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.
1. TVe theovems. let {U,}, 0 <¢ < o, be a one-parameter semi-

grbup of linear (=additive, continuous) operators from a complex Banach -
space X to 7

. (/tUszUH;s': U,=I (=the identity operator), (1-1)
such that | '
Sup o<1, (1.2)
lim Ux=U,x (hm—-strong limit), 0\2,‘ < oo, er ' (1-3)
t>tq

The purpose of the present note is to prove the following twg theorems”.
Theorem 1. If we denote by D the totality of x for whicl
weak lim N (Up—Di=Azx (1-4)

hy 0

] .
exists, then D is dinse in E. Morcover A is a closed additive operator from
D to E with the propertics : )

for any xeD, lim N U,op—U)x=AUx=U,dz, (1-5)
h>0 ) .

there exists a scquence {1} of linear operators cach commumz‘iv‘;’
with every U, and A suek that i) the range R([,)={I,
xeEYSD, AlL,=n(l,—1), @) ||L| X1, lzm lx=x, 2i7) Ux

=lim exp(tAl)x=/"lim }_,(m') ’(z,‘A[ Y umform/j/ fo.” ¢ in

any finite interval®, (1:6)
| (Ad—nl)x || = 7| e I (=1, 2, ... ) for xeD and the range
R(A—n]) coinsides with £ (n=1, 2, ...... ), , (1 7)

Loty by (1-T), yn be the unique solution of (A—nl )yn._y (n=1,
2, e ), then tim A(—ny,)="lim (—n(y+ny.))=Ay for yeD. (1-8)°
n-ro n-»0

Theorem 2. Let, conversely, A be an additive operator from a dense
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linear subset D of E to E suck that (1-7) and (1-8) are satisficd. Then
theve exists a one-parameter semi-group U, which satisfies (1-1)—(1-3) and
- (1-5). . |

We have, thus, a characterisation of the differential qubtient A of the
one-parameter semi-group of linear operators. This may be applied to an
~operator-theoretical treatment of temporally homogeneous stochastic process®.
As an application of the theorem 1, we give a new proof of Stone’s theorem®
(see 4 below). : . '

2. Proof of the theorem 1. The differentiability. We may define the
integral

c,- x_j,p(s)cxds : @-1)

for complex-valued continuous function ¢(s) following after S Bochner, G.
Birkhoff, I. Gelfand B. J. Pettis and other authors®. Let ¢(s) satisfy

llmsm{ ¢(5 'I‘) 99(3)4_90(5.)

hy0 J |

ds=0 C(2-2)

We have, by (1-1)
1 a1 o dfe
(U= D) Cr= 9 () U s ——/z-j,go(s) Uz ds
(4 0 0

. © _— — /) .
o = s’ -?E——/?— —¢(s) U xds— -/:;~L¢ (s) U, xds.

Thus, by; (2-2) and /,=1,

hm—(U [)Cx exists and =C_g-2—@0)r.. (2:3)

IL#O /2

Such C,x is dense in Z, smce for any.d > 0O

05(s) =3 exp (—ds) (2:4)
satisfies (2-2) and moreover, for any zek, lim G, -x=ux. |
&-»c0
We have, by ( 1 4) for xeD, ‘.

weak llm—([] 1), x=weak 11m—~(U,+,,—-U,)x
Ay O 240 A2 ‘

={/,-weak hm%(( —1)x.

y0 22
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IHence U/,-D & D and /1[7,1_—(/'141 for any xeD, viz. A is commutative

!

with every [/’,, and

the right weak dex;iV'itive DY, x exists and @.5)
® _“v) -

=AU x=0,Ax for any aelD. ,
Hence, by the continuity (1 '3) we have, for any ftE* (s=the conjugate

space of E)
f([f:a)—f(ﬂ.) jﬁ*f((/sz)n’s—-sf([/Az)ﬂ’s f(j % Am')

and therefore

i

. ! ' . N .
'(ftj:—-';t’:j‘ UAxds for xel). (2-6)
0
Thus 'we have the strong differentiability (1-3). .
The closedness of A. et a,eD (n=1, 2, ...... ) and let hm V=2,
lim Ar,,—-—z Then, by (2-6), ‘ .

v Ux—a= jt Ugzds. -
. 0
The representation (1-6). Put
k ]n;—__-Cgon (n=1, 2, ...... ), ' 62-7)

then, by (2:3) and (2-4), i) and ii) are surely satisfied. In fact, we have
by (1-2) and (2-4) ‘

~

A gjjn exp (—ns)ds=1. 28)

Thus, since ‘
‘ Al,=n(l,~1T) (2-9)
by (2-3), we have »

exp (tAL) =3 (;‘41”) Lexp (tn(f,—1)), 0=t < 0. (2-10)

m=0

Thus ‘
| e;\'p (&‘A[n)il=][ exp (#l,) exp ('~f/z[)!| Jexp (111) exp (—#m)=1. (‘7 11) -

Smce Al, is commutatwe with each U,, we have, for xeD, .
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Il ;L‘-—e\p (fA/n) A= ‘U (e\p (z‘-—~s)Af,¢)Dq4)ds

R

|
“ exp (1—5)AL) U(A—AL) x (/\

és (A—AL)x | ds by (L-2) and (2-11)

|

=l (A~ /1/',,),1 1. R (2-12)
We have . :

Al,=T,Ax for acD, S (2413)
for A is a closed np;erator commutative \\ith eqéh {7,. Thus, by (2:12),

I 4 1.—(:\1; @AM St (L— [ DAx for  acD. (2-14)

Since (/, and exp (#A7,) are both of norm < I, we have iii) by the fact
that /1 is dense in E. , N

The proof of (1:7). We first show that R(A—x7) is dense in £ If
otherwise, there exists fe Zi*, /=0, such that f(Axr—na)=0 on D. Thus,
by (/,D<SD we have f(A(’,x)=nf(Uxx) and hence

L~

- \T/Tf(['r:x) =nf(Ux).

Therefore, by f({7x) =f(x), we obtain f{U,x)=/(x) exp (n¢). This is a
contradiction. Proof. By /=10 and by the fact 2 is densc in Z there
. exists ¢ such that f(x) =}=0. Then f(x) exp (#¢), is unbounded in ?

when #— oo, contrary to. | AUx) | |G al < Ujh” 2]l. Next we

show that ,
| (A—nD)a|| = nullx]l for xeD.

Assume the contrary and let || (A—#u/)x |j=a < n for a certain ¢ with
lali=1. Let fe£* be such that f(x)=1, ||fil=1. Then, by

d

—7 (ax=U,Ax=nUx+U,(A—nl)z,

we obtain
go(t) =nuep(2)+¢(¢), where
so(f) =f((f;—f), () =AU (A=l )x).

a
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Since 50(0)-:1. we have
o(f)= exp (711,‘)<v‘rexp (—wut)p(2)dt+ 1)
and hence, by | () < {711 O, N (A=nD)2 ]| < o,

{go(t) | = exp (n2)( l—mz_"(l—exn (=n0))). . -

I’z =< 1. Therefore, for any yeZ, there exists a sequence {x,‘, g D such

that lim (A—#n/)x,=p. Because of [[(A—nl)(w,—x )| 2= 7]l 2p— 2, |, {25}
h>»x0

is a Cauchy sequence. l.et lim ,1,‘—1 then lim (A—w/)x,=y and by the.

hyoo h>o

closedness of 4 we have y=(A—nl)x. : :
Z%e proof of (1-8). We have, by (2.9), A[,J/——}l], /= — 7y and hence

! —nyu="1.y. ’ (2-15)
Thus (1-6) and (2-13) imply (1-8).
3. Proof of the theovem 2. By (1-T), the Operator /» defined by

SV = Q—ﬁ}f,,, (=1, 2, ...... ) (3-1)

\satisﬁes . _
| VAESE | (3-2)
Since :
Afy=A(= 13y = —ndpum — 2+ ) =n(Ju—D)y,  (3-3)
we have, by (3:2), | ,
H ext (247 =] exp (#2/,) ext (—~m‘f)1f Il < exp (72) exp '——nt) iyl

R4

hence the linear ope’ra,torf defined by

‘ UM =exp (2A),) (3-4)
satisfies : . }
e <, O @
U z—z=\"U" 4] wdts, (3-6)
U .
lim 277U — U ar=UMA] x. (3:7)
>0
We have

’ jll_/vlb:_/i!ltj‘;l" (:{3'8) ’
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for, by (3-1), - | .
: Jo= =" (A—nl)™. (3-9)

" Thus AJ, is commutatxve with U and hence

|

(e — U‘”’),a, l= = s ((exp (2—s5) Aw) U"")x)ds'
| l yo(exp (1_5)A./n)lfaf"')(d/wl"ﬂf,.)xris‘

1Az~ as)x 1 ds by (3:5) and (3-T)
WAL= AT

Therefore, by (1:8), | F .
Uy=lim UPy (yeD) (310)

n-»rw

I

exists uniformly for # in any finite interval. Since D is dense in £ and
since we have (3:5), we see that the limit U exists for all yeZ and that
U, satisfies (1-1)—(1-3). Hence, by letting #—>oo in (3-6), we obtain

[/7‘),__‘}1/2-5“(/',‘4}’{[5, J’CD. (3 11)
o Jo

4. Srone’s theorem. 1f E is a Hilbert spaée and if 7/, is, for any #2>0,
a unitary operator, then A= —id4 (i=+~'—1) is self-adjoint and
\ U,:j exp (7)dE(2), where H=s AEC). O (4-1)
This theorem due to M. H. Stone may be obtained as follows®. Put L;'_,
=07'=U* for 1 2.0, then {U,}, —o <2< o, isa one-parameter group
of umtar) operators stronﬁlv continuous in £  Thus it is easy to see,’ by

(1-5), : -

’%%::’HU,:{U,H;; for xeD, —o <t< oo  (L-5)
Hence, if z, J’ED, v | ,

' 1 ad 1 a ,
)=y G ) = (g G Vo) = e B, (42)

which shows that A is a .symmetric operator. We proved in 2 that
R(H+il)=E ((1-7)) by letting ¢t — oo. Letting /— - o>, similar argu- -
ment shows that R(/H—3il)=ZF also. Therefore the Cayley transform of
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H is unitary and hence A is self-adjoint. Let A= {midE(l) be its spectral

resolution, then, as in (3.9), Lbz([—ré“’A)“ and‘ hence
AlL,=n(l,—1) =’/z((;[—z'/z"‘H)‘1—[>=jwn((1 —z'lu‘_‘)’l-e I)a'E(l)
::jmz}( L—22n=1) dE(R). | |

Hence

Uwx=lim exp (24 )x= Iimj‘mexp<tz'2("l‘ —z'Z/z")")le(/'.):c
n-» 0 \ .

| =rc3<p (iAt)dE(2) x.

Mathematical Instifute,
Nagoya University.
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