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Abstract. Minhyong Kim defined the Selmer variety associated with a curve X over
a number field, which is a non-abelian analogue of the Qp-Selmer group of the Jacobian
variety of X. In this paper, we define a torsion analogue of the Selmer variety. Recall that
Mazur’s control theorem describes the behavior of the torsion Selmer groups of an abelian
variety with good ordinary reduction at p in the cyclotomic tower of number fields. We give a
non-abelian analogue of Mazur’s control theorem by replacing the torsion Selmer group by a
torsion analogue of the Selmer variety.

1. Introduction. Let p be a rational odd prime. The Selmer group of a p-adic Galois
representation is an important arithmetic invariant. A typical example is the Selmer group
attached to the p-adic Tate module of an elliptic curve. Let E be an elliptic curve over a
finite number field F . For any algebraic extension M of F , the p-Selmer group Selp(E,M)

is defined to be a subgroup of the first Galois cohomology H 1(M,E[p∞]) with certain local
conditions. Here, E[p∞] is the abelian group of p-power torsion points of E(F). The p-
Selmer group Selp(E,M) contains the information of the Mordell–Weil group and the Tate–
Shafarevich group of E/M , that is, there exists the following exact sequence:

0→ E(M)⊗Z Qp/Zp → Selp(E,M)→ Sh(E/M){p} → 0 .

In the 1970’s, Barry Mazur studied the behavior of Selmer groups Selp(E, F
cyc
n ) for the n-th

layer of the cyclotomic Zp-extension F
cyc∞ of F . We denote the Galois group of the extension

F
cyc∞ /F

cyc
n by �n. Then, he proved the following theorem:

THEOREM 1.1 ([18, Proposition 6.4]). Let E be an elliptic curve over F . Let F cyc
∞ /F

be the cyclotomic Zp-extension of F and F
cyc
n /F the n-th layer of F

cyc
∞ /F . Assume that E

has good ordinary reduction at all primes over p. Then, the kernel and the cokernel of the
restriction map:

Resn : Selp(E, F
cyc
n )→ Selp(E, F

cyc
∞ )�n

are finite groups for each n and those orders are bounded independently of n.

The p-Selmer group of an elliptic curve is generalized by Bloch and Kato for any p-adic
representation of GF called the Bloch–Kato Selmer group (cf. [1, Definition 5.1]). Theo-
rem 1.1 is generalized to the Bloch–Kato Selmer group (cf. [20, Theorem 2.4]). One of the
main aims of this paper is to give an analogue of Theorem 1.1 for a non-abelian generaliza-
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tion of the Bloch–Kato Selmer group, by defining a torsion analogue of the Selmer variety
introduced by Minhyong Kim (cf. [11]).

Let X be a smooth curve over a finite number field F and πun
1 (X) the unipotent etale

fundamental group of X (cf. [11, Section 2]). The group πun
1 (X) is a Tannakian fundamental

group, which is a pro-unipotent and a pro-algebraic group over Qp. Minhyong Kim consid-
ered the following functor:

H 1(F, πun
1 (X)) : (Qp-algebras)−→ (P-Sets)

R �−→H 1
cont(Gal(F/F), πun

1 (X)(R))

and defined the subfunctor H 1
f (F, πun

1 (X)) of H 1(F, πun
1 (X)) as in the definition of the

Bloch–Kato Selmer group. These functors are representable and H 1
f (F, πun

1 (X)) is called
the Selmer variety associated with X. Here, (P-Sets) is the category of pointed sets (see [16,
p. 26] for the definition of pointed sets). Minhyong Kim used the Selmer variety for a proof
of the Mordell conjecture for certain special case (e.g. proper smooth curves with CM Ja-
cobians). Note that if X is an elliptic curve E, then the group πun

1 (X)(R) is isomorphic to
TpE ⊗Zp R for any Qp-algebra R. Thus, the Selmer variety is an analogue of the Qp-Selmer
group. Therefore, it loses important information such as the Tate–Shafarevich group which
appears only in torsion coefficient Selmer groups.

We summarize our aims of this paper. Let R be a finite flat commutative Zp-algebra. We
denote by Rmon the monoid associated to the multiplicative structure of the ring of R.

(i) Since a morphism of (P-Sets) does not have a natural notion of the cokernel as in
the case of the category of R-modules ModR , we will define the subcategory (Rmon-
P-Sets) of (P-Sets) containing ModR . Further, we will define the notion of “the p-
exponent of the cokernel” in the category (Rmon-P-Sets) which coincides with the
p-exponent of the cokernel in ModR .

(ii) We will define H 1
f (F, g≤m(X)R/(pr ),a) a torsion analogue of the Selmer variety as

an object of (Rmon-P-Sets).
(iii) We will establish a control theorem for H 1

f (F
cyc
n , g≤m(X)R/(pr ),a) when the n-th

layers F
cyc
n of the cyclotomic Zp-extension F

cyc∞ /F vary.

Here, g≤m(X)R/(pr),a is the set of R/(pr )-valued points of an algebraic group g≤m(X)∗,a over
Zp whose Lie algebra is canonically isomorphic to the graded Lie algebra g≤m(X) associated
with the pro-p fundamental group of X (cf. Definition 4.1, Definition 7.1 and the beginning
of Subsection 7.2). The main theorem of this paper is as follows:

MAIN THEOREM (Theorem 7.7). Let X be a smooth curve over Q and F a finite
abelian number field with the Galois Group � := Gal(F/Q). Let p be an odd prime and m a
positive integer smaller than p − 1. Assume the following conditions:

(a) The field F is a totally real number field such that the completion Fv of F at v is
linearly disjoint from Qp(μp) over Qp for each prime v of F over p. Furthermore,
the order of � is prime to p.

(b) The curve X is isomorphic over Q to one of the followings:
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(i) The projective line over Q minus finite Q-rational points.
(ii) An elliptic curve over Q with good ordinary reduction at p minus the origin.
(iii) A proper smooth curve over Q whose Jacobian variety is isogenous to a product

of elliptic curves with good ordinary reduction at p satisfying the condition (dist)
(see Definition 2.7 for the definition of (dist)).

Then, for any character χ ∈ �̂ := Hom(�,Qp
×
) such that the restrictions of χ and χ2 to

the decomposition group �p of � at p are non-trivial, the p-exponents of the kernel and the
cokernel of the restriction map

Resm,〈χ 〉
n,r : H 1

f (F
cyc
n , g≤m(X)Zp [χ]/(pr),a)

〈χ 〉 → H 1
f (F

cyc
∞ , g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉,�n

are finite and bounded independently of n and r . Here, Zp[χ] is a Zp-algebra defined by
Zp[χ] := Zp[χ(σ)| σ ∈ �] and (∗)〈χ 〉 is the χ-component of (∗) (cf. Definition 3.6).

Actually, we will show a result stronger than the above. That is, we will define the notion
controlled for the set of morphisms of Zp[χ]mon-P-sets (cf. Definition 3.12). Then, we show

that {Resm,〈χ 〉
n,r }n,r≥0 is controlled.

1.1. Notation. In this paper, we denote a rational odd prime by p. For a field K , we
denote a separable closure of K by K and the Galois group Gal(K/K) of K by GK . When K

is a local field, we denote the inertia group of GK by IK . Let F be a finite number field. We
denote by F

cyc
∞ /F the cyclotomic Zp-extension of F , by F

cyc
n the n-th layer of the extension

F
cyc
∞ /F and by �n the Galois group of F

cyc
∞ /Fn. Let � be a finite set of primes of F . We

define F� to be the maximal extension of F unramified outside �. For an algebraic extension
L of F , we denote by �L the set of primes of L over elements of �. For a rational prime p,
we denote the set of primes of F over p by �F,p . For a finite prime v of L, we also denote
by v the restriction of v to F by abuse of notation. For a field K and an algebraic extension L

of K , we denote the i-th continuous Galois cohomology of a topological Gal(L/K)-group G
by Hi(L/K,G). In this paper, the action of Gal(L/K) on G implies a group homomorphism
a : Gal(L/K) → Aut(G) and we denote a(σ)(g) by σ g for any σ ∈ Gal(L/K) and for
any g ∈ G. If L is a separable closure of K , we denote Hi(L/K,G) by Hi(K,G). For a
group G, we denote by G(m) the descending central series of G, that is, G(m) is defined by
G(1) := G , G(m+1) := [G(m),G]. For an abelian group D, we denote the set of p-power
torsion elements (resp. pr -torsion elements) by D{p} (resp. D[pr ]).

Acknowledgments. The author would like to thank Professor Tadashi Ochiai for reading this paper
carefully and valuable discussions (especially on the suggestion for the inductive argument to reduct the
proof to the lower degree case). He also would like to thank the referee for valuable suggestions.

2. The Bloch–Kato Selmer group and the Selmer variety.
2.1. Preparation for the Bloch–Kato Selmer group. Let p be an odd prime and F

a finite number field. Let T be a free Zp-module of finite rank with a continuous action of
GF . We assume that the action of GF on T is unramified at almost all primes v of F . In
other words, for almost all v, the inertia group Iv at v acts on T trivially. Let � be a finite set
of primes of F which contains �F,p and ramified primes for T . We denote the GF -module
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T⊗ZpQp (resp. T⊗ZpQp/Zp) by V (resp. A). Then, we define the Bloch–Kato Selmer group
for V (resp. T , A) as a subgroup of the first Galois cohomology H 1(F, V ) (resp. H 1(F, T ),
H 1(F,A)).

DEFINITION 2.1. (cf. [1, Definition 5.1]). Let L be a finite extension of F .

(1) For any finite prime v of L, we define the finite part H 1
f (Lv, V ) of H 1(Lv, V ) as

follows:

H 1
f (Lv, V ) :=

{
Ker

(
H 1(Lv, V )→ H 1(Lur

v , V )
)

, if v � p ,

Ker
(
H 1(Lv, V )→ H 1(Lv, V ⊗Qp Bcrys)

)
, if v | p .

Here, Bcrys is a ring of p-adic periods defined by Fontaine (cf. [4, Section 2.3]).
(2) For any finite prime v of L, we define the finite part H 1

f (Lv, T ) of H 1(Lv, T ) by

ι−1(H 1
f (Lv, V )) where ι : H 1(Lv, T ) → H 1(Lv, V ) is the canonical morphism in-

duced by the inclusion T ↪→ V .
(3) For any finite prime v of L, we define the finite part H 1

f (Lv,A) of H 1(Lv,A) by

pr(H 1
f (Lv, V )) where pr : H 1(Lv, V ) → H 1(Lv,A) is the canonical morphism in-

duced by the projection V → A.
(4) Let D be a GF -module V (resp. T , A). We define the Bloch–Kato Selmer group

Hf (L,D) as follows:

H 1
f (L,D) := Ker

⎛
⎝Res�L : H 1(L�L/L,D)→

∏
v∈�L

H 1(Lv,D)

H 1
f (Lv,D)

⎞
⎠ .

REMARK 2.2. The definition of the Bloch–Kato Selmer group does not depend on �.
More precisely, for another finite set �′ of primes of F which contains �, the restriction map
H 1(L�′L/L,D)→ H 1(L�L/L,D) induces the isomorphism Ker(Res�′L)

∼−→ Ker(Res�L).

Let L′/F be a subextension of L/F . Then, the restriction map of Galois cohomology
H 1(L′, A)→ H 1(L,A) induces a morphism from H 1

f (L′, A) to H 1
f (L,A).

Next, we recall two control theorems for the Bloch–Kato Selmer group. For any finite
extension K of Qp and p-adic representation V ′ of GK , we define Dcrys,K(V ′) = Dcrys(V

′) to
be H 0(K, V ′ ⊗Qp Bcrys) and ϕ is an endomorphism on Dcrys,K(V ′) induced by the Frobenius
endomorphism on Bcrys (cf. [4, Section 2.3]).

THEOREM 2.3 ([20, Theorem 2.4]). Under the setting fixed at the beginning of Sub-
section 2.1, the following statements hold:

(1) Assume that H 0(F
cyc
n , V ) = 0 for all n. Then, the kernel of the restriction map:
Resn : H 1

f (F
cyc
n ,A)→ H 1

f (F
cyc
∞ , A)�n

is finite and bounded independently of n.
(2) Assume the following conditions at each prime v of F cyc

∞ over p :
(a) The p-adic representation V is ordinary at the prime of F lying under v.
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(b) Let Fil•v(V ) be the ordinary filtration of V at v. Then, we have

Dcrys,F cyc
n,v

(V /Fil1v(V ))ϕ=0 = 0,

Dcrys,F cyc
n,v

((Fil1v(V ))∗(1))/(ϕ − 1)(Dcrys,Fn,v ((Fil1v(V ))∗(1))) = 0

for each n.
(c) The following two groups

H 0(F
cyc∞,v, (Fil1v(T ))∗ ⊗Qp/Zp(1)) , H 0(F

cyc∞,v, T /Fil1v(T )⊗Qp/Zp)

are finite.
Then, the cokernel of the restriction mapResn is a finite group whose order is bounded
independently of n.

REMARK 2.4. Let 0 → V1 → V → V2 → 0 be an exact sequence of Qp[GF ]-
modules. Then V satisfies the condition (a), (b) and (c) of Theorem 2.3 (2) if and only if V1

and V2 satisfy that three conditions.

THEOREM 2.5. Assume that F is an abelian number field with the Galois group � =
Gal(F/Q). Let χ be an element of �̂. Assume that the order of � is prime to p and the
restriction of χ to the decomposition group at p is non-trivial. Then, the restriction map

Res(χ)
n : H 1

f (F
cyc
n ,Zp[χ] ⊗Qp/Zp(1))(χ)→ H 1

f (F
cyc
∞ ,Zp[χ] ⊗Qp/Zp(1))(χ),�n

has the finite kernel and the finite cokernel whose orders are bounded independently of n. Here
H 1

f (F
cyc
n ,Zp[χ]⊗Qp/Zp(1))(χ) is defined to be {x ∈ H 1

f (F
cyc
n ,Zp[χ]⊗Qp/Zp(1))|σ(x) =

χ(σ)x for all σ ∈ �}.
PROOF. We denote by Res′n the restriction map

H 1
f (F

cyc
n ,Zp[χ] ⊗Qp/Zp(1))→ H 1

f (F
cyc∞ ,Zp[χ] ⊗Qp/Zp(1))�n .

First, we remark that the kernel of Res′n is finite and bounded independently of n because
the Galois representation Zp(1) satisfies the condition in Theorem 2.3 (1). Therefore, it is

sufficient to show that the cokernel of Res(χ)
n is finite and bounded independently of n. For

any prime v ∈ �F
cyc
n ,p of F

cyc
n we define Bv to be H 1

cont(F
cyc
∞ /F

cyc
n ,Qp/Zp) ⊗Zp Zp[χ] =

�PD
n ⊗Zp Zp[χ]. Here, PD implies the Pontrjagin dual of topological abelian groups. Ac-

cording to [21, Lmma 7.3.1], there exists a surjection⊕v∈�
F

cyc
n ,p

Bv � Cok(Resn
′). Hence, it

is sufficient to show {x ∈ ⊕v∈�
F

cyc
n ,p

Bv | σ(x) = χ(σ)x for all σ ∈ �} = 0. Let �p be the

decomposition group of � at p. Then,⊕v∈�F,pBv is canonically isomorphic to Qp[χ]/Zp[χ]
[�/�p] ⊗�PD

n = lim−→r
Z[χ]/(pr)[�/�p] ⊗�PD

n as a Zp[�]-module. Further, since F
cyc∞ /F

is the cyclotomic Zp-extension, any prime of F above p ramifies in F
cyc∞ (cf. [19, Chapter XI,

Proposition 11.1.1, (2)]). Hence, �F
cyc
n ,p is canonically identified with �F,p. Therefore, it is

sufficient to show that the χ component of Qp[χ]/Zp[χ][�/�p] vanishes. Note that since

the order of �p is prime to p, the character �p
χ−→ Zp[χ]× → (Zp[χ]/(p))× is also non-

trivial. Thus, we have Zp[χ]/(p)[�/�p](χ) = 0. Therefore, (Zp[χ][�/�p] ⊗ Qp/Zp)(χ)
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has no non-trivial p-torsion element. Since any element of this abelian group is p-torsion, the
vanishing of p-torsion elements implies the vanishing of (Zp[χ][�/�p] ⊗Qp/Zp)(χ). This
completes the proof of the Theorem. �

REMARK 2.6.
(1) The Galois representation Zp(1) does not satisfy the condition (c) of Theorem 2.3

(2). On the other hand, if m is a positive integer greater than 1 and if F is a totally
real number field, then the GF -module Zp(m) satisfies the conditions (a), (b), (c) of
Theorem 2.3 (2).

(2) Let r be a positive integer. If T satisfies assumptions of Theorem 2.3 (2), then the
orders of the kernel and cokernel of the canonical map Resn,r : H 1

f (F
cyc
n ,A)[pr ] →

H 1
f (F

cyc∞ , A)�n[pr ] are bounded independently of n and r .

We introduce the condition (dist) which is needed to state our main result.

DEFINITION 2.7. Let F be a finite number field. For a finite set of elliptic curves
{Ej }j∈J over F , we define the condition (dist) as follows:
(dist) For each element v ∈ �F,p, the Zp[GFv ]-modules {(TpEj )

s.s.}j∈J are not isomorphic
to each other. Here, for each Zp[GFv ]-module T , we denote by T s.s. the semi-simplification
of T .

LEMMA 2.8. Let F be a finite number field and {Ej }j∈J a finite set of elliptic curves
overF having good ordinary reduction at all primes overp. We suppose that {Ej }j∈J satisfies

the condition (dist). Put T := ∧2
(
∏

j∈J TpEj ). Then, any Jordan–Hölder component of T

is isomorphic to Zp(1) or satisfies the conditions (a), (b), (c) of Theorem 2.3. In particular,
any Jordan–Hölder component T ′ of T satisfies the conditions (a), (b), (c) of Theorem 2.3
(2) if and only if T ′ does not contain Zp(1).

PROOF. First, we remark T ∼= Zp(1)J ⊕⊕j �=kTpEj ⊗Zp TpEk. Therefore, it is suffi-
cient to check the conditions of Theorem 2.3 (2) for Tj,k := TpEj ⊗Zp TpEk . The condition
(a) follows from the definition of the good-ordinarity of Ej . We show that Tj,k satisfies the
conditions (b) and (c) of Theorem 2.3. Let v be an element of �F

cyc∞ ,p. Then, since Ei has
ordinary reduction at v, the semi-simplification of TpEj as a Zp[GFv ]-module is isomorphic
to χj ⊕ χ−1

j χcyc for some unramified character χj and the cyclotomic character χcyc. Since
Ej has good reduction, the image of χj is not contained in the set of the roots of the unity.
By definition, χj does not coincide with χk if j �= k. Thus, 1 and pf are not roots of the
characteristic polynomial of ϕf on Dcrys,F cyc

n,v ,v(Tj,k ⊗Zp Qp). Here, f is the residue degree
of the extension Fv/Qp. Therefore, Tj,k satisfies the (b) of Theorem 2.3. Since χj |G

F
cyc∞,v

is

non-trivial for each j , any Jordan–Hölder components if Tj,k and T ∗j,k(1) are not isomorphic
to the trivial representation as Zp[G(F

cyc∞ )v
]-module. Thus, Tj,k satisfies the condition (c) of

Theorem 2.3. �

We also define a similar condition as Definition 2.7 for Galois representations of local
fields:



A CONTROL THEOREM FOR THE TORSION SELMER POINTED SET 181

DEFINITION 2.9. Let K be a finite extension of Qp and O a finite flat Zp-algebra.
For a continuous GK -representation T over a free O-module of finite rank, we define the
condition (LCO) as follows:
(LCO) The GK -module T ⊗Zp Qp is crystalline. Furthermore, there exists a finite set of
unramified characters of infinite order {χi : GK → O×}i∈I satisfying:

(i) There exists an exact sequence of GK -modules

0→ ⊕i∈IO(χi)(1)→ T →⊕i∈IO(χ−1
i )→ 0

where O(χi) is the free O-module of rank 1 equipped with the continuous action of
GK via χi .

(ii) Let {ni}i∈I be a set of non-negative integers indexed by I . Then, the character
⊗i∈I χni

i coincides with some χj , j ∈ I if and only if ni �= 0 for all i �= j and
nj = 1.

REMARK 2.10. The set of characters {χi}i∈I is uniquely determined by the Galois
representation T because⊕i∈IO(χ−1

i ) is the maximal unramified quotient of T .

EXAMPLE 2.11. Let F be a finite number field and v a finite prime of F over p.

(1) Let {Ej }j∈J be a finite set of elliptic curves over F which have good ordinary reduc-
tion at v satisfying (dist). Then there exists an unramified character ξj on GFv for
each j such that the semi-simplification TpEs.s

j of the Zp[GFv ]-module TpEj is iso-

morphic to Zp(ξj )(1) ⊕ Zp(ξ−1
j ). Then the Zp[GFv ]-module (⊗i∈I TpEi) satisfies

(LCO) where K = Fv , O = Zp and {χi}i∈I = {ξj }j∈J .
(2) Suppose that F is a CM-field which is Galois over Q and that p is unramified in

F/Q. Let � ⊂ Gal(F/Q) be a CM-type of F/Q and S := {σ−1(v)|σ ∈ �}. We also
suppose that the restriction v+ of v to F+ splits in F/F+ where F+ is the maximal
totally real subfield of F . Then we have a natural isomorphism OF+ ⊗Z Zp

∼−→
⊕w∈SOFw . Let A be an ([F : Q]/2)-dimensional abelian variety over F equipped
with a complex multiplication by OF of type � (cf. [15, Cahpter 1, Section 3, p.13]).
We denote by

α : A×F → F×

the CM-character attached to A (cf. [15, Chapter 4, Theorem 1.1]). It is known that
the restriction αv of α to F×v is an unramified character. Hence αv induces an unram-
ified character

α̃v : GFv → (OF ⊗Z Zp)× → ⊕w∈SO×Fw

∼= (OF+ ⊗Z Zp)× .

Then TpA satisfies (LCO) where K = Fv , O := OF+ ⊗Z Zp and {χi}i∈I = {α̃v}.
2.2. Review of the Selmer variety. We recall the definition of the Selmer variety.

Let X be a connected smooth curve over F and x̄ an F -valued point of X. Let � be a finite
set of primes of F containing all bad primes for X and �F,p. Let πet

1 (X ⊗F F , x̄) be the
etale fundamental group of X ⊗F F . Then, the category of the unipotent representation of
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πet
1 (X ⊗F F , x̄) on finite dimensional vector spaces over Qp is a neutral Tannakian category

over Qp (for the definition of the Tannakian category, see [22, Chapter III, 3.2.1]). We denote
the Tannakian fundamental group of this category by πun

1 (X ⊗F F , x̄). The group scheme
πun

1 (X ⊗F F , x̄) is pro-algebraic and pro-unipotent. We denote by πun
1 (X ⊗F F , x̄)m the

quotient πun
1 (X ⊗F F , x̄)/πun

1 (X ⊗F F , x̄)(m). The group scheme πun
1 (X ⊗F F , x̄)m is a

unipotent algebraic group over Qp.

DEFINITION 2.12 (cf. [10, p.654, line 13-14], [11, p.120, line 1-7]). Let L be a finite
extension of F contained in F� . Let v be an element of �L and m a positive integer.

(1) We define the functor H 1(F�/L,πun
1 (X⊗F F , x̄)m) from the category ofQp-algebras

to the category of pointed sets to be

H 1(F�/L, πun
1 (X ⊗F F , x̄)m)(R) := H 1(Gal(F�/L), πun

1 (X ⊗F F , x̄)m(R))

for each Qp-algebra R. Here, the topology of πun
1 (X ⊗F F , x̄)m(R) is the usual

p-adic topology of finite dimensional Qp-affine spaces (cf. [10, Section 1, p.632]).
Similarly, we define H 1(Lv, π

un
1 (X ⊗F F , x̄)m) (resp. H 1(Lur

v , πun
1 (X ⊗F F , x̄)m))

by replacing Gal(F�/L) by GLv (resp. GLur
v

).
(2) We define the finite part H 1

f (Lv, π
un
1 (X⊗F F , x̄)m) to be the kernel of the following

morphism if v does not divide p (resp. divides p):

H 1(Lv, π
un
1 (X ⊗F F , x̄)m)→ H 1(Lur

v , πun
1 (X ⊗F F , x̄)m)

(resp. H 1(Lv, π
un
1 (X ⊗F F , x̄)m)→ H 1(Lv, π

un
1 (X ⊗F F , x̄)m ⊗Qp Bcrys)) .

Here, πun
1 (X⊗F F , x̄)m⊗Qp Bcrys is the base change of πun

1 (X⊗F F , x̄)m from Qp

to Bcrys and the action of GFv on πun
1 (X⊗F F , x̄)m⊗Qp Bcrys is the diagonal action.

(3) We define the functor H 1
f (L, πun

1 (X ⊗F F , x̄)m) from the category of Qp-algebras
to the category of pointed sets by the following cartesian diagram of functors:

H 1
f (L, πun

1 (X ⊗F F , x̄)m) ��

��

�

H 1(F�/L, πun
1 (X ⊗F F , x̄)m)

��∏
v∈�L

H 1
f (Lv, π

un
1 (X ⊗F F , x̄)m) ��

∏
v∈�L

H 1(Lv, π
un
1 (X ⊗F F , x̄)m) .

The definition of H 1
f (L, πun

1 (X ⊗F F , x̄)) is an analogue of the Qp-Selmer group.

3. (Rmon ×�)-P-sets.
3.1. Definitions. First, we define the category of M-P-sets for any monoid M.

DEFINITION 3.1.

(1) For any monoid M, we define an M-P-set to be a pair (E, 〈 〉) where E is a pointed
set and 〈 〉 : M → Endpt.sets(E) a morphism of monoids. A morphism between
M-P-sets is a morphism between pointed sets compatible with actions of M.
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(2) Let (E, 〈 〉) be an M-P-set. If E is an abelian group and 〈m 〉 : E → E an endo-
morphism of the abelian group E for any m ∈ M, we call (E, 〈 〉) an M-abelian
group.

Usually, we denote an M-P-set (E, 〈 〉) by E for short. Let R be a finite flat extension of
Zp and Rmon the multiplicative monoid obtained by forgetting the additive structure of the ring
R. In the rest of this paper, we mainly consider the category of Rmon-P-sets or (Rmon ×�)-
P-sets where � is a finite abelian group.

REMARK 3.2. Let E be an Rmon-P-set. In Definition 3.1 (2), we do not assume the
compatibility of the abelian group structure of E with 〈 〉, that is, the natural map Z →
Endab.gp.(E) does not need to coincides with the composition Z ↪→ R

〈 〉−→ Endab.gp.(E).
We introduce a typical example of Rmon-abelian group. For a positive integer n, we define
〈 〉n : R → Endab.gp(R) by 〈 a 〉n z := anz for z ∈ R. Then, the pair (R, 〈 〉n) is an Rmon-
abelian group. If n is greater than 1, then the action of Rmon on R is not compatible with the
additive group structure of the ring R.

EXAMPLE 3.3.

(1) Let G be a topological group and A a topological group with a continuous left ac-
tion of G. Here, a continuous action of G on A is a group homomorphism α : G→
Auttop.gp(A) and denote α(g)a by ga. Moreover, we assume that A has an action
of Rmon which commutes with the action of G, that is, A is equipped with the mor-
phism of monoids β : Rmon → Endtop.gp(A) which commutes with the action of G

on A. We call such A a topological (Rmon,G)-group. Then, for i = 0, 1 (resp. for
any non-negative integer i if A is abelian), the i-th continuous group cohomology
Hi

cont(G,A) has an action of Rmon induced by β. Here, we recall only the defini-
tion of the first cohomology (see [19, p. 12] for the definition of Hi for general i).
Let Z1

cont(G,A) be the set of continuous 1-cocycles, namely, Z1
cont(G,A) := {c ∈

Mapcont(G,A) | c(gh) = c(g) gc(h)}. For c, c′ ∈ Z1
cont(G,A), we say that c and c′

are equivalent if there exists a ∈ A such that a−1c(g) ga = c′(g) for any g ∈ G.
We define H 1

cont(G,A) to be the quotient of Z1
cont(G,Z) by the above equivalence

relation.
(2) Next, we give an example of a morphism between Rmon-P-sets. Let A,B be topolog-

ical (Rmon,G)-groups, f : A→ B a continuous G-homomorphism commuting with
actions of Rmon. We call such f a morphism between topological (Rmon,G)-groups.
Then, f induces a morphism between Rmon-P-sets Hi

cont(G,A)→ Hi
cont(G,B). We

also denote this morphism by f .
(3) Let A,B and C be topological (Rmon,G)-groups and let 1 → A → B → C → 1

be an exact sequence of topological (Rmon,G)-groups. Further, we assume that there
exists a set theoretical continuous section C → B of f . Then, we have a long exact
sequence of Rmon-P-sets
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1→ H 0
cont(G,A)→ H 0

cont(G,B)→ H 0
cont(G,C)→ H 1

cont(G,A)

→ H 1
cont(G,B)→ H 1

cont(G,C) .

If A is contained in the center of B, then the sequence above is extended to the degree
2 term:

1→ H 0
cont(G,A)→ H 0

cont(G,B)→ H 0
cont(G,C)→ H 1

cont(G,A)

→ H 1
cont(G,B)→ H 1

cont(G,C)→ H 2
cont(G,A) .

These facts follows from general theory of non-abelian group cohomology (cf. [24,
Chapter VII, Appendix]).

By using the action of Rmon, we define p-exponents of cokernels in the category of
Rmon-P-sets. This is the key of the formulation of our control theorem for the torsion Selmer
pointed set.

DEFINITION 3.4. Let E,E′ be Rmon-P-sets and f : E → E′ a morphism of Rmon-P-
sets. We say that the cokernel of f has a finite p-exponent if inf{n ∈ Z≥0| f (E) ⊃ 〈pn 〉E′}
exists. We define the p-exponent of the cokernel of f to be inf{n ∈ Z≥0| f (E) ⊃ 〈pn 〉E′}
(resp. infinity) if the cokernel of f has a finite p-exponent (resp. does not have a finite p-
exponent). We denote the p-exponent of the cokernel of f by e(Cok(f )).

The p-exponents of the cokernels satisfy the chain rule stated below.

LEMMA 3.5. Let f : E1→ E2 and g : E2 → E3 be morphisms ofRmon-P-sets having
finite p-exponents of the cokernels. Then, we have the inequality

e(Cok(g ◦ f )) ≤ e(Cok(f ))+ e(Cok(g)) .

PROOF. It is easily checked by definition. �

Finally, we define χ-components for (Rmon×�)-P-sets where � is a finite abelian group.

DEFINITION 3.6. Let � be a finite abelian group and χ : �→ R× a character. Then,
for any (Rmon ×�)-P-set E, we define the χ-component E〈χ 〉 of E to be {e ∈ E| 〈 σ 〉 e =
〈χ(σ) 〉 e for all σ ∈ �}.

By definition, E〈χ 〉 is an Rmon-P-set.
3.2. The admissible sequence. In this subsection, we define a special class of se-

quences called admissible sequences.

DEFINITION 3.7. Let M be a monoid and E an M-abelian group. An E-P-set E′
is an M-P-set equipped with an action of E. Namely, E′ is equipped with a morphism of
monoids ν : E → EndSets(E

′) satisfying 〈 a 〉 (ν(e)(e′)
) = ν(〈 a 〉 e)(〈 a 〉 e′) for all a ∈M,

e ∈ E and e′ ∈ E′. We denote ν(e)(e′) by ee′ for any e ∈ E and for any e′ ∈ E′. We say that
E′ is a free E-P-set if the action of E on E′ is free.
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We remark that any M-abelian group E has a natural structure of a free E-P-set. In this
case, E acts on itself by translations.

DEFINITION 3.8. Let M be a monoid containing Rmon and E• = [1→ E1 f−→ E2 g−→
E3] a sequence of M-P-sets such that g ◦ f = 1.

(1) We say that the sequence E• is admissible if the following conditions hold:
(a) The M-P-set E1 is an M-abelian group.
(b) The M-P-set E2 is a free E1-P-set and f a morphism of E1-P-sets. Further, g

sends any two elements contained in the same E1-orbit to the same element.
(c) There exists a non-negative integer M satisfying the following condition. Let

e1, e2 be elements of E2 such that g(e1) = g(e2). Then, there exists e ∈ E1

such that e 〈pM 〉 e1 = 〈pM 〉 e2.
We call the infimum of M in (c) the gap of E• and denote this by gap(E•).

(2) Let F • = [1 → F 1 f ′−→ F 2 g ′−→ F 3] be another admissible sequence of M-P-sets.
The morphism of admissible sequences h• : E• → F • is the commutative diagram
of M-P-sets

1 �� E1 f
��

h1

��

E2 g
��

h2

��

E3

h3

��

1 �� F 1 f ′
�� F 2 g ′

�� F 3

such that h1 is a morphism between M-abelian groups and h2(e1e2) = h1(e1)h
2(e2)

for any e1 ∈ E1 and for any e2 ∈ E2.

We say that the sequence of M-P-sets

1→ E1→ E2→ E3→ 1

is exact and admissible if it is exact sequence of pointed sets and its first 4-terms is an admis-
sible sequence of M-P-sets.

First, we remark that (∗)〈χ 〉 preserves admissible sequences.

PROPOSITION 3.9. Let� be a finite abelian group andE• = [1→ E1 f−→ E2 g−→ E3]
an admissible sequence of (Rmon ×�)-P-sets.

(1) For any character χ : �→ R×, the sequence E•,〈χ 〉 = [1→ E1,〈χ 〉 → E2,〈χ 〉 →
E3,〈χ 〉] is an admissible sequence of Rmon-P-sets such that gap(E•,〈χ 〉) = gap(E•).

(2) Let us define Twχ−1(E1) to be E1 with the action of σ ∈ � defined by e �→
〈(χ−1(σ ), σ ) 〉 e. Assume that the group cohomology H 1(�, Twχ−1(E1)) is anni-
hilated by 〈pM 〉 for a positive integer M . Then, the p-exponent of the cokernel of
E2,〈χ 〉 → Im(g)〈χ 〉 is bounded by M + gap(E•).
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PROOF. First, we show (1) of Proposition 3.9. Let us check the conditions (a), (b) and
(c) of Definition 3.8. Since the action of each element of � on E1 is an endomorphism of the
abelian group E1, E1,〈χ 〉 is also an abelian group. Therefore, the condition (a) is satisfied.
For any ei ∈ Ei,〈χ 〉 and σ ∈ �, we have the equations

〈 σ 〉(e1e2) = (〈 σ 〉 e1)(〈 σ 〉 e2) = (〈χ(σ) 〉 e1)(〈χ(σ) 〉 e2) = 〈χ(σ) 〉(e1e2)

by the compatibility of the actions of � and E1 on E2. Since the action of E1,〈χ 〉 on E2,〈χ 〉
is induced by the action of E1 on E2, the freeness in the condition (b) is satisfied. Finally,
we check the condition (c). Let x, y be elements of E2,〈χ 〉 such that g(x) = g(y) and let
M := gap(E•). Then, by the definition of the admissibility, there exists z ∈ E1 satisfying
z 〈pM 〉 x = 〈pM 〉 y. It is sufficient to show that z ∈ E1,〈χ 〉. Let σ be an element of �.
Then, the following equations hold:

(1) 〈 σ 〉(z 〈pM 〉 x) = (〈 σ 〉 z) 〈pMχ(σ) 〉 x = 〈pM 〉(〈 σ 〉 y) = 〈pMχ(σ) 〉 y .

Therefore, by the equation (1), (〈χ(σ)−1σ 〉 z)(〈pM 〉 x) coincides with 〈pM 〉 y = z 〈pM 〉 x.
Since the action of E1 on E2 is free, we have 〈 σ 〉 z = 〈χ(σ) 〉 z.

Next, we show the assertion (2). Let x be elements of Im(g)〈χ 〉 and y ∈ E2 a lift of x.
If we put y ′ := 〈pgap(E•) 〉 y, then for any σ ∈ �, there exists a unique element zσ ∈ E1 such
that 〈 σ 〉 y ′ = zσ 〈χ(σ) 〉 y ′. By the definition of zσ , we have the following equations:

zστ 〈χ(στ) 〉 y ′ = 〈 στ 〉 y ′
= 〈 σ 〉(zτ 〈χ(τ) 〉 y ′) = (〈 σ 〉 zτ ) 〈χ(τ) 〉(zσ 〈χ(σ) 〉 y ′)
= (〈 σ 〉 zτ )(〈χ(τ) 〉 zσ )(〈χ(τσ) 〉 y ′) for any σ, τ ∈ � .

(2)

Define the map c : � → E1 by c(σ ) = 〈χ−1(σ ) 〉 zσ . Then, according to the equation
(2), the equality c(στ) = (〈(χ−1(σ ), σ ) 〉 c(τ )

)
c(σ ) holds for any σ, τ ∈ �. Hence, we

can regard the map c as a 1-cocycle valued in Twχ−1(E1). By assumption, there exists an
element w ∈ E1 such that (〈(χ−1(σ ), σ ) 〉w)w−1 = 〈pM 〉 c(σ ) for any σ ∈ �. This implies
that (〈 σ 〉w) 〈χ(σ) 〉w−1 = 〈pM 〉 zσ for any σ ∈ �. Define y ′′ to be w−1 〈pM 〉 y ′ =
w−1 〈pM+gap(E•) 〉 y. Then, we have

〈 σ 〉 y ′′ = (〈 σ 〉w)−1(〈(pM, σ) 〉 y ′) = (〈 σ 〉w)−1 〈pM 〉(zσ 〈χ(σ) 〉 y ′)
= (〈χ(σ) 〉w−1)(〈pM 〉 z−1

σ )(〈pM 〉 zσ )(〈pMχ(σ) 〉 y ′)
= 〈χ(σ) 〉(w−1 〈pM 〉 y ′) = 〈χ(σ) 〉 y ′′ for all σ ∈ � .

Therefore, y ′′ is contained in the χ-component of E2. By construction, g(y ′′) is equal to
〈pM+gap(E•) 〉 x. This completes the proof of the assertion (2). �

LEMMA 3.10. Let G be a profinite group. Let A,B,C be topological (Rmon,G)-

groups and 1 → A
f−→ B

g−→ C → 1 an exact sequence of (Rmon,G)-groups such that
f (A) is contained in the center of B. Assume that the morphism H 0(G,B) → H 0(G,C)

is surjective. Then, the sequence 1 → H 1
cont(G,A)

f−→ H 1
cont(G,B)

g−→ H 1
cont(G,C) is an

admissible sequence whose gap is equal to 0.



A CONTROL THEOREM FOR THE TORSION SELMER POINTED SET 187

PROOF. Since A is an abelian group, H 1
cont(G,A) is an Rmon-abelian group.

Let z (resp. z′) be an element of H 1
cont(G,B) (resp. H 1

cont(G,A)) and c : G → B (resp.
c′ : G → A) a representative of z (resp. z′). Then, the map G → B, g �→ (f ◦ c′(g))c(g)

is also a 1-cocycle because f (A) is contained in the center of B. We denote the cohomology
class defined by this cocycle by z′z. Since f : A → B commutes with actions of Rmon, the
action of H 1

cont(G,A) on H 1
cont(G,B) is compatible with actions of Rmon. By the assumption

of Lemma 3.10, f is injective. Recall that two elements of H 1
cont(G,B) have the same im-

age in H 1
cont(G,C) if and only if they are in the same H 1

cont(G,A)-orbit (cf. [25, Chapter I,
Section 5.7, Proposition 42]). Thus, the condition (b) and (c) of Definition 3.8 is satisfied for
M = 0. �

The following proposition is important for the proof of our Main Theorem.

PROPOSITION 3.11. Let M be a monoid containing Rmon, E•j = [1 → E1
j

fj−→
E2

j

gj−→ E3
j ] admissible sequences ofM-monoids for j = 1, 2 and h• : E•1 → E•2 a morphism

of admissible sequences. Let M be a positive integer greater than gap(E•1) and gap(E•2) (cf.
Definition 3.8).

(1) Assume that Ker h1 and Ker h3 are annihilated by 〈pM 〉. Then 〈p3M 〉 annihilates
Ker h2.

(2) Assume that the p-exponents of cokernels of h1, h3 and g1 are smaller than M (see
Definition 3.4 for the definition of the p-exponent of the cokernel). Then, the p-
exponent of the cokernel e(Cok(h2)) of h2 is smaller than 4M .

PROOF. Consider the following commutative diagram:

1 �� E1
1

f1
��

h1

��

E2
1

g1
��

h2

��

E3
1

h3

��

1 �� E1
2

f2
�� E2

2
g2

�� E3
2 .

Let us prove (1). Take an element x ∈ Ker h2. Since g1(x) ∈ Ker h3 and 〈pM 〉Ker h3 = 1,
we have 〈pM 〉 g1(x) = g1(〈pM 〉 x) = 1. Therefore, 〈pM 〉 x ∈ Ker g1. Since gap(E•1) < M

(cf. Definition 3.8 for the definition of gap(E•)), we can take y ∈ E1
1 such that f1(y) =

〈p2M 〉 x. Then, y is contained in Ker h1 because f2 is injective. Because 〈pM 〉Ker h1 is
trivial, we have 1 = f1(〈pM 〉 y) = 〈p3M 〉 x.

Let us prove (2). Take an element x of E2
2. By the assumption e(Cok(h3)) < M , we

can take a lift y ∈ E3
1 of 〈pM 〉 g2(x). Since e(Cok(g1)) < M , there exists a lift z ∈ E2

1 of
〈pM 〉 y. We have g2(h

2(z)) = 〈p2M 〉 g2(x) = g2(〈p2M 〉 x) by the commutativity of the
diagram. Then, we obtain an element w of E1

2 such that w(〈pM 〉h2(z)) = 〈p3M 〉 x by the
assumption gap(E•2) < M and by the condition (b) of Definition 3.8. On the other hand, we
can take v ∈ E1

1 such that h1(v) = 〈pM 〉w because e(Cok(h1)) < M . Since the image of
v 〈p3M 〉 z under h2 is equal to 〈p4M 〉 x, we have the conclusion of the proposition. �
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DEFINITION 3.12. Let J be an index set. Let {Ej }j∈J , {E′j }j∈J be sets of Rmon-P-
sets and {hj : Ej → E′j }j∈J a set of morphisms of Rmon-P-sets. We say that the set {hj }j∈J
is controlled with respect to the index set J if there exists a positive integer M satisfying the
following conditions:

(a) The action of 〈pM 〉 annihilates Ker hj for any j ∈ J .
(b) The morphisms hj : Ej → E′j have finite p-exponents of cokernels for all j ∈ J

bounded by M .
(c) For any j ∈ J and for any two elements x, x ′ ∈ Ej such that hj (x) = hj (x

′), we
have 〈pM 〉 x = 〈pM 〉 x ′.

COROLLARY 3.13. Let J be an index set. For each element j of J , let

E•1(j)= [1→ E1
1(j)

f1(j)−−−→ E2
1(j)

g1(j)−−−→ E3
1(j)]

(resp. E•2(j)= [1→ E1
2(j)

f2(j)−−−→ E2
2(j)

g2(j)−−−→ E3
2(j)] )

be an admissible sequence ofRmon-P-sets such that the set of the p-exponents of the cokernels
{e(Cok(g1(j)))}j∈J of g1(j) is bounded. Let h•(j) : E•1(j) → E•2(j) be a morphism of se-
quences ofRmon-P-sets. Moreover, if the set of gaps {gap(E•1(j)), gap(E•2(j))}j∈J is bounded
and if the families of morphisms {h1(j)}j∈J and {h3(j)}j∈J are controlled with respect to J ,
then the family of morphisms {h2(j)}j∈J is also controlled with respect to J .

PROOF. By assumption, there exists a positive integer M satisfying the following con-
ditions:

• M satisfies the conditions (a), (b) and (c) in Definition 3.12 for two families of mor-
phisms {h1(j)}j∈J and {h3(j)}j∈J .
• M is greater than gap(E•1(j)) and gap(E•2(j)) for any j ∈ J .

Then, we have 〈p3M 〉Ker h2(j) = 1 and e(Cok(h2(j))) < 4M for all j ∈ J by Proposi-
tion 3.11. Thus, the set {h2(j)}j∈J satisfies the conditions (a) and (b) of Definition 3.12. We
show that {h2(j)} satisfies the condition (c) of Definition 3.12.

Let us take x, x ′ ∈ E2
1(j) such that h2(j)(x) = h2(j)(x ′). Then, by assumption, we have

〈pM 〉 g1(j)(x) = 〈pM 〉 g1(j)(x ′). Hence, there exists z ∈ E1
1(j) such that z 〈p2M 〉 x =

〈p2M 〉 x ′. Since h2(j)(x) = h2(j)(x ′), the element h1(j)(z) is equal to 1. Thus, we have
〈pM 〉 z = 1. This implies that 〈p4M 〉 x = 〈p4M 〉 x ′. This completes the proof of the
corollary. �

REMARK 3.14. For the proof of the condition (c) of Definition 3.12, we do not need
to the boundedness of the p-exponents of the cokernels of {g1(j)}.

4. Unipotent groups associated with nilpotent Lie algebras. Let k be a field of
characteristic 0 and g a finite dimensional nilpotent Lie algebra over k. That is, g is finite
dimensional as a k-vector space and the central descending series of g becomes zero even-
tually. For any k-algebra R, we denote the Lie algebra g ⊗k R by gR . We define the map



A CONTROL THEOREM FOR THE TORSION SELMER POINTED SET 189

∗: gR × gR → gR by

(3) x ∗ y := log(exp(x) exp(y)) = x + y + 1

2
[x, y] + · · · =

∞∑
n=1

zn(x, y) .

Here, exp is the exponential map from g to the set of group like elements of the complete
universal enveloping algebra Û(gR) of gR , log the inverse map of exp and zn(x, y) a homo-
geneous Lie polynomial over Q with respect to x, y of degree n (cf. Campbell–Hausdorff’s
formula [23, Chapter IV, Section 8, p. 27 line 30]). For sufficiently large n, zn(x, y) vanishes
for any x, y ∈ gR because the Lie algebra g is nilpotent. Therefore, the infinite sum (3) is
actually a finite sum. By definition, the product ∗ is associative and 0 ∗ x = x ∗ 0 = x for any
x ∈ gR . Moreover, for any x ∈ gR, we have x ∗ (−x) = 0. Therefore, the pair (gR, ∗) forms
a group.

DEFINITION 4.1.

(1) For any k-algebra R, we denote the group (gR, ∗) by gR,a . If R = k, then we denote
gk,a by ga . We sometimes identify gR with gR,a as sets.

(2) Let d be the dimension of g over k. Then, for any topological k-algebra R, we define
the topology on gR,a = gR

∼= Rd to be the product topology of R.

REMARK 4.2. We remark followings:

(1) If g is an abelian Lie algebra, then the group structure of ga coincides with the additive
group structure of the k-vector space g. Indeed, we have x ∗ y = x + y because
zn(x, y) = 0 for any n > 1.

(2) Let p be a rational prime. Then, for any positive integer n less than p, the coefficients
of the homogeneous Lie polynomial zn(x, y) is not divided by p (cf. loc. cit.).

(3) Let k0 be a subring of k. Assume that there exists a nilpotent Lie algebra g0 over k0

such that g0 ⊗k0 k = g and that g0 is a free k0-module. Denote the nilpotency of g
by m. Then, according to Remark 4.2 (2), if m! is a unit of k0, then the product ∗ is
defined on g0. In other words, for any x, y ∈ g0, x ∗ y is contained in g0.

For fixed g, the correspondence R �→ gR,a defines a functor from k-algebras to the
category of groups. We denote this functor by g∗,a . Since g is a finite dimensional vector
space, g∗,a is represented by a k-scheme of finite dimensional. More precisely, the functor
g∗,a is represented by the scheme Spec(Sym•(g∗)) where Sym•(g∗) is the symmetric algebra
over k associated with the dual k-vector space g∗ of g. We recall the following fundamental
results for nilpotent Lie algebras.

PROPOSITION 4.3 ([3, Chapter IV, Section 2, Proposition 4.1, Corollaire 4.5 (b)]).
Let k be a field of characteristic 0.

(1) The correspondence U �→ Lie(U) induces an equivalence of categories

(Unipotent algebraic groups/k)
∼−→(Finite dimensional nilpotent Lie algebras/k) .
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(2) The functor g �→ g∗,a is a quasi-inverse of the functor Lie in Proposition 4.3(1).
Moreover, this functor is compatible with quotients. That is, for any Lie ideal n of g,
n∗,a is a normal closed subalgebraic group of g∗,a satisfying (g/n)R,a = gR,a/nR,a

for any k-algebra R.

Now, we consider a special case. Let K be a finite extension of Qp and g a finite di-
mensional nilpotent Lie algebra over Qp. We assume that g is equipped with a continuous
action of GK as a Lie algebra. In other words, g is equipped with a group homomorphism
GK → AutLie alg./Qp (g) such that the composition GK → AutLie alg./Qp (g) ↪→ GLQp (g) is
a continuous group homomorphism with respect to the usual p-adic topology. For any topo-
logical Qp-algebra B equipped with a continuous action of GK , we define the action of GK

on gB = g ⊗Qp B to be the diagonal action. Remark that, this action induces a continuous
action of GK on the group gB,a (cf. see Definition 4.1 for the definition of the topology on the
group gB,a). Indeed, the action of σ ∈ GK on gB commutes with the Lie bracket. Therefore,
for any x, y ∈ gB , we have

σ (x ∗ y) =σ

∞∑
n=1

zn(x, y) =
∞∑

n=1

σ zn(x, y) =
∞∑

n=1

zn(
σ x,σ y) =σ x ∗σ y .

In particular, the GK -fixed part of gB,a is also a group. The following lemma is easily checked
by definition.

LEMMA 4.4. The GK -fixed part H 0(K, gB) of gB is a Lie algebra over BGK . More-
over, the group H 0(K, gB,a) coincides with the group H 0(K, gB)a .

DEFINITION 4.5. Let ∗ be a symbol dR or crys. Then, we define the Lie algebra D∗(g)
to be H 0(K, g⊗Qp B∗). We also define D0

dR(g) to be H 0(K, g⊗Qp B+dR).

According to Lemma 4.4, DdR(g) and D0
dR(g) (resp. Dcrys(g)) are Lie algebras over K

(resp. K0). Here, K0 is the maximal subfield of K unramified over Qp.

PROPOSITION 4.6. Let ∗ be a symbol dR (resp. crys). Assume that g is a de Rham
representation ofGK (resp. crystalline representation) in the sense of Fontaine (cf. [5]). Then,
for any Lie ideal n of g stable under the action of GK , we have the following exact sequence
of Lie algebras (resp. groups) :

0→ D∗(n) → D∗(g)→ D∗(g/n)→ 0

(resp. 1→D∗(n)a→ D∗(g)a → D∗(g/n)a → 1) .

PROOF. The first sequence follows from [5, Porposition 1.5.2]. The exactness of the
second sequence follows from Proposition 4.3 (2). �

5. A generalization of the Bloch–Kato exponential map for non-abelian Galois
representations. In this section, we generalize the Bloch–Kato exponential map for cer-
tain nilpotent Lie algebras with continuous actions of the absolute Galois group of a local
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field. The inverse map of the exponential map was defined in the paper [11] for unipotent
fundamental groups of smooth curves. We fix the following notation through this section. Let
K be a finite extension of Qp and K0 the maximal absolutely unramified subfield of K . Let
g be a finite dimensional nilpotent Lie algebra over Qp equipped with a continuous action of
GK . The following lemma is the fundamental lemma for the theory of the exponential map:

LEMMA 5.1 (The fundamental exact sequence). Let us take the same notation as
above. Then, there exists the following exact GK -equivariant sequence of topological pointed
sets:

1→ ga
α−→ gBe,a

β−→ gBdR,a/gB+dR,a → 1(4)

(see Definition 4.1 (1) for the definition of the subscript a). Here, Be is the ϕ-invariant part
B

ϕ=1
crys of Bcrys. Moreover, the map β has a set theoretical continuous section.

REMARK 5.2. Recall that, as a set, gBdR,a (resp. gB+dR,a) is canonically identified with
gBdR (resp. gB+dR

). However, the action of the group gB+dR,a on gBdR,a does not coincides with
the action of gB+dR

on gBdR as an abelian group obtained by forgetting the Lie bracket of gB+dR
.

Therefore, we can not identify gBdR,a/gB+dR,a with gBdR/gB+dR

∼= g⊗Qp BdR/B+dR.

PROOF. Let n be the nilpotency of g. Namely, n is the minimal positive integer satis-
fying g(n+1) = 0. Here, we define g(i) to be [g(i−1), g] and define g(1) to be g. We show this
lemma by induction on n. If n = 1, then the exact sequence of the lemma is none other than
the Bloch–Kato exact sequence (cf. [1, Proposition 1.17]).

Next, we assume n > 1 and assume that the assertion of Lemma 5.1 holds for any
nilpotent Lie algebra whose nilpotency is less than n. Let z be the center of g and set g′ := g/z.
Consider the following commutative diagram with exact rows:

1 �� zB+dR,a
��

��

gB+dR,a
��

��

g′
B+dR,a

��

��

1

1 �� zBdR,a
�� gBdR,a

�� g′BdR,a
�� 1 .

By the usual snake lemma, we obtain the following exact sequence of pointed sets:

1→ zBdR,a/zB+dR,a

i−→ gBdR,a/gB+dR,a → g′BdR,a/g
′
B+dR,a

→ 1 .

The translations by z̃ ∈ zBdR,a on gBdR,a induces an action of the equivalence class z of z̃ in
zBdR,a/zB+dR,a on the set gBdR,a/gB+dR,a . We denote this action by i(z)∗. By construction, if the

images of two elements x, y ∈ gBdR,a/gB+dR,a in the pointed set g′BdR,a/g
′
B+dR,a

coincide, then

there exists a unique element z ∈ zBdR,a/zB+dR,a such that i(z) ∗ y = x. Next, we consider the
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following commutative diagram of pointed sets:

1

��

1

��

1

��

1 �� za
α1 ��

i1

��

zBe,a

β1 ��

i2

��

zBdR,a/zB+dR,a
��

i3

��

1

1 �� ga
α ��

pr1

��

gBe,a

β
��

pr2

��

gBdR,a/gB+dR,a
��

pr3

��

1

1 �� g′a

��

α′ �� g′Be,a

��

β ′
�� g′BdR,a/g

′
B+dR,a

��

��

1

1 1 1 .

Note that the diagram above is compatible with actions defined by i1, i2 and i3. By the as-
sumption of the induction, the top and the bottom sequences are exact. Further, the left and
the middle vertical sequences are exact sequences of topological groups.

First, we show the surjectivity of β. Let x ′ be an element of gBdR,a/gB+dR,a . By the

exactness of the bottom sequence, we can take y ′ ∈ g′Be,a
such that β ′(y) = pr3(x

′). Let
y ∈ gBe,a be a lift of y ′. Then, by the exactness of the right vertical sequence, there exists
an element z′ of zBdR,a/zB+dR,a such that i3(z

′) ∗ β(y) = x ′. Take a lift z ∈ zBe,a of z′ and set
x := i2(z) ∗ y ∈ gBe,a . Then, by the commutativity of the diagram and the compatibility with
actions, we have β(x) = x ′.

The injectivity of α and the claim β ◦ α = 1 are clear.
Next, we show Ker(β) ⊂ Im(α). Take x ∈ gBe,a such that β(x) = 1. Then, by the

exactness of the bottom sequence, we can take w′ ∈ g′a such that α′(w′) = pr2(x). Let w ∈ ga

be a lift of w′. Then, by the commutativity of the diagram, we have pr2(α(w)) = pr2(x). By
the exactness of the middle vertical sequence, there exists an element z of zBe,a such that
i2(z) ∗ α(w) = x. Therefore, we have:

1 = β(x) = β(i2(z) ∗ α(w)) = i3(β1(z)) ∗ β ◦ α(w) = i3(β1(z)) .

Since i3 is injective, we have β1(z) = 1. This implies that there exists z1 ∈ za such that
α1(z1) = z. Define x1 ∈ ga to be i1(z1) ∗ w. Then, by the commutativity of the diagram and
the compatibility with actions, we have α(x1) = x.

Finally, we show the existence of a continuous section of β by induction on n. If n = 1,
then the assertion follows from [1, Section 1, Remark 1.18]. Next, we assume n > 1 and the
claim of the lemma holds if the nilpotency of g is less than n. By the assumption of induction,
β1 : zBe,a → zBdR,a/zB+dR,a and β ′ : g′Be,a

→ g′BdR,a/g
′
B+dR,a

have continuous sections s1 and

s′ respectively. Since g is a finite dimensional Qp-vector space, the canonical projection
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gB,a = g ⊗Qp B → g′ ⊗Qp B = g′B,a has a continuous section for any topological Qp-
algebra B. We fix a continuous section s : g′Be,a

→ gBe,a of pr2 : gBe,a → g′Be,a
. Then, the

composition s′′ := β ◦ s ◦ s′ : g′BdR,a/g
′
B+dR,a

→ gBdR,a/gB+dR,a is a continuous section of pr3.

Indeed, we have pr3 ◦s′′ = pr3 ◦β ◦ s ◦ s′ = β ′ ◦ pr2 ◦s ◦ s′ = β ′ ◦ s′ = id. Thus, s′′ induces
a homeomorphism of topological spaces

i3 × s′′ : g′BdR,a/g
′
B+dR,a

× zBdR,a/zB+dR,a

∼−→ gBdR,a/gB+dR,a .

Therefore, the compositions of (i3 × s′′)−1 with the maps

g′BdR,a/g
′
B+dR,a

× zBdR,a/zB+dR,a

s◦s ′×s1−−−−→ gBe,a × zBe,a → gBe,a

is a continuous section of β : gBe,a → gBdR,a/gB+dR,a . Here, the last map is the product of
gBe,a . This completes the proof of the lemma. �

LEMMA 5.3. Assume that g is a de Rham representation of GK in the usual sense.
Then, we have the canonical isomorphism of pointed sets

DdR(g)a/ D0
dR(g)a = H 0(F, gBdR,a)/H

0(F, gB+dR,a)
∼−→ H 0(K, gBdR,a/gB+dR,a)

(see Definition 4.5 for the definitions of DdR(g)a and D0
dR(g)a).

PROOF. Consider the exact sequence of topological pointed sets

1→ gB+dR,a → gBdR,a → gBdR,a/gB+dR,a → 1 .

By the same inductive argument as in the proof of Lemma 5.1 on the nilpotency of g, one can
show that the map gBdR,a → gBdR,a/gB+dR,a has a continuous section. Hence, this short exact
sequence induces the long exact sequence
(5)

1→ D0
dR(g)→ DdR(g)→ H 0(K, gBdR,a/gB+dR,a)→ H 1(K, gB+dR,a)

i−→ H 1(K, gBdR,a) .

Therefore, it is sufficient to show that the canonical map i : H 1(K, gB+dR,a)→ H 1(K, gBdR,a)

is injective. Let z be the center of g. Since g is de Rham, we obtain the short exact sequence
of groups

1→ DdR(z)a → DdR(g)a → DdR(g/z)a → 1

by taking GK -invariant parts of the exact sequence

1→ zBdR,a → gBdR,a → (g/z)BdR,a → 1

(cf. Proposition 4.6). Thus, we obtain the following commutative diagram with exact rows:

H 1(K, zB+dR,a)
��

i1

��

H 1(K, gB+dR,a)
��

i

��

H 1(K, (g/z)B+dR,a)

i2

��

1 �� H 1(K, zBdR,a) �� H 1(K, gBdR,a) �� H 1(K, (g/z)BdR,a) .
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By the snake lemma, it is sufficient to show that i1 and i2 are injective. By using induction on
the nilpotency of g, we may assume that g is abelian. In this case, the assertion of the lemma
is already proved in [1, Lemma 3.8.1]. �

DEFINITION 5.4.

(1) We define the pointed set H 1
e (K, ga) (resp. H 1

f (K, ga)) to be the kernel of the canon-

ical map H 1(K, ga)→ H 1(K, gBe,a) (resp. H 1(K, ga)→ H 1(K, gBcrys,a)).
(2) Assume that g is a de Rham representation of GK . Then, we define the exponential

map expg : DdR(g)a/ D0
dR(g)a → H 1

e (K, ga) to be the connecting homomorphism
of the fundamental exact sequence (4) in Lemma 5.1.

REMARK 5.5. Let R be a topological Qp-algebra. Recall that, if g is abelian, then
the group structure (resp. topology) of gR,a coincides with the additive group structure (resp.
topology) on gR (cf. Remark 4.2 (1)). Thus, the continuous Galois cohomology Hi(K, gR,a)

coincides with Hi(K, g⊗Qp R) for any i.

LEMMA 5.6. Let n be a Lie ideal of g stable under the action of GK . Assume that g is
de Rham. Then, the canonical group homomorphisms

pr+ : D0
dR(g)a → D0

dR(g/n)a

and

pr : DdR(g)a → DdR(g/n)a

are surjective.

PROOF. The surjectivity of pr is already proved in Proposition 4.6. Thus, we show the
surjectivity of pr+.

It is sufficient to show that j+ : H 1(K, nB+dR,a)→ H 1(K, gB+dR,a) is injective. Consider
the following commutative diagram:

H 1(K, nB+dR,a)
j+

��

��

H 1(K, gB+dR,a)

��

H 1(K, nBdR,a)
j

�� H 1(K, gBdR,a) .

By the exact sequence (5) in the proof of Lemma 5.3 and Lemma 5.3, both vertical maps
are injective. Further, the map j is also injective because g is de Rham (cf. Proposition 4.6).
Hence j+ is also injective. �

PROPOSITION 5.7. Assume the following conditions:
(a) The GK -representation g is de Rham.
(b) For any Jordan–Hölder component V of the GK -representation g, the ϕ-invariant

part Dcrys(V )ϕ=1 of Dcrys(V ) is equal to 0.

Then, the following assertions hold.
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(1) The exponential map expg is bijective.

(2) Furthermore, if g is crystalline, then H 1
e (K, ga) coincides with H 1

f (K, ga).

PROOF. Let n be the nilpotency of g. We show the assertions (1) and (2) by induction on
n. When n = 1, the proposition follows from [1, Proposition 3.8] and the top exact sequence
of [1, Corollary 3.9].

Assume that n > 1 and the proposition holds for Qp-Lie algebras whose nilpotency is
less than n. First, we show the assertion (1) of Proposition 5.7. Let z be the center of g and
g′ := g/z. According to Lemma 5.6, we have the following commutative diagram with exact
rows:

1 �� D0
dR(z)a ��

��

D0
dR(g)a ��

��

D0
dR(g′)a ��

��

1

1 �� DdR(z)a �� DdR(g)a �� DdR(g′)a �� 1 .

Then, by the snake lemma, we have the exact sequence of pointed sets:

1→ DdR(z)a/ D0
dR(z)a → DdR(g)a/ D0

dR(g)a → DdR(g′)a/ D0
dR(g′)a → 1 .

On the other hand, H 0(K, g′Be,a
) = H 0(K, g′ ⊗Qp Be) = Dcrys(g

′)ϕ=1 is trivial by the

assumption (b) of Proposition 5.7. Therefore, the canonical map H 1
e (K, za) → H 1

e (K, ga)

is injective because the kernel of this map is contained in H 0(K, g′Be,a
). Hence, we have the

following commutative diagram with exact rows:

1 �� DdR(z)a/ D0
dR(z)a ��

expz
��

DdR(g)a/ D0
dR(g)a ��

expg
��

DdR(g′)a/ D0
dR(g′)a ��

expg′
��

1

1 �� H 1
e (K, za)

i �� H 1
e (K, ga) �� H 1

e (K, g′a) .

The maps expz and expg′ are bijective by the assumption of the induction. Thus, by the snake
lemma, we obtain the bijectivity of expg. In particular, the sequence of pointed sets

1 �� H 1
e (K, za) �� H 1

e (K, ga) �� H 1
e (K, g′a) �� 1

is exact.
Let us show the assertion (2). Now we assume that g is crystalline. Then, the canonical

map Dcrys(g)a → Dcrys(g
′)a is surjective (cf. Proposition 4.6). Thus, we have the following

commutative diagram with exact rows:

1 �� H 1
e (K, za) ��

��

H 1
e (K, ga) ��

��

H 1
e (K, g′a) ��

��

1

1 �� H 1
f (K, za) �� H 1

f (K, ga) �� H 1
f (K, g′a) .
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By the assumption of the induction, the left and the right vertical maps are bijective. Then,
the bijectivity of the middle sequence follows from the snake lemma. �

COROLLARY 5.8. Assume that g satisfies the conditions (a) and (b) of Proposition 5.7
and that g is crystalline. Then, for each GK -stable Lie ideal n of g contained in the center of
g, the sequence of pointed sets

1→ H 1
f (K, na)→ H 1

f (K, ga)→ H 1
f (K, (g/n)a)→ 1

is exact and admissible.

PROOF. This assertion follows from the admissibility of the sequence of pointed sets

1→ DdR(n)a/ D0
dR(n)a → DdR(g)a/ D0

dR(g)a → DdR(g′)a/ D0
dR(g/n)a → 1

and Proposition 5.7 (2). �

We give an integral analogue of Corollary 5.8. Now, we assume the conditions of Propo-
sition 5.7 (2) and assume that there exists a nilpotent Lie algebra g0 over Zp with an action of
GK such that g0 ⊗Zp Qp = g and g0 is free as a Zp-module. We call such a Zp-Lie algebra
g0 a Zp-lattice of g. Further, suppose that the nilpotency of g is less than p. Then, according
to Remark 4.2, the subset g0 of ga is a subgroup of ga . We denote this group by g0,a . Finally,
we assume that there exists a Zp-lattice n0 of n. Then, we have the following commutative
diagram of pointed sets:

H 1(K, n0,a) ��

β1

��

H 1(K, g0,a)
pr

��

β2

��

H 1(K, g0,a/n0,a)

β3

��

1 �� H 1(K, nBcrys,a)
i �� H 1(K, gBcrys,a)

�� H 1(K, gBcrys,a/nBcrys,a) .

If n is contained in the center of g, then we have the following exact sequences of pointed
sets by the snake lemma:

H 1
f (K, n0,a)→ H 1

f (K, g0,a)→ H 1
f (K, g0,a/n0,a) ∩ Im(pr)

δ−→ Cok(β1) .

Here, we define H 1
f (K, g0,a) (resp. H 1(K, g0,a/n0,a)) to be the kernel of β2 (resp. β3) and δ

is the connecting homomorphism.

PROPOSITION 5.9. Assume that n is contained in the center of g. Then, the image of
δ is contained in the maximal torsion subgroup of Cok(β1). In particular, if the finite part
H 1

f (K, n0,a) coincides with H 1(K, n0,a), then the sequence of pointed sets

1→ H 1(K, n0,a)→ H 1
f (K, g0,a)→ H 1

f (K, g0,a/n0,a) ∩ Im(pr)→ 1

is exact and admissible.
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PROOF. By the construction of the sequence above, we have the following commutative
diagram of pointed sets:

H 1
f (K, n0,a) ��

��

H 1
f (K, g0,a) ��

��

H 1
f (K, g0,a/n0,a) ∩ Im(pr)

δ
��

��

Cok(β1)

γ

��

H 1
f (K, na) �� H 1

f (K, ga) �� H 1
f (K, ga/na) ∩ Im(p̃r)

δQp

�� Cok(β̃1) .

Here, β̃1 (resp. p̃r) is the canonical map H 1(K, na)→ H 1(K, nBcrys,a) (resp. H 1(K, ga)→
H 1(K, (g/n)a)). By Corollary 5.8, δQp is a zero map. Therefore, by the snake lemma, it
is sufficient to show that the kernel of γ is a torsion abelian group. Consider the following
commutative diagram:

H 1(K, n0,a)
i ��

β1

��

H 1(K, na) ��

β̃1
��

Cok(i) ��

��

0

0 �� H 1(K, nBcrys,a)
�� H 1(K, nBcrys,a)

�� 0 .

By the snake lemma, we conclude that the kernel of γ : Cok(β1) → Cok(β̃1) is isomorphic
to a quotient of Cok(i). In particular, Ker(γ ) is torsion.

Next, we show the second assertion. If H 1
f (K, n0,a) = H 1(K, n0,a), then β1 is the

zero map. Hence, we have Cok(β1) = H 1(K, nBcrys,a). Since H 1(K, nBcrys,a) is a Qp-vector
space, H 1(K, nBcrys,a)tor is equal to 0. Thus, the second assertion of the proposition holds. �

6. The Galois cohomology of graded Lie algebras for local fields. In this section,
we study behaviors of non-abelian Galois cohomology in the cyclotomic tower of a local field.
We fix the following notation in this section. Let � be a rational prime and K a finite extension
of Q�. We denotes by K∞ the cyclotomic Zp-extension of K . If � = p, we assume that K∞
and Qp(μp) are linearly disjoint over Qp, that is,

Gal(K∞(μp)/K∞) ∼= Z/(p − 1)Z .(6)

Let O be a finite flat commutative Zp-algebra with the fractional field �. Let m be a positive
integer less than p and g0 = ⊕m

i=1g
i
0 a graded Lie algebra over O of finite rank equipped with

a continuous action of GK as a Lie algebra over O. We suppose that each graded piece gi
0 is a

free O-module of finite rank which is stable under the action of GK . Let R be an O-algebra.
We denote g0 ⊗O R = ⊕m

i=1g
i
0 ⊗O R by g0,R = ⊕m

i=1g
i
0,R and g0,� by g. For each positive

integer i, each a ∈ R and each x ∈ gi
0,R, we define 〈 a 〉 x ∈ gi

0,R by

〈 a 〉 x := aix .

Then the correspondence x �→ 〈 a 〉 x defines an action of the multiplicative monoid Rmon

on the graded Lie algebra g0,R. By definition, this action commutes with the action of GK .
Hence the group g0,R,a and the pointed set H 1(K, g0,R,a) have natural actions of Rmon.
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DEFINITION 6.1.

(1) If � �= p, we define the finite part H 1
f (K, ga) of H 1(K, ga) by

H 1
f (K, ga) := Ker(H 1(K, ga)→ H 1(Kur, ga)) .

(2) We define the finite part H 1
f (K, g0,a) of H 1(K, g0,a) to be the inverse image of

H 1
f (K, g0,a) under the canonical map

H 1(K, g0,a)→ H 1(K, ga) .

(3) Let r be a positive integer. Then we define the finite part H 1
f (K, g0,O/(pr),a) of

H 1(K, g0,O/(pr),a) to be the image of H 1
f (K, g0,a) under the canonical map

H 1(K, g0,a)→ H 1(K, g0,O/(pr ),a) .

Remark that if p = �, then we had already defined the finite part H 1
f (K,ga) of H 1(K,ga)

in Definition 5.4. By definition, all finite parts defined in the above are stable under the action
of Omon. Thus we regard them as Omon-P-sets. The following proposition is the main result
of this section.

PROPOSITION 6.2. We use the same notation as above. Furthermore, if � = p, then
we assume the following two conditions:

(a) The Lie algebra g0 is generated by the degree one graded piece g1
0.

(b) One of the following conditions (b1) or (b2) holds:
(b1) The module g1

0 is isomorphic to a direct sum of O(1) := Zp(1)⊗Zp O.
(b2) The module g1

0 satisfies (LCO) (cf. Definition 2.9).

Let T be a direct summand as anO[GK ]-module of the last graded piece gm
0 of g0. Then, the

sequence of Omon-P-sets

1→H 1
f (Kn, T ⊗O O/(pr ))→H 1

f (Kn, g0,O/(pr),a)→H 1
f (Kn, (g0/T )O/(pr),a)(7)

is admissible whose gap is bounded independently of n and r . Furthermore, the last map in
the sequence (7) has a finite p-exponent of the cokernel bounded independently of n and r .

REMARK 6.3. Since T is a direct summand of g0 as an O[GK ]-module, the injectivity
of the first map in (7) is clear (cf. Lemma 3.10). Hence the sequence (7) satisfies the conditions
(a) and (b) of Definition 3.8. If m is equal to 1, then T is a direct summand of the abelian
GK -group g0,a . In particular, the finite part H 1

f (Kn, g0,O/(pr),a) splits into the direct sum of

H 1
f (Kn, T ⊗O O/(pr )) and H 1

f (Kn, (g0/T )O/(pr),a), so the assertion of the Proposition 6.2
holds. Hence, we may assume that m is greater than 1.

We will give the proof of this proposition in Subsection 6.1 for the case � �= p and in
Subsection 6.2 for the case � = p.
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6.1. The case � �= p. For each topological group T ′ with a continuous action of GK ,
we define the unramified cohomology H 1

ur(K, T ′) by

H 1
ur(K, T ′) := Ker

(
H 1(K, T ′)→ H 1(Kur, T ′)

)
= H 1(Kur/K,H 0(Kur, T ′)) .

Here, Kur is the maximal unramified extension of K .

LEMMA 6.4. Let T be a direct summand of gm
0 as an O[GK ]-module. Then, for any

O-algebra R and for any non-negative integer n, we have an exact and admissible sequence
of Rmon-P-sets

1→ H 1
ur(Kn, T ⊗O R)→ H 1

ur(Kn, g0,R,a)→ H 1
ur(Kn, (g0/T )R,a)→ 1 .

PROOF. Let IK be the inertia subgroup of GK . Then, the sequence of Lie algebras

(8) 0→ (T ⊗O R)IK → (g0,R)IK → ((g0/T )⊗O R)IK → 0

is exact because T is a direct summand of gm
0 . Since the cohomological dimension of Gal(Kur

n /

Kn) is equal to 1 and (8) splits as a sequence of Gal(Kur
n /Kn)-modules, we obtain the desired

exact sequence of the lemma by applying the functor H 1(Kur
n /Kn, ∗). �

LEMMA 6.5. The p-exponent of the cokernel of the canonical map

pn,r : H 1
ur(Kn, g0,a)→ H 1

ur(Kn, g0,O/(pr),a)

is finite and bounded independently of n and r , that is, there exists a positive integer M such
that 〈pM 〉H 1

ur(Kn, g0,O/(pr),a) ⊂ Im(pn,r ) for any non-negative integers n and r .

PROOF. By Lemma 6.4, we have the exact sequence

1→ H 1
ur(Kn, g

m
0,R,a)→ H 1

ur(Kn, g0,R,a)→ H 1
ur(Kn, (g0/g

m
0 )R,a)→ 1

for any O-algebra R. Denote g′0 := g0/g
m
0 for short. Then we have the commutative diagram

of Omon-P-sets with exact rows:

1 ��H 1
ur(Kn, g

m
0,a)

��

��

H 1
ur(Kn, g0,a) ��

��

H 1
ur(Kn, g

′
0,a)

��

��

1

1 �� H 1
ur(Kn, g

m
0,O/(pr),a

) �� H 1
ur(Kn, g0,O/(pr),a) �� H 1

ur(Kn, g
′
0,O/(pr),a

) �� 1 .

By using induction on the nilpotency of g0 and by the snake lemma, it is sufficient to show
that the order of the cokernel of the canonical map

H 1
ur(Kn, g

i
0)→ H 1

ur(Kn, g
i
0 ⊗O O/(pr ))

is bounded independently of n and r for any 1 ≤ i ≤ m. Set T ′ := gi
0(X). The exact

sequence 0 → T ′ ×pr

−−→ T ′ → T ′/pr → 0 induces the exact sequence H 0(IK , T ′) →
H 0(IK , T ′/prT ′) → H 1(IK, T ′)[pr ] → 0. Therefore, the cokernel of the homomorphism
H 1

ur(Kn,T
′)→H 1

ur(Kn,T
′/prT ′) is canonically isomorphic to H 1(Kur

n /Kn,H
1(IK,T ′)[pr ]).
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Since the residual characteristic of K is different from p, H 1(IK, T ′) is a finitely generated
O-module. In particular, H 1(IK, T ′)tor and H 1(Kur

n /Kn,H
1(IK, T ′)[pr ]) are finite groups.

This completes the proof of the lemma. �

LEMMA 6.6 ([21, Chapter 1, Lemma 1.3.5]). Let T ′ be a freeO-module of finite rank
with a continuous action of GK and put W ′ := T ′ ⊗O �/O.

(1) The group H 1
ur(K, T ′) is a subgroup of H 1

f (K, T ′) with a finite index.

(2) The group H 1
f (K, T ′)/H 1

ur(K, T ′) is a subgroup of W ′IK /(W ′IK )div. Here, (W ′IK )div

is the maximal divisible subgroup of W ′IK .

REMARK 6.7. If L is a finite unramified extension of K , then we have W ′IK /(W ′IK )div

= W ′IL/(W ′IL )div because IK = IL. In particular, the order of H 1
f (L, T ′)/H 1

ur(L, T ′) is

bounded by �W ′IK /(W ′IK )div for any finite unramified extension L of K .

LEMMA 6.8. There is a positive integer M such that 〈pM 〉H 1
f (Kn, g0,a) ⊂ H 1

ur(Kn,

g0,a) for any non-negative integer n.

PROOF. We prove this lemma by induction on the nilpotency of Lie algebras. If g0 is
abelian, then the assertion holds by Lemma 6.6. We assume that the assertion holds for any
Lie algebra whose nilpotency is less than m. We put g′0 := g0/g

m
0 . Consider the following

commutative diagram of Omon-P-sets with exact rows:

1 �� H 1
ur(Kn, g

m
0,a)

��

��

H 1
ur(Kn, g0,a) ��

��

H 1
ur(Kn, g

′
0,a)

��

�� 1

1 �� H 1
f (Kn, g

m
0,a)

�� H 1
f (Kn, g0,a) �� H 1

f (Kn, g
′
0,a) .

By definition, each vertical map is injective. According to Lemma 6.6 and Remark 6.7,
there exists a positive integer M1 such that 〈pM1 〉H 1

f (Kn, g
m
0,a) ⊂ H 1

ur(Kn, g
m
0,a) for any

n. On the other hand, by induction hypothesis, there exists a positive integer M2 such that
〈pM2 〉H 1

f (Kn, g
′
0,a) ⊂ H 1

ur(Kn, g
′
0,a) for each non-negative integer n. Thus, if we take M as

M1 +M2, then we have 〈pM 〉H 1
f (Kn, g0,a) ⊂ H 1

ur(Kn, g0,a). �

PROPOSITION 6.9. There exists a positive integer M such that

〈pM 〉H 1
f (Kn, g0,O/(pr),a) ⊂ H 1

ur(Kn, g0,O/(pr),a) ,

〈pM 〉H 1
ur(Kn, g0,O/(pr),a) ⊂ H 1

f (Kn, g0,O/(pr),a)

for all non-negative integers n and r .

PROOF. Take a positive integer M so that the inclusion relations of Lemma 6.5 and
Lemma 6.8 hold. Then, the first inclusion is a direct consequence of Lemma 6.8. We show
the second inclusion relation. Take x ∈ H 1

ur(Kn, g0,O/(pr),a). Then, by Lemma 6.5, we can
take a lift y ∈ H 1

ur(Kn, g0,a) of 〈pM 〉 x. Since H 1
ur(Kn, g0,a) ⊂ H 1

f (Kn, g0,a), 〈pM 〉 x is

contained in H 1
f (Kn, g0,O/(pr),a). This completes the proof of the proposition. �
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PROOF OF PROPOSITION 6.2 WHEN � �= p. This is a direct consequence of Lemma 6.4
and Proposition 6.9. �

6.2. The case � = p. In this subsection, we always assume that g0 satisfies two
conditions (a) and (b) in Proposition 6.2. Recall that the condition (b) is satisfied if one of
the conditions (b1) or (b2) holds. The proof of the former case is much shorter than the latter
case. We first finish the proof of the former case.

PROOF OF PROPOSITION 6.2 WHEN (b1) HOLDS. By Remark 6.3, we may assume that
m is grater than 1. Any subrepresentation T ⊂ gm

0 of GK is isomorphic to a direct sum of
O(m) by the conditions (a) and (b1). Thus, we have H 2(Kn, T ) = H 0(Kn, T

PD(1))PD = 0
because 1 < m < p and Gal(Kn(μp)/Kn) ∼= Z/(p − 1)Z by the assumption of this section
(see (6)). Furthermore, H 1

f (Kn,O(m)) coincides with H 1(Kn,O(m)) (cf. [1, Example 3.9]).
Hence the natural map

H 1
f (Kn, g0,a)→ H 1

f (Kn, (g0/T )a)

is surjective by Proposition 5.9. In particular,

H 1
f (Kn, g0,O/(pr),a)→ H 1

f (Kn, (g0/T )O/(pr),a)

is surjective for any n and r . Note that that H 1(Kn, T /prT ) = H 1
f (Kn, T /prT ) and that the

sequence of Omon-P-sets

1→ H 1(Kn, T ⊗O O/(pr))→ H 1(Kn, g0,O/(pr),a)→ H 1(Kn, (g0/T )O/(pr ),a)

is exact and admissible. Therefore, the sequence (7) in Proposition 6.2 is also admissible with
no gap. �

Before starting the proof of the latter case, we prepare some lemmas. We suppose that
g0 satisfies the conditions (a) and (b2) for the rest of this subsection. Then, by the definition
of (LCO), g1 := g1

0 ⊗O � is crystalline and there exists a finite set of unramified and infinite
order characters {χi : GK → O×}i∈I with the exact sequence of O[GK ]-modules

0→ ⊕i∈IO(χi)(1)→ g1
0 →⊕i∈IO(χ−1

i )→ 0 .

LEMMA 6.10. Each graded piece gi := gi
0⊗O � of g = g0⊗O � is a crystalline and

ordinary representation of GK .

PROOF. We prove this by induction on the length of the nilpotency of Lie algebras. If
the nilpotency is one, then the assertion follows from the condition (LCO). We assume that if
the nilpotency of g is less than m − 1, then the assertion of the lemma holds. For each i, the
Lie bracket induces the surjective homomorphism

(9) ⊕s+t=i, s,t≥1g
s ⊗� gt � gi

because g1 generates g. Since ⊕s+t=m, s,t≥1g
s ⊗� gt is crystalline and ordinary by induction

hypothesis, so is gm. �
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Let

0→ Fil1(gi
0)→ gi

0→ gi
0/Fil1(gi

0)→ 0

be the induced filtration on gi
0 by the ordinary filtration of gi .

LEMMA 6.11. Let i be an integer such that 1 ≤ i ≤ m. Then, for each Jordan–
Hölder component T ′ of Fil1(gi

0), there exists a positive integer u less than or equal to i and
j1, . . . , ji ∈ I such that

(10) T ′ ∼= O
(
χj1 ⊗ · · · ⊗ χju ⊗ χ−1

ju+1
⊗ · · · ⊗ χ−1

ji

)
(u) .

Here the characters χj1, . . . , χji need not be distinct. In particular, if i �= 2, then there exists
no component of gi

0 which is isomorphic to O(1).

PROOF. We show the first assertion by induction on i. If i is equal to 1, then the asser-
tion follows from the definition of (LCO). Suppose that the assertion holds for each positive
integer less than i. By the surjective homomorphism (9), T ′ is isomorphic to a Jordan–Hölder
component of gs ⊗� gt for some 1 ≤ s, t < i. By induction hypothesis, any Jordan–Hölder
components of gs and gt are 1-dimensional. Hence, T ′ is isomorphic to Ts ⊗ Tt where Ts and
Tt are certain Jordan–Hölder components of gs and gt respectively. It is easily checked that
Ts ⊗ Tt is of the form (10) and we completes the proof of the first assertion.

We show the second assertion. Let us denote by O(⊗l∈I χnl

l )(u) the right hand side of
(10) where nl ∈ Z. Define non-negative integers n1,l and n2,l by

n1,l := �{jk| 1 ≤ k ≤ u, χjk = χl}, n2,l := �{jk| u+ 1 ≤ k ≤ i, χjk = χl} .
Then the equality nl = n1,l − n2,l holds by the definition of nl .

Suppose that T ′ is isomorphic to O(1). Then u = 1 and there exists a unique l0 ∈ I

such that n1,l0 is positive. Note that such n1,l0 is equal to 1. Since the character ⊗l∈I χnl

l =
⊗l∈I χ

n1,l−n2,l

l is trivial, we have χl0 = ⊗l∈I χ
n2,l

l . Therefore, by the definition of (LCO) (cf.
Definition 2.9 (ii)), n2,l is equal to 0 if l �= l0 and is equal to 1 if l = l0. This implies that
i = 2 and we have the conclusion of the second assertion. �

LEMMA 6.12. Let n be a positive integer and T ′ an O[GK ]-submodule of Fil1(gi
0)

where 1 ≤ i ≤ m. If there exists no Jordan–Hölder component of T ′ isomorphic to O(1),
then we have H 1

f (Kn, T
′) = H 1(Kn, T

′).

PROOF. Put V ′ := T ′ ⊗O �. Then we have H 0(Kn, V
′) = 0 and H 2(Kn, V

′) =
H 0(Kn, V

′∗(1))∗ = 0 by assumption. Therefore, the dimension of the Qp-vector space
H 1(Kn, V

′) coincides with [Kn,Qp] dimQp (V ′) by the local Euler–Poincaré characteristic.
On the other hand, we have the equations

[Kn : Qp] dimQp (V ′)= dimQp (DdR,Kn(V
′))

= dimQp (DdR,Kn(V
′)/Fil0DdR,Kn(V

′))
= dimQp (H 1

f (Kn, V
′))
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because any Hodge–Tate weight of DdR,Kn(V
′) is negative by Lemma 6.11. Since the finite

part H 1
f (Kn, V

′) is a subspace of H 1(Kn, V
′), the conclusion of this lemma holds. �

LEMMA 6.13. If T is contained in Fil1(gm
0 ) and if any Jordan–Hölder component of

T is not isomorphic to O(1), then the assertion of Proposition 6.2 holds.

PROOF. According to Lemma 6.12, we have

H 1
f (Kn, T /prT ) = Im

(
H 1(Kn, T )→ H 1(Kn, T /prT )

)
.

Since the order of H 2(Kn, T ) ∼= H 0(Kn, T
PD(1))PD is finite and bounded independently of

n, the index |H 1(Kn, T /prT ) : H 1
f (Kn, T /prT )| is finite and bounded independently of n

and r . Hence, the admissibility and the boundedness of gaps of the sequence follows from the
exact sequence of non-abelian cohomology

1→H 1(Kn, T ⊗O O/(pr ))→H 1(Kn, g0,O/(pr),a)→H 1(Kn, (g0/T )O/(pr ),a) .

We show the almost surjectivity of the last map of the sequence (7) in Proposition 6.2. Since
the finite part H 1

f (Kn, g0,O/(pr),a) is defined as the image of

H 1
f (Kn, g0,a)→ H 1(Kn, g0,O/(pr),a) ,

it is sufficient to show that the canonical map

H 1
f (Kn, g0,a)→ H 1

f (Kn, (g0/T )a)

has a finite p-exponent bounded independently of n. By the exact sequence of Omon-P-sets

H 1(Kn, g0,a)
prn−→ H 1(Kn, (g0/T )a)→ H 2(Kn, T ) ∼= H 0(Kn, T

PD(1))PD ,

the p-exponent of the cokernel of prn in the above sequence is finite and bounded indepen-
dently of n. In particular, the p-exponent of the cokernel of the inclusion

H 1
f (Kn, (g0/T )a) ∩ Im(prn) ⊂ H 1

f (Kn, (g0/T )a)

is finite and bounded independently of n. Therefore, by Lemma 3.5, it is sufficient to show
that the canonical map

pr′n : H 1
f (Kn, g0,a)→ H 1

f (Kn, (g0/T )a) ∩ Im(prn)

has a finite p-exponent bounded independently of n. According to Proposition 5.9, pr′n is
surjective because H 1

f (Kn, T ) = H 1(Kn, T ) by Lemma 6.12. This completes the proof of
the lemma. �

We put

Fil1(g0) := ⊕m
i=1Fil1(gi

0) .

Then Fil1(g0) is a Lie ideal of g0 because this O-module is the maximal submodule of g0

whose Jordan–Hölder components consist of ramified characters (cf. Lemma 6.11). Hence
the quotient Lie algebra g0/Fil1(g0) makes sense and each Jordan–Hölder component of this
quotient is an unramified character.
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LEMMA 6.14. There exists a positive integerM such that 〈pM〉H 1
f (Kn, (g0/Fil1(g0))a)

= 1 for any non-negative integer n.

PROOF. By induction on the length of the nilpotency, it is sufficient to show that H 1(Kn,

gi
0/Fil1(gi

0)) is a finite group whose order is bounded with respect to n for each 1 ≤ i ≤ m.
We remark that if V is an unramified �[GK ]-module of finite dimensional over � such
that the endomorphism ϕ − 1 on Dcrys(V ) is bijective, then we have H 1

f (K, V ) = 0. In-
deed, if ϕ − 1 is bijective, then the Bloch–Kato exponential map induces the isomorphism
DdR(V )/Fil0DdR(V )

∼−→ H 1
f (K, V ) and we have DdR(V ) = Fil0DdR(V ) because V is un-

ramified. According to Lemma 6.11, each Frobenius eigenvalue of Dcrys(g
i/Fil1(gi )) is not

a root of unity. Therefore, H 1
f (Kn, g

i
0/Fil1(gi

0)) is isomorphic to the maximal cotorsion quo-

tient of H 0(Kn,(g
i
0/Fil1(gi

0))⊗�/O). On the other hand, we have H 0(K∞, gi/Fil1(gi )) = 0
because each unramified character which appears in gi/Fil1(gi ) is non-trivial and the exten-
sion K∞/K is totally ramified. This implies that H 0(K∞, (gi

0/Fil1(gi
0))⊗�/O) is finite and

we complete the proof of the lemma. �

LEMMA 6.15. The canonical map

H 1
f (Kn, Fil1(g0)a)→ H 1

f (Kn, g0,a)

is injective with a finite p-exponent of the cokernel bounded independently of n.

PROOF. Consider the exact sequence of Omon-P-sets

(11) H 1
f (Kn, Fil1(g0)a)→ H 1

f (Kn, g0,a)→ H 1
f (Kn, (g0/Fil1(g0))a) .

Since each graded piece of g0/Fil1(g0) has no non-trivial O[GKn]-module for each n ∈ Z≥0

by Lemma 6.11, we have H 0(Kn, (g0/Fil1(g0))a) = 1 and the first map in (11) is injective.
According to Lemma 6.14, H 1

f (Kn, (g0/Fil1(g0))a) is annihilated by 〈pM 〉 for sufficiently
large M which does not depend on n. Hence, the map in this proposition has a finite p-
exponent of the cokernel bounded independently of n. �

Now, we go back to the proof of Proposition 6.2 when (b2) holds. The proof for the case
m = 2 and m > 2 are given separately and the case m > 2 is much simpler than the case
m = 2. We will prove the case m > 2 first.

PROOF OF PROPOSITION 6.2 WHEN (b2) HOLDS AND m > 2. According to Lemma
6.15, the assertion of Proposition 6.2 is equivalent to the assertion that
(12)
1→ H 1

f (Kn, Fil1(T )/(pr ))→ H 1
f (Kn, Fil1(g0)O/(pr),a)→ H 1

f (Kn, Fil1(g0/T )O/(pr ),a)

is an admissible sequence whose gap is bounded independently of n, r and that the p-exponent
of the cokernel of the last map in (12) is finite and bounded independently of n and r . Hence
we may assume that T = Fil1(T ). Since m > 2, there exists no Jordan–Hölder component
of T isomorphic to O(1) (cf. Lemma 6.12). Hence, the assertion of Proposition 6.2 is a direct
consequence of Lemma 6.13. �
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In the case m = 2, it may happen that there exists a Jordan–Hölder component of T

isomorphic to O(1) and we can not use Lemma 6.13 as we did in the proof of the case m > 2.
We will prove the case m = 2 depending on the totally different idea after some preparations
below. We fix m = 2 for the rest of Subsection 6.2. The Lie bracket on g0 induces a natural
surjection of GK -modules

Fil1(g1
0)⊗O (g1

0/Fil1(g1
0)) � Fil1(g2

0)/[Fil1(g1
0), Fil1(g1

0)] .
By the definition of (LCO), Fil1(g1

0)⊗O (g1
0/Fil1(g1

0)) is isomorphic to a quotient of
⊕i,j∈IO(χi ⊗ χ−1

j )(1). We denote by Fil1(g2
0)non-cyc the inverse image under Fil1(g2

0) �
Fil1(g2

0)/[Fil1(g1
0), Fil1(g1

0)] of

Im
(
⊕i �=jO(χi ⊗ χ−1

j )(1)→ Fil1(g2
0)/[Fil1(g1

0), Fil1(g1
0)]

)
.

Then O[GK ]-submodule Fil1(g2
0)non-cyc of g2

0 contains [Fil1(g1
0), Fil1(g1

0)] and each Jordan–
Hölder component of Fil1(g2

0)non-cyc is not isomorphic to O(1) by construction. We define the
quotient graded Lie algebra gcyc

0 of g0 by

g
cyc
0 := g0/Fil1(g2

0)non-cyc = g1
0 ⊕ g2/Fil1(g2

0)non-cyc .

By construction, the submodule Fil1(gcyc,2
0 ) of the last graded piece g

cyc,2
0 is isomorphic to a

direct sum of O(1) as an O[GK ]-module.

LEMMA 6.16. The Lie subalgebra

Fil1(g1
0)⊕ g

cyc,2
0

of gcyc
0 is abelian. In particular, the Lie subalgebra Fil1(gcyc

0 ) of gcyc
0 is abelian.

PROOF. Let us consider the map

2∧
Fil1(g1

0)→ g
cyc,2
0 = g2

0/Fil1(g2
0)non-cyc(13)

induced from the Lie bracket of gcyc
0 . Then the map (13) is the zero map because Fil1(g2

0)non-cyc

contains the image of
∧2Fil1(g1

0) under the Lie bracket of g0 by the definition of Fil1(g2
0)non-cyc.

Therefore, the Lie bracket on Fil1(g1
0) ⊕ g

cyc,2
0 is trivial. Since Fil1(gcyc

0 ) is contained in
Fil1(g1

0) ⊕
(
g2

0/Fil1(g2
0)non-cyc

)
, the second assertion follows from the first assertion directly.

�

LEMMA 6.17. Suppose that g0 satisfies the conditions (a) and (b2) of Proposition 6.2
and that m = 2. If g0 = g

cyc
0 , then Proposition 6.2 holds.

PROOF. By Lemma 6.15, it is sufficient to show that the sequence

(14) 1→ H 1
f (Kn, Fil1(T )⊗O O/(pr))→ H 1

f (Kn, Fil1(g0)O/(pr ),a)

→ H 1
f (Kn, Fil1(g0/T cyc)O/(pr),a)→ 1



206 K. SAKUGAWA

has the desired properties. By Lemma 6.16 and by the assumption g0 = g
cyc
0 , Fil1(gcyc) is

an abelian Lie algebra. Furthermore, since T is a direct summand of g2 by the assumption of
Proposition 6.2, Fil1(T ) is also a direct summand of the O[GK ]-module Fil1(g0). Hence, we
have

H 1
f (Kn, Fil1(g0)O/(pr),a) = H 1

f (Kn, Fil1(T )/(pr))⊕H 1
f (Kn, Fil1(g0/T )O/(pr ),a) .

Therefore (14) is an exact sequence of abelian groups and the assertion of the lemma holds.
�

PROOF OF PROPOSITION 6.2 WHEN (b2) HOLDS AND m = 2. According to Lemma
6.15, we may suppose that T is contained in Fil1(g2

0). Let T cyc be the image of T in g
cyc
0 and

T ′ the kernel of T → T cyc. Then, we have the following commutative diagram of Omon-P-
sets:

(15)
1

��

1

��

H 1
f (Kn, T

′/prT ′)
αn,r

��

id
��

H 1
f (Kn, T /prT )

βn,r
��

in,r

��

H 1
f (Kn, T

cyc/prT cyc)

��

H 1
f (Kn, T

′/prT ′)
α′n,r

��

��

H 1
f (Kn, g0,O/(pr),a)

β ′n,r
��

pn,r

��

H 1
f (Kn, g

cyc
0,O/(pr),a

)

pcyc
n,r

��

1 �� 1 �� H 1
f (Kn, (g0/T )O/(pr),a)

��

�� H 1
f (Kn, (g

cyc
0 /T cyc)O/(pr),a)

��

1 1 .

Since T ′ is contained in Fil1(g2
0)non-cyc, there exists no Jordan–Hölder component of T ′ iso-

morphic to O(1). Therefore, it holds that H 1
f (Kn, T

′) = H 1(Kn, T
′) for all n by Lemma 6.11

and that the second horizontal sequence satisfies the assertion of the proposition except the
injectivity of α′n,r (cf. Lemma 6.13). Note that the order of H 2(Kn, T

′) is finite and bounded
independently of n because H 2(Kn, T

′) is isomorphic to H 0(Kn, T
′PD(1))PD by the local Tate

duality. Therefore, by Proposition 5.9, the natural mapping H 1
f (Kn, T )→ H 1

f (Kn, T
cyc) has

a finite cokernel whose order is bounded independently of n. This implies that the order of
Cok(βn,r ) is finite and bounded independently of n and r . Let us take a positive integer M1

such that

(16) pM1 ≥ �Cok(βn,r) for all n and r .

First, we show that the middle vertical sequence of (15) is an admissible sequence whose
gap is finite and bounded independently of n and r . The conditions (a) and (b) of Definition 3.8
are already checked (cf. Remark 6.3). Hence, we check the condition (c) of Definition 3.8.
Let x1, x2 be elements of H 1

f (Kn, g0,O/(pr),a) such that pn,r (x1) = pn,r (x2). Let yi be the
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image of xi in H 1
f (Kn, g

cyc
0,O/(pr),a

). Since pcyc
n,r (y1) = pcyc

n,r (y2), there exists a positive integer

M2 and an element z of H 1
f (Kn, T

cyc/prT cyc) such that z ∗ 〈pM2 〉 y1 = y2 by Lemma 6.17.
It also follows from the same lemma that we can take M2 independently of n and r . By (16),
we can take z′ ∈ H 1

f (Kn, T /prT ) such that βn,r (z
′) = pM1z. Put x ′1 := z′ ∗ 〈pM1+M2 〉 x1

and x ′2 := 〈pM1+M2 〉 x2. Then we have pn,r (x
′
1) = pn,r (x

′
2) and β ′n,r (x

′
1) = β ′n,r (x

′
2). By

the above paragraph, there exists M3 ∈ Z≥0 which does not depend on n, r and there exists
w ∈ H 1

f (Kn, T
′/prT ′) such that α′n,r (w) ∗ 〈pM3 〉 x ′1 = 〈pM3 〉 x ′2. Finally, we have the

equality (
αn,r (w)+ 〈pM3 〉 z′

)
∗ 〈pM1+M2+M3 〉 x1 = 〈pM1+M2+M3 〉 x2 .

Hence the middle vertical sequence is admissible and its gap is bounded by M1 +M2 +M3.
Since pn,r = pcyc

n,r ◦β ′n,r , the p-exponent of the cokernel e(Cok(pn,r )) of pn,r is bounded
by e(Cok(pcyc

n,r ))+ e(Cok(β ′n,r )) by Lemma 3.5. In particular, e(Cok(pn,r )) is also finite and
bounded independently of n and r . Hence we have the conclusion of the case m = 2. �

6.3. A variant for character parts. In this subsection, we give a variant of Proposi-
tion 6.2. Let us assume that the local field K is a finite abelian extension of Q� with the Galois
group � whose order is not divided by p. Furthermore, we assume that the action of GK on
gi

0 extends to an action of GQ�
on gi

0 for each 1 ≤ i ≤ m. Then, the finite group � acts on
Galois cohomologies which are studied in the previous subsections.

PROPOSITION 6.18. Let χ : � → Qp
×

be a character of �. Let m be a positive
integer greater than 1, T a direct summand of gm

0 as an O[GQ�
]-module and r a positive

integer. Then, the sequence ofO[χ]mon-P-sets

(17) 1→ H 1
f (Kn, T ⊗O[χ]/(pr))〈χ 〉 → H 1

f (Kn, g0,O[χ]/(pr),a)
〈χ 〉

→ H 1
f (Kn, (g0/T )O[χ]/(pr ),a)

〈χ 〉

is an admissible sequence whose gap is bounded independently of n and r . Moreover, the last
map of (17) has a finite p-exponent of the cokernel bounded independently of n and r .

PROOF. According to Proposition 6.2, the sequence of O[χ]mon-P-sets

(18) E•n,r :=
[
1→ H 1

f (Kn, T ⊗O[χ]/(pr))

→ H 1
f (Kn, g0,O[χ]/(pr ),a)→ H 1

f (Kn, (g0/T )O[χ]/(pr ),a)
]

is admissible with a bounded gap. Furthermore, the p-exponent of the cokernel of the last
map of E•n,r is finite and bounded by a sufficiently large positive integer M which is indepen-
dent of n and r . According to Proposition 3.9 (1), the correspondence E �→ E〈χ 〉 preserves
the admissibility and gaps. Hence, the first assertion holds. Further, it follows from Proposi-
tion 3.9 (2) and Lemma 3.5 that the p-exponent of the cokernel of the last map of E

•,〈χ 〉
n,r is

bounded by

gap(E•n,r )+ the p-exponent of H 1(�, Twχ−1(T ⊗O O[χ]/(pr)))+M .
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Since p � ��, the group cohomology H 1(�, Twχ−1(T ⊗O O[χ]/(pr))) vanishes. Therefore,
we have the second assertion of the proposition. �

7. The torsion Selmer pointed set.
7.1. Graded Lie algebras associated with pro-p groups. We fix the following nota-

tion in this subsection. Let G be a pro-finite group, Y a pro-p group with a continuous action
of G and m a positive integer smaller than p. Set Y (1) := Y . For positive integer i greater
than 1, we define Y (i) to be [Y (i−1), Y ].

First, we recall the definition and some properties of the graded Lie algebra associated
with Y .

DEFINITION 7.1 ([23, Section 2, Definition 2.3, Proposition 2.3]). We define the
graded Lie algebra g(Y ) (resp. g≤m(Y )) associated with the group Y to be ⊕∞n=1Y

(n)/Y (n+1)

(resp. ⊕m
n=1Y

(n)/Y (n+1)). Here, the bracket product [ , ]Y on g(Y ) and g≤m(Y ) are induced
by the map Y × Y → Y ; (x, y) �→ [x, y]. We denote Y (i)/Y (i+1) by gi (Y ).

Since the action of G on Y preserves the descending central series of Y , the action of G

on Y induces the natural action of G on g(Y ) as a Lie algebra. Remark that the nilpotency
of the Lie algebra g≤m(Y ) is equal to or less than m. Therefore, if m is less than p and
g≤m(Y ) is free as a Zp-module, then the group g≤m(Y )a is well-defined (cf. Remark 4.2
(3)). Recall that the group structure on g≤m(Y )a is defined by x ∗ y := log(exp(x) exp(y)).
According to Proposition 4.3, there exist the following exact sequences of Lie algebras and
groups, respectively:

0→ gm(Y )→ g≤m(Y )→ g≤m−1(Y )→ 0 ,(19)

1→ gm(Y )a → g≤m(Y )a → g≤m−1(Y )a → 1 .(20)

For the rest of this subsection, we assume that the Lie algebra g≤m(Y ) is free as a Zp-module.

EXAMPLE 7.2. We can describe H 1
cont(G, g≤2(Y )a) explicitly (cf. [12]). The set of

1-cocycles Z1
cont(G, g≤2(Y )a) is the set of continuous maps

c = (c1, c2) : G→ g≤2(Y )a = g≤2(Y ) = g1(Y )⊕ g2(Y )

satisfying the following conditions:

(1) The continuous map c1 : G→ g1(Y ) is a 1-cocycle.
(2) The continuous map c2 : G→ g2(Y ) satisfies the equation

c2(g) gc2(h)c2(gh)−1 = −1

2
[c1(g), g c1(h)]

for any elements g, h of G.

This is easily checked by the definition of the group structure of g≤2(Y )a .

Let R be a finite flat Zp-algebra and R′ a topological R-algebra. Then, the monoid Rmon

acts on the graded Lie algebra g(Y )R′ as in the previous section, that is, the action of α ∈ Rmon
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on x = (xn)
∞
n=1 ∈ g(Y )R′ is defined by

〈α 〉(xn)
∞
n=1 := (αnxn)

∞
n=1 .

Note that 〈α 〉 is a Lie endomorphism on g(Y )R′ and commutes with the action of G. Hence,
g≤m(Y )R′,a can be regarded as a topological (Rmon,G)-group (see Example 3.3 (1) for the
definition of (Rmon,G)-groups).

7.2. Main Theorem. From Subsection 7.2 to 7.4, we fix the following notations. Let
X be a geometrically connected smooth curve over Q and x̄ a geometric point of X. Let p be
an odd prime. We denote the maximal pro-p quotient of πet

1 (X ⊗Q Q, x̄) by π1(p). Let �

be a finite set of primes of Q which contains p and all bad primes for X. For each algebraic
extension F of Q, the symbol �F denotes the set of finite primes of F over �. Let m be a
positive integer smaller than p. We denote by g≤m(X) := g≤m(π1(p)) the graded Lie algebra
associated with π1(p). We also denote gi (π1(p)) by gi (X) for each positive integer i.

LEMMA 7.3. Let G be a group and G(p) the pro-p-completion of G. Then, for any
positive integer i, the pro-p-completion of G/G(i) is canonically isomorphic to G(p)/G(p)(i).

PROOF. Let H be a group (resp. pro-p group) with the unipotency less than i + 1
and f : G → H (resp. G(p) → H ) a group homomorphism. Then, there exists a unique
factorization G → G/G(i) → H (resp. G(p) → G(p)/G(i)(p) → H ) of f . Note that
any element of G(i)(p) can be written as a limit of elements of G(i). Therefore, G(p) →
(G/G(i))(p) has a unique factorization g : G(p)/G(i)(p)→(G/G(i))(p). Here, (G/G(i))(p)

is the pro-p completion of G/G(i). On the other hand, there exists a canonical group ho-
momorphism g ′ : (G/G(i))(p) → G(p)/G(p)(i) induced by G → G(p)/G(p)(i). By the
construction, g ′ is the inverse of g . This completes the proof of the lemma. �

LEMMA 7.4. For any positive integer i, gi (X) is a free Zp-module of finite rank. In
particular, the Lie algebra g≤m(X) is a free Zp-module of finite rank. Moreover, theQp[GQ]-
module gi (X)⊗Zp Qp is isomorphic to a quotient of H et

1 (X ⊗Q Q,Qp)⊗i . Here, H et
1 (X ⊗Q

Q,Qp) is the Qp-dual of the first etale cohomology group H 1
et(X ⊗Q Q,Qp) of X ⊗Q Q.

PROOF. First, we prove the freeness. We fix an embedding Q ↪→ C. Put π :=
π

top
1 (X(C), x̄). By the comparison theorem of classical fundamental groups with etale fun-

damental groups (cf. [28, Expose XII, Corollaire 5.2]), π(p) is the pro-p completion of π .
According to Lemma 7.3, gi (X) = π(p)(i)/π(p)(i+1) is canonically isomorphic to the pro-p
completion of π(i)/π(i+1). Thus, it is sufficient to show that π(i)/π(i+1) is a free Z-module
of finite rank.

If X is not proper, then π is a finitely generated free group. Therefore, the Lie algebra
⊕∞i=1π

(i)/π(i+1) is isomorphic to a finitely generated free Lie algebra (cf. [23, Theorem 6.1]).
In particular, π(i)/π(i+1) is a free Z-module of finite rank. If X is proper, then we have

π ∼= 〈 x1, . . . , x2g | [x1, x2] · · · [x2g−1, x2g ] = 1 〉
where g is the genus of X. Let F2g be the free group of rank 2g with a set of generators
{a1, b1, . . . , ag , bg } and r := [a1, b1] · · · [ag , bg ]. Then the element r is a primitive element
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of F2g (cf. [14, Section 1]). Therefore, according to [14, Theorem 1], the graded Lie algebra
of F2g/R ∼= π is free over Z where R is the normal subgroup of F2g generated by r .

Put G := πun
1 (X ⊗ Q, x̄). It is known that G/G(i) is the Malcev completion of π(p)/

π(p)(i) over Qp (cf. [8, Corollary A.4, Theorem A.6]). In particular, the GQ-equivariant
canonical morphism of Zp-modules π(p)/π(p)(i) → (G/G(i))(Qp) has a Zariski dense im-
age for each i. This implies that the canonical morphism π(p)(i)/π(p)(i+1) → (G(i)/G(i+1))

(Qp) also has a Zariski dense image. Since the kernel of this canonical homomorphism is fi-
nite (cf. [8, Theorem A.3]), we have a canonical isomorphism

(π(p)(i)/π(p)(i+1))⊗Zp Qp
∼−→ (G(i)/G(i+1))(Qp)

of Qp[GQ]-modules. On the other hand, by [11, Section 3], (G(i)/G(i+1))(Qp) is canonically
isomorphic to a quotient of H et

1 (X ⊗ Q,Qp)⊗i . Therefore, we have the conclusion of the
lemma. �

By Lemma 7.4, g≤m(X) is a nilpotent Lie algebra which is a free Zp-module of finite
rank. Hence we can define a canonical group structure on g≤m(X)⊗Zp R for any Zp-algebra
R (cf. Remark 4.2 (3)). Denote this group by g≤m(X)R,a . Then, we define the Rmon-P-set
H 1

cont(Gal(F�F /L), g≤m(X)R/(pr ),a) as in Example 3.3 (1) for any subextension L/F of F�F

and denote this Rmon-P-set by H 1(F�F /L, g≤m(X)R/(pr ),a).

DEFINITION 7.5. Let F be a number field and L a finite extension of F contained in
F�F . Let v be an element of �L and r a positive integer. Let R be a finite flat Zp-algebra.
Then, we define the subset H 1

f (L, g≤m(X)R/(pr),a) of the continuous Galois cohomology

H 1(F�F /L, g≤m(X)R/(pr ),a) by the following cartesian diagram:

H 1
f (L, g≤m(X)R/(pr ),a)

��

��

�

H 1(F�F /L, g≤m(X)R/(pr ),a)

��∏
v∈�L

H 1
f (Lv, g

≤m(X)R/(pr ),a) ��
∏

v∈�L

H 1(Lv, g
≤m(X)R/(pr ),a) .

Here, H 1
f (Lv, g

≤m(X)R/(pr),a) is the finite part of H 1(Lv, g
≤m(X)R/(pr ),a) (cf. Definition 6.1

(3)).

REMARK 7.6. If L is an abelian number field, then the Galois group � = Gal(L/Q)

acts on the whole of the objects appearing in the above diagram. Hence, they can be regarded
as (Rmon ×�)-P-sets.

Then, we restate the main result of this paper.

THEOREM 7.7. Let X be a smooth curve over Q, p a rational prime and m a positive
integer smaller than p − 1. Let F be a finite abelian number field with the Galois group
� := Gal(F/Q) and χ an element of the group of characters Hom(�,Qp

×
). Assume the

following conditions:
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(a) The field F is a totally real number field such that the completion Fv of F at v is
linearly disjoint from Qp(μp) over Qp for each prime v of F over p. Further, the
order of � is prime to p.

(b) The first etale homology group H et
1 (X⊗Q Q,Zp) of X⊗Q Q is isomorphic to one of

the followings as a Zp[GQ]-module:
(b1) A direct sum of Zp(1).
(b2) A direct sum of {TpEi}i∈I where {Ei}i∈I is a finite set of elliptic curves over Q

with good ordinary reduction at p satisfying the condition (dist).

We suppose that the restriction of χ (resp. χ2) to the decomposition group �p of � at p

is non-trivial if H et
1 (X ⊗Q Q,Zp) satisfies the condition (b1) (resp. (b2)). Then the set of

morphisms between Zp[χ]mon-P-sets{
Resm,〈χ 〉

n,r :H 1
f (F

cyc
n ,g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 → H 1
f (F

cyc∞ ,g≤m(X)Zp [χ]/(pr ),a)
〈χ 〉,�n

}
n,r∈Z≥0

is controlled with respect to (n, r) ∈ Z≥0 × Z≥0.

Let us show the most fundamental lemma for the proof of the control theorem.

LEMMA 7.8. LetG be a topological group andH a normal closed subgroup ofG such
that � := G/H is isomorphic to the additive group Zp. Let A be a finite (Zmon

p ,G)-group
with the discrete topology. Assume the following conditions:

(a) There exists a positive integer μ and a central series 1 = A(μ+ 1) ⊂ A(μ) ⊂ · · · ⊂
A(2) ⊂ A(1) = A of A stable under the action of � such that the abelian group
A(ν)/A(ν + 1) is a finite p-group for any ν ∈ Z≥1.

(b) Put Aν := A/A(ν). Then there is a positive integer N such that 〈pN 〉H 0(H,Aν) =
1 for any ν ∈ Z≥1.

(c) The canonical morphisms H 1
cont(G,A(ν)/A(ν + 1)) → H 1

cont(G,A/A(ν + 1)) and
H 1

cont(H,A(ν)/A(ν + 1))→ H 1
cont(H,A/A(ν + 1)) are injective for all ν.

Then, there exists a positive integerN ′, which depends only onN andμ, such that 〈pN ′ 〉H 1
cont

(H,A)� is contained in the image of the restriction map Res : H 1
cont(G,A)→ H 1

cont(H,A)� .

PROOF. We prove this lemma by induction on μ. If μ = 1, then A is an abelian group.
Then, by the Hochschild–Serre spectral sequence, the cokernel of Res is isomorphic to a
subgroup of H 2

cont(�,H 0(H,A)). Since the cohomological dimension of � is equal to 1 and
A is a finite abelian p-group, H 2

cont(�,H 0(H,A)) vanishes. Then, we have the conclusion of
the lemma.

Next, we consider the case μ > 1. By the condition (c) of Lemma 7.8, we have the
following commutative diagram with exact rows:

1 �� H 1
cont(G,A(μ)) ��

f

��

H 1
cont(G,A) p

��

g

��

H 1
cont(G,Aμ)

h

��

1 �� H 1
cont(H,A(μ)) �� H 1

cont(H,A)
p′

�� H 1
cont(H,Aμ) .
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Let us fix a (non-canonical) splitting G = �̃�H such that �̃ is isomorphic to � under the
canonical projection G → �. Take an element x = [c] of H 1

cont(H,A)� where c : H → A

is a 1-cocycle that represents x. We will find y ∈ H 1
cont(G,A) such that g(y) = 〈pN ′ 〉 x

with a positive integer N ′ depending only on N and μ. Let c̄ be the composition of c with
the canonical projection A→ Aμ. By the assumption of the induction, we may assume that
〈pN1 〉 c̄ can be extended to a 1-cocycle on G for a sufficiently large positive integer N1 which
depends only on N and μ − 1. On the other hand, for any element γ ∈ �̃, there exists an
element aγ ∈ A such that γ c(γ−1hγ ) = a−1

γ c(h) haγ for any h ∈ H because x is contained

in the �-invariant part of H 1
cont(H,A). We fix such an element aγ for each γ ∈ �̃. Consider

the map z : �̃2 → A , (γ1, γ2) �→ aγ1γ2(aγ1
γ1aγ2)

−1. By the definition of aγ , we have the
equations

a−1
γ1γ2

c(h) haγ1γ2 = γ1γ2c(γ−1
2 γ−1

1 hγ1γ2)(21)

=γ1 (a−1
γ2

c(γ−1
1 hγ1)

γ−1
1 hγ1aγ2)

=γ1 a−1
γ2

γ1c(γ−1
1 hγ1)

hγ1aγ2

=γ1 a−1
γ2

a−1
γ1

c(h) haγ1
hγ1aγ2

for all γ1, γ2 ∈ �̃ and for all h ∈ H . Therefore, z satisfies the equation

z(γ1, γ2)c(h) = c(h) hz(γ1, γ2) , for all γ1, γ2 ∈ �̃ , for all h ∈ H .(22)

Thus, if the image of z is contained in the center of A, then the image of z is also contained in
the H -invariant part of A. We show the following claim:

CLAIM 7.9. There exists a positive integer N2 which depends only on N and ν such
that 〈pN2 〉 z is the zero map.

Let us prove Claim 7.9. By the condition (b) of this lemma, it is sufficient to show that
the image of 〈pN2 〉 z is contained in A(μ) for sufficiently large integer N2. Let c̄′ := 〈pN1 〉 c̄
and ā′γ the image of 〈pN1 〉 aγ in Aμ. Then, we have

(23) ā′−1
γ c̄′(h) hā′γ =γ c̄′(γ−1hγ ) =γ c̄′(γ−1) c̄′(hγ ) = c̄′(γ )−1c̄′(h) hc̄′(γ )

for any γ ∈ � and for any h ∈ H . Since A2 is an abelian group, we conclude that the image
of c̄′(γ )ā′−1

γ in A2 is contained in the H -invariant part of A2 by the equations (23). By the

assumption (b) of Lemma 7.8, the element 〈pN 〉(c̄′(γ )ā′−1
γ ) is contained in A(2)/A(μ) for

any γ ∈ �̃. Since A(2)/A(3) is contained in the center of A3, the image of 〈pN 〉(c̄′(γ )ā′−1
γ )

is also contained in the H -invariant part of A3 by the same reason. Therefore, we have
〈p2N 〉(c̄′(γ )ā′−1

γ ) ∈ A(3)/A(μ). Then, by the inductive argument, we have 〈pN(ν−1) 〉
(c̄′(γ )ā′−1

γ ) ∈ A(ν)/A(μ) for any 1 ≤ ν ≤ μ. In particular, we have the equality 〈pN(μ−1) 〉
c̄′(γ ) = 〈pN(μ−1) 〉 ā′γ . Therefore, the map γ �→ 〈pN(μ−1) 〉 āγ is a 1-cocycle on �̃. This

implies that the composition of 〈pN1+N(μ−1) 〉 z with the canonical morphism A → Aμ is
trivial.
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Let us prove Lemma 7.8 by using Claim 7.9. By replacing x to 〈pN2+N 〉 x and by
Claim 7.9, we may assume that z is trivial, that is, γ �→ aγ is a 1-cocycle on �̃. Put c̃(γ , h) :=
aγ

γ c(h) for h ∈ H, γ ∈ �̃. We claim that c̃ is a 1-cocycle on G = �̃ � H . Indeed, for any
γ1, γ2 ∈ �̃ and h1, h2 ∈ H , we have the following equations:

c̃((γ1, h1)(γ2, h2))= c̃(γ1γ2, γ
−1
2 h1γ2h2) = aγ1γ2

γ1γ2c(γ−1
2 h1γ2h2)

= aγ1γ2
γ1γ2{c(γ−1

2 h1γ2)
γ−1

2 h1γ2c(h2)}
= aγ1γ2

γ1{γ2c(γ−1
2 h1γ2)

h1γ2c(h2)}
= aγ1γ2

γ1{a−1
γ2

c(h1)
h1aγ2

h1γ2c(h2)}
= (aγ1γ2

γ1aγ2
−1) γ1c(h1)

γ1h1aγ2
γ1h1γ2c(h2)

= aγ1
γ1c(h1)

γ1h1{aγ2
γ2c(h2)}

= c̃(γ1, h1)
γ1h1 c̃(γ2, h2) .

We denote by [c̃] ∈ H 1
cont(G,A) (resp. [c̄] ∈ H 1

cont(H,Aμ)) the cohomology class defined
by c̃ (resp. c̄). By the construction of c̃, we have p′ ◦ g([c̃]) = [c̄] = p′(x). Thus, there
exists an element w ∈ H 1

cont(H,A(μ))� such that wg([c̃]) = x. Since the cohomological
dimension of � is equal to 1 and A(μ) is abelian, f is surjective. Hence, we can take a lift
w̃ ∈ H 1

cont(G,A(μ)) of w. Then, the cohomology class g(w̃[c̃]) = wg([c̃]) coincides with x.
This completes the proof of the lemma. �

PROPOSITION 7.10. Let F be a finite number field and R a finite flat Zp-algebra. For
all non-negative integers n and r , we put Ar := g≤m(X)R/(pr ),a , Gn := Gal(F�F /F

cyc
n )

and H := Gal(F�F /F
cyc∞ ). Then, for A = Ar and G = Gn, the triple (A,G,H) satisfies

whole the conditions of Lemma 7.8. Moreover, if F is an abelian number field satisfying the
condition (a) of Theorem 7.7 and ifH et

1 (X⊗QQ,Qp) is an ordinary crystalline representation
of GQp , then we can take N in Lemma 7.8 (b) independently of n and r .

PROOF. Let us show the triple (Ar,Gn,H) satisfies the conditions of Lemma 7.8. Set
μ := m and Ar(ν) := ⊕m

j=νg
j (X)R/(pr ) for any 1 ≤ ν ≤ m. Then, we have Ar(ν)/Ar(ν +

1) = gν(X)R/(pr ) = gν(X) ⊗Zp R/(pr). Thus, the condition (a) holds. Since Ar is a finite
group, the condition (b) is also satisfied. Finally, by Lemma 3.10, the triple (Ar,Gn,H)

satisfies the condition (c) of Lemma 7.8.
Now, assume that F is an abelian number field satisfying (a) of Theorem 7.7 and the

Qp[GQp ]-module H et
1 (X⊗Q,Qp) is crystalline and ordinary. We show that positive integer

N in the condition (b) of Lemma 7.8 can be taken independently of n and r . Since H does
not depend on n, the independence of N with respect to n is clear. Note that the equalities
H 0(H, g≤m(X)R/(pr ),a) = ⊕m

j=1H
0(H, gj (X)⊗Zp R/(pr )) = ⊕m

j=1H
0(H, gj (X)/pr )⊗Zp

R hold. Therefore, to show the existence of N which is independent of r , it is sufficient to
show that the group H 0(H, gj (X) ⊗ Qp/Zp) are finite groups for all 1 ≤ j ≤ m. Fix such
a j and put T := gj (X). It is sufficient to show that H 0(H, T ) = 0. We show the following
stronger assertion.
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CLAIM 7.11. Let Dp ⊂ Gal(F�F /F ) be a decomposition group at p. Then, we have
H 0(H ∩Dp, T ) = 0.

By the good ordinarity of the Jacobian variety of X and Lemma 7.4, each of the Jordan–
Hölder component of the Zp[Dp]-module T is of the form χ ⊗ χ⊗t

cyc for some unramified
character χ and some non-negative integer t (cf. Lemma 6.11). Hence, it is sufficient to show
that the restrictions of such characters to H ∩ Dp are non-trivial. Assume that χ is a non-
trivial character on Dp . Since F

cyc
∞,w/Fv is totally ramified, the restriction of χ ⊗ χ⊗t

cyc to the
decomposition group Dw ⊂ H ∩ Dp at w is also non-trivial for any integer t . On the other
hand, if χ = 1, then non-negative integer t is not equal to 0 and less than m + 1 ≤ p − 1
by the Weil conjecture. By definition, the restriction of χt

cyc to H ∩ Dp coincides with the
composition

H ∩Dp → Gal(Qp(μp)/Qp)
ωt−→ Z×p .(24)

Here, ω is the Teichmüller character. Since the order of ω is equal to p − 1, it is sufficient to
show that the first map in (24) is surjective. Since the quotient group Gal(F�F /F )∩Dp/H ∩
Dp is torsion free, it is sufficient to show that the homomorphism Gal(F�F /F ) ∩ Dp →
Gal(Qp(μp)/Qp) is surjective. Therefore, by the linearly disjointness assumption (a) of The-
orem 7.7, we obtain the conclusion of the claim. �

PROPOSITION 7.12. Let F be an abelian number field satisfying (a) of Theorem 7.7.
Suppose that H et

1 (X⊗Q,Qp) is a crystalline and ordinary representation of GQp . Then, for
any finite flat Zp-algebra R, the set of the restriction maps indexed by Z≥0 × Z≥0 :{

Resm
n,r : H 1(F�F /F

cyc
n , g≤m(X)R/(pr ),a)→ H 1(F�F /F

cyc
∞ , g≤m(X)R/(pr),a)

�n

}
n,r∈Z≥0

is controlled with respect to the index set Z≥0 × Z≥0.

PROOF. We denote by Hi
m,n,r,�(X) (resp. Hi

m,∞,r,�(X)) the continuous Galois coho-

mology Hi(F�F /F
cyc
n ,g≤m(X)R/(pr),a) (resp. Hi(F�F /F

cyc∞ ,g≤m(X)R/(pr),a)) for i = 0, 1.
According to Lemma 7.8 and Proposition 7.10, p-exponents of the cokernels of the restriction
maps are finite and bounded independently of n and r . Therefore, it is sufficient to show that
the order of

Ker[Resm
n,r : H 1

m,n,r,�(X)→ H 1
m,∞,r,�(X)�n]

is finite and bounded independently of n and r . By the Hochschild–Serre spectral sequence,
this order is equal to �H 1

cont(�n,H
0
m,∞,r,�(X)). According to Claim 7.11 of Proposition 7.10,

that order is finite and bounded independently of n and r .
Finally, we check the condition (c) of Definition 3.12 by induction on m. If m is equal

to 1, then the condition (c) of Definition 3.12 is automatically satisfied. Now, we assume that
{Resm−1

n,r } satisfies the condition (c) of Definition 3.12. Consider the following commutative
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diagram with exact rows:

1 ��H 1(F�F /F
cyc
n , gm(X)R/(pr )) ��

��

H 1
m,n,r,�(X) ��

Resm
n,r

��

H 1
m−1,n,r,�(X)

Resm−1
n,r

��

1 ��H 1(F�F /F
cyc∞ , gm(X)R/(pr))

�n �� H 1
m,∞,r,�(X)�n �� H 1

m−1,∞,r,�(X)�n .

Then, according to Corollary 3.13 and Remark 3.14, {Resm
n,r } also satisfies the condition (c)

of Definition 3.12. �

7.3. Reduction to the case where m = 2. In this subsection, we reduce the proof of
Theorem 7.7 to the proof of the case m = 2 by the inductive argument on m. From now to
the end of this paper, we always assume that the fixed X,F and m satisfy the all conditions of
Theorem 7.7. Further, we fix the following notation. For a GQ-stable submodule T of gm(X)

and a character χ ∈ �̂, we define ρ
〈χ 〉
n,r (T ) (resp. ρ

〈χ 〉,�n∞,r (T )) to be the canonical map

H 1
f (F

cyc
n , g≤m(X)Zp[χ]/(pr ),a)〈χ 〉 → H 1

f (F
cyc
n , (g≤m(X)/T )Zp [χ]/(pr ),a)〈χ 〉

(resp. H 1
f (F

cyc∞ , g≤m(X)Zp[χ]/(pr ),a)〈χ 〉,�n → H 1
f (F

cyc∞ , (g≤m(X)/T )Zp[χ]/(pr ),a)〈χ 〉,�n)

induced by the canonical projection prT ,Zp[χ]/(pr ) : g≤m(X)→ g≤m(X)/T . For such a stable

submodule T and a character χ ∈ �̂, we denote by Res〈χ 〉n,r (T ) the restriction map

H 1
f (F

cyc
n , (g≤m(X)/T )Zp [χ]/(pr),a)

〈χ 〉 → H 1
f (F

cyc
∞ , (g≤m(X)/T )Zp[χ]/(pr ),a)

〈χ 〉,�n .

If T is a direct summand of gm(X), then the abelian group H 1(F�F /L, T /prT ) acts on
H 1(F�F /L, g≤m(X)Zp [χ]/(pr ),a) freely for any F ⊂ L ⊂ F�F (cf. Lemma 3.10). We denote
by z ∗ x the action of z ∈ H 1(F�F /L, T /prT ) on x ∈ H 1(F�F /L, g≤m(X)Zp [χ]/(pr ),a).
Recall that, for each algebraic extension L of F , �L (resp. �L,p) denotes the set of finite
primes of L above � (res. over p). For simplicity, we denote �F

cyc∞ and �F
cyc∞ ,p by �∞

and �∞,p respectively. Note that �∞ is a finite set because F
cyc∞ /F is the cyclotomic Zp-

extension. By abuse of notation, we sometimes regard each element v ∈ �∞ as a prime of a
subfield F

cyc
n of F

cyc∞ .

LEMMA 7.13. Let T be a Jordan–Hölder component of gm(X) as a Zp[GQ]-module.
(1) The Zp[GQ]-module T is not isomorphic to Zp(1) if and only if T has no Jordan–

Hölder component isomorphic to Zp(1) as a Zp[GQp ]-module.
(2) If T is not isomorphic to Zp(1), then T satisfies all the conditions of Theorem 2.3 (2)

where V = T ⊗Zp Qp.

PROOF. If H et
1 (X⊗Q,Qp) is isomorphic to a direct sum of Qp(1), then the assertions

of the lemma are direct consequences of Lemma 7.4. Hence we consider the case (b2) of
Theorem 7.7.

Assume that T has a Jordan–Hölder component isomorphic to Zp(1) as a Zp[GQp ]-
module. Then, according to Lemma 6.11, the integer m is equal to 2. Then, by Lemma 2.8, T
is isomorphic to Zp(1).
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We show (2) of the lemma. Let us check that V := T⊗ZpQp satisfies the three conditions
in Theorem 2.3 (2). The ordinarity condition (a) follows from the ordinarity of H et

1 (X ⊗
Q,Qp) and Lemma 7.4. According to Lemma 6.11 and the assumption that T �∼= Zp(1),
each component of the Zp[GQp ]-module T is of the form χ ⊗ χ⊗s

cyc where χ is an unramified
character of GQp of infinite order. Since such components satisfies conditions (b) and (c) of
Theorem 2.3, T also satisfies these two conditions (cf. Remark 2.4). �

PROPOSITION 7.14. Let T be a direct summand of gm(X) as a Zp[GQ]-module. As-
sume that T is not isomorphic to Zp(1). If the set of morphisms {Res〈χ 〉n,r (T )}n,r∈Z≥0 is con-
trolled with respect to the index set Z≥0 × Z≥0 in the sense of Definition 3.12, then the set of
the restrictions of Res〈χ 〉n,r (T ) to the image of ρ〈χ 〉n,r (T )

{R̃es
〈χ 〉
n,r (T ) : Im(ρ〈χ 〉n,r (T ))→ Im(ρ

〈χ 〉,�n∞,r (T ))}n,r∈Z≥0

is also controlled with respect to Z≥0 × Z≥0.

PROOF. It is clear that the set {R̃es〈χ 〉n,r (T )}n,r∈Z≥0 satisfies the condition (a) of Defini-

tion 3.12 because of the equality Ker(R̃es〈χ 〉n,r (T )) = Ker(Res〈χ 〉n,r (T )) ∩ Im(ρ
〈χ 〉
n,r (T )). The

condition (c) of Definition 3.12 follows from Proposition 7.12. Thus, it remains to show the
condition (b), almost surjectivity.

Let n and r be non-negative integers. Consider the following commutative diagram:

H 1(F�F /F
cyc
n , g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 ρ
〈χ 〉
n,r

��

��

H 1(F�F /F
cyc
n , (g≤m(X)/T )Zp[χ]/(pr ),a)

〈χ 〉

��

H 1(F�F /F
cyc∞ , g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 ρ
〈χ 〉∞,r

�� H 1(F�F /F
cyc∞ , (g≤m(X)/T )Zp[χ]/(pr ),a)

〈χ 〉.

Here, ρ
〈χ 〉
n,r and ρ

〈χ 〉∞,r are the map induced by prT ,Zp[χ]/(pr ). Let us take x ∈ Im(ρ
〈χ 〉,�n∞,r (T ))

and a lift x ′ ∈ H 1
f (F

cyc
∞ , g≤m(X)Zp [χ]/(pr),a)

〈χ 〉,�n of x. We will show the existence of

y ∈ H 1
f (F

cyc
n , g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 which is a lift of 〈pM 〉 x for a sufficiently large M

depending only on X,F and m.
By Proposition 7.12, we may take y ∈H 1(F�F /F

cyc
n , g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 such that
the restriction of y to GF

cyc∞ is equal to x ′. On the other hand, by our assumption, we can

take a lift y1 ∈ H 1
f (F

cyc
n , (g≤m(X)/T )Zp[χ]/(pr ),a)

〈χ 〉 of x after replacing x ′ by 〈pM 〉 x ′ for
sufficiently large M depending only on X,F and m. According to Proposition 7.12, we may
assume that the element ρ

〈χ 〉
n,r (y) coincides with y1. Hence, we may assume that ρ

〈χ 〉
n,r (y)

is contained in the finite part. We show that 〈pM 〉 y is contained in the finite part for a
sufficiently large M depending only on X,F and m. For any v ∈ �∞ = �F

cyc∞ , we denote by
yv the restriction of y to the decomposition group GF

cyc
n,v

. Fix a prime v ∈ �∞. Since �∞ is

a finite set, it is sufficient to show 〈pM 〉 yv ∈ H 1
f (F

cyc
n,v , g≤m(X)Zp [χ]/(pr ),a) for sufficiently

large M depending only on X,F and m.
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Assume v �∈ �∞,p. Then there exists a positive integer M depending only on X,F

and m such that the restriction of 〈pM 〉 x ′ to GF
cyc∞,v

contained in the unramified cohomology

(cf. Proposition 6.9). Since the extension F
cyc
∞ /F

cyc
n is unramified outside p, the restriction

〈pM 〉 yv to GF
cyc
n,v

is also contained in the unramified cohomology. Therefore, we may assume
that y is unramified at v. Then, by the second inclusion relationship of Proposition 6.9, we
have 〈pM 〉 yv ∈ H 1

f (F
cyc
n,v , g≤m(X)Zp [χ]/(pr ),a) for sufficiently large M depending only on

X,F and m.
Next, we assume v ∈ �∞,p. Let us denote F

cyc
n,v by Kn for simplicity. According to

Proposition 6.18, the p-exponent of the cokernel of the canonical map

H 1
f (Kn, g

≤m(X)Zp [χ]/(pr),a)
〈χ 〉 → H 1

f (Kn, (g
≤m(X)/T )Zp[χ]/(pr ),a)

〈χ 〉

is finite and bounded independently of n and r . Hence, we may assume that there exists
y ′ ∈ H 1

f (Kn, g
≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 satisfying ρ
〈χ 〉
n,r (yv) = ρ

〈χ 〉
n,r (y ′). Take a unique element

z ∈ H 1(Kn, T /pr )〈χ 〉 such that z∗y ′ = yv . Then, it is sufficient to show the following claim:

CLAIM 7.15. There exists a positive integer M depending only on X,F and m such
that 〈pM 〉 z is contained in the finite part.

Indeed, if Claim 7.15 holds, then 〈pM 〉 yv = 〈pM 〉(zy ′) is also contained in the finite
part.

We prove Claim 7.15. Let A := T ⊗Zp Qp[χ]/Zp[χ]. Then the image of yv in H 1(K∞,

g≤m(X)Zp [χ]/(pr ),a)
〈χ 〉 is contained in the finite part. Therefore, we may assume that the im-

age of z in H 1(K∞, A) is also contained in the finite part because the sequence of Zp[χ]mon-
P-sets

1→ H 1
f (Kn, T ⊗ Zp[χ]/(pr))〈χ 〉 → H 1

f (Kn, g
≤m(X)Zp [χ]/(pr),a)

〈χ 〉

→ H 1
f (Kn, (g

≤m(X)/T )Zp[χ]/(pr ),a)
〈χ 〉

is admissible whose gap is finite and bounded with respect to n and r (cf. Proposition 6.18). So
the image of z in H 1

s (Kn,A) is contained in the kernel of the restriction map H 1
s (Kn,A)→

H 1
s (K∞, A). Therefore, to prove Claim 7.15, it is sufficient to show that the order of the

kernel of H 1
s (Kn,A) → H 1

s (K∞, A) is finite and bounded independently of n. By the or-
thogonality of the finite part, this assertion is equivalent to the assertion that the cokernel of
the corestriction map H 1

f (K∞, (T ⊗Zp[χ])∗(1))→ H 1
f (Kn, (T ⊗Zp[χ])∗(1)) is a finite and

bounded independently of n. By Lemma 7.13 (2) and [20, page 81, line 8-23], this assertion
holds. Hence, we have the conclusion of the claim. �

COROLLARY 7.16. Let us take the same setting and assumptions in Proposition 7.14.
Then, the set of the restriction maps{

Resm,〈χ 〉
n,r :H 1

f (F
cyc
n ,g≤m(X)Zp [χ]/(pr ),a)

〈χ 〉 → H 1
f (F

cyc
∞ ,g≤m(X)Zp [χ]/(pr),a)

〈χ 〉,�n

}
n,r∈Z≥0

is controlled with respect to Z≥0 × Z≥0.
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PROOF. Consider the following diagram with exact rows of Zp[χ]mon-P-sets:

1 �� H 1
f (F

cyc
n ,T ′/pr )〈χ 〉 ��

R
〈χ 〉
n,r

��

H 1
f (F

cyc
n ,g≤m

r,a )〈χ 〉 ��

��

Im(ρ
〈χ 〉
n,r (T )) ��

R̃es〈χ 〉n,r (T )

��

1

1 �� H 1
f (F

cyc
∞ ,T ′/pr )〈χ 〉,�n �� H 1

f (F
cyc
∞ ,g≤m

r,a )〈χ 〉 .�n �� Im(ρ
〈χ 〉∞,r (T ))�n

where T ′ := T ⊗Zp Zp[χ] and g≤m
r,a := g≤m(X)Zp [χ]/(pr ),a . According to Proposition 6.18,

these two horizontal sequences are admissible. By Proposition 7.14, the set of morphisms
{R̃es〈χ 〉n,r (T )}n,r is controlled with respect to Z≥0 × Z≥0. Therefore, by Corollary 3.13, it

is sufficient to show that the set of morphisms {R〈χ 〉n,r }n,r is also controlled with respect to
Z≥0 × Z≥0.

Set A := T ′ ⊗ Qp/Zp . According to [21, Chapter 1, Lemma 1.5.4], the exact sequence

0→ T ′/pr → A
pr

−→ A→ 0 induces the following exact sequence:

0→ H 0(F
cyc
n ,A)/pr → H 1

f (F
cyc
n , T ′/pr)→ H 1

f (F
cyc
n ,A)[pr ] → 0 .(25)

Since the orders of the kernel and cokernel of the canonical map Resn,r : H 1
f (F

cyc
n ,A)[pr ] →

H 1
f (F

cyc∞ , A)�n[pr ] are bounded independently of n and r (cf. Remark 2.6 (2)) , it is sufficient

to show the control theorem for the maps H 0(F
cyc
n ,A)/pr → (H 0(F

cyc
∞ , A)/pr )�n . How-

ever, since H 0(F
cyc∞ , A) is a finite group, we have the conclusion from the exact sequence

(25). �

COROLLARY 7.17. Let us keep the same notation and the same assumptions as in
Theorem 7.7.

(1) If X satisfies the condition (b1) of Theorem 7.7, then the assertion of Theorem 7.7 is
true.

(2) If X satisfies the condition (b2) of Theorem 7.7 and if the assertion of Theorem 7.7
for m = 2 is true, then the assertion of Theorem 7.7 is true for any m.

PROOF. If X satisfies the condition (b1) of Theorem 7.7, then gi (X) satisfies all the
conditions of Theorem 2.3 (2) if i ≥ 2 (cf. Lemma 7.13 (2)). Since g1(X) is a direct sum of
Zp(1) and χ does not vanish on the decomposition group �p of � at p, Main theorem holds
in the case m = 1 (cf. Theorem 2.5). Therefore, by applying Corollary 7.16 as T = gm(X),
we have the conclusion in this case by induction on m.

If X satisfies the condition (b2) of Theorem 7.7 and if i is greater than 2, then the Galois
representation gi (X) satisfies the conditions (a), (b), (c) of Theorem 2.3 (2) (cf. Lemma 7.13
(2)). Thus, by using the inductive argument on m and by applying Corollary 7.16 as T =
gm(X), we have the conclusion by the same argument as in the first case. �

7.4. Proof of the case where m = 2. In this subsection, we prove Theorem 7.7 in the
case where m = 2 and X satisfies the condition (b2) of Theorem 7.7. We need a proposition
for the proof of the main theorem. Let L be a finite number field and L

cyc∞ the cyclotomic



A CONTROL THEOREM FOR THE TORSION SELMER POINTED SET 219

Zp-extension of L with the Galois group � := Gal(Lcyc∞ /L) and the n-th layer L
cyc
n . The

symbol �n,p (resp. �∞,p) denotes the set of finite primes of L
cyc
n (resp. L

cyc∞ ) over a prime
dividing p. Let Cl(Lcyc

n ){p} be the p-primary part of the narrow ideal class group of L and
let Cl�n,p (L

cyc
n ){p} be the quotient of Cl(Lcyc

n ){p} by the subgroup generated by all primes
over p. We denote by Hn (resp. H ′n) the maximal unramified p-extension of L

cyc
n (resp. the

maximal unramified extension of L
cyc
n which is completely decomposed at all primes over p).

Then, by the class field theory, we have the canonical isomorphisms

Gal(Hn/L
cyc
n ) ∼= Cl(Lcyc

n ){p}
and

Gal(H ′n/L
cyc
n ) ∼= Cl�n,p (L

cyc
n ){p} .

We put H∞ := ∪∞n=0Hn and H ′∞ := ∪∞n=0H
′
n.

LEMMA 7.18. Let L be a totally real abelian finite number field. Then the order of the
kernel of the canonical surjective homomorphism of finite groups

Gal(Hn/L
cyc
n ) ∼= Cl(Lcyc

n ){p}� Cl�n,p (L
cyc
n ){p} ∼= Gal(H ′n/L

cyc
n )

is bounded independently of n.

PROOF. Let γ ∈ � be a topological generator of � and put

νn,e := (γ pn − 1)/(γ pe − 1) ∈ Zp[[�]] := lim←−
n

Zp[�/�pn ]

for positive integers n ≥ e. Then, according to [19, Lemma 11.1.5], there exists a positive
integer n0 such that the natural homomorphisms

Gal(H∞/L
cyc
∞ )/νn,n0Gal(H∞/Hn0L

cyc
∞ )→ Gal(Hn/L

cyc
n )

and

Gal(H ′∞/L
cyc∞ )/νn,n0Gal(H ′∞/H ′n0

L
cyc∞ )→ Gal(H ′n/L

cyc
n )

are isomorphisms for all n ≥ n0 (cf. [27, Lemma 13.18]). Hence we obtain the following
commutative diagram of Zp[[�]]-modules with exact rows for all n ≥ n0:

0 �� νn,n0 Gal(H∞/Hn0L
cyc∞ ) ��

��

Gal(H∞/L
cyc∞ ) ��

��

Gal(Hn/L
cyc
n )

��

�� 0

0 �� νn,n0 Gal(H ′∞/H ′n0
L

cyc∞ ) �� Gal(H ′∞/L
cyc∞ ) �� Gal(H ′n/L

cyc
n ) �� 0 .

Therefore, it is sufficient to show that the kernel of

Gal(H∞/L
cyc
∞ ) � Gal(H ′∞/L

cyc
∞ )(26)

is finite and that the cokernel of

Gal(H∞/Hn0L
cyc∞ )→ Gal(H ′∞/H ′n0

L
cyc∞ )(27)
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is finite. Since Gal(H∞/Hn0L
cyc∞ ) and Gal(H ′∞/H ′n0

L
cyc∞ ) are finite index subgroups of Gal

(H∞/L
cyc∞ ) and Gal(H ′∞/L

cyc∞ ), respectively, the finiteness of the cokernel of (27) follows
from the surjectivity of (26).

We show the finiteness of the kernel of (26). Note that the strong Leopoldt conjecture
holds for each L

cyc
n because L

cyc
n /Q is an abelian extension of Q (cf. [19, Theorem 10.3.16]).

Therefore, according to [19, Porposition 11.4.7], the λ-invariant of Gal(H∞/L
cyc∞ ) coin-

cides with the λ-invariant of Gal(H ′∞/L
cyc∞ ) because L is totally real. Furthermore, it also

holds that the μ-invariant of Gal(H∞/L
cyc
∞ ) is equal to 0 (cf. [7]). This implies that both

of Gal(H∞/L
cyc
∞ ) and Gal(H ′∞/L

cyc
∞ ) are finitely generated Zp-modules with the same rank.

Hence the kernel of (26) is finite. �

PROPOSITION 7.19. Let L be a totally real finite abelian number field, Lcyc∞ /L the cy-
clotomic Zp-extension and L

cyc
n the n-th layer of Lcyc∞ /L. Then, the cokernel of the canonical

homomorphism

H 1(L�L,p /L
cyc
n , Qp/Zp(1))→

∏
v∈�

L
cyc
n ,p

H 1
s (L

cyc
n,v, Qp/Zp(1))

is finite and bounded independently of n.

PROOF. By the long exact sequence of Poitou–Tate (cf. [26, Theorem 3.1]), we have
the following exact sequence (cf. [21, Section 1.7. (1.11), Section 1.6, Proposition 1.6.1]):

H 1(L�L,p /L
cyc
n ,Qp/Zp(1))→

∏
v∈�n,p

H 1
s (L

cyc
n,v,Qp/Zp(1))

→ Cl(Lcyc
n ){p} → Cl�n,p (L

cyc
n ){p} → 0.

According to Lemma 7.18, the kernel of Cl(Lcyc
n ){p} → Cl�n,p (L

cyc
n ){p} is bounded inde-

pendently of n. Hence we obtain the conclusion of the proposition. �

LEMMA 7.20. Let χ ∈ �̂ be a character of � and g = g1 ⊕ g2 a graded Lie alge-
bra over Zp[χ] equipped with a continuous action of Gal(Q�/Q). We assume the following
conditions:

(a) Each graded piece gi is free of finite rank as a Zp[χ]-module.
(b) The action of Gal(Q�/Q) preserves each graded piece.
(c) The Galois module g1 (resp. g2) satisfies (LCO) as a GQp -module (resp. isomorphic

to a direct sum of Zp[χ](1) as a Gal(Q�/Q)-module).
(d) The restrictions of χ2 to the decomposition group �p of � is non-trivial.

Then the family of restriction maps

R〈χ 〉n,r : H 1
f (F

cyc
n , gZp [χ]/(pr ),a)

〈χ 〉 → H 1
f (F

cyc∞ , gZp [χ]/(pr),a)
〈χ 〉,�n

is controlled with respect to Z≥ × Z≥0.
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PROOF. Since the condition (a) and (c) of Definition 3.12 are easily checked by Propo-
sition 7.12, it is sufficient to check the condition (b) of Definition 3.12.

Let x be an element of H 1
f (F

cyc∞ , gZp [χ]/(pr ),a)
〈χ 〉,�n . By Proposition 7.12, we may

assume that there exists an element y ∈ H 1(F�F /F
cyc
n , gZp[χ]/(pr ),a)

〈χ 〉 such that the restric-
tion of y to Gal(F�F /F

cyc∞ ) coincides with x. By the control theorem for g1, we may assume
that the image of y in H 1(F

cyc
n , g1/prg1) is contained in the finite part. We denote by yv the

restriction of y to GF
cyc
n,v

for each v ∈ �F
cyc
n

.
If v does not divide p, then there exists a positive integer Mv depending only on g and

F such that 〈pMv 〉 yv is contained in the unramified cohomology (cf. Proposition 6.9). Since
�F

cyc∞ is a finite set, we can take M = Mv for sufficiently large M . Therefore, by the second
inclusion relationship of Proposition 6.9, we may assume yv is contained in the finite part if v

does not divide p.
Next, we consider the case where v divides p. Consider the following sequence:

H 1(F
cyc
n,v , g2/prg2)〈χ 〉 → H 1(F

cyc
n,v , gZp[χ]/(pr ),a)

〈χ 〉 q〈χ 〉n,r−−→ H 1(F
cyc
n,v , g1/prg1)〈χ 〉 .

We remark that the equality

H 1(F
cyc
n , g2/prg2)〈χ 〉 = H 1(F

cyc
n , g2/prg2)(χ

2)(28)

holds because α ∈ Zp[χ]mon acts on the abelian group H 1(F
cyc
n , g2/prg2) via the multipli-

cation by α2 (see Theorem 2.5 for the definition of the χ2-part ( )(χ
2)). Since q〈χ 〉n,r (yv) is

contained in H 1
f (F

cyc
n,v , g1/prg1)〈χ 〉, we may assume that there exists a lift wv ∈ H 1

f (F
cyc
n,v ,

gZp [χ]/(pr ),a)
〈χ 〉 of q〈χ 〉n,r (yv) by Proposition 6.2. Let us take an element zv ∈ H 1(F

cyc
n,v , g2/

prg2)〈χ 〉 such that zv ∗ wv = yv . Since g2 is isomorphic to a direct sum of Zp[χ](1),
we may assume that there exists z ∈ H 1(F�F,p /F, g2/prg2)〈χ 〉 whose restriction to GF

cyc
n,v

coincides with zv modulo finite parts for each v ∈ �F
cyc∞ ,p by Lemma 7.19. Let us put

y ′ := z−1∗y ∈ H 1(F�F /F
cyc
n , gZp [χ]/(pr ),a)

〈χ 〉. By construction, the element y ′ is contained
in the finite part and the image of y ′ in H 1

f (F
cyc
∞ , g1/prg1)〈χ 〉 coincides with the image of x.

Thus, there exists u ∈ H 1(F
cyc
∞ , g2/prg2)(χ

2),�n such that u ∗ y ′|G
F

cyc∞
= x. According to the

admissibility of the sequence (7) in Proposition 6.2, we may assume that the element u is con-
tained in the finite part. Remark that the natural homomorphism H 1

f (F∞,Zp[χ]/(pr)(1))→
H 1

f (F∞,Qp[χ]/Zp[χ](1))[pr ] is an isomorphism (cf. [21, Chapter 1, Lemma 1.5.4]). There-

fore, by the non-triviality of the restriction of χ2 to �p and by the equality (28), we may
assume that u is contained in the image under the restriction map

H 1
f (F

cyc
n , g2/prg2)〈χ 〉 → H 1

f (F
cyc
∞ , g2/prg2)〈χ 〉,�n

(cf. Theorem 2.5, Remark 2.6). Let us take a lift ũ ∈ H 1
f (F

cyc
n , g2/prg2)〈χ 〉 of u. Then,

the element ũ ∗ y ′ is contained in the finite part and the image under the restriction map
H 1

f (F
cyc
n , gZp [χ]/(pr ),a)

〈χ 〉 → H 1
f (F

cyc
∞ , gZp[χ]/(pr ),a)

〈χ 〉,�n coincides with x. Hence, we
complete the proof of the lemma. �
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PROOF OF THEOREM 7.7 IN THE CASE WHERE m=2. If X satisfies the condition (b1)
of Theorem 7.7, then the assertion had already proved in Corollary 7.17. Thus, we consider the
case that X satisfies (b2) of Theorem 7.7. Then, by Lemma 2.8, the Zp[GQ]-module g2(X)

is isomorphic to Zp(1)s ⊕ T1 for a positive integer s and a Zp[GQ]-module T1 satisfying the
conditions (a), (b), (c) of Theorem 2.3 (2). By Corollary 7.16 for m = 2 and T = T1, it
is sufficient to prove the control theorem for g≤2(X)/T1. Then, by applying Lemma 7.20 as
g = (g≤2(X)/T1)⊗Zp Zp[χ], we completes the proof of the Theorem 7.7 where m = 2. �
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