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Galois theory for uni-serial rings.
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In a previous paper”, I have given a new method to the theory of
simple rings, which enables us in particular to prove the fundamental theorem
of simple rings in a quite natural way as well as to extend the Jacobson’s
Galois theory™2 from quasi-fields to simple rings ;. our principal method was
in fact to embed the simplé ring into an absolute endomorphism ring (of
a certain module) and take commuter ring in it.- In this paper we shall
show that by means of the similar method these results can be extended
completely to the uni-serial case” and shall obtain some other detailed results -
which have significance even in the casc of simple rings. Further, after
establishing the Galois theory, we shall give a new and ‘simplex" proof to
the existence theorem of normal bases®. "

Throughout the present paper, we mean by a ring always one posses-
sing an unit element and by a subring always one whose unit element coin-
cides with that of the original ring, and when we deal with a module with
_operator-ring we assume always that the unit element of the latter operates
on the former as the identity endomorphism: Further; when & is a sub-
ring of a ring R, we denote by V(&) the commuter ring of S in R.

For the sake of completeness, let us begin with the following con-

sideration concerning moduli with operator-ring :

i

§1. Moduli with operator-ring and their submodauli.

Lemma 15 Zet R be a two-sided. simple ving® with the center Z" and

1) Azumaya.|2]. Cf. also Nakayama-Azumaya [13].

2) Jacobson [6]. , .

3) While their extention to irreducible rings is treated in Nakayama-Azumaya [13].

4) 1In case of quasi-fields, this theorem was proved in Nakayama {12]. The same method
can readily be transferred to the case of simple rings. Ilowever, it can no longer, as it seems

to the writer, apply to our case.
.5) Cf. Kurosh [8]. ) _
6) By a two-sided simple ring we understand a ring which possesses no non-trivial two-’

sided ideal, while if a two-sided simple ring satisfies the minimum condition for right (()f

equivalently left) ideals we call it a simple ring.
' 7) Z forms a (commutative)' field.
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let theve be. given an R-R-two-sided-module W such that W= NR, where
N is the Z-module consisting of all elements of M ze//mk are element-wise
commaultative withh R. Then v '

1) WM is the direct product of N ana’ R (over Z) M=N x ER

2) Berween R-R-submodult AN of I and Z-submoduli N, of N, there
25 a one-lo-one correspondence by the Jollowing velation :
| TMo=TR, Ny=My~N.

3) An elemens ue W satisfies Ru=uR if and only if there exists a regular
element ¢ in R such that xu=u(c"'xc) for every xcR.

Proof. First ‘it is to be observed- that an (R-R-) submodule m of
M is (non-zero and operator-homomorphic whence) operator-isomorphic to
the simple module R if and only if there exists an element z==0 in N
such that>m=o®R ; and, when this is the case, the isomorphism is giVF:n by

r—(zv=)vxr (x¢R). Now since M=NR = ven vR? is completely reducible,
IR is indeed expressed as the direct sum of a number of simple submoduli
‘oR. that is, we can find a_subset {zu} of M linearly independent over R
such that M= Evuéﬁ Then we have readily N= z‘,vuZ which shows the

the assertion 1) Further, since every submodule 9)?0 of M is also com-
pletely reducible, I, is the, (finite or infinite direct) sum of simple submoduli
of the form vR(veN), i.e. My=N,R provided mo—smo,\% Conversely, since
the product NR=N, x R is direct for any (Z-) submodule N, of N, i

follows 92(,:9)20,\9& when MH=N,R. Thus 2) is proved. To prove 3‘),'let
=0 satisfy Ru=uR. Then this is simple, as R-R-two-sided-module,
. "and hence operator-isomorphic with $R i.e. there exists an element v in N
such that #R=o%R; this means also the existence of a regular element ¢

in R such that »=wvc whence ru=zvc=urc=wuc""xc for every xe¢R. The
converse ts evident.

From this lemma we have immediately
Theorem 1. Let P be a ring and R be a nwo-sided simple subring of
B whose center Z is contained in the center of VB and let & be the commuter
ving of R in P: S=Ip(R). If P=RS, then
1) B is the divect of R and & (over Z): P=RxS.
2y Between rwo-sided ideals p of B and two-sided ideals 8 of &, be-

»

[]
8) . U means module sum.

9) Cf. Noether [14], Kurosh [8].
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tween left [rzg/zt] ideals p of B whick are nglzt—[/efz ]allowable with respect
to S and left [right] ideals 8 of S, or between subrings p of P whick contain
R and subrings 8 of S which sontain Z, there exists a onc-to-one corres-
pondence by the following relation :
' p=3xR, 8=p-~O
3) . An automorphism of R can be extended to an inner automorphism:
of B if and only if it is alveady inner in R. -
- Now we may refine readily Nakayama-Azumaya [13], Lemma 1 as

follows :
Lemma 2. Lez I b6 a rzg/zt module of a ring R and let E)J}z}_,mv,

be a direct afecom;?oszzzmz of M into mutz;al/y operator-isomorphic R- suémodulz
Wy. Zake an arbitrary divect summnd w, and let R* and R, be the operator-
endomorphism ring of W and wm, respectively.  Then

1) There exists a one-to-one corvespoudence between R*-submoduli N of
M and R,-submoduls Tt of my &y the foZlowhzg relation, ' ’

N=>n,
T

where W, is, for each p, the submodule of m, correz'ponding’ to no. Further,
Jor any element, a in ER N is allowable with respect to a tf and only i
‘wmay be.

2) R may be co;zsza’ered as the R*-endomorphism ving of M If aud only
if R is considered as the Ry-endomorplism ving of me. The * if” part also
holds even in case when every m, is (not n.ecessarily operato;'—isomorpléic but)
. operator-Fontomor phic to Mo. »

Now, let us say that a right module I of a ring R is (rzg/zt—) regular
(with respect to R) if there exists a (direct summand) right ideal ¥, of R
'such that both 90 and R directly decomposable mto submoduli each of

which is operator-isomorphic to t..
-Theorem 2. ZLez I bc a regztlar rzg/zz‘ wodule of SR and ler |* be its

- operator-endomor p/ezsm ving. Then
1) There exists a one-to-one -correspondence &etwem SR*-suﬁmoa’ wlti and

left ideals | of R by the Sollowing relation :
N=MML™

10) Conversely, lis ch-uactervcd by N as the set of all clement> @ in R such that
Mae C N. .
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F “urther, when Ne——1, ER is allowable wzt/z vespect to an elz’mem’ a in R i
and only if | is so. . r

2) R may be considered as t/ze Eﬁ*—ena’omo;fpﬁzsm ring of WM ; the same
is the case also when W is a direct sum of submoduli eack of which is
operator- /mmomorp/zzc to t, and at least one of them is operator-isomorphic
7o 1,. ‘ . ,

3) If WM is finite with respecz to ER then MM is also regular and ﬁmz‘e
with respect to R*. ‘ . .

Proof. 1, is generated by an 1dempotent element e; t,=eR=e1,, and
(the left operator-ring) ¢Re can be, as usual, regarded as the operator-
endomorphism ring or To. Suppose M= me be a direct decomposmon of

M into submoduli m, operator- 1som01ph1c to 1, and consider any ¢Re-
submodule 8, of 1, - Then, since @o—eéﬁeﬁo—-ro@o, ‘the submodule- of m,
corresponding to 8, is m,3. In virtue of the preceding lemma, every R-
submodule N is uniquely expressed as N=>3 m,8,=INB, by an ¢Re-submodule

m
8, of t,. Similarly, every left ideal | of R can be uniquely expressed in
the form [=NR3, by 3§,. "Combinincr these, we have 9=N8,= MR8, =M.
Now, since R is a diréct sum of a finite number, say », of right ideals
operator 1somorphlc w1th To, WE can construct as usual a systern of matrlx'
units {ey; 7, ]--1 2, ey 7} in R linearly independent " with respect to
its commuter ring. R, in R such that R= 2,2}{0% and ro——Eéﬁoeu, R, is

considered naturally as the operator- endomorphlsm ring of (the right ideal)
1o and conversely R can be looked upon as the Ri-endomorphism ring of
the »-dimensional vector module 1, (over R,). From this follows dlrectly
the assertion 2), by virtue of Lemma 2, 2). To prove 3), we may assume
that R is in fact the »-dimensional matrix ring over R, and 1, is the 7-
dimensional row-vector space over Ro and. further I is finite, say  #-,
~dimensional column-vector space ove1 To, that is, the totality of mafrices
of type (72 7). over R,. R* is therefore nothing but the z-dimensional
matrix ring over R,, considered as left operator-ring of M. Then the fact
that R* and M are respectively the z-dimensional and #»-dimensional row-
vector spaces over the 7- -dimensional column-vector space over R, implies
that I is finite and regular with respect to R*. ‘

Corollary. LZet W be finite and regular with respect to R and lez R*
be its operator-endomorplism rving. Then between R-R*-submoduli N, tzvo-
sided ideals a of R and two-sided ideals a* of R* there cxists a one-jo-o'nel
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* corvespondence by.the following relation : N=MWa=Ma*. .~

Finally we point out the following simple fact:

Lemma 3. Zct I be an RN-right-module whick zs oparalor-zsomo;p/:zc'
with R and let R* be its operator-endomorphisin. ring. Then M is, as R*-
module, operator-isomorphic with R* ; further for any element u of M such
that the mapping 1—u gives an operator-isomorphism between R and W the
mapping 1*—u also gives an R*-isomorphism between R* and WM, where 1
and 1% denote the unit element of R and R* respectively.

§ 2. Moduli with ﬂni-serial operaltor-ring.

Let R be a ring satisfying the minimum (whence the m4ximum) condi-
tion for left and right ideals and let € be its radical. R is called primary
if the residue class ring R=R/E is simple. For that it js necessary and
sufficient that R is decomposable into a direct sum of mutually oper'atc')r-
isomorphic directly indecomposable right (or left) ideals. And, when this
is the case, the number of right (or left) ideals is independent of the direct
decomposition ; we shall denote the number by [R].

A primary ring "R is called uni-serial™ if every (or equivalently at
least one)idirectly indecomposable direct summand right or left ideal, that
is, the right ideal ¢®R as well as the left ideal Re generated by a primitive
idempotent element ¢ possesses only one composition series. IFor that it
is necessary and sufficient that € is a principal two-sided ideal (generated
by a single element ¢); €=Rec=cR. And, when this is the case, the right
ideals eR, €, G2 ...... , ¢@*!, ¢@'=0 form in fact the only composmon
series of ¢}, where / is the exponent of the radical € ; the similar is also
true for Re. ’ ' '

‘ Now ‘let I be a right module of a primary uni-serial ring R. Then
M ‘is, in virtue of the main theorem of uni-serial rings, directly decomposed
into (directly indecomposable and cyclic) submoduli operator-homomorphlc
to ¢R, and the direct decomposition is, by Krull-Remak-Schmidt theorem™
for instance, unique up to operator-isomorphism. It is obvious that I zs
regular with respect fo R if and, only if every directly indecomposable direct

11) For uni-serial (=einreihfg) Tings, see Kothe [7], Asano [1], Nakayama [11], Azumaya-
Nakayama. [5]. . ' :
12) See Azumaya |4].
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summand is operator-isomorphic to eR, or what is the same, every (not
- necessarily divectly indecomposable) divect summand -is faithful with respect
fo R, We 'denote, when this is the case, by [0 | R] the (cardinal) number
of direct summands (appearing in a direct decomposition) of M. I possesses
linearly independent (right-)basis over R if and only if I is regular and
‘moreover [ |R] is divisible by [R]*. And, Wwhen this is the case, the
number of elements consitituting- the basis is equal to [9Mt|R]/[R], which
we shall call the (Fight-sided) rank of M over R and denote by [ : R].
' Observing that if we .embed R into’ the absolute endomorphism ring™
A of M, which is considered as right operator-domain, the commuter ring
(R)=Va(R) of R in A is nothing but the operator-endomorphism ring
of the R-module I, we obtain from the above statements, combined with
Theorem 2, the following results : |
Let N de an absolute endomorplism ring of a module, IN
and suppose tkaz z‘/ze;fe be given a (primary) uni-serial subring R of . Then
1) HAR)=% ‘
2)  Every automorplism of R can te. exz‘emz’ed to an inner automorp/zzsm '
of 9. . : \
3) In case MM is regular with revpect 2o R, any tsomorp/zzsm T of R
into N, such that W is. regular with respect to R* and moreover [ R]
=[M | R*], can be extended to an inner automorplism of A ‘
4) . N is finite and regular with vespect to R if cmd only if V(R) s
primary (and Jence wunt- serial).®  In this case, we /zcwe

[0 | RI=[V(R®)], (] (R)]=[R].

We prove only the first half of 4), where the “ only if 7 part is obvious.
Let 1=¢, 46,4 ...... + ¢, be a decomposition of the unit element into mutually
orthogonal and mutually isomorphic primitive idempotent elements in the
primary (R-endomorphism) ring F(R) of M. Then M=Me;+Mey+...... .
+iU2en gives a direct decomposition of sm into mutually operator-isomorphic
directly indecomporable R- submoduli, which are necessarily ‘operator-isomor-

13) If in particular R is simple, every R-right-module is necessarily regular and we need
not the notion of regularity.

"14) Of course this is_the case when [t [R] is infinite.

15) - That is, the totahty of all homomorphisms of M into itself.

16) Asano |1], Satz 8. :

-
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phic with (the. directly mdecomposable direct summand right Ideal) cfﬁ (of

R).

Theorem 4. Zez I, A, R ée as in the preceding theorem and let &
be a (primary) uni-serial subring. of R. If M is regular with respect to R, '
then R is regular with respect to & if and only it R is ‘(7 dght-Yregular with
respect to & ; further [N | R] is ﬁmte if and only if both [WM|R] and [ER |S] -
are so. And, when this is the case, '

1) Any isomorphism ¢ of R into W whick maps S onto itself .and sucl
that with respect to R® WM is also regular can be extended to an inner auto-
morphism of .

2) Among WM, V(&) and V(R) there holds the same szz‘uatzon as among
M, R and &, as above, and moreover

[®]©] [MR)=[1®)] ) te;

. in par tzcular R possesses linearly zmlepena’ezzt (right-Yoasis over & if ana’ only :
if V(&) has the same over V(R), and we have in this case

[R: S]=[1S): NR)).

Proof. 1) follows from Theorem 3, 3) because [IN | R] [¢R | S]=[IM | S]
=[M | R*] [((R)*| S] and [f§R|@J =[(¢R)* | &] is finite. The first half of
2) is an immediate consequence of ‘Theorem 2, 3), while the second half is
readily obtained by eliminating three arguements [¢R | &S], [I|R] and
(M| S] from the following equalities :

(M| R] [R|S]=[M|S], (R] [R|S]=[R]|S]
. (MR]=[(R)], (M| S]=[S)]. ,
‘ Corollary.™™ et R be a uni-serial ving and & its uni-serial subring
such that R is right-regular and finite with respect to S.  Then two R-right-
modul are operator-isomorphic if and only if they are so with respect to &,

§3. Uni-serial subalgebras of a simple ring.

Above preparations now enable us to prove the following
Theorem 5.° Lot R be a simple ring with the center Z and S be a
(primary) uni-servial subalgebra (of finite rank) over Z and JSurther & be

17) This is an equivalen} statement with Theorem 4, 1), as a matter of fact
18) This theorem is a refinement of results in Asano 11, §5. ’ /
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the commuter ;Vizzgr of T in N: S=VRT). Then
1) Vx(©)= ‘ o
2)  Every avutomor p}zzsm of R which le(wes invariant cvery element of
S is nncr. '
3). The followsng five cona’z/zons are equivalent to each ot/zer
) R is rightregular with respect to I,
Yy R is left-regular with respect to E
i) .S is (primary) uni-serial,
111) R is right-regular with resp: ock 10 S,
i) R is left-regular with respect to S.
4y If ©, is a (primary) uni-serial subri zug of ER containing S, then
VR(V(©)=8&,. Hence, in particular, uni-scrial subalgebras I, of T with
respect to whickh R is rcgular and uni-scrial subrings &, between R and S

P

with respect to which R is vegular are in onc-to-one covvespondence by the
commuter relation in R: VR(Z)=6, Va(S)=%, \
B) If R is regular with respect to X, then R possesses a lincarly in-
dependent (right and left) basis over & “and morcover [R:G)=[T:Z N
Further, there exists an clement b in R cuck that for any lincarly independent
basis a, (lo,v ...... y an of S over Z (n=[Z:2)), ab, asb, -vr., b and ba,,
by, uee.s , ba, form respectively a lincarly indcpendent right- and loft-basis of
"R over @ s in other words, the regular representation™ of I (in Z) is equi-
valent' with the rcpresentation of T in & whick is o&/czz;zm’ by t/zc (S-Z- or
3-S- ) representation module R. .

6) i casc R is regular with respect to T, theve exists between right
[leff] ideals © of R whick are left-[right-] allowable with respect to S and
yight [left] ideals™ tof T @ one- to-one. corns/)o;zdwzcc by zlle Jollozving relation -

r=iR [t=Rt], t=1-Z.

The same also holds between right [Lft] ideals of R left—[rz ght- ]allo’v-
able with respect to T and right [lef?] ideals of ©.

7Y In case R is regular with respect to X, any isomophism © of I into
R leaving Z clement-wise fixed such that R is regular with respect to L can

19) Further & is simple if 51mp1e if and only if ¥ is so.

20). Since every uni-serial algebra is Frobeniusean, its right and left regular representations
are equivalent to each ather and moreover its right and left ideal lattices are dual-isomorphic
to each other (by annihilation relation). See Nakayama {10]. *
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be extended to an tnner azztomorp/zzsm of R. '

Froof. Consider the absolute endomorphism ring A of R. By rlorht-
sided multiplication’ each element of R induces on R an absolute endo-
morphism and their totality forms'a subring of 9 isomorphic with R, which
we shall denote also by R. Similarly, by left-sided multiplication there is
obtained a subring R’ of U inverse-isomorphic,with R. They are, as is
well known, commuter rings to each other and hence their intersection
R~R' coincides w1th their common center Z.

According to Theorem 1, the . product ring IER’ of T and ?R’ (con-
structéd in ) is in fact direct (over Z): TR'=T x R’, and moreover iis
two-sided ideals and two-sided ideals of correspond one-to- -one, and this
implies that T x R’ is uni-serial. Hence by Theotem 3, 1) '

MAExR)=T x K.
" But since .
S= ()= N2T)~R=Z) ~V(R)= NI x R,

we obtain . \ «
V(@)= N(@) ~R= M(NE x R)) ~ AR =(T x R) ~ N(R)=T. |

To prove 2), let ¢ be any automorphism of R which leaves invariant
every element of @' Regarding o as an element of 91, it must belong to
M@)=T xR’ since ae=aa° holds for every e¢R. o satisfies also @/o=p(a’)"
for every <R and. hence ¢ is, by Theorem 1, 3), inner in (R’ whence) R.

Since MT x RN=6, N(S)=Tx R’ and R is finite with respect to (R’
whence) T x R’, Theorem 2, 3) shows that R is (right- -)regular with respect
to TxR’ if and only if R .is (right-) egular with respect to &, while
Theorem 3, 4) asserts that this holds if and only if © is primary (uni-
serial). On the other hand, since SZXER’ possesses a linearly independent
basis over T and there exists a one-to-one correspondence ‘between two-
sided ideals of Tx R’ and &, R is (right-)regular with respect to T x R’ if
and only if R is (right )regular with respect to Z. Observing further that
‘the prlmanty of @ is a condition of the left- -right’ symmetry, we complete
the proof of 3). . ) .

Consider now a .uni-serial subriug &, of R which contains &. Then
S lies necessarlly between V(R)=R’ and M(S)=Tx R’ and so, if we
put L,=T &)= IR(€)~1S,)=1®(S,), we have, in virtue of Theorem -
1, 2), NMSY=T,xR'.. Since: S, is uni-serial, it follows &S,= MIS,))
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= UZy x R=NZ,) ~R)= V&(Z,). This proves 4). .

Assumé, from now on, that R is regular with respect to Z. Since
every (linearly independent) basis of & over Z is at the same that of Tx R
over R/, the first part of §) follows from Theorem 4, 2); the existence of
left-basis is a consequence of the left-right symmetry. - Since Tx R’ is"

perator-lsomorphlc to the z-times direct sum. of R as R':(right-)modyle,
they are, by Corollary to Theofem 4, operator-isomorphic evén as T x R'-
whence T x &'-(right-)module ; & being the subring of R’ correspondmc
to ‘S. On the other hand, since every linearly independent (right-)basis of
R’ over &' is at the same that of TXx R’ over Tx S, Tx R’ is, as T x &'-
(right-)module, operator-isomorphic to the #-times direct sum of T x&'.
. Hence R and I xS are, by Krull-Remak-Schmidt theorem, operator-
‘isomorphic as ¥ x &'-module. Now let & be the element of R correspond-
: ing to the ‘unit element of ¥ x&’. Then, since NI x &)= MNZ) NS
=NT) R xT)=SxT, there is, by Lemma 3, an & xIT'-isomorphism
between R and & x ¥’ in which & corresponds also to the unit element of
© xZ'.. This shows that & is the desired element in the second part of b).

Every left: ideal of £ xR’ which is r1ght~allowab1e with respect to R’
is, in virtue of Theorem 1, 2), expressed as tx R’ by a (uniquely deter-
mined) left ideal t of ¥ and therefore every &-R’-submodule of R is,
according to Theorem 2, 1), of the form R-(txR)= Rt. This proves the ‘
first .half of 6). The proof of the second half is obtained by using Theorem
3 and is rather simple.

As for T), the isomorphism 7 can be extended in a natural manner to
an 'isomorphism. between T x R’ and T*x R’ which leaves R’ element-wise
invariant. -Then Theorem 4, 1) implies that there is a regular . clement a
in A such that e 'ra=x" for every x¢¥ and moreover @ is elementwise
- commutative with R’; but the lattet condition means that @ (and ™)
belong, to F(R')=NR. The proof is thus completed.

§4«. Galois ‘theory for uni-serial rings (in the sense of Jacobson).

- Let R be first any ring and ¢ its arbitrary automorphism. - If we difine,
for any pair of elements & x of R, a new product axx by o,

21) The .6-T-module TX &/ intermediates the regular representauon of I, as can easnly
be seen ¢
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axx=a’x,

ther R becomes a new S}f—lef.t—modulerand moreover, if- thé: right-sided
multiplication is taken as the original one, R is considered as an R-R-
two-sided-module, which we shall denote by (R, ¢)®. We may readily
prove : o .
- Lemma 4.2 (R, o) ana (R, ©) are operator-isomorphic, as R-R-two-
seded-moduli, zf and only if the automorplism ot~ is inner (in R).

Now let R be (primary) uni-serial and € its radical having exponent
/ and put ﬁiﬂi/@. € is a principal two-sided ideal generated by a single
element ¢; €=Re=cR. If we associate with each xeR the element yeR
such that xc = ¢y (mod €?), we obtain, since 2§ < €* [€y £ €] is equi-
valent to x¢@ [y((S] an automorphism of the leple ring ?R which we shall
denote by ¢*. €/€* is then operator-isomorphic, as R-R-twa-sided-
module, with (R, ¢);-hence ¢ is, by‘ Lemma 4, uniquely determined up to
inner automorphism of R. Sjnce E'=Rc'=c'R and moreover 2@ ¢ @
[€% c €**'] if and only if <€ [yc€] for each =1, 2, ...... , {—1, /@
is operator-isomorphic to (3R, ¢?). Now every automorphism ¢ of R
induces naturally an automorphism in R, which will be denoted also by a.
Then, since €= (S" Re®=c°R, necessarily

‘ap = go,

where ==‘means the congruence modulo the totality. of inner autemorphisms

_of R. v -

[

r

Suppose now that there is given a finite group 8={1, o, ..r..., T} of
automorphism of R each element ¢ of which satisfies the following condition :
(o If 03=1 then o=l=¢* for any 1=0, 1, 2, ...... , I—1.

Then we can define a crossed ])fjoa’%u*t (R, @) of R by @ as follows: .,
(R, ®) is a ring containing R as a subring and with each o¢® there
is associated a regular element #, of (R, &) such that

R, @)=u,R—w,R—"...... ~u R, aug=ux® (x(R).

Then we prove

-

22) Cf. Azumaya [3], 3 2.

23) In case the cénter of R is not a field, it contains a nilpotent element & 3£ 0. ‘hen the
two-sided ideal dR is of a form @7, where 1 <7</ ~1, and axcordmgly we have ¢i=1. In
the contrary case, it may happen that-g? £1.

24) In case R is commutative, this condition means simply: |

If 0 %1 then ¢ is not identity in R too,
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Theorem 6. 1, g, ------ , Uy are linearly iizdepezza’eizz over R (on botl '
left- and rzg/zz‘-/zana’ sides), and ' ' \
1) (R, ®) is a (primary) uni-serial ving™ and between tevo-sided ideals
* of (R, ®) and two-sided ideals § of R ‘there is a one-to-one cor respondmce
by the following relation :
| =R, O)= (R ©), 3=3"~R.
Further, cvery "left [right] ideal of (R, ®) whick is 7’20/zt-[left-]alla’e;able
‘with respect  to R is necessarily a two- sided ideal.
2) Euvery subring of (R, ®) containing R whick is right-(or left-yregular
with respeet lo R is. expressc’d in the form (R, .S;j) by a suitable subgroup 9
of &. :
3) A regular element u of (R, @) satisfies Ru=uR zf and only zf
uSR—-uOSR for a suitable o in §. .
4) The commuter ring of R in (R, @) coinciles with the centér of R.
Proof. TFach u,R is operator -isomorphic, as R-R-two-sided-module,
'W1t11 (R, ) and hence possesses the composition residue-class-module series

(R, o), (R, g¢), (R, o¥?), -.-... , (R, o¢'™), as can easily be seén. That
® satisfies the condition (*) means therefore, in virtue of Lemma 4 that
if o ==7 #,R and #. R have no composition residue class module i in common.
From this follows that (R, ®) is indeed a direct sum of 2R, %R, «ovee- ,
2. R and moreover every R- ERsubmodulc of (R, ®) is expressed in the
form

(1) . . . | Z ”060 ‘ » .

‘where %0 is, for each o¢@, a two- sxded 1deal of R*.
(1) forms a left ideal of (R, ®) i.e. left-allowable with respect to every
2y if and only if =3,="-...- =3., that is, (1) is of the form (R, @) by a
certain two-sided ideal 3 of N: Further, since 3=3" for every oc®™, we
have (R, ®)3=3R, ). And 1) is proved. '
Consldel now a regular element « of (R, '®) such that Ru=uR. Then '

25) . This may be seen as 4 generalization of Nakﬂama 191, Hilfssatz 1.

26) Let, generally, a module I (with operator-domain) be a sum of (allowable) submoduli
‘m,, Moy -e-enn each of which possesses 2 composition series and such that if i3£7 My and M4
have no composition residue class module in common. Then MM is indeed direct sum of them
and every (allowable) submodule R of M is expressed in tht form N=RN;+Ny+..... , where 0,
Noy covees are submoduli of ;, My, -..--. respectively. '

27) Because zecoincides with some €% . .
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since R is primary whence is’ two-sided directly indecomposable, the R-R-
two-sided module #®R is also directly indecomposable and hence is contained
in one of #,R’s. Comparing further the composition lengths, we havé indeed
uR=u,R for some oe@. -In particular, we have #gR=1u.R® for any
automorphism a, v in @, because x7,u (=2 1) =um1. 2" for every zeR.
. Combining this with the fact that (1) is right-regular with respect to R if
and only if 3o0=%R or 3,=0, we can readily verify the validity _of 2).

. Take finally any commuter Euoao of R m (R, ). Then Ezzoao:c

—xEuoa., Zu,,x a, whence a,xr=2"a, for every xe¢R and a(@ This

Jmphes however that the two-sided ideal Ra,=a,R of R is, for each oe®,
operator-homomorphic to (R, o7'). It follows from this, since if o=F1
R=(R, 1) and (R, ¢7') possess as above no composition residue - class
module in common, that @,=0 . unless o=1. Hence the commuter

2 #oas=1,a, belongs ‘necessarily to the center of R.

- ‘
Now we obtain . :
-Theorem 7. Let R be a (privary) uni-serial ving and let &=1{1, o,

ceeeey TV be a finite group of its automorphisins wﬁose elemcnts satisfy the
condition (*) aqbove. Then

1) Zhe szz/);fz‘ug & whick &e/ougs' to ®, that is, the subring consisting
of all elements of R whick remain invariant under every aulomorpliisin in &
is (primary) wuni-serial and two-sided ideals a of N and “two-sided idcals
b of © correspond one-to-one by the Jollowing relation ;'

a=Ro=bR, b=a-&. ‘ o
Moreover every left [right] ideal of R whick is right- [/(f[-]a[/Od able wzt/&
respect to & is necessarily a two-sided ideal.

2) Any automorphism of R whick leaves invariant ewry clement of &
is in (.

' 3) The commuter ving of S in R coz'ﬂcia’és wz'/ﬁv the center of R.

4) R possesses a (linearly independent) basis over © and R:6]

—((_55 1), at both left- and right-hand sides. Furthermore R has a left (or
right) normal basis over &, or what is the same, the regular rvepresentation
of ® s equivalent wzt/z the represéntation of & in & whick is obtained by the

28) This means the existence of regular elements ag,c in the center of such that zgu-

=#g1d0,7 ; they form the so-called factorset of (R, @). Further, it is to be noticed that R
coincides with RN. . . .
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S-®-(or O-&-) . representation module R; If in pwtzczzlar & is abelian, -
then every left |right] normal basts is at z‘/ze same time a rig U/zt [ left] nor mal
‘basts.

b). Any subring of R whick contains S and with respect to whickh R
is right- or lefi-vegular &élongs to a suitable subgroup .b and hence is (primary)
- wnt-serial.

Proof. Consider again the absolute endomorphism ring %A of R and
define in it two subrings ® and R’ as in the proof of Theorem 5. Looking
upon each o¢© as an elcment of A, we have ’

2) ro=a(z)° for every x’e&)‘{’

and hence R™~aR™~"...... ~ R’ forms a crossed product (R, (8) Since
each o« satisfies the condition (*) for. ', it follows from Theorem 6, 1)
.that (R’, @) is uni-serial and indeed, ‘its two-sided ideals and two-sided
ideals of R’ correspond one-to-one .in the usual manner. These imply that
R is (right-)regular and finite with iesbect to (R, @). Now the subring
© belonging to & is, because of (2), nothing but the commuter ring of
(R, ®) in A: S=V(R, ®). Hence S is, according to the Theorem 3,
(primary) uni-serial and M(&)=(R’, ). Let a’ be any two-sided ideal of
R’. Then (R, @)’ forms a two-sided ideal of (R’, @) and there corres-
_ponds, by Corollary to Theorem 2, a (uniquely determined) two-sided ideal
b of & such that Ro=R-R(R, G)a’=a and b=a-~S; by the left-
right symmetry we should also have 6R=aqa. Conversely take any two-
sided ideal b of &. Then again by Corollary to Theorem 2 there exists
- a two-sided ideal which we may write according to Theorem 6, 1) (ER" &)d’

with a two-sided ideal a’ of R’ such that Ro=R-(R’, B)a’=a.” This im- °

plies that N6 is a two-sided ideal of R and hence Rb=DbR. Further since
every left ideal of (R/, ®) which is right- -allowable with respect to R’ i
also expressed in the form (R, @5)3 by a certain two-sided ideal 3’ of ER’
every left ideal of R which is right-allowable with respect to © is, in virtue
of Theorem 2, 1), of the form R-(R’, 65)5 =3 and so is a two-sided ideal
of R. Thus 1) is proved.

To prove 2), let p be any automorphism of R under which every
" element of & remains invariant. Then since xp=px? for every xeR(Z A),.
o being considered as an element of ¥, p lies necessarily in M(&)=(R', @).
Since further #/p=p(+')* for every 2'¢R’ p satisfiess R/p=pR’ and therefore
PR’ coincides, according to Theorem 6, 3), with a certain R/, that is, there
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exists an automorphism ¢ in & and a regular element ¢/ in -R! such that
p=0c'. Then #*=p~'2p=(c) 0" xoc' =(/)"4°' =x° for every xR apd
hence we have p=a@ ‘ . ‘

~ 3)is a direct consequence of Theorem 6, 4) since I3 (@) R~MNS)
=MVR)~(R', ) and the center of R’ coincides- with that of R. :

That (R’, @) has the linearly independent basis 1, g, ...... T over R
implies, in virtue of Theorem 4, 2), the first half of 4); the existence of
left basis (of R over &) is a consequence of the left-right symmetry. That

“implies also (R’, &) is operatorsisomorphic to the z-times direct sum of
R with respect to the right operator-ring R’, 2 being the order of @, and
therefore they are operator-isomorphic, by Corollary to Theorem 4, even*
with respect to (R, ®) whence with respect to (&', (). On, the other
hand, since every right-basis of R’ over &' is at the same time that of -
(R, @) over (&', @), (R, ®) is operator-isomorphic to the z-times direct
sum of (&, @) with respect to (thé right operator-ring) (&', ®). From
these follows by Krull-Remak-Schmidt theorem that R is, as (&', ®)-right-
module, operator-isomorphic to (&', &). Let 4 be then the element of ‘R
, which corresponds to the ‘unit element of (€, &), the group ring of ®
over &'. Then 4, &° ...... é‘ form a desired left normal basis of R over
+&. If in particular ® is abcllan then &', B)=IES") ~G)=(R, &)~
N®)=(S, @) and hence there exists by Lemma 3 an (S, ®)-isomorphism
between R and (S, @) in which & corresponds to the unit, element of (&,
&), that is, &, &° ..... ., &° form also a right normal basis of Rt over e.
Thus 4) is proved. - . !

_ To prove 5) let T be a subrmg of ER containing & such that R is
regular with respect to it. Theorem 4 implies then that . IZ) is regular
with respect to its subring R’ and moreover (I(Z))=Z. From the first
statement follows accordmcr to Theorem 6, 2) that (X)) is, for a suitable
subgroup § of &, expressed as (R', ), and so we have, from the second
-statement, T=R’, ), that is, T belongs to the subgroup $.

Remark.  Meanwhile Nakayama has shown that our results in this
section can be extended further to rings” with minimum condition for left '
and right ideals ; this, 2ke Galois theory jfor general rings, will shortly appear
in these Journals. _ '

Addendum. In connection with Theorem 1 we may prove the follow-
ing theorem the first part of which may be considered as a generalization
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_of Theorem 1, 3) as well as Azumaya [3], Lemma 2.
- Theorem 8. Zet R and S ée two rings botl cozztaz/zzlza a (commutative)

field K as a suéﬁe[a’ of their center and construct their divect product ER xS
over K. Then

1)  Under both the maximum and minimum conitions for two-szdea’ tdeals
e R, an auwtomorphisin of R can be extended to an inner czzttomorp/usm of

RxS if and only if it is alreaa’y inner in R. '

2)  Under th: minimum condition for left and right ide ols in R and the
Siniteness of the rank (S : K|, a two-sided ideal a of R is both deft and right
privcipal if and only if the two-sided ideal ax &S of RXS is so.

Proof. Let {6y} be a (linearly independent) basis of & over K. Thgn
it forms also a basis of RxS over R. So RxG is, as, R-R-two-sided-
‘module, a direct sum of submoduli Ré,=4,R operator-isomorphic to §R

Suppose that an automorphism & of R can be extended to an inner auto-.
morphism of R xS which is induced by a regular element # in Rx S:
u”lau=a" (ac¢R). Then Rx S=(Rx S)u=73] Ro,u, gives a direct decom-
position of R x & into submoduli Ré# each of whiclz is, since ab u=2é,au
=4,ua’ for every acR, operater-isomorphic to (R, ¢). Thus we have two
direct decompositions of R x & into mutually operater-isomorphic submoduli.
Owing to the chain condition, R can be decomposed into a direct sum of
(mutually ,orthogonal whence) ’mutually never-operator-isomorphic directly
indecomposable two-sided ideals. This decomposition also gives the similar’
for (R, o). It follows thereéfore froh Krull-Remak-Schmidt theorem that
R=(R, 1) is operator-isomorphic to (%R, a) which means according to
I.emma 4 that ¢ is inner in R.

To prove 2), assume that ax & is o‘enerated by a single e]ement ¢ of

“Rx& on both left- and right-hand sides™ : ax&=(R x S)e=c(R x S).
Then, since /(a)x &, /(a) being the left annihilator ideal of a in R, is the
left annihilator ideal of ax &, ie. of ¢, in R XS, ax& is operator-isomor-
phic to R xS//a) x & = [R//(a)] X S with respect to the left operator-ring
R x & whence with respect to R 'too. Hence we have, again by Krull-

Remak-Schmidt theorem, that ‘a is operatar-isomorphic to R/Aa) with respect’ .

‘to (the left operator-ring) R, which implies that a is left pr1nc1pa1 Similarly
a is right principal.. The converse is evident. '
Remark. After the completion- of the present’ paper, the wrlter found

29) Cf. Nakamaya [11], Lemma 1.
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that many of the results in the present paper as well as in the previous-
paper Azumaya [2] are, though in the case of simple rings, proved in
Artin-Nesbitt-Thrall, ‘“ Rings with minimum condition ”, Michigan Press
~ (1944) by making use of the notion of analytic linear functions ; the an-
alytic linear functions of a simple ring R are, on retaining the notations
in the proof of Theorem 5 of the present paper, nething but the elements
_in the subring’ R x R’ of '9.- We notice here that their Theorem 7.3 H
can be proved in a somewhat simpler way if we observe that every subring
of Sﬁx?ii' containing R’ is according to our Theorem 1, 2) expressed as
T xR’ by a suitable subring I between R and Z.*

' Mathematical Institute,
‘ - | - Nagoya University.
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