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Abstract. The paper studies sharp weighted Lp inequalities for the martingale maxi-
mal function. Proofs exploit properties of certain special functions of four variables and self-
improving properties of Ap weights.

1. Introduction. Let (�,F ,P) be a complete probability space, filtered by (Ft )t≥0, a
nondecreasing family of sub-σ -fields of F , such that F0 consists of all events of probability 0
and all events of probability 1. Let X be an adapted, real-valued, uniformly integrable martin-
gale with right-continuous trajectories that have limits from the left. Then X∗ = sups≥0 |Xs |
denotes the maximal function of X; we will also use the notation X∗

t = sup0≤s≤t |Xs | for the
corresponding truncated maximal function. Assume further that W is a positive, uniformly
integrable martingale; this process will be called a weight (sometimes, with no risk of con-
fusion, the word “weight” will refer to the terminal variable W∞ of the martingale W ). For
example, one can take an exponential martingale E(M) = (

exp
(
Mt − 1

2 〈M〉t
))

t≥0 corre-
sponding to an adapted, continuous-path martingale M satisfying E exp(〈M〉∞/2) < ∞ (cf.
[15]).

In the paper, we will be interested in sharp inequalities between weighted norms of X∗
and X. This type of estimates, motivated by corresponding results of Muckenhoupt [11] from
the analytic setting, has gathered a lot of interest in the literature. Let us assume for a moment
that both X and W have continuous paths. Following Izumisawa and Kazamaki [9], we say
that W satisfies Muckenhoupt’s condition Ap (where 1 < p < ∞ is a fixed parameter), if

||W ||Ap := sup
τ

∣∣∣∣
∣∣∣∣E[{Wτ /W∞

}1/(p−1)∣∣Fτ

]p−1
∣∣∣∣
∣∣∣∣∞ < ∞ ,

where the supremum is taken over the class of all adapted stopping times τ . There is also
a version of this condition for p = 1: W is an A1 weight if there is a constant c such that
W∗ ≤ cW almost surely; the least c with this property is denoted by ||W ||A1 .

Tsuchikura [21] proved that if the weight W = E(M) satisfies ||W ||Ap < ∞ for some
1 ≤ p < ∞, then there is a finite constant Cp such that the inequality

(1) EW∞1{X∗>1} ≤ CpE|X∞|pW∞1{X∗>1}
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holds for all uniformly integrable martingales X. Two years later, Uchiyama [22] proved the
converse: if for some p there is a constant Cp < ∞ such that the above bound holds for every
X, then W belongs to the class Ap. Izumisawa and Kazamaki [9] extended this statement to
the case of Lp estimates as follows. Let W = E(M) be a weight and let p ∈ (1,∞). Then
there is a finite constant Cp such that

(2) ||X∗||Lp(W) ≤ Cp ||X||Lp(W)

holds for any uniformly integrable martingale X if and only if W belongs to the class Ap.
Here ||X||Lp(W) = (E|X∞|pW∞)1/p is the usual weighted Lp norm of X. For a survey of
related results, consult e.g. the book [10] by Kazamaki and see the papers [16], [18] and [20]
for more on the recent progress in this direction.

We come back to the general setting in which X and W are assumed to be càdlàg and
uniformly integrable martingales. One of the questions we want to study is the following:
what are the possible substitutes for (1) and (2) if we consider general weights W (i.e., not
satisfying the Ap condition or any assumption of this kind)? This problem was studied by
Fefferman and Stein in the analytic context of Hardy-Littlewood maximal operator on R

d ,
and the solution presented in [5] suggests to replace the random variable W appearing on the
right of (1) and (2) by the maximal function W∗. It is easy to see that then the weak-type
estimate holds with constant 1. Indeed, if we take τ = inf{t : Xt > 1}, then for every p ≥ 1,

EW∞1{X∗>1} = EW∞1{|Xτ |≥1} ≤ E|Xτ |pW∞1{|Xτ |≥1} = E|Xτ |pWτ 1{|Xτ |≥1}
≤ E|X∞|pWτ 1{|Xτ |≥1} ≤ E|X∞|pW∗1{|Xτ |≥1} = E|X∞|pW∗1{X∗>1} .

Now use a straightforward interpolation-type argument: apply the above bound for weak L1

and the martingale (Xt/λ)t≥0 (where λ > 0 is fixed) to obtain

EW∞1{X∗>λ} ≤ λ−1
E|X∞|W∗1{X∗>λ} .

Fix p > 1, multiply both sides by λp−1, integrate over λ from 0 to ∞ and use Hölder’s
inequality. As the result of these operations, we obtain the estimate

||X∗||Lp(W) ≤ p

p − 1
||X||Lp(W 1−p(W∗)p) .

This is slightly weaker than what we have expected, since W
1−p∞ (W∗)p ≥ W∗. One of our

main results asserts that the stronger Fefferman-Stein inequality is also true.

THEOREM 1.1. Fix 1 < p < ∞. Then for any uniformly integrable martingaleX and
any weight W we have the estimate

(3) ||X∗||Lp(W) ≤ p

p − 1
||X||Lp(W∗) .

The constant p/(p − 1) is the best possible.
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Note that the further improvement of the weight on the right is not possible, i.e., we
cannot replace W∗ by W 1−r (W∗)r for any r < 1. Indeed, consider the following easy exam-
ple. Let X be a Brownian motion started at 1 and stopped upon leaving [0, 2], and let W =
(E[W∞|Ft ])t≥0 be the weight generated by W∞ = 1{X∞=0}. Then ||X||Lp(W 1−r (W∗)r ) = 0
and ||X∗||Lp(W) > 0.

We will also be interested in the following bound, which can be regarded as the dual to
(3) (see below for the explanation).

THEOREM 1.2. Fix 1 < p < ∞. Then for any uniformly integrable martingaleX and
any positive weight W we have the estimate

(4) ||X∗||Lp(W(W∗)−p) ≤ p

p − 1
||X||Lp(W 1−p) .

The constant p/(p − 1) is the best possible. The weight on the left cannot be improved in the
sense that for any 1 < p < ∞, any r > 0 and any constant c there is a weight W and a
martingale X such that

(5) ||X∗||Lp(W 1−r (W∗)r−p) > c||X||Lp(W 1−p) .

There is a very interesting application of the above results. Martínez [13] studied the
following: given 1 < p < ∞ and a weight V , find necessary and sufficient conditions for V

in order to guarantee the existence of a weight U such that the operator X 	→ X∗ is bounded
from Lp(V dP) to Lp(UdP). This is a classical problem from the point of view of harmonic
analysis: see the monograph [6] for an overview of the results in this direction and consult the
references therein.

The above problem (in the probabilistic setting) was completely solved in [13]: the re-
quired condition on V is that EV 1/(1−p) < ∞. The corresponding weight U was found there
with the use of the nonconstructive method developed by Rubio de Francia. The inequality
(4) shows an alternative, very simple choice for U : one can take U = W(W∗)−p, where
W = V 1/(1−p). In this spirit, the inequality (3) can be regarded as a dual statement, in which
the starting weight V is considered in the target space: the choice U = V ∗ guarantees that the
operator X 	→ X∗ is bounded from Lp(UdP) to Lp(V dP).

The next problem that we will study concerns a more precise version of the inequality
(2) and is motivated by related results in the analytic setting. Assume that (Ft )t≥0 has the
property that any adapted local martingale has continuous trajectories: this is the usual setup
in which one studies martingale inequalities involving Ap weights (cf. [10]). What is the least
exponent κ(p) such that for any Ap weight W and any martingale X we have

||X∗||Lp(W) ≤ βp||W ||κ(p)
Ap

||X||Lp(W) ,

with βp depending only on p? We will give a full answer to this question, along with a number
of related weighted inequalities.

THEOREM 1.3. Let 1 < p < ∞, 1 < q < ∞ and pick α ∈ [q−1, pq−1). Assume
further that W is a weight satisfying the condition Aq and X is a uniformly integrable mar-
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tingale. Then we have the estimate

(6) ||X∗||Lp(W(qα−1)/(q−1)) ≤
(

p

p − qα

)1/qα

||W ||1/q

Aq
||X||Lp(W(qα−1)/(q−1)) .

In particular, this implies

(7) ||X∗||Lp(W) ≤ βp||W ||1/(p−1)
Ap

||X||Lp(W)

for some βp depending only on p. The exponent 1/(p − 1) cannot be improved.

This type of results, which focuses on extracting the sharp dependence of the constant
on the Ap characteristics of a weight, has gathered a considerable interest in the last fifteen
years, especially in the analytic context. See e.g. Buckley [1], Cruz-Uribe et al. [3], Hukovič
et al. [7], Hytönen et al. [8], Lacey et al. [12] and Petermichl and Volberg [19], and consult
the references therein.

Let us say a few words about the proofs of Theorems 1.1 and 1.2. Clearly, the constant
p/(p − 1) is already optimal in the unweighted setting (i.e., for W ≡ 1), so all we need
is to establish the estimates (3) and (4). Our approach will rest on the so-called Bellman
function method (or Burkholder’s method). This technique allows to deduce the validity of a
given martingale bound from the existence of a certain special function, enjoying appropriate
majorization and concavity; for a description of the method from different perspectives, we
refer the interested reader to the works [2], [14], [17] and the references therein. The proof of
Theorem 1.3 will also exploit this method, combined with some structural (“self-improving”)
properties of Ap weights.

We have organized the rest of the paper as follows. In the next section we study the
inequalities (4) and (5). Section 3 is devoted to the proof of Theorem 1.1. In the final part of
the paper we address our last result, Theorem 1.3.

2. Proof of Theorem 1.2.
2.1. A special function. As we have mentioned in the previous section, a crucial role

in the proof of (4) is played by a certain special function. Fix p ∈ (1,∞) and consider the
function B : [0,∞)2 × (0,∞)2 → R given by

B(x, y,w, v) = w

[(y

v

)p − p

p − 1

x

w

(y

v

)p−1
]

.

Clearly, B is continuous on its domain (actually, it is even of class C∞ on (0,∞)4). Further
important properties of B are studied in two lemmas below.

LEMMA 2.1. (i) For any x ≥ 0 and any w > 0 we have

(8) B(x, x,w,w) ≤ 0 .

(ii) For any x, y ≥ 0 and w, v > 0 we have the majorization

(9) B(x, y,w, v) ≥ p−1
[(y

v

)p −
(

p

p − 1

)p ( x

w

)p
]

w .
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PROOF. The inequality (8) is trivial: B(x, x,w,w) = − xp

(p−1)wp−1 ≤ 0. To show (9),
substitute α = y/v and β = px/(w(p − 1)). Then it is easy to check that the majorization is
equivalent to

pαp−1(α − β) ≥ αp − βp ,

which follows immediately from the mean-value theorem. �

The key property of B is the following condition, which can be regarded as a certain kind
of concavity.

LEMMA 2.2. Fix x, y ≥ 0 and w, v > 0. Then for any h ≥ −x and any k > −w we
have

B(x + h, y ∨ (x + h),w + k, v ∨ (w + k))

≤ B(x, y,w, v) + Bx(x, y,w, v)h + Bw(x, y,w, v)k .
(10)

PROOF. We must show that(
y ∨ (x + h)

v ∨ (w + k)

)p

(w + k) − p

p − 1
(x + h)

(
y ∨ (x + h)

v ∨ (w + k)

)p−1

≤
(y

v

)p

(w + k) − p

p − 1
(x + h)

(y

v

)p−1
.

(11)

We consider separately four cases.

Case I. w + k ≤ v, y < x + h. Under these assumptions, (11) becomes

(x + h)p(w + k) − p

p − 1
(x + h)pv ≤ yp(w + k) − p

p − 1
(x + h)yp−1v ,

or

((x + h)p − yp)(w + k) ≤ p

p − 1
(x + h)

(
(x + h)p−1 − yp−1)v .

Since y < x + h, it is enough to show the above bound for w + k = v. Plugging α =
(x + h)p−1 and β = yp−1, we see that the estimate is equivalent to αp/(p−1) − βp/(p−1) ≤

p
p−1α1/(p−1)(α − β). But this is true, due to the mean-value property.

Case II. w + k > v, y > x + h. Then the inequality (11) reads(
y

w+k

)p

(w+k)− p

p−1
(x+h)

(
y

w + k

)p−1

≤
(y

v

)p

(w + k)− p

p−1
(x + h)

(y

v

)p−1
.

By the assumptions of the case, we have

p

p − 1
(x + h)

[(
y

w + k

)p−1

−
(y

v

)p−1
]

≥ p

p − 1
y

[(
y

w + k

)p−1

−
(y

v

)p−1
]

and hence it is enough to show that

p

p − 1
y

[(
y

w + k

)p−1

−
(y

v

)p−1
]

≥
(

y

w + k

)p

(w + k) −
(y

v

)p

(w + k) .
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This is equivalent to the estimate(
w + k

v

)p

− 1 ≥ p

p − 1

[(
w + k

v

)p−1

− 1

]
,

which again follows from the mean-value property.

Case III. w + k > v, y < x + h. Then the estimate (11) takes the form

(x + h)p

(w + k)p−1 − p

p − 1

(x + h)p

(w + k)p−1 ≤
(y

v

)p

(w + k) − p

p − 1
(x + h)

(y

v

)p−1
,

which, after the substitution α = (x + h)/(w + k), β = y/v, is equivalent to

αp/(p−1) − βp/(p−1) ≤ p

p − 1
α1/(p−1)(α − β) .

The latter bound holds true due to the mean-value property.

Case IV. w + k < v, x + h < y. Then the desired inequality becomes(y

v

)p

(w + k) − p

p − 1

(y

v

)p−1
(x + h) ≤

(y

v

)p

(w + k) − p

p − 1

(y

v

)p−1
(x + h) ,

which is clearly true: actually, both sides are equal. �

2.2. Proof of (4). We will first prove the inequality for discrete-time martingales:
suppose that the time set is the set of nonnegative integers. Clearly, we may assume that the
process X is nonnegative: indeed, the passage from X to |X| does not alter the right-hand
side, while the maximal function of X can only increase. Actually, one can even assume that
X is strictly positive, by a simple continuity argument. The key ingredient of the proof is to
show that the process (B(Xn,X

∗
n,Wn,W

∗
n ))n≥0 is a supermartingale. This is an immediate

consequence of (10). Indeed, denoting Hn+1 = Xn+1 − Xn and Kn+1 = Wn+1 − Wn, we see
that E[Hn+1|Fn] = E[Kn+1|Fn] = 0 and hence

E

[
B(Xn+1,X

∗
n+1,Wn+1,W

∗
n+1)|Fn

]
= E

[
B
(
Xn + Hn+1,X

∗
n ∨ (Xn + Hn+1),Wn + Kn+1,W

∗
n ∨ (Wn + Kn+1)

)|Fn

]
≤ B(Xn,X

∗
n,Wn,W∗

n ) .

Consequently, by (9),

p−1
E

[(
X∗

n

W∗
n

)p

−
(

p

p − 1

)p (
Xn

Wn

)p]
Wn ≤ EB(Xn,X∗

n,Wn,W
∗
n )

≤ EB(X0,X
∗
0 ,W0,W

∗
0 ) ≤ 0 ,

where in the last passage we have used (8) and the equalities X∗
0 = X0, W∗

0 = W0. Now,
observe that

E

(
X∗

n

W∗
n

)p

Wn = E

(
X∗

n

W∗
n

)p

W ≥ E

(
X∗

n

W∗

)p

W .
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Furthermore, note that the function G(x, y) = xpy1−p is convex on [0,∞)× (0,∞) (indeed,
the Hessian matrix

D2G(x, y) =
[

p(p − 1)xp−2y1−p −p(p − 1)xp−1y−p

−p(p − 1)xp−1y−p p(p − 1)xpy−1−p

]

is nonnegative-definite). This implies

EX
p
n W

1−p
n = EG

(
E[(X∞,W∞)|Fn]

) ≤ EE[G(X∞,W∞)|Fn] = EX
p∞W

1−p∞ .

Putting all the above facts together, we obtain

E

(
X∗

n

W∗

)p

W∞ ≤
(

p

p − 1

)p

EX
p∞W

1−p∞ .

Letting n → ∞ and using Lebesgue’s monotone convergence theorem, we get the desired
inequality (4).

It remains to establish the claim in the general, continuous-time setting. This is straight-
forward: given a continuous-time càdlàg martingale (Xt )t≥0, a weight (Wt )t≥0 and a positive
integer N , we apply (4) to the discrete-time processes (Xn2−N )n=0,1,2,... and (Wn2−N )n=0,1,2,...,
obtaining

E

(
supn Xn2−N

W∗

)p

W∞ ≤ E

(
supn Xn2−N

supn Wn2−N

)p

W∞ ≤
(

p

p − 1

)p

EX
p∞W

1−p∞ .

It remains to let N → ∞ and use Lebesgue’s monotone convergence theorem. The proof is
finished.

2.3. On the estimate (5). Fix p ∈ (1,∞), r > 0 and a number α > 1. Consider a
Brownian motion β = (βt )t≥0 started at 1 and set τ = inf{t ≥ 0 : β∗

t = αβt }. Clearly, the
stopped process βτ = (βτ∧t )t≥0 is a positive martingale; furthermore, as Wang showed in
[23], this process is bounded in Lq for any q < α/(α − 1). In particular, this implies that if
we put X = W = βτ , then W is a weight and X is uniformly integrable. In addition,

||X∗||Lp(W 1−r (W∗)r−p) = (
E(W∗/W∞)rW∞

)1/p = αr/p(EW∞)1/p

and ||X||Lp(W 1−p) = (EW∞)1/p. This shows the second part of Theorem 1.2, since α was
arbritrary.

3. Proof of Theorem 1.1.
3.1. A special function. Let B : [0,∞)4 → R be given by

B(x, y,w, v) =
⎧⎨
⎩ypw + (p − 1)ypv − p2

p−1xyp−1v if x ≥ p−1
p

y ,

ypw −
(

p
p−1

)p

xpv if x <
p−1
p

y .

Let us establish several crucial properties of B, analogous to those studied in the previous
section.
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LEMMA 3.1. (i) For any nonnegative x and w we have

(12) B(x, x,w,w) ≤ 0 .

(ii) For any nonnegative numbers x, y, w and v we have the estimate

(13) B(x, y,w, v) ≥ ypw −
(

p

p − 1

)p

xpv .

PROOF. The inequality (12) is evident: B(x, x,w,w) = − p
p−1xpw ≤ 0. In the proof

of (13), we may restrict ourselves to x ≥ p−1
p

y. Then the inequality reads

(p − 1)ypv − p2

p − 1
xyp−1v ≥ −

(
p

p − 1

)p

xpv ,

which, after the substitution s = px/(p − 1)y becomes sp − 1 ≥ p(s − 1). By mean-value
property, this is true and the proof is finished. �

LEMMA 3.2. Fix x, y, w, v ≥ 0 with y ≥ x and v ≥ w. Then for any h ≥ −x and
any k ≥ −w, we have

B(x + h, y ∨ (x + h),w + k, v ∨ (w + k))

≤ B(x, y,w, v) + Bx(x, y,w, v)h + Bw(x, y,w, v)k .
(14)

PROOF. It is convenient to split the argumentation into a few separate parts.

Case I. x + h ≤ y, w + k ≤ v. Then (14) becomes

B(x + h, y,w + k, v) ≤ B(x, y,w, v) + Bx(x, y,w, v)h + Bw(x, y,w, v)k .

This follows at once from the fact that for fixed y and v, the function (x,w) 	→ B(x, y,w, v)

is concave (as a sum of a concave function in x and a linear function in w).

Case II. x+h ≥ y, w+k ≥ v. Suppose first that x ≤ p−1
p

y; then h ≥ y−x ≥ x/(p−1)

and the inequality takes the form

p

p − 1
(x + h)p(w + k) + yp(w + k) −

(
p

p − 1

)p

xpv − p

(
p

p − 1

)p

xp−1vh ≥ 0 .

Clearly, it suffices to show this bound for w + k = v, since the expression on the left is a
nondecreasing function of k. Next, fix x, y, w, v, put k = v − w and denote the left-hand
side above by F(h). Then for h ≥ x/(p − 1) we have

F ′(h) = p2

p − 1
(x + h)p−1v − p

(
p

p − 1

)p

xp−1v ≥ 0 ,

so F ≥ 0 on [x/(p − 1),∞), which is the desired estimate. Now, suppose that x ≥ p−1
p

y.
Then (14) becomes

p

p − 1
(x + h)p(w + k) + yp(w + k) + (p − 1)ypv − p2

p − 1
(x + h)yp−1v ≥ 0 .

As previously, we may assume that w + k = v; if we denote the left-hand side by F(h), we
compute that F ′(h) = p2v

(
(x + h)p−1 − yp−1

)
/(p − 1) ≥ 0. This proves that it is enough
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to prove the above bound under the additional assumption x + h = y, but this brings us back
to Case I.

Case III. x + h ≥ y, w + k ≤ v. Put all the terms of (14) on the left-hand side and
observe that the inequality becomes[

(x + h)p − yp
]
(w + k) + (

expressions not depending on k
) ≤ 0 .

Since the expression in the square brackets is positive, it is enough to show the above bound
for the largest value of w + k, i.e., for w + k = v. However, this has already been verified in
Case II.

Case IV. x + h ≤ y, w + k ≥ v. As in Case III, we put all the terms on the left-hand
side, denote the expression on the left by I and analyze its dependence on the variable k. If
x + h ≥ p−1

p
y, then

I =
[
(p − 1)yp − p2

p − 1
(x + h)yp−1

]
(w + k) + (

terms not depending on k
)

and the expression in the square brackets does not exceed −yp. Hence, it suffices to show the
estimate for the least k, that is, under the additional assumption w + k = v. This has been
already analyzed in Case I. So, suppose that x +h ≤ p−1

p
y; then the situation is even simpler,

since

I = −
(

p

p − 1

)p

(x + h)p(w + k) + (
terms not depending on k

)
.

Hence, as previously, we may assume that w + k = v, and this brings us back to Case I.
We have considered all the possible cases. The proof is complete. �

3.2. Proof of (3). The argumentation is similar to that used in the proof of (4). We
restrict ourselves to positive processes, start with the discrete-time martingales (Xn)n=0,1,2,...,
(Wn)n=0,1,2,... and deduce from (14) that the sequence (B(Xn,X∗

n,Wn,W
∗
n ))n≥0 is a super-

martingale. This property, combined with (12) and (14), yields the estimate

E(X∗
n)pWn ≤

(
p

p − 1

)p

EX
p
n W∗

n .

However, we haveE(X∗
n)pWn =E(X∗

n)pW∞ and, by Jensen’s inequality,EX
p
n W∗

n ≤ EXpW∗
n

≤ EX
p∞W∗∞. This implies

E(X∗
n)

pW∞ ≤
(

p

p − 1

)p

EX
p∞W∗∞

and letting n → ∞ establishes (3) in the discrete-time case. The passage to the general
continuous-time processes is carried out in a similar manner as previously. The proof is com-
plete.
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4. One-weight inequalities for the martingale maximal function. Throughout this
section we assume that the filtration (Ft )t≥0 has the property that all adapted local martingales
have continuous trajectories (e.g., the Brownian filtration satisfies this condition). This is
equivalent to saying that any adapted stopping time is integrable. This assumption guarantees
that the notion of Ap weights leads to an interesting class of processes.

If W belongs to A1 class, then W∗ ≤ ||W ||A1W almost surely and (3), (4) yield the
estimates

||X∗||Lp(W) ≤ p

p − 1
||W ||A1 ||X||Lp(W), ||X∗||Lp(W 1−p) ≤ p

p − 1
||W ||pA1

||X||Lp(W 1−p) .

In other words, the inequalities (3) and (4), or rather the corresponding Bellman functions
introduced in the preceding two sections, form an appropriate tool to the study of one-weight
bounds involving weights belonging to the class A1. As we will show now, a similar phenom-
enon occurs for 1 < p < ∞; the inequality (6) can be established with the use of certain
special functions.

4.1. Ap weights and their properties. We start from recalling the notion of proba-
bilistic Ap condition, 1 < p < ∞. Following Izumisawa and Kazamaki [9], W belongs to
the class Ap if

||W ||Ap := sup
τ

∣∣∣∣
∣∣∣∣E[{Wτ /W∞

}1/(p−1)∣∣Fτ

]p−1
∣∣∣∣
∣∣∣∣∞ < ∞ ,

where the supremum is taken over all stopping times τ . There is a nice alternative two-
dimensional description of this condition. Namely, consider the additional process Vt =
E[W 1/(1−p)∞ |Ft ], t ≥ 0. Then (W, V ) is a uniformly integrable martingale terminating at
the lower boundary of this set (i.e., satisfying W∞V

p−1∞ = 1 almost surely) and taking values
in the hyperbolic strip {(w, v) ∈ (0,∞)2 : 1 ≤ wvp−1 ≤ ||W ||Ap }. Indeed, the inequal-
ity WV p−1 ≥ 1 follows at once from Hölder’s inequality, while WV p−1 ≤ ||W ||Ap is a
direct consequence of the Ap condition. It is not difficult to see that the converse corre-
spondence is also true: any uniformly integrable martingale (W, V ) taking values in a set
Dc = {(w, v) : 1 ≤ wvp−1 ≤ c} and terminating at its lower boundary gives rise to an Ap

weight W with ||W ||Ap ≤ c, and the least c allowed (leading to the smallest set Dc) equals
the Ap characteristics of W .

In our further considerations, we will need certain self-improving properties of Ap

weights. It follows directly from Jensen’s inequality that if a weight satisfies the Ap con-
dition for some p, then it automatically satisfies Aq for all q > p (more precisely, we have
||Y ||Aq ≤ ||Y ||Ap ). It turns out that if p > 1, then such a weight satisfies Aq also for some
q < p (see Kazamaki [10, Corollary 3.3]). We will need a little more precise information on
this phenomenon. To this end, recall the result of Uchiyama [22], who proved the following
connection between Aq characteristics and the weak-type constants:

(15) ||W ||Aq = sup
X

[
EW∞1{X∗>1}/||X∞||qLq(W)

]
.
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The supremum on the right has been studied by the author in [18]. Given p > 1 and c ≥ 1,
let d = d(p, c) ∈ [0, p − 1) be the unique number satisfying

(16) F(d) := (1 + d)

(
1 − d

p − 1

)p−1

= c−1 .

As showed in [18], if ||W ||Ap = c and q ∈ (d + 1, p), then we have the sharp bound

(17) ||W ||Aq = sup
X

[
EW∞1{X∗>1}/||X∞||qLq(W)

]
≤
(

1 − d

q − 1

)1−q

(1 + d)−1 .

Let us try to get a more explicit estimate.

LEMMA 4.1. Let W be an Ap weight. If q = p − (p − 1)(p||W ||Ap)−1/(p−1)/2, then

||W ||Aq ≤ 2q−1p2||W ||(q−1)/(p−1)

Ap
.

PROOF. Set c := ||W ||Ap and note that we have d(p, c) ≤ p−1−(p−1)(pc)−1/(p−1).
This follows at once from the fact that the function F defined in (16) is decreasing, F(0) =
1 ≥ c−1 and

F
(
p − 1 − (p − 1)(pc)−1/(p−1)

) = (p − (p − 1)(pc)−1/(p−1))(pc)−1 < c−1 .

Therefore, we have q > d(p, c)+ 1 and we may apply (17). Since the expression on the right
of this estimate is an increasing function of d , we obtain

||W ||Aq ≤
(

1 − p − 1 − (p − 1)(pc)−1/(p−1)

q − 1

)1−q

(1 + p − 1 − (p − 1)(pc)−1/(p−1))

≤
(

(pc)−1/(p−1)/2

1 − (pc)−1/(p−1)/2

)1−q

p≤ p(q−1)/(p−1)+1

21−q
c(q−1)/(p−1)≤2q−1p2c(q−1)/(p−1) .

This proves the claim. �

4.2. A special function and its properties. Now we will introduce the special func-
tion corresponding to the estimate (6). Throughout this subsection, c ≥ 1, 1 < p < ∞,
1 < q < ∞ and α ∈ [q−1, pq−1) are fixed parameters. Let Bc : [0,∞)2 × (0,∞)2 → R be
given by the formula

Bc(x, y,w, v) = ypwαv1−α − p

p − qα
cαxqαyp−qαv1−qα .

We will show the following properties of this object.

LEMMA 4.2. (i) For any x ≥ 0 and any w, v > 0 satisfying wvq−1 ≤ c we have

(18) Bc(x, x,w, v) ≤ 0 .

(ii) For any x, y ≥ 0 and any w > 0 we have

(19) Bc(x, y,w,w1/(1−q)) ≥ qα

p

[
yp −

(
p

p − qα

)p/(qα)

cp/qxp

]
w(qα−1)/(q−1) .
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PROOF. The inequality (18) is very easy:

Bc(x, x,w, v) = xpv1−qα

[
(wvq−1)α − p

p − qα
cα

]
≤ xpv1−qα

[
cα − p

p − qα
cα

]
≤ 0 .

The majorization (19) follows at once from the mean-value property of the convex function

s 	→ sp/qα: indeed, after the substitution x ′ =
(

p
p−qα

cα
)1/qα

x, the inequality is equivalent

to yp/qα − (x ′)p/(qα) ≤ (p/qα)yp/qα−1(y − x ′). �

The second property can be regarded as a “differential” version of Lemmas 2.2 and 3.2.

LEMMA 4.3. (i) For any x ≥ 0 and any w, v > 0 satisfying wvq−1 ≤ c we have
Bcy(x, x,w, v) ≤ 0.

(ii) For any x, y ≥ 0 and w, v > 0, the matrix

Mc(x, y,w, v) =
⎡
⎣ Bcxx Bcxw Bcxv

Bcwx Bcww Bcwv

Bcvx Bcvw Bcvv

⎤
⎦ (x, y,w, v)

is nonpositive-definite.

PROOF. The first property is easy to prove: we have

Bcy(x, x,w, v) = pxp−1v1−qα
(
(wvq−1)α − cα

)
≤ 0 .

To show the second property, write Bc = ypB1
c + pcα

p−qα
yp−qαB2

c , where

B1
c (x, y,w, v) = wαv1−α and B2

c (x, y,w, v) = −xqαv1−qα .

Then the matrix Mc equals ypM1
c+ pcα

p−qα
yp−qαM2

c , where M1
c , M2

c are the 3×3 “partially-

Hessian” matrices corresponding to B1
c , B2

c . It remains to note that

M1
c(x, y,w, v) =

⎡
⎣ 0 0 0

0 α(α − 1)wα−2v1−α α(α − 1)wα−1v−α

0 α(α − 1)wα−1v−α α(α − 1)wαv−1−α

⎤
⎦

and

M2
c(x, y,w, v) = −

⎡
⎣ qα(qα − 1)xqα−2v1−qα 0 qα(1 − qα)xqα−1v−qα

0 0 0
qα(1 − qα)xqα−1v−qα 0 qα(qα − 1)xqαv−1−qα

⎤
⎦

are both nonpositive-definite. �

4.3. Proof of (6). We will apply Itô’s formula (cf. [4]) to the composition of Bc and
the process At = (Xt ,X

∗
t ,Wt , Vt ), t ≥ 0, where c = ||W ||Aq . As the result, we obtain that

Bc(At) = I0 + I1 + I2 + I3/2 ,

where

I0 = Bc(A0) ,
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I1 =
∫ t

0
Bcx(As)dXs +

∫ t

0
Bcw(As)dWs +

∫ t

0
Bcv(As)dVs ,

I2 =
∫ t

0
Bcy(As)dX∗

s ,

I3 =
∫ t

0
Mc(As)d[X,W,V ]s .

Here in I3 we have used a shortened notation for the sum of integrals corresponding to second-
order terms, i.e.,

I3 =
∫ t

0
Bcxx(As)d[X]s + 2

∫ t

0
Bcxw(As)d[X,W ]s + · · ·

and so on. Let us study the terms I0 through I3. First, by (18), we see that I0 ≤ 0. The term
I1 is a local martingale, by the properties of stochastic integrals. Next, we have I2 ≤ 0 in
view of Lemma 4.3 (i): indeed, the continuous part of the process X∗ increases only for s

satisfying Xs = X∗
s , and then Bcy(As) ≤ 0. Finally, the term I3 is also nonpositive, which

follows directly from the second part of Lemma 4.3. Putting all the above facts together, we
see that if (τn)n≥1 is a localizing sequence for I1, then EBc(Aτn∧t ) ≤ 0, n = 1, 2, . . . . This
is equivalent to saying that for each n,

(20) E(X∗
τn∧t )

pWα
τn∧t V

1−α
τn∧t ≤ p

p − qα
cα
EX

qα
τn∧t (X

∗
τn∧t )

p−qαV
1−qα
τn∧t .

Now we carry out a limiting procedure. First, note that (X, V ) is a pair of uniformly integrable
martingales and the function G(x, v) = xqαv1−qα is convex on [0,∞) × (0,∞) (one easily
checks that the Hessian matrix of G is nonnegative-definite). Hence, by Jensen’s inequality
and Doob’s optional sampling theorem, we get

EX
qα
τn∧t (X

∗
τn∧t )

p−qαV
1−qα
τn∧t ≤ EX

qα∞ (X∗
τn∧t )

p−qαV
1−qα∞ ≤ EX

qα∞ (X∗∞)p−qαV
1−qα∞ .

Furthermore, by Fatou’s lemma,

E(X∗∞)pWα∞V 1−α∞ ≤ liminf
n→∞,t→∞E(X∗

τn∧t )
pWα

τn∧tV
1−α
τn∧t .

Combining these observations with (20), we obtain

E(X∗∞)pWα∞V 1−α∞ ≤ p

p − qα
cα
EX

qα∞ (X∗∞)p−qαV
1−qα∞ ,

which is equivalent to EBc(X∞,X∗∞,W∞,W
1/(1−q)∞ ) ≤ 0, by virtue of the equation V

q−1∞ =
W−1∞ . It remains to apply (19) to obtain the desired estimate (6).

4.4. Proof of (7) and the optimality of the exponent 1/(p − 1). Pick an Ap weight
W and use Lemma 4.1. Then the inequality (6), applied to α = 1 and q defined in the lemma,
gives

||X∗||Lp(W) ≤
(

p

p − q

)1/q

||W ||1/q
Aq

||X||Lp(W) .
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FIGURE 1. Special points P0 = (w+, v+), P1 = (w−, v−), P2, . . . and Z1 = (z, z1/(1−p)), Z2, Z3, . . . .

Plugging the value of q and using the bound from Lemma 4.1, we get

||X∗||Lp(W) ≤
(

2pp/(p−1)

p − 1

)1/q (
2q−1p2

)1/q ||W ||1/(p−1)q
Ap

||W ||(q−1)/(p−1)q
Ap

||X||Lp(W)

≤ 2p(3p−2)/(p−1)

p − 1
||W ||1/(p−1)

Ap
||X||Lp(W) .

It remains to show that the exponent 1/(p − 1) cannot be improved. Suppose on contrary that
there is 1 < p < ∞, a constant βp and a number m < 1/(p − 1) such that for all Ap weights
W and all martingales X we have

||X∗||Lp(W) ≤ βp||W ||mAp
||X||Lp(W) .(21)

The construction and the analysis of the appropriate counterexample is quite elaborate and
consists of several steps, so it is convenient to split the reasoning into separate parts.

1◦ Special points in the first quadrant. For two given numbers b and c satisfying 1 <

b < c, draw three curves: γ1 = {(w, v) : wvp−1 = 1}, γb = {(w, v) : wvp−1 = b} and
γc = {(w, v) : wvp−1 = c}. Next, consider the line passing through (1, c), tangent to γc.
This line intersects γb in two points: P0 = (w+, v+) and P1 = (w−, v−), where w+ > 1
and w− < 1. Furthermore, it intersects γ1 at a point Z1 = (z, z1/(1−p)) satisfying z > 1.
Next, construct inductively the sequences (Pn)n≥2 and (Zn)n≥2 of points as follows. Having
constructed Pn−1 and Pn−2, consider a line passing through Pn−1, tangent to γc, different
from Pn−2Pn−1; this line intersects γb in Pn−1 and yet another point, which we denote by Pn.
Furthermore, let Zn be the point of intersection of the line Pn−1Pn with γ1, having a bigger
x-coordinate than Pn. We hope that the Figure 1 below clarifies the construction.

It is clear that w± are functions of b, c and p; furthermore, if we keep c and p fixed, and
let b ↑ c, then w+ ↓ 1 and w− ↑ 1, so in particular the difference w+ − w− converges to
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0. Next, the line P0P1 has the equation v = (1 − p)−1c1/(p−1)w + p(p − 1)−1c1/(p−1) and
hence z > 1 is the unique solution to the equation

z((1 − p)−1c1/(p−1)z + p(p − 1)−1c1/(p−1))p−1 = 1 ,

or

(22) z(p − z)p−1 = c−1(p − 1)p−1 .

Observe also that the picture has a self-similarity property. Clearly, for any λ > 0 we have
(w, v) ∈ γc if and only if (λw, λ1/(1−p)v) ∈ γc, and a similar equivalence holds for γb and
γ1. In consequence, for each n ≥ 0 we have

Pn =
(
w+(w−/w+)n, v+(w+/w−)n/(p−1)

)
and

Zn+1 =
(
z(w−/w+)n, z1/(1−p)(w+/w−)n/(p−1)

)
.

In particular, this implies that for each n ≥ 0 the point Pn splits the segment Pn+1Zn+1 in the
same ratio:

(23)
|Zn+1 − Pn|

|Zn+1 − Pn+1| = z − w+
z − w−

.

2◦ Construction of the weight W . Consider the two-dimensional continuous-path mar-
tingale (W, V ) whose distribution is uniquely determined by the following conditions.

• W is a stopped Brownian motion,
• (W0, V0) = P0 almost surely.
• The range of (W, V ) is equal to the union of the segments PnZn, n = 1, 2, . . . .

A more explicit description is in order. The process (W, V ) starts from P0 and first, it
evolves along the line segment P1Z1, hitting eventually one of the endpoints. Denote

τ1 = inf{t : (Wt , Vt ) ∈ {P1, Z1}} .

If the ending point is Z1, then the process (W, V ) stops and we define its lifetime to be τ = τ1.
Otherwise, it continues its movement, but now it evolves along the line segment P2Z2, ending
after some time in the set {P2, Z2}. Let

τ2 = inf{t : (Wt , Vt ) ∈ {P2, Z2}} .

If (Wτ2 , Vτ2) = Z2, then the evolution is over and the lifetime τ of (W, V ) equals τ2. If
(Wτ2 , Vτ2) = P2, the process starts moving along P3Z3, and so on. Thus, we end up with a
sequence (τn)n≥0 of stopping times (we set τ0 ≡ 0) and the lifetime variable τ = supn≥0 τn.
Furthermore, directly from the self-similarity of the picture mentioned above (see (23)), we
get

(24) P(τ > τn) =
(

z − w+
z − w−

)k

,
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so in particular τ is finite with probability 1 (since all τn’s are). Finally, one easily checks
that the pair (W, V ) is uniformly integrable with values in {(w, v) : 1 ≤ wvp−1 ≤ c}, and
hence W is an Ap weight satisfying ||W ||Ap ≤ c. Actually, the Ap characteristics is equal to
c, since the trajectory of (W, V ) touches the curve γc.

3◦ Construction of the martingale X. As we will see, the process X will be a “partially-
affine” transformation of W . Set δ = (1 − c−m)(w+ − w−)/(z − w+) and define the points
P̃n = (1 + δ)n, Z̃n+1 = (1 + δ)nc−m for n = 0, 1, 2, . . . . Then Z̃n < P̃n−1 < P̃n for each
n ≥ 1 and

(25)
|Pn−1 − Zn|
|Pn − Zn| = |P̃n−1 − Z̃n|

|P̃n − Z̃n|
= z − w+

z − w−
.

Let us construct X separately on each [τn, τn+1] (where τn’s are the stopping times introduced
in the construction of the weight W ). First, we let X start from P̃0 and on the interval [τ0, τ1],
let it move along [Z̃1, P̃1] so that τ1 = inf{t : Xt ∈ {P̃1, Z̃1}}. Clearly, this is possible because
of (25); actually, we may even require that

{Xτ1 = P̃1} = {(Wτ1 , Vτ1) = P1} and {Xτ1 = Z̃1} = {(Wτ1 , Vτ1) = Z1} .

Indeed, it suffices to put Xt = ϕ(Wt ), t ∈ [τ0, τ1], where ϕ : R → R is an affine mapping
sending z to c−m and w− to 1 + δ.

If Xτ1 = Z̃1, the process stops (and so does (W, V )); otherwise, on the set {τ > τ1},
the movement is continued, along the segment [Z̃2, P̃2] on the time interval [τ1, τ2] so that
τ2 = inf{t > τ1 : Xt ∈ {P̃2, Z̃2} and

{Xτ2 = P̃2} = {(Wτ2 , Vτ2) = P2} and {Xτ2 = Z̃2} = {(Wτ2 , Vτ2) = Z2} .

This can be guaranteed due to (25): if ϕ is an affine mapping which sends zw−/w+ to (1 +
δ)c−m and w2−/w+ to (1 + δ)2, then the formula Xt = ϕ(Wt) on {τ > τ1}, t ∈ [τ1, τ2], does
the job. We continue the construction using this pattern on each [τn, τn+1], requiring

{Xτn = P̃n} = {(Wτn, Vτn) = Pn} and {Xτn = Z̃n} = {(Wτn, Vτn) = Zn}
for all n ≥ 1.

4◦ Calculation. We start from some facts which follow directly from the above construc-
tion. First, note that on the set {τn < τn+1 = τ } we have Xτn = P̃n and Xτn+1 = Z̃n+1, which
means that

(26) X∗ ≥ P̃n = (1 + δ)n = cmZ̃n+1 = cmX∞ .

Furthermore, by (24), we have

P(X∞ = Z̃n+1) = P((W∞, V∞) = Zn+1) = P(τn < τn+1 = τ ) =
(

z − w+
z − w−

)n w+ − w−
z − w−

,

which implies

(27) ||X||pLp(W) =
∞∑

n=0

[
(1 + δ)nc−m

]p
z

(
w−
w+

)n

·
(

z − w+
z − w−

)n
w+ − w−
z − w−

.
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We will show that if b is sufficiently close to c, then the above series converges. Assume for a
moment that this holds, and let us quickly see how this contradicts (21). Combining (21) with
(26), we get

||W ||mAp
||X||Lp(W) ≤ ||X∗||Lp(W) ≤ βp||W ||κ(p)

Ap
||X||Lp(W)

and since ||X||Lp(W) < ∞, we must have ||W ||m−κ(p)

Ap
< βp. But the above construction

allows arbitrarily large values of ||W ||Ap ; this enforces κ(p) ≥ m. Since m was an arbitrary
constant smaller that 1/(p − 1), the exponent in (7) is indeed the best possible.

5◦ Convergence of the geometric series (27). To prove the convergence, it suffices to
show that the corresponding geometric ratio is smaller than 1:

(1 + δ)p · w−
w+

· z − w+
z − w−

=
(

1 + (1 − c−m)(w+ − w−)

z − w+

)p

· w−
w+

· z − w+
z − w−

< 1 .

However, when b → c, then w+ − w− → 0 and the ratio is of the order(
1 + (1 − c−m)(w+ − w−)

z − w+

)p

· w−
w+

· z − w+
z − w−

= 1 + p(1 − c−m)(w+ − w−)/(z − w+) − w+ − w−
w+

− w+ − w−
z − w−

+ o(w+ − w−) .

So, we will be done if we show that

p(1 − c−m) − z − w+
w+

− z − w+
z − w−

< 0

for b sufficiently close to c. But limb→c w+ = limb→c w− = 1, so the left-hand side above
can be made arbitrarily close to p(1 − c−m)− z. If p(1 − c−m) ≤ 1, then p(1 − c−m)− z < 0
(and we are done). If p(1 − c−m) > 1, then this inequality is also true. Indeed, by (22), it
suffices to show that

c−1(p − 1)p−1 < p(1 − c−m)(p − p(1 − c−m))p−1 = p(1 − c−m)pp−1c−m(p−1)

(since the function s 	→ s(p − s)p−1 is decreasing on [1, p]). But this clearly holds, since we
have assumed that m < 1/(p − 1) and p(1 − c−m) > 1.

This implies the desired convergence of (27) and completes the proof of Theorem 1.3.
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