Re^* -endomorphism ring of \Re ; the same is the case also when \Re is a direct sum of submoduli each of which is operator-homomorphic to \mathfrak{r}_0 and at least one of them is operator-isomorphic to \mathfrak{r}_0 .
- 3) If \mathfrak{M} is finite with respect to \mathfrak{R} , then \mathfrak{M} is also regular and finite with respect to \mathfrak{R}^* .

Now, since \Re is a direct sum of a finite number, say r, of right ideals operator-isomorphic with r_0 , we can construct as usual a system of matrix units $\{e_{ij}; i, j=1, 2, \ldots, r\}$ in \Re linearly independent with respect to its commuter ring, \Re_0 in \Re such that $\Re = \sum_{i,j} \Re_0 e_{ij}$ and $\mathbf{r}_0 = \sum_j \Re_0 e_{ij}$; \Re_0 is considered naturally as the operator-endomorphism ring of (the right ideal) \mathbf{r}_0 and conversely \Re can be looked upon as the \Re_0 -endomorphism ring of the r-dimensional vector module \mathbf{r}_0 (over \Re_0). From this follows directly the assertion 2), by virtue of Lemma 2, 2). To prove 3), we may assume that \Re is in fact the r-dimensional matrix ring over \Re_0 and \mathfrak{r}_0 is the rdimensional row-vector space over \Re_0 and further \mathfrak{M} is finite, say n-, dimensional column-vector space over \mathbf{r}_0 , that is, the totality of matrices \Re^* is therefore nothing but the *n*-dimensional of type (n, r) over \Re_0 . matrix ring over \Re_0 , considered as left operator-ring of \mathfrak{M} . Then the fact that \Re^* and \Re are respectively the *n*-dimensional and *r*-dimensional rowvector spaces over the *n*-dimensional column-vector space over \Re_0 implies that \mathfrak{M} is finite and regular with respect to \mathfrak{R}^* .

Corollary. Let \mathfrak{M} be finite and regular with respect to \mathfrak{R} and let \mathfrak{R}^* be its operator-endomorphism ring. Then between \mathfrak{R} - \mathfrak{R}^* -submoduli \mathfrak{N} , two-sided ideals \mathfrak{a} of \mathfrak{R} and two-sided ideals \mathfrak{a}^* of \mathfrak{R}^* there exists a one-to-one

correspondence by the following relation: $\mathfrak{N} = \mathfrak{Ma} = \mathfrak{Ma}^*$.

Finally we point out the following simple fact:

Lemma 3. Let \mathfrak{M} be an \mathfrak{R} -right-module which is operator-isomorphic with \mathfrak{R} and let \mathfrak{R}^* be its operator-endomorphism ring. Then \mathfrak{M} is, as \mathfrak{R}^* -module, operator-isomorphic with \mathfrak{R}^* ; further for any element u of \mathfrak{M} such that the mapping $1 \rightarrow u$ gives an operator-isomorphism between \mathfrak{R} and \mathfrak{M} the mapping $1^* \rightarrow u$ also gives an \mathfrak{R}^* -isomorphism between \mathfrak{R}^* and \mathfrak{M} , where 1 and 1^* denote the unit element of \mathfrak{R} and \mathfrak{R}^* respectively.

§ 2. Moduli with uni-serial operator-ring.

Let \Re be a ring satisfying the minimum (whence the maximum) condition for left and right ideals and let $\mathbb C$ be its radical. \Re is called *primary* if the residue class ring $\overline{\Re} = \Re/\mathbb C$ is simple. For that it is necessary and sufficient that \Re is decomposable into a direct sum of mutually operatorisomorphic directly indecomposable right (or left) ideals. And, when this is the case, the number of right (or left) ideals is independent of the direct decomposition; we shall denote the number by $[\Re]$.

A primary ring \Re is called *uni-serial*¹¹⁾ if every (or equivalently at least one) directly indecomposable direct summand right or left ideal, that is, the right ideal $e\Re$ as well as the left ideal $\Re e$ generated by a primitive idempotent element e possesses only one composition series. For that it is necessary and sufficient that \mathbb{C} is a principal two-sided ideal (generated by a single element e); $\mathbb{C} = \Re e = e\Re$. And, when this is the case, the right ideals $e\Re$, $e\mathbb{C}$, $e\mathbb{C}^2$,, $e\mathbb{C}^{l-1}$, $e\mathbb{C}^l = 0$ form in fact the only composition series of $e\Re$, where l is the exponent of the radical \mathbb{C} ; the similar is also true for $\Re e$.

Now let \mathfrak{M} be a right module of a primary uni-serial ring \mathfrak{R} . Then \mathfrak{M} is, in virtue of the main theorem of uni-serial rings, directly decomposed into (directly indecomposable and cyclic) submoduli operator-homomorphic to $e\mathfrak{R}$, and the direct decomposition is, by Krull-Remak-Schmidt theorem¹²⁾ for instance, unique up to operator-isomorphism. It is obvious that \mathfrak{M} is regular with respect to \mathfrak{R} if and only if every directly indecomposable direct

¹¹⁾ For uni-serial (=einreihig) rings, see Köthe [7], Asano [1], Nakayama [11], Azumaya-Nakayama [5].

¹²⁾ See Azumaya [4].

summand is operator-isomorphic to $e\Re$, or what is the same, every (not necessarily directly indecomposable) direct summand is faithful with respect to \Re^{13} . We denote, when this is the case, by $[\mathfrak{M} | \Re]$ the (cardinal) number of direct summands (appearing in a direct decomposition) of \mathfrak{M} . \mathfrak{M} possesses linearly independent (right-)basis over \Re if and only if \mathfrak{M} is regular and moreover $[\mathfrak{M} | \Re]$ is divisible by $[\Re]^{14}$. And, when this is the case, the number of elements constituting the basis is equal to $[\mathfrak{M} | \Re]/[\Re]$, which we shall call the (right-sided) rank of \mathfrak{M} over \Re and denote by $[\mathfrak{M} : \Re]$.

Observing that if we embed \Re into the absolute endomorphism ring¹⁵⁾ \Re of \Re , which is considered as right operator-domain, the commuter ring $V(\Re) = V_{\Re}(\Re)$ of \Re in \Re is nothing but the operator-endomorphism ring of the \Re -module \Re , we obtain from the above statements, combined with Theorem 2, the following results:

Theorem 3. Let $\mathfrak A$ be an absolute endomorphism ring of a module, $\mathfrak M$ and suppose that there be given a (primary) uni-serial subring $\mathfrak R$ of $\mathfrak A$. Then

- 1) $V(V(\Re)) = \Re$.
- 2) Every automorphism of \Re can be extended to an inner automorphism of \Re .
- 3) In case \mathfrak{M} is regular with respect to \mathfrak{R} , any isomorphism τ of \mathfrak{R} into \mathfrak{A} , such that \mathfrak{M} is regular with respect to \mathfrak{R}^{τ} and moreover $[\mathfrak{M} | \mathfrak{R}] = [\mathfrak{M} | \mathfrak{R}^{\tau}]$, can be extended to an inner automorphism of \mathfrak{A} .
- 4) \mathfrak{M} is finite and regular with respect to \mathfrak{R} if and only if $V(\mathfrak{R})$ is primary (and hence uni-serial). In this case, we have

$$[\mathfrak{M} \mid \mathfrak{R}] = [\mathcal{V}(\mathfrak{R})], \quad [\mathfrak{M} \mid \mathcal{V}(\mathfrak{R})] = [\mathfrak{R}].$$

We prove only the first half of 4), where the "only if" part is obvious. Let $1=e_1+e_2+\ldots+e_n$ be a decomposition of the unit element into mutually orthogonal and mutually isomorphic primitive idempotent elements in the primary (\Re -endomorphism) ring $V(\Re)$ of \Re . Then $\Re = \Re e_1 + \Re e_2 + \ldots + \Re e_n$ gives a direct decomposition of \Re into mutually operator-isomorphic directly indecomporable \Re -submoduli, which are necessarily operator-isomorphic

¹³⁾ If in particular R is simple, every R-right-module is necessarily regular and we need not the notion of regularity.

¹⁴⁾ Of course this is the case when $[\mathfrak{M} \mid \mathfrak{R}]$ is infinite.

¹⁵⁾ That is, the totality of all homomorphisms of M into itself.

¹⁶⁾ Asano [1], Satz 8.

phic with (the directly indecomposable direct summand right ideal) $\iota\Re$ (of \Re).

Theorem 4. Let \mathfrak{M} , \mathfrak{A} , \mathfrak{R} be as in the preceding theorem and let \mathfrak{S} be a (primary) uni-serial subring of \mathfrak{R} . If \mathfrak{M} is regular with respect to \mathfrak{R} , then \mathfrak{M} is regular with respect to \mathfrak{S} if and only if \mathfrak{R} is (right-)regular with respect to \mathfrak{S} ; further $[\mathfrak{M} \mid \mathfrak{R}]$ is finite if and only if both $[\mathfrak{M} \mid \mathfrak{R}]$ and $[\mathfrak{R} \mid \mathfrak{S}]$ are so. And, when this is the case,

- 1) Any isomorphism τ of \Re into $\mathfrak A$ which maps $\mathfrak S$ onto itself and such that with respect to \Re^{τ} $\mathfrak M$ is also regular can be extended to an inner automorphism of $\mathfrak A$.
- 2) Among \mathfrak{M} , $V(\mathfrak{S})$ and $V(\mathfrak{R})$ there holds the same situation as among \mathfrak{M} , \mathfrak{R} and \mathfrak{S} , as above, and moreover

$$[\Re \,|\, \mathfrak{S}] \,[\, V(\Re)] = [\, V(\mathfrak{S}) \,|\, V(\Re)] \,\, \{\mathfrak{S}\};$$

in particular \Re possesses linearly independent (right-)basis over \Im if and only if $V(\Im)$ has the same over $V(\Re)$, and we have in this case

$$[\Re:\mathfrak{S}]=[V(\mathfrak{S}):V(\mathfrak{R})].$$

Proof. 1) follows from Theorem 3, 3) because $[\mathfrak{M} \mid \mathfrak{R}]$ $[e\mathfrak{R} \mid \mathfrak{S}] = [\mathfrak{M} \mid \mathfrak{S}]$ $= [\mathfrak{M} \mid \mathfrak{R}^{\tau}]$ $[(e\mathfrak{R})^{\tau} \mid \mathfrak{S}]$ and $[e\mathfrak{R} \mid \mathfrak{S}] = [(e\mathfrak{R})^{\tau} \mid \mathfrak{S}]$ is finite. The first half of 2) is an immediate consequence of Theorem 2, 3), while the second half is readily obtained by eliminating three arguments $[e\mathfrak{R} \mid \mathfrak{S}]$, $[\mathfrak{M} \mid \mathfrak{R}]$ and $[\mathfrak{M} \mid \mathfrak{S}]$ from the following equalities:

Corollary. 17) Let R be a uni-serial ring and S its uni-serial subring such that R is right-regular and finite with respect to S. Then two R-right-moduli are operator-isomorphic if and only if they are so with respect to S.

§ 3. Uni-serial subalgebras of a simple ring.

Above preparations now enable us to prove the following

Theorem 5.18) Let \Re be a simple ring with the center Z and \Im be a (primary) uni-serial subalgebra (of finite rank) over Z and further \Im be

¹⁷⁾ This is an equivalent statement with Theorem 4, 1), as a matter of fact.

¹⁸⁾ This theorem is a refinement of results in Asano [1], § 5.

the commuter ring of $\mathfrak T$ in $\mathfrak R: \mathfrak S=V_{\mathfrak R}(\mathfrak T)$. Then

- 1) $V_{\Re}(\mathfrak{S}) = \mathfrak{T}$.
- 2) Every automorphism of R which leaves invariant every element of S is inner.
 - 3) The following five conditions are equivalent to each other (9):
 - i) R is right-regular with respect to I,
 - i') R is left-regular with respect to I,
 - ii) . S is (primary) uni-serial,
 - iii) R is right-regular with respect to S,
 - iii') R is left-regular with respect to S.
- 4) If \mathfrak{S}_0 is a (primary) uni-serial subring of \Re containing \mathfrak{S} , then $V_{\Re}(V_{\Re}(\mathfrak{S}_0)) = \mathfrak{S}_0$. Hence, in particular, uni-serial subalgebras \mathfrak{T}_0 of \mathfrak{T} with respect to which \Re is regular and uni-serial subrings \mathfrak{S}_0 between \Re and \mathfrak{S} with respect to which \Re is regular are in one-to-one correspondence by the commuter relation in $\Re: V_{\Re}(\mathfrak{T}_0) = \mathfrak{S}_0$, $V_{\Re}(\mathfrak{S}_0) = \mathfrak{T}_0$.
- 5) If \Re is regular with respect to \Im , then \Re possesses a linearly independent (right and left) basis over \Im and moreover $[\Re:\Im]=[\Im:Z]$. Further, there exists an element b in \Re such that for any linearly independent basis a_1, a_2, \ldots, a_n of \Im over Z (: $n=[\Im:Z]$), a_1b, a_2b, \ldots, a_nb and ba_1, ba_2, \ldots, ba_n form respectively a linearly independent right- and left-basis of \Re over \Im ; in other words, the regular representation \Im 0 of \Im 1 (in Z2) is equivalent with the representation of \Im 2 in \Im 2 which is obtained by the (\Im 3- \Im 3-or \Im 5- \Im 3-or representation module \Re 3.
- 6) In case \Re is regular with respect to \Im , there exists between right [left] ideals \Im of \Re which are left-[right-] allowable with respect to \Im and right [left] ideals \Im 00 \Im 1 of \Im 2 a one-to-one correspondence by the following relation:

$$r=i\Re [r=\Re t], t=r_{\mathcal{I}}$$

The same also holds between right [left] ideals of \Re left-[right-]allowable with respect to \Im and right [left] ideals of \Im .

7) In case \Re is regular with respect to \mathfrak{T} , any isomophism τ of \mathfrak{T} into \Re leaving Z element-wise fixed such that \Re is regular with respect to \mathfrak{T}^{τ} can

¹⁹⁾ Further & is simple if simple if and only if I is so.

²⁰⁾ Since every uni-serial algebra is Frobeniusean, its right and left regular representations are equivalent to each other and moreover its right and left ideal lattices are dual-isomorphic to each other (by annihilation relation). See Nakayama [10].

he extended to an inner automorphism of R.

Proof. Consider the absolute endomorphism ring $\mathfrak A$ of $\mathfrak R$. By right-sided multiplication each element of $\mathfrak R$ induces on $\mathfrak R$ an absolute endomorphism and their totality forms a subring of $\mathfrak A$ isomorphic with $\mathfrak R$, which we shall denote also by $\mathfrak R$. Similarly, by left-sided multiplication there is obtained a subring $\mathfrak R'$ of $\mathfrak A$ inverse-isomorphic with $\mathfrak R$. They are, as is well known, commuter rings to each other and hence their intersection $\mathfrak R - \mathfrak R'$ coincides with their common center Z.

According to Theorem 1, the product ring \mathfrak{TR}' of \mathfrak{T} and \mathfrak{R}' (constructed in \mathfrak{A}) is in fact direct (over Z): $\mathfrak{TR}' = \mathfrak{T} \times \mathfrak{R}'$, and moreover its two-sided ideals and two-sided ideals of \mathfrak{T} , correspond one-to-one, and this implies that $\mathfrak{T} \times \mathfrak{R}'$ is uni-serial. Hence by Theorem 3, 1)

$$V(V(\mathfrak{T} \times \mathfrak{R}')) = \mathfrak{T} \times \mathfrak{R}'.$$

But since

$$\mathfrak{S} = V_{\mathfrak{R}}(\mathfrak{T}) = V(\mathfrak{T})_{\mathfrak{R}} = V(\mathfrak{T})_{\mathfrak{R}} V(\mathfrak{R}') = V(\mathfrak{T} \times \mathfrak{R}'),$$

we obtain

$$V_{\mathfrak{R}}(\mathfrak{S}) = V(\mathfrak{S}) - \mathfrak{R} = V(V(\mathfrak{T} \times \mathfrak{R}')) - V(\mathfrak{R}') = (\mathfrak{T} \times \mathfrak{R}') - V(\mathfrak{R}') = \mathfrak{T}.$$

To prove 2), let σ be any automorphism of \Re which leaves invariant every element of \Im . Regarding σ as an element of \Re , it must belong to $V(\Im) = \Im \times \Re'$ since $a\sigma = \sigma a^{\sigma}$ holds for every $a \in \Re$. σ satisfies also $a'\sigma = \rho(a')^{\sigma}$ for every $a' \in \Re'$ and hence σ is, by Theorem 1, 3), inner in $(\Re'$ whence) \Re .

Since $V(\mathfrak{T} \times \mathfrak{R}') = \mathfrak{S}$, $V(\mathfrak{S}) = \mathfrak{T} \times \mathfrak{R}'$ and \mathfrak{R} is finite with respect to (\mathfrak{R}') whence) $\mathfrak{T} \times \mathfrak{R}'$, Theorem 2, 3) shows that \mathfrak{R} is (right-)regular with respect to $\mathfrak{T} \times \mathfrak{R}'$ if and only if \mathfrak{R} is (right-) egular with respect to \mathfrak{S} , while Theorem 3, 4) asserts that this holds if and only if \mathfrak{S} is primary (uniserial). On the other hand, since $\mathfrak{T} \times \mathfrak{R}'$ possesses a linearly independent basis over \mathfrak{T} and there exists a one-to-one correspondence between two-sided ideals of $\mathfrak{T} \times \mathfrak{R}'$ and \mathfrak{T} , \mathfrak{R} is (right-)regular with respect to $\mathfrak{T} \times \mathfrak{R}'$ if and only if \mathfrak{R} is (right) regular with respect to \mathfrak{T} . Observing further that the primarity of \mathfrak{S} is a condition of the left-right symmetry, we complete the proof of 3).

Consider now a uni-serial subring \mathfrak{S}_0 of \mathfrak{R} which contains \mathfrak{S} . Then $V(\mathfrak{S}_0)$ lies necessarily between $V(\mathfrak{R}) = \mathfrak{R}'$ and $V(\mathfrak{S}) = \mathfrak{T} \times \mathfrak{R}'$ and so, if we put $\mathfrak{T}_0 = \mathfrak{T} \setminus V(\mathfrak{S}_0) = V_{\mathfrak{R}}(\mathfrak{S}) \setminus V(\mathfrak{S}_0) = V_{\mathfrak{R}}(\mathfrak{S}_0)$, we have, in virtue of Theorem 1, 2), $V(\mathfrak{S}_0) = \mathfrak{T}_0 \times \mathfrak{R}'$. Since \mathfrak{S}_0 is uni-serial, it follows $\mathfrak{S}_0 = V(V(\mathfrak{S}_0))$

 $= V(\mathfrak{T}_0 \times \mathfrak{R}') = V(\mathfrak{T}_0) - V(\mathfrak{R}') = V_{\mathfrak{R}}(\mathfrak{T}_0). \text{ This proves 4}.$

Assume, from now on, that R is regular with respect to Z. every (linearly independent) basis of $\mathfrak T$ over Z is at the same that of $\mathfrak T \times \mathfrak R'$ over \Re' , the first part of 5) follows from Theorem 4, 2); the existence of left-basis is a consequence of the left-right symmetry. Since $\mathfrak{T} \times \mathfrak{R}'$ is operator-isomorphic to the *n*-times direct sum, of \Re as \Re' -(right-)module, they are, by Corollary to Theorem 4, operator-isomorphic even as $\mathfrak{T} \times \mathfrak{R}'$ whence $\mathfrak{T} \times \mathfrak{S}'$ -(right-)module; \mathfrak{S}' being the subring of \mathfrak{R}' corresponding to S. On the other hand, since every linearly independent (right-)basis of \Re' over \mathfrak{S}' is at the same that of $\mathfrak{T} \times \Re'$ over $\mathfrak{T} \times \mathfrak{S}'$, $\mathfrak{T} \times \Re'$ is, as $\mathfrak{T} \times \mathfrak{S}'$ -(right-)module, operator-isomorphic to the *n*-times direct sum of $\mathfrak{T} \times \mathfrak{S}'$. Hence \Re and $\mathfrak{T} \times \mathfrak{S}^{(21)}$ are, by Krull-Remak-Schmidt theorem, operatorisomorphic as $\mathfrak{T} \times \mathfrak{S}'$ -module. Now let b be the element of \mathfrak{R} corresponding to the unit element of $\mathfrak{T} \times \mathfrak{S}'$. Then, since $V(\mathfrak{T} \times \mathfrak{S}') = V(\mathfrak{T}) \subset V(\mathfrak{S}')$ $= V(\mathfrak{T})_{\sim}(\Re \times \mathfrak{T}') = \mathfrak{S} \times \mathfrak{T}'$, there is, by Lemma 3, an $\mathfrak{S} \times \mathfrak{T}'$ -isomorphism between \Re and $\mathfrak{S} \times \mathfrak{T}'$ in which b corresponds also to the unit element of $\mathfrak{S} \times \mathfrak{T}'$. This shows that b is the desired element in the second part of 5).

Every left ideal of $\mathfrak{T} \times \mathfrak{R}'$ which is right-allowable with respect to \mathfrak{R}' is, in virtue of Theorem 1, 2), expressed as $t \times \mathfrak{R}'$ by a (uniquely determined) left ideal t of \mathfrak{T} and therefore every $\mathfrak{S}-\mathfrak{R}'$ -submodule of \mathfrak{R} is, according to Theorem 2, 1), of the form $\mathfrak{R} \cdot (t \times \mathfrak{R}') = \mathfrak{R}t$. This proves the first half of 6). The proof of the second half is obtained by using Theorem 3 and is rather simple.

As for 7), the isomorphism τ can be extended in a natural manner to an isomorphism between $\mathfrak{T} \times \mathfrak{R}'$ and $\mathfrak{T}^{\tau} \times \mathfrak{R}'$ which leaves \mathfrak{R}' element-wise invariant. Then Theorem 4, 1) implies that there is a regular element a in \mathfrak{A} such that $a^{-1}xa=x^{\tau}$ for every $x \in \mathfrak{T}$ and moreover a is elementwise commutative with \mathfrak{R}' ; but the latter condition means that a (and a^{-1}) belong to $V(\mathfrak{R}')=\mathfrak{R}$. The proof is thus completed.

§ 4. Galois theory for uni-serial rings (in the sense of Jacobson).

Let \Re be first any ring and σ its arbitrary automorphism. If we difine, for any pair of elements a, x of \Re , a new product a*x by

²¹⁾ The S-I-module IXS' intermediates the regular representation of I, as can easily be seen.

$$a*x = a^{\sigma}x$$
,

then \Re becomes a new \Re -left-module and moreover, if the right-sided multiplication is taken as the original one, \Re is considered as an \Re - \Re -two-sided-module, which we shall denote by $(\Re, \sigma)^{22}$. We may readily prove

• Lemma 4.22) (\Re, σ) and (\Re, τ) are operator-isomorphic, as $\Re-\Re$ -two-sided-moduli, if and only if the automorphism $\sigma\tau^{-1}$ is inner (in \Re).

Now let \Re be (primary) uni-serial and $\mathbb C$ its radical having exponent l and put $\overline{\Re} = \Re / \mathbb C$. $\mathbb C$ is a principal two-sided ideal generated by a single element c; $\mathbb C = \Re c = c\Re$. If we associate with each $x \in \Re$ the element $y \in \Re$ such that $xc \equiv cy \pmod{\mathbb C^2}$, we obtain, since $x\mathbb C \subseteq \mathbb C^2 \pmod{\mathbb C^2}$ is equivalent to $x \in \mathbb C \pmod{y \in \mathbb C^2}$, an automorphism of the simple ring $\overline{\Re}$, which we shall denote by φ^{23} . $\mathbb C/\mathbb C^2$ is then operator-isomorphic, as $\Re - \Re - \operatorname{two-sided-module}$, with $(\overline{\Re}, \varphi)$; hence φ is, by Lemma 4, uniquely determined up to inner automorphism of $\overline{\Re}$. Since $\mathbb C^i = \Re c^i = c^i \Re$ and moreover $x\mathbb C^i \subseteq \mathbb C^{i+1}$ $\mathbb C^i y \subseteq \mathbb C^{i+1}$ if and only if $x \in \mathbb C$ $\mathbb C \setminus \mathbb C$ for each $i=1, 2, \ldots, l-1, \mathbb C^i / \mathbb C^{i+1}$ is operator-isomorphic to $(\overline{\Re}, \varphi^i)$. Now every automorphism σ of \Re induces naturally an automorphism in $\overline{\Re}$, which will be denoted also by σ . Then, since $\mathbb C = \mathbb C^\sigma = \Re c^\sigma = c^\sigma \Re$, necessarily

$$\sigma \varphi \equiv \varphi \sigma$$
,

where \equiv means the congruence modulo the totality of inner automorphisms of \Re .

Suppose now that there is given a finite group $\mathfrak{G} = \{1, \sigma, \dots, \tau\}$ of automorphism of \mathfrak{R} each element σ of which satisfies the following condition:

(*)²⁴⁾ If
$$\sigma \neq 1$$
 then $\sigma \equiv \equiv \varphi^i$ for any $i=0, 1, 2, \ldots, l-1$.

Then we can define a crossed product (R, B) of R by B as follows:

 (\Re, \Im) is a ring containing \Re as a subring and with each $\sigma \in \Im$ there is associated a regular element u_{σ} of (\Re, \Im) such that

$$(\mathfrak{R}, \mathfrak{G}) = u_1 \mathfrak{R} \smile u_{\mathfrak{o}} \mathfrak{R} \smile \dots \smile u_{\mathfrak{r}} \mathfrak{R}, \quad x u_{\mathfrak{o}} = u_{\mathfrak{o}} x^{\mathfrak{o}} \quad (x \in \mathfrak{R}).$$

Then we prove

²²⁾ Cf. Azumaya, [3], § 2.

²³⁾ In case the center of \Re is not a field, it contains a nilpotent element $d \neq 0$. Then the two-sided ideal $d\Re$ is of a form \mathbb{C}^i , where $1 \leq i \leq l-1$, and accordingly we have $\varphi^i \equiv 1$. In the contrary case, it may happen that $\varphi^l \equiv 1$.

²⁴⁾ In case \Re is commutative, this condition means simply: If $\sigma \neq 1$ then σ is not identity in $\overline{\Re}$ too.

Theorem 6. $u_1, u_{\sigma}, \ldots, u_{\tau}$ are linearly independent over \Re (on both left- and right-hand sides), and

1) (\Re, \Im) is a (primary) uni-serial ring²⁵⁾ and between two-sided ideals z^* of (\Re, \Im) and two-sided ideals z of \Re there is a one-to-one correspondence by the following relation:

$$\mathfrak{z}^* = (\mathfrak{R}, \mathfrak{G})\mathfrak{z} = \mathfrak{z}(\mathfrak{R}, \mathfrak{G}), \quad \mathfrak{z} = \mathfrak{z}^* \mathfrak{R}.$$

Further, every left [right] ideal of (\Re, \Im) which is right-[left-]allowable with respect to \Re is necessarily a two-sided ideal.

- 2) Every subring of (\Re, \mathfrak{G}) containing \Re which is right-(or left-)regular with respect to \Re is expressed in the form (\Re, \mathfrak{H}) by a suitable subgroup \mathfrak{H} of \mathfrak{G} .
- 3) A regular element u of (\Re, \Im) satisfies $\Re u = u\Re$ if and only if $u\Re = u_{\sigma}\Re$ for a suitable σ in \Im .
- 4) The commuter ring of \Re in (\Re, \mathfrak{G}) coincides with the center of \Re .

 Proof. Each $u_{\sigma}\Re$ is operator-isomorphic, as \Re - \Re -two-sided-module, with (\Re, σ) and hence possesses the composition residue-class-module series $(\bar{\Re}, \sigma)$, $(\bar{\Re}, \sigma\varphi)$, $(\bar{\Re}, \sigma\varphi^2)$,, $(\bar{\Re}, \sigma\varphi^{l-1})$, as can easily be seen. That \Im satisfies the condition (*) means therefore, in virtue of Lemma 4, that if $\sigma + \tau u_{\sigma}\Re$ and $u_{\tau}\Re$ have no composition residue class module in common. From this follows that (\Re, \mathfrak{G}) is indeed a direct sum of $u_{\iota}\Re$, $u_{\sigma}\Re$,, $u_{\tau}\Re$ and moreover every \Re - \Re -submodule of (\Re, \mathfrak{G}) is expressed in the form

(1)
$$\sum_{\sigma} u_{\sigma \delta \sigma}$$

where \mathfrak{z}_{σ} is, for each $\sigma \in \mathfrak{G}$, a two-sided ideal of \mathfrak{R}^{26} .

(1) forms a left ideal of (\Re, \Im) i.e. left-allowable with respect to every u_{σ} if and only if $z_1 = z_{\sigma} = \dots = z_{\tau}$, that is, (1) is of the form $(\Re, \Im)z$ by a certain two-sided ideal z of \Re . Further, since $z = z^{\sigma}$ for every $\sigma \in \Im^{27}$, we have $(\Re, \Im)z = z(\Re, \Im)$. And 1) is proved.

Consider now a regular element u of (\Re, \Im) such that $\Re u = u\Re$. Then

²⁵⁾ This may be seen as a generalization of Nakayama [9], Hilfssatz 1.

²⁶⁾ Let, generally, a module \mathfrak{M} (with operator-domain) be a sum of (allowable) submoduli \mathfrak{M}_1 , \mathfrak{M}_2 , each of which possesses a composition series and such that if $i \neq j$ \mathfrak{M}_i and \mathfrak{M}_j have no composition residue class module in common. Then \mathfrak{M} is indeed direct sum of them and every (allowable) submodule \mathfrak{N} of \mathfrak{M} is expressed in the form $\mathfrak{N} = \mathfrak{N}_1 + \mathfrak{N}_2 + \dots$, where \mathfrak{N}_1 , \mathfrak{N}_2 , are submoduli of \mathfrak{M}_1 , \mathfrak{M}_2 , respectively.

²⁷⁾ Because accoincides with some Ci.

since \Re is primary whence is two-sided directly indecomposable, the \Re - \Re -two-sided module $u\Re$ is also directly indecomposable and hence is contained in one of $u_{\sigma}\Re$'s. Comparing further the composition lengths, we have indeed $u\Re = u_{\sigma}\Re$ for some $\sigma \in \mathbb{G}$. In particular, we have $u_{\sigma}u_{\tau}\Re = u_{\sigma\tau}\Re^{28}$ for any automorphism σ , τ in \mathbb{G} , because $xu_{\sigma}u_{\tau}(=u_{\sigma}x^{\sigma}u_{\tau})=u_{\sigma}u_{\tau}x^{\sigma\tau}$ for every $x\in \mathbb{R}$. Combining this with the fact that (1) is right-regular with respect to \Re if and only if $\mathfrak{F}_{\sigma} = \mathfrak{R}$ or $\mathfrak{F}_{\sigma} = 0$, we can readily verify the validity of 2).

Take finally any commuter $\sum_{\sigma} u_{\sigma} a_{\sigma}$ of \Re in (\Re, \Im) . Then $\sum_{\sigma} u_{\sigma} a_{\sigma} x = x \sum_{\sigma} u_{\sigma} a_{\sigma} = \sum_{\sigma} u_{\sigma} x^{\sigma} a_{\sigma}$ whence $a_{\sigma} x = x^{\sigma} a_{\sigma}$ for every $x \in \Re$ and $\sigma \in \Im$. This implies however that the two-sided ideal $\Re a_{\sigma} = a_{\sigma} \Re$ of \Re is, for each $\sigma \in \Im$, operator-homomorphic to (\Re, σ^{-1}) . It follows from this, since if $\sigma \neq 1$ $\Re = (\Re, 1)$ and (\Re, σ^{-1}) possess as above no composition residue class module in common, that $a_{\sigma} = 0$ unless $\sigma = 1$. Hence the commuter $\sum_{\sigma} u_{\sigma} a_{\sigma} = u_{1} a_{1}$ belongs necessarily to the center of \Re .

Now we obtain

Theorem 7. Let \Re be a (prinary) uni-serial ring and let $\mathfrak{G} = \{1, \sigma, \dots, \tau\}$ be a finite group of its automorphisms whose elements satisfy the condition (*) above. Then

1) The subring $\mathfrak S$ which belongs to $\mathfrak S$, that is, the subring consisting of all elements of $\mathfrak R$ which remain invariant under every automorphism in $\mathfrak S$ is (primary) uni-serial and two-sided ideals $\mathfrak a$ of $\mathfrak R$ and two-sided ideals $\mathfrak b$ of $\mathfrak S$ correspond one-to-one by the following relation:

$$a = \Re b = b\Re$$
, $b = a \otimes$.

Moreover every left [right] ideal of R which is right-[left-]allowable with respect to S is necessarily a two-sided ideal.

- 2) Any automorphism of \Re which leaves invariant every element of \Im is in \Im .
 - 3) The commuter ring of S in R coincides with the center of R.
- 4) \Re possesses a (linearly independent) basis over \mathfrak{S} and $[\mathfrak{R}:\mathfrak{S}]$ =($\mathfrak{S}:1$), at both left- and right-hand sides. Furthermore \Re has a left (or right) normal basis over \mathfrak{S} , or what is the same, the regular representation of \mathfrak{S} is equivalent with the representation of \mathfrak{S} in \mathfrak{S} which is obtained by the

²⁸⁾ This means the existence of regular elements $a_{\sigma,\tau}$ in the center of such that $u_{\sigma}u_{\tau} = u_{\sigma\tau}a_{\sigma,\tau}$; they form the so-called factorset of $(\Re, \&)$. Further, it is to be noticed that $u_1\Re$ coincides with \Re .

- &-G-(or G-&-) representation module R; If in particular B is abelian, then every left [right] normal basis is at the same time a right [left] normal basis.
- 5) Any subring of R which contains S and with respect to which R is right- or left-regular belongs to a suitable subgroup S and hence is (primary) uni-serial.

Proof. Consider again the absolute endomorphism ring $\mathfrak A$ of $\mathfrak R$ and define in it two subrings $\mathfrak R$ and $\mathfrak R'$ as in the proof of Theorem 5. Looking upon each $\sigma \in \mathfrak G$ as an element of $\mathfrak A$, we have

(2)
$$x'\sigma = \sigma(x')^{\sigma}$$
 for every $x' \in \Re'$

and hence $\Re' \sigma \Re' \cdots \sigma \Re'$ forms a crossed product (\Re', \Im) . Since each $\sigma \in \mathbb{G}$ satisfies the condition (*) for \Re' , it follows from Theorem 6, 1) that (R', S) is uni-serial and indeed its two-sided ideals and two-sided ideals of \Re' correspond one-to-one in the usual manner. These imply that R is (right-)regular and finite with respect to (R', G). Now the subring So belonging to So is, because of (2), nothing but the commuter ring of (\Re', \Im) in $\Im: \Im = V(\Re', \Im)$. Hence \Im is, according to the Theorem 3, (primary) uni-serial and $V(\mathfrak{S})=(\mathfrak{R}',\mathfrak{G})$. Let \mathfrak{a}' be any two-sided ideal of \Re' . Then $(\Re', \Im)a'$ forms a two-sided ideal of (\Re', \Im) and there corresponds, by Corollary to Theorem 2, a (uniquely determined) two-sided ideal b of \mathfrak{S} such that $\mathfrak{R}\mathfrak{b} = \mathfrak{R} \cdot \mathfrak{R}(\mathfrak{R}', \mathfrak{G})\mathfrak{a}' = \mathfrak{a}$ and $\mathfrak{b} = \mathfrak{a} \subset \mathfrak{S}$; by the leftright symmetry we should also have $\mathfrak{hR}=\mathfrak{a}$. Conversely take any twosided ideal b of S. Then again by Corollary to Theorem 2 there exists a two-sided ideal which we may write according to Theorem 6, 1) (R', G)a' with a two-sided ideal \mathfrak{a}' of \mathfrak{R}' such that $\mathfrak{R}\mathfrak{b} = \mathfrak{R} \cdot (\mathfrak{R}', \mathfrak{G})\mathfrak{a}' = \mathfrak{a}$. This implies that $\Re \mathfrak{b}$ is a two-sided ideal of \Re and hence $\Re \mathfrak{b} = \mathfrak{b} \Re$. Further since every left ideal of (\Re', \Im) which is right-allowable with respect to \Re' is also expressed in the form (\Re', \Im) by a certain two-sided ideal \mathfrak{z}' of \Re' , every left ideal of R which is right-allowable with respect to S is, in virtue of Theorem 2, 1), of the form $\Re \cdot (\Re', \Im) = 3$ and so is a two-sided ideal Thus 1) is proved.

To prove 2), let ρ be any automorphism of \Re under which every element of \Im remains invariant. Then since $x\rho = \rho x^{\rho}$ for every $x \in \Re(\subseteq \mathfrak{A})$, ρ being considered as an element of \mathfrak{A} , ρ lies necessarily in $V(\Im) = (\Re', \Im)$. Since further $x'\rho = \rho(x')^{\rho}$ for every $x' \in \Re'$ ρ satisfies $\Re'\rho = \rho \Re'$ and therefore $\rho \Re'$ coincides, according to Theorem 6, 3), with a certain $\sigma \Re'$, that is, there

exists an automorphism σ in \mathfrak{G} and a regular element c' in \mathfrak{R}' such that $\rho = \sigma c'$. Then $x^{\rho} = \rho^{-1}x\rho = (c')^{-1}\sigma^{-1}x\sigma c' = (c')^{-1}x^{\sigma}c' = x^{\sigma}$ for every $x \in \mathfrak{R}$ and hence we have $\rho = \sigma \in \mathfrak{G}$

3) is a direct consequence of Theorem 6, 4) since $V_{\Re}(\mathfrak{S}) = \Re \mathcal{V}(\mathfrak{S}) = V(\Re')_{\mathcal{S}}(\Re', \mathfrak{S})$ and the center of \Re' coincides with that of \Re .

That (\Re', \Im) has the linearly independent basis 1, σ ,, τ over \Re' implies, in virtue of Theorem 4, 2), the first half of 4); the existence of left basis (of \Re over \mathfrak{S}) is a consequence of the left-right symmetry. That implies also (\Re', \Im) is operator-isomorphic to the *n*-times direct sum of \Re with respect to the right operator-ring \Re' , n being the order of \Im , and therefore they are operator-isomorphic, by Corollary to Theorem 4, even with respect to (M', G) whence with respect to (S', G). On the other hand, since every right-basis of \Re' over \mathfrak{S}' is at the same time that of (\Re', \Im) over (\Im', \Im) , (\Re', \Im) is operator-isomorphic to the *n*-times direct sum of (S', B) with respect to (the right operator-ring) (S', B). these follows by Krull-Remak-Schmidt theorem that R is, as (E', S)-rightmodule, operator-isomorphic to $(\mathfrak{S}',\mathfrak{G})$. Let b be then the element of \Re which corresponds to the unit element of (S', S), the group ring of S over \mathfrak{S}' . Then $b, b^{\sigma}, \ldots, b^{\tau}$ form a desired left normal basis of \Re over \mathfrak{S} . If in particular \mathfrak{S} is abelian, then $V(\mathfrak{S}',\mathfrak{S}) = V(\mathfrak{S}') \setminus V(\mathfrak{S}) = (\mathfrak{R},\mathfrak{S})$ $V(\mathfrak{G}) = (\mathfrak{S}, \mathfrak{G})$ and hence there exists by Lemma 3 an $(\mathfrak{S}, \mathfrak{G})$ -isomorphism between \Re and $(\mathfrak{S}, \mathfrak{G})$ in which b corresponds to the unit element of $(\mathfrak{S}, \mathfrak{G})$ \mathfrak{G}), that is, b, b^{o} ,, b^{τ} form also a right normal basis of \mathfrak{R} over \mathfrak{S} . Thus 4) is proved.

To prove 5) let \mathfrak{T} be a subring of \mathfrak{R} containing \mathfrak{S} such that \mathfrak{R} is regular with respect to it. Theorem 4 implies then that $V(\mathfrak{T})$ is regular with respect to its subring \mathfrak{R}' and moreover $V(V(\mathfrak{T})) = \mathfrak{T}$. From the first statement follows according to Theorem 6, 2) that $V(\mathfrak{T})$ is, for a suitable subgroup \mathfrak{S} of \mathfrak{S} , expressed as $(\mathfrak{R}', \mathfrak{S})$, and so we have, from the second statement, $\mathfrak{T} = V(\mathfrak{R}', \mathfrak{S})$, that is, \mathfrak{T} belongs to the subgroup \mathfrak{S} .

Remark. Meanwhile Nakayama has shown that our results in this section can be extended further to rings with minimum condition for left and right ideals; this, the Galois theory for general rings, will shortly appear in these Journals.

Addendum. In connection with Theorem 1 we may prove the following theorem the first part of which may be considered as a generalization

of Theorem 1, 3) as well as Azumaya [3], Lemma 2.

Theorem 8. Let \Re and \Im be two rings both containing a (commutative) field K as a subfield of their center and construct their direct product $\Re \times \Im$ over K. Then

- 1) Under both the maximum and minimum conditions for two-sided ideals in \Re , an automorphism of \Re can be extended to an inner automorphism of $\Re \times \mathfrak{S}$ if and only if it is already inner in \Re .
- 2) Under the minimum condition for left and right ideals in \Re and the finiteness of the rank [S:K], a two-sided ideal α of \Re is both left and right principal if and only if the two-sided ideal $\alpha \times S$ of $\Re \times S$ is so.

Proof. Let $\{b_{\nu}\}$ be a (linearly independent) basis of \mathfrak{S} over K. Then it forms also a basis of $\Re \times \mathfrak{S}$ over \Re . So $\Re \times \mathfrak{S}$ is, as \Re - \Re -two-sidedmodule, a direct sum of submoduli $\Re b_{\nu} = b_{\nu} \Re$ operator-isomorphic to \Re . Suppose that an automorphism σ of \Re can be extended to an inner automorphism of $\Re \times \mathfrak{S}$ which is induced by a regular element u in $\Re \times \mathfrak{S}$: $u^{-1}au = a^{\sigma} (a \in \Re)$. Then $\Re \times \Im = (\Re \times \Im)u = \sum \Re b_{\nu}u$, gives a direct decomposition of $\Re \times \Im$ into submoduli $\Re b_{\nu}u$ each of which is, since $ab_{\nu}u = b_{\nu}au$ $=b_{\nu}ua^{\sigma}$ for every $a\in\Re$, operater-isomorphic to (\Re, σ) . Thus we have two direct decompositions of $\Re \times \mathfrak{S}$ into mutually operater-isomorphic submoduli. Owing to the chain condition, R can be decomposed into a direct sum of (mutually orthogonal whence) mutually never-operator-isomorphic directly indecomposable two-sided ideals. This decomposition also gives the similar for (\Re, σ) . It follows therefore from Krull-Remak-Schmidt theorem that $\Re = (\Re, 1)$ is operator-isomorphic to (\Re, σ) , which means according to Lemma 4 that σ is inner in \Re .

To prove 2), assume that $\mathfrak{a} \times \mathfrak{S}$ is generated by a single element c of $\mathfrak{R} \times \mathfrak{S}$ on both left- and right-hand sides²⁹⁾: $\mathfrak{a} \times \mathfrak{S} = (\mathfrak{R} \times \mathfrak{S})c = c(\mathfrak{R} \times \mathfrak{S}).$ Then, since $l(\mathfrak{a}) \times \mathfrak{S}$, $l(\mathfrak{a})$ being the left annihilator ideal of \mathfrak{a} in \mathfrak{R} , is the left annihilator ideal of $\mathfrak{a} \times \mathfrak{S}$, i.e. of c, in $\mathfrak{R} \times \mathfrak{S}$, $\mathfrak{a} \times \mathfrak{S}$ is operator-isomorphic to $\mathfrak{R} \times \mathfrak{S}/l(\mathfrak{a}) \times \mathfrak{S} \cong [\mathfrak{R}/l(\mathfrak{a})] \times \mathfrak{S}$ with respect to the left operator-ring $\mathfrak{R} \times \mathfrak{S}$ whence with respect to \mathfrak{R} too. Hence we have, again by Krull-Remak-Schmidt theorem, that \mathfrak{a} is operator-isomorphic to $\mathfrak{R}/l(\mathfrak{a})$ with respect to (the left operator-ring) \mathfrak{R} , which implies that \mathfrak{a} is left principal. Similarly \mathfrak{a} is right principal. The converse is evident.

Remark. After the completion of the present paper, the writer found

²⁹⁾ Cf. Nakamaya [11], Lemma 1.

that many of the results in the present paper as well as in the previous paper Azumaya [2] are, though in the case of simple rings, proved in Artin-Nesbitt-Thrall, "Rings with minimum condition", Michigan Press (1944) by making use of the notion of analytic linear functions; the analytic linear functions of a simple ring \Re are, on retaining the notations in the proof of Theorem 5 of the present paper, nothing but the elements in the subring $\Re \times \Re'$ of \Re . We notice here that their Theorem 7.3 H can be proved in a somewhat simpler way if we observe that every subring of $\Re \times \Re'$ containing \Re' is according to our Theorem 1, 2) expressed as $\mathfrak{T} \times \Re'$ by a suitable subring \mathfrak{T} between \Re and $Z^{(30)}$

Mathematical Institute, Nagoya University.

References.

- 1. K. Asano, Über verallgemeinerte Abelsche Gruppen mit hyperkomplexem operatorenring und ihre Anwendungen, Jap. J. Math. 15 (1939).
- 2. G. Azumaya, New foundation for the theory of simple rings, forthcoming in Proc. Imp. Acad. Tokyo.
 - 3. G. Azumaya, On almost symmetric algebras, Jap. J. Math. 19 (1948).
- 4. G. Azumaya, On generalized semi-primary rings and Krull-Remak-Schmidt's theorem, Jap. J. Math. 19 (1947).
- 5. G. Azumaya and T. Nakayama, On absolutely uni-serial algebras, Jap. J. Math. 19 (1948).
- 6. N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann. Math. 41 (1940).
- 7. G. Köthe, Verallgemeinerte Abelsche Gruppe mit hyperkomplexem Operatorring, Math. Zeitschr. 39 (1934).
 - 8. A. Kurosh, Direct decompositions of simple rings, Recueil Math. 53 (1942).
- 9. T. Nakayama, Über die Klassifikation halblinearer Transformationen, Proc. Phys. Math. Soc. Japan 19 (1937).
- 10. T. Nakayama, On Frobeniusean algebras, I, Ann. Math. 40 (1989); Ibid., II, Ann. Math. 42 (1941).
- 11. T. Nakayama, Note on uni-serial and generalized uni-serial rings, Proc. Imp. Acad. Tokyo 16 (1940).
 - 12. T. Nakayama, Normal basis of a quasi-field, Proc. Imp. Acad. Tokyo, 16 (1940).
 - 13. T. Nakayama and G. Azumaya, On irreducible rings, Ann. Math. 48 (1947).
 - 14. E. Noether, Nichtkommutative Algebra, Math. Zeitschr. 39 (1933).

³⁰⁾ We also point out that their Theorem 7.3F is already proved essentially in A. A. Albert, Structure of algebras, New York (1939), Theorem 4.6. Cf. also Kurosh [8], Theorem 11.