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Abstract. In the study of the holomorphic automorphism groups, many researches
have been carried out inside the category of bounded or hyperbolic domains. On the contrary to
these cases, for unbounded non-hyperbolic cases, only a few results are known about the struc-
ture of the holomorphic automorphism groups. Main result of the present paper gives a class of
unbounded non-hyperbolic Reinhardt domains with non-compact automorphism groups, Car-
tan’s linearity theorem and explicit Bergman kernels. Moreover, a reformulation of Cartan’s
linearity theorem for finite volume Reinhardt domains is also given.

1. Introduction. In several complex variables, complex domains with properties
boundedness or hyperbolicity are fundamental research objects. On the other hand, one may
not expect some useful function-theoretic properties for complex domains without the two
properties. Our primary motivation is to investigate some useful properties for unbounded
non-hyperbolic domains.

1.1. Background. One of the most important problem in several complex variables
is to classify all complex domains in Cn. If n = 1, then the Riemann mapping theorem tells
us that every simply connected proper subdomain of C is biholomorphically equivalent to the
unit disk. By showing the inequivalence of the unit ball and the polydisk in C2, Poincaré found
that the Riemann mapping theorem does not hold even simply connected domains in C2. Thus
the purely topological condition “simply connectedness” is not enough for the holomorphic
equivalence problem in Cn. Because of this background, in several complex variables, it is
important to investigate biholomorphic invariant objects of complex domains.

The purpose of this paper is to study two objects (the holomorphic automorphism group
and the Bergman kernel) for a certain class of non-hyperbolic unbounded Reinhardt domains.
The holomorphic automorphism group is a biholomorphic invariant object. Moreover, from
the Bergman kernel, one can construct an invariant metric which is so-called the Bergman
metric. In the theory of the automorphism groups, one important problem is to understand
how the information of the holomorphic automorphism group characterizes complex domains.
The next theorem is a notable result concerning this problem (cf. [24] and [29]):
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THEOREM 1.1 (Wong, Rosay). Let D be a smoothly bounded strongly pseudoconvex
domain in Cn. If the holomorphic automorphism group Aut(D) is noncompact, then D is
biholomorphic to the unit ball in Cn.

This monumental work have attracted many mathematicians. In fact, after Wong-Rosay’s
theorem, there are many characterization theorems for various important domains in several
complex variables. For instance, for the Thullen domain, the following result is known (cf.
[2] and [3]):

THEOREM 1.2. If D ⊂ C2 is a bounded domain with real analytic boundary, and if
the automorphism group of D is noncompact, then D is biholomorphically equivalent to the
Thullen domain

{(z1, z2) ∈ C2 : |z1|2 + |z2|2m < 1}

for some positive integer m.

We note that all non-hyperbolic pseudoconvex Reinhardt domains in C2 with non-
compact automorphism group are explicitly described in [19]. For further information of
these results and related topics, see survey papers [13], [15], [20] and [30].

Both the automorphism group and the Bergman kernel are usually hard to describe ex-
plicitly for a given domain. In view of this background, the unit ball and Thullen domain are
important research objects in several complex variables since both domains have the following
remarkable properties:

(i) the Bergman kernel with explicit description,
(ii) the noncompact automorphism group with explicit description.

One intuitively expects that domains with small automorphism groups (i.e. compact auto-
morphism groups) are not suitable to obtain characterization results like Theorems 1.1 and
1.2. Thus, to find a complex domain with non-compact automorphism group is an important
research direction.

For bounded and hyperbolic Reinhardt cases, there are many researches about the struc-
ture of the automorphism groups (cf. [9], [12], [25], [26], [27] and references therein). On
the other hand, for non-hyperbolic unbounded Reinhardt cases, there is no guarantee of some
useful properties which are known only for bounded (or hyperbolic) cases. Thus, essentially
new ideas will be needed for the study of non-hyperbolic unbounded Reinhardt domains.

Now, let us recall the following theorem due to Cartan.

THEOREM 1.3 (Cartan’s uniqueness theorem). Let D be a bounded (or hyperbolic)
domain in Cn and f : D → D be holomorphic such that f (p) = p for some p ∈ D and the
Jacobian matrix of f at p is the identity matrix (i.e. Jac(f, p) = id). Then f is the identity
mapping of D.

As a consequence of this theorem, one can prove the next theorem, which is also due to
Cartan:
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THEOREM 1.4 (Cartan’s linearity theorem). Let D be a circular domain (i.e. D is in-
variant under z �→ eiθ z for any θ ∈ R) in Cn and suppose D contains the origin 0 of Cn. If
f is an automorphism with f (0) = 0, then f is linear.

Since Theorem 1.3 is known only for bounded (or hyperbolic) cases, it is nontrivial to ask
whether or not Theorem 1.4 remains true for a given non-hyperbolic circular domain. Main
result of this paper gives a family of non-hyperbolic unbounded Reinhardt domains with (i)
and (ii). Moreover our domains have the following property:

(iii) all origin-preserving automorphisms are linear.

In other words, Theorem 1.4 remains true even though our Reinhardt domains are unbounded
and non-hyperbolic. We note that our approach for Theorem 1.4 is based on the theory of the
Bergman kernel. The readers will see the three properties (i), (ii), (iii) are closely related each
other. Even for bounded cases, there are only few Reinhardt domains with (i), (ii). Thus our
domains will be good models of unbounded non-hyperbolic Reinhardt domains such as the
unit ball and the Thullen domain.

1.2. Outline of this paper. In §2, we first review basic definitions and examples of
the Bergman kernel. Then we next recall an important formula, which is so-called the Forelli-
Rudin construction. This formula plays a substantial role in the study of the Bergman kernel
of our Reinhardt domains. In §3, we first prove Theorem 1.4 for our Reinhardt domain. Here
we use the information of the Bergman kernel obtained in §2. Using Theorem 1.4 for our
domains, we obtain an explicit description of the automorphism group. In §4, we reformulate
Theorem 1.4 for finite volume Reinhardt domains (possibly unbounded non-hyperbolic).

Acknowledgement. The author thanks the referee for a careful reading of our manu-
script and for giving useful comments.

2. Bergman kernel.
2.1. Preliminaries. Let D be a domain in Cn and ψ a positive continuous function

on D. We will denote by L2(D,ψ) the set of square integrable functions with respect to a
function ψ . The weighted Bergman space A2(D,ψ) is defined by A2(D,ψ) = L2(D,ψ) ∩
O(D). The weighted Bergman space is a Hilbert space with the following inner product:

〈f, g〉D,ψ =
∫
D

f (z)g(z)ψ(z)dV (z) .

The reproducing kernelKD,ψ is called the weighted Bergman kernel. In particular, if ψ ≡ 1,
then we denote A2(D,ψ)(resp. KD,ψ ) briefly A2(D) (resp. KD). The space A2(D) (resp.
KD) is called the Bergman space (resp. the Bergman kernel) of D. Let {ek}k∈Z≥0 be a com-
plete orthonormal basis of A2(D,ψ). Then the weighted Bergman kernel is given by

KD,ψ(z,w) =
∑
k∈Z≥0

ek(z)ek(w) .(1)

The unit ball Bn in Cn is a typical example for which we can obtain the Bergman kernel in an
explicit form.
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EXAMPLE 2.1 (the unit ball). For the unit ball in Cn the following set S forms a com-
plete orthonormal basis of the Bergman space:

S =
{(

(n+ |k|)!
k!πn

) 1
2

zk

}
k∈Zn≥0

, z ∈ Bn, k ∈ Zn≥0 .

Here we follow the multi-index convention |k| = k1 + · · · + kn and zk = z
k1
1 · · · zknn . Using

(1), one can find that the Bergman kernel of Bn has an explicit form as follows:

KBn (z,w) = n!
πn(1 − 〈z,w〉)n+1 , z,w ∈ Bn .

EXAMPLE 2.2 (generalized complex ellipsoids). Let us next consider generalized
complex ellipsoids Ep,m:

Ep,m = {ζ = (ζ(1), . . . , ζ(�)) ∈ C|m|; ‖ζ(1)‖2p1 + · · · + ‖ζ(�)‖2p� < 1} , ζ(k) ∈ Cmk .

Since Ep,m is a Reinhardt domain, the set of monomials ζ i1(1) · · · ζ i�(�) forms a complete orthog-

onal basis in A2(Ep,m) where ij ∈ Z
mj
≥0. This fact, together with (1) gives us

KEp,m(ζ, ζ
′) =

∑
i

(ζ(1)ζ ′
(1))

i1 · · · (ζ(�)ζ ′
(�))

i�

‖ζ i1(1) · · · ζ i�(�)‖2
.

It is known that ‖ζ i1
(1) · · · ζ i�(�)‖−2 has the following form [7]:

‖ζ i1(1) · · · ζ i�(�)‖−2 = Γ (1 + ∑�
j=1(|ij | +mj)/pj )

∏�
j=1 pjΓ (|ij | +mj )

π |m| ∏�
j=1 Γ ((|ij | +mj)/pj )ij !

.(2)

Thus the Bergman kernelKEp,m has the following form:

KEp,m (ζ, ζ
′)=

∏�
j=1 pj

π |m|
∑
i

Γ (1 + ∑�
j=1(|ij | +mj)/pj )

∏�
j=1 Γ (|ij | +mj)∏�

j=1 Γ ((|ij | +mj)/pj )ij !
(3)

×(ζ(1)ζ ′
(1))

i1 · · · (ζ(�)ζ ′
(�))

i�

=
∑
k

Γ (1 + ∑�
j=1(kj +mj)/pj )

∏�
j=1(kj + 1)mj

π |m| ∏�
j=1 Γ ((kj +mj)/pj + 1)

�∏
j=1

〈ζ(j), ζ ′
(j)〉kj .

Here (x)m is the Pochhammer symbol and the second equality follows from the following
identities:

�∏
j=1

Γ (|ij | +mj)

Γ ((|ij | +mj)/pj )
=

�∏
j=1

Γ (|ij | +mj + 1)

pjΓ ((|ij | +mj)/pj + 1)
.

(x1 + · · · + xm)
k

k! =
∑
|i|=k

xi

i! .
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In this case, we can construct a complete orthonormal basis like the unit ball case. How-
ever, unlike the unit ball case, the Bergman kernel cannot be expressed in terms elementary
functions in general. Indeed, J.-D. Park [23] proved that the Bergman kernel of

D(p1,p2) = {(z1, z2) ∈ C2; |z1|2p1 + |z2|2p2 < 1}
is represented by means of elementary functions if and only if p = (1, p2), (p1, 1), (2, 2). We
note that G. Francsics and N. Hanges [7] proved that the Bergman kernel KEp,m is expressed
in terms of the hypergeometric functions.

REMARK 2.3. Besides the above examples, there are some domains with explicit
Bergman kernels. The followings are such examples:

• symmetrized n-disc (see [6]),
• homogeneous Siegel domains of type II (see [10]),
• bounded symmetric domains (see [11]),
• the minimal ball (see [22]).

We now give an example of weighted Bergman kernel, which is so-called the Fock-
Bargmann kernel.

EXAMPLE 2.4 (Fock-Bargmann kernel). Let us first recall that a weighted Bergman
space A2(D,ψ) is called the Fock-Bargmann space if D = Cn and ψ = e−s‖z‖2

with s >
0. The reproducing kernel Kn,s of the Fock-Bargmann space is called the Fock-Bargmann
kernel. One can easily see that the set of monomials {z1

k1 · · · znkn}k1,...,kn≥0 forms a complete
orthogonal basis. After a straightforward computation, one find that

‖z1
k1 · · · znkn‖2

D,ψ =
∫
Cn

|z1
k1 · · · znkn |2e−s‖z‖2

dV (z)

= πnk!
s|k|+n

.

It implies that the following set forms a complete orthonormal basis of the Fock-Bargmann
space:

S =
{(

πnk!
s|k|+n

)−1/2

zk
}
k∈Zn≥0

.

This gives us an explicit form of the Fock-Bargmann kernel:

Kn,s(z,w)=
∑
k∈Zn≥0

(
πnk!
s|k|+n

)−1

zkwk

= sn

πn

n∏
i=1

∞∑
ki=0

ski

ki ! z
ki
i w

ki
i

= sn

πn
es〈z,w〉 .



244 A. YAMAMORI

2.2. Forelli-Rudin construction. Let Ω1,Ω2 be domains such that Ω1 ⊂ Ω2 and ϕ
a positive continuous function onΩ1. Suppose that the Bergman kernelKΩ2 and the weighted
Bergman kernelKΩ1,ϕ

k exist for any k ≥ 1. We begin with a general question.

QUESTION 2.5. What can we say about the relation between the two different kernels
KΩ2 andKΩ1,ϕ

k?

In general, we cannot expect a good relation between them. One important class of
domains concerning this question is the Hartogs domain, which is defined as follows:

Dϕm := {(z, ζ ) ∈ D × Cm : ‖ζ‖2 < ϕ(z)} .
The following formula tells us how the Bergman kernel of Dϕm and the weighted Bergman
kernels KD,ϕk+m are related (cf. [21]):

KDϕm((z, ζ ), (z
′, ζ ′)) =

∞∑
k=0

(k + 1)m
πm

KD,ϕk+m(z, z
′)〈ζ, ζ ′〉k.(4)

This formula (4) is called the Forelli-Rudin construction.
In our previous paper [32], we obtained a generalization of the Forelli-Rudin construc-

tion. Let P be a real valued continuous function on Cm and α = (α1, . . . , αm) ∈ Rm+. A
function P satisfying the following condition is called quasi-homogeneous with weight α:

λP(x1, . . . , xm) = P(λα1x1, . . . , λ
αmxm)

for any x = (x1, . . . , xm) ∈ Rm. Consider the domain defined by

D
ϕ
P,m := {(z, ζ ) ∈ D × Cm;P(|ζ1|2, . . . , |ζm|2) < ϕ(z)}

with quasi-homogeneity on P . Especially, if P(x1, . . . , xm) = x1 + · · · + xm, then DϕP,m is
the Hartogs domain. Let us define

DmP (r) := {ζ ∈ Cm;P(|ζ1|2, . . . , |ζm|2) < r} ,
where r > 0. If r = 1, then we simply denote it by DmP . In the following, we always assume
the next conditions on P .

• P is quasi-homogeneous with weight α,
• DmP (r) is bounded and complete.

FIGURE 1.
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The next theorem give a version of the Forelli-Rudin construction for DϕP,m.

THEOREM 2.6. The Bergman kernel KDϕP,m
of DϕP,m has the following series repre-

sentation:

KDϕP,m
((z, ζ ), (z′, ζ ′)) =

∑
k∈Zm≥0

akKD,ϕ|α(1+k)|(z, z′)(ζ ζ ′)k ,

where ak := ‖ζ k1
1 · · · ζ kmm ‖−2

L2
a(D

m
P )
, |α(1 + k)| := ∑m

r=1 αr(1 + kr).

In [32], this formula is applied to establish deflation type identities which is initiated by
Boas-Fu-Straube [5]. Let us now consider the caseD = Cn, ϕ(z) = e−‖z‖2

. The next theorem
asserts that the Bergman kernel of the domain is expressed in terms of the Fock-Bargmann
kernel and the Bergman kernel of DmP

THEOREM 2.7. Let us assume thatD = Cn, ϕ(z) = e−‖z‖2
. Then the Bergman kernel

of the domainDϕP,m is given by

KDϕP,m
((z, ζ ), (z′, ζ ′)) = |α|−nKn,|α|(z, z′)DnαKDmP (Fα(t, ζ ), ζ

′)
∣∣∣
t=〈z,z′〉 ,

where Dα = |α| + ∂t and Fα(t, ζ ) = (eα1t ζ1, . . . , e
αmt ζm).

PROOF. By Theorem 2.6 and Example 2.4, we have

KDϕP,m
((z, ζ ), (z′, ζ ′))=

∑
k∈Zm≥0

ak

πn
|α(1 + k)|ne|α(1+k)|〈z,z′〉(ζ ζ ′)k

= e|α|〈z,z′〉

πn

∑
k∈Zm≥0

ak|α(1 + k)|ne|αk|〈z,z′〉(ζ ζ ′)k .

By Example 2.4, we find that

(5) |α|−nKn,|α|(z, z′) = e|α|〈z,z′〉

πn
.

By the definition of Dα , we easily see that

Dnαe
|αk|t = (|α| + |αk|)ne|αk|t = |α(1 + k)|ne|αk|t .(6)

Combining these two relations (5) and (6), we obtain

KDϕP,m
((z, ζ ), (z′, ζ ′)) = |α|−nKn,|α|(z, z′)Dnα

( ∑
k∈Zm≥0

ak

m∏
r=1

eαrkr t (ζrζ ′
r )
kr

)∣∣∣∣
t=〈z,z′〉

.

Since DmP is a Reinhardt domain, the set of all normalized monomials forms a complete
orthonormal basis of A2(DmP ). Therefore, the Bergman kernel has the following form:

KDmP
(ζ, ζ ′) =

∑
k∈Zm≥0

ak(ζ ζ ′)k .
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Thus we finally conclude that

KDϕP,m
((z, ζ ), (z′, ζ ′)) = |α|−nKn,|α|(z, z′)DnαKDmP (Fα(t, ζ ), ζ

′)
∣∣∣
t=〈z,z′〉 .

We have thus proved the theorem. �

This theorem gives an answer for Question 2.5 whenΩ1 = Cn×{0} � Cn,Ω2 = D
ϕ
P,m

and ϕ(z) = e−‖z‖2
.

2.3. Special case. In this section we restrict our attention to the following special
case:

Ep = {(z, ζ1, ζ2) ∈ C3 : |ζ1|2 + |ζ2|2p < e−s|z|2} .
The aim of this section is to show that the Bergman kernel of this domain is expressed in
terms of the Fock-Bargmann kernel and a certain functionM , which is defined from the poly-
logarithm function Li−n. Let us begin with recalling some preliminary facts on the Thullen
domain Dp:

Dp = {(ζ1, ζ2) ∈ C2 : |ζ1|2 + |ζ2|2p < 1} .
Put ak1,k2 = ‖ζ k1

1 ζ
k2
2 ‖−2

L2
a(Dp)

. By (2), we have

ak1,k2 = pΓ (2 + k1 + (k2 + 1)/p)

π2Γ (k1 + 1)Γ ((k2 + 1)/p)
.

Let M be defined by

M(t1, t2) :=
∑

k1,k2≥0

ak1,k2 t
k1
1 t

k2
2 .

The next lemma asserts that the series M can be expressed in terms of the polylogarithm
function Li−n (see also Appendix A).

LEMMA 2.8. The series M has the following closed form:

M(t1, t2) = 1

π2(1 − t1)2+1/p

2∑
j=0

cjLi−j (g(t1, t2)) ,

where c0 = 1
p

+ 1, c1 = 2
p

+ 1, c2 = 1
p

and g(t1, t2) = t2/(1 − t1)
1/p.

PROOF. Let us first recall the following simple fact:

(7)
∞∑
i=0

Γ (i + a)

Γ (i + 1)
ti = Γ (a)

(1 − t)a
,

where a > 0 and |t| < 1. Then we have

M(t1, t2)=
∑

k1,k2≥0

pΓ (2 + k1 + (k2 + 1)/p)

π2Γ (k1 + 1)Γ ((k2 + 1)/p)
t
k1
1 t

k2
2
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= p

π2

∞∑
k2=0

1

Γ ((k2 + 1)/p)
t
k2
2

∞∑
k1=0

pΓ (2 + k1 + (k2 + 1)/p)

π2Γ (k1 + 1)
t
k1
1

= p

π2

∞∑
k2=0

Γ (2 + (k2 + 1)/p)tk2
2

Γ ((k2 + 1)/p)(1 − t1)2+(k2+1)/p

= p

π2(1 − t1)2+1/p

∞∑
k2=0

Γ (2 + (k2 + 1)/p)

Γ ((k2 + 1)/p)
· g(t1, t2)k2 .

Here, the third equality follows from (7). Since

Γ (2 + (k2 + 1)/p)

Γ ((k2 + 1)/p)
= c0 + c1k2 + c2k

2
2

p
,

we obtain

M(t1, t2)= 1

π2(1 − t1)2+1/p

∞∑
k2=0

(c0 + c1k2 + c2k
2
2)g(t1, t2)

k2

= 1

π2(1 − t1)2+1/p

2∑
j=0

cjLi−j (g(t1, t2)) .

This completes the proof. �

Now we obtain a description of the Bergman kernel of Ep.

THEOREM 2.9. The Bergman kernel KEp of Ep has the following form:

KEp ((z, ζ ), (z
′, ζ ′))=K1,1+ 1

p
(z, z′)M(es〈z,z′〉ζ1ζ ′

1, e
s〈z,z′〉ζ2ζ ′

2)

+
(

1 + 1

p

)−1

K1,1+ 1
p
(z, z′) RM(t1, t1/p2 )

∣∣∣
t1=es〈z,z′ 〉ζ1ζ

′
1

t2=es〈z,z′ 〉
(
ζ2ζ

′
2

)p
,

where Rf is the radial derivative of f (i.e. Rf (t) = ∑2
i=1 ti

∂f
∂ti
(t)).

PROOF. By Theorem 2.6, we have

KEp ((z, ζ ), (z
′, ζ ′)) =

(
1 + 1

p

)−1

K1,1+ 1
p
(z, z′)G((z, ζ ), (z′, ζ ′)) ,

where G is given by

G((z, ζ ), (z′, ζ ′))=
∑

k1,k2≥0

ak1,k2

(
1 + k1 + 1 + k2

p

)

×
(
es〈z,z′〉ζ1ζ ′

1

)k1
(
es〈z,z′〉

(
ζ2ζ ′

2

)p)k2/p

.
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This can be rewritten as

G((z, ζ ), (z′, ζ ′))=
(

1 + 1

p

)
M(es〈z,z′〉ζ1ζ ′

1, e
s〈z,z′〉ζ2ζ ′

2)

+RM(t1, t1/p2 )

∣∣∣
t1=es〈z,z′ 〉ζ1ζ

′
1

t2=es〈z,z′ 〉
(
ζ2ζ

′
2

)p .
Here the equality follows from

RM(t1, t1/p2 )=R
∑

k1,k2 ≥0

akt
k1
1 t

k2/p

2

=
∑

k1,k2 ≥0

ak

(
k1 + k2

p

)
t
k1
1 t

k2/p
2 .

This completes the proof. �

We finish this section with one remark onG.

REMARK 2.10. In the case of p = 1, Ep is a Hartogs type domain:

E1 = {(z, ζ ) ∈ C × C2 : ‖ζ‖2 < e−s|z|2} .
For this case, by (11), G is given as follows:

G((z, ζ ), (z′, ζ ′))= 1

π2

∞∑
k=0

(k + 1)2(k + 2)
(
eszz

′〈ζ, ζ ′〉
)k

= 1

π2

∂2Li−1(t)

∂t2

∣∣∣∣
t=eszz′ 〈ζ,ζ ′〉

= 2(2 + eszz
′〈ζ, ζ ′〉)

π2(1 − eszz
′〈ζ, ζ ′〉)4 .

More generally, it is also known that the Bergman kernel of

Dn,m = {(z, ζ ) ∈ Cn+m : ‖ζ‖2 < e−s‖z‖2}
is expressed in terms of the polylogarithm function (cf. [31]):

KDn,m
((z, ζ ), (z′, ζ ′)) = sn

πm+n e
ms〈z,z′〉 dm

dtm
Li−n(t)

∣∣∣∣
t=es〈z,z′ 〉〈ζ,ζ ′〉

.

3. Holomorphic automorphism groups. This section is devoted to give a new class
of non-hyperbolic Reinhardt domains with non-compact automorphism groups. We begin this
section with the simplest case Ep1,p2,s .

Ep1,p2,s = {(z, ζ1, ζ2) ∈ C × C × C : |ζ1|2p1 + |ζ2|2p2 < e−s|z|2} .
For simplicity of our argument, let us assume that p1 �= p2 and p1, p2 �= 1. Although our
argument works more general class of domains which contains Ep1,p2,s , the author believes
that this example will help the readers to grasp the key idea.
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3.1. Cartan’s theorem for Ep1,p2,s . We begin our study with Cartan’s theorem (The-
orem 1.4) for our domain Ep1,p2,s . We first observe that Ep1,p2,s contains U = {(z, 0, 0) ∈
C3} � C. It follows that Ep1,p2,s is not hyperbolic. Thus it is a non-trivial question to deter-
mine whether Cartan’s theorem holds for Ep1,p2,s .

The aim of this section is to prove Cartan’s theorem for Ep1,p2,s . In order to bypass the
difficulties arising from the unboundedness and non-hyperbolicity, we make use of the theory
of Bergman kernel. We note that our proof is carried out without using Theorem 1.3. Our
study begin with the following observation in [16]:

PROPOSITION 3.1. Let D ⊂ Cn be a circular domain (not necessarily bounded) with
the Bergman kernel KD and suppose that D contains the origin. Assume that the following
two conditions hold:

(i) KD(0, 0) > 0,
(ii) TD(0, 0) is positive definite,

where TD(z,w) is an n× n matrix defined by

TD(z,w) :=

⎛⎜⎜⎜⎜⎜⎝
∂2

∂w1∂z1
logKD(z,w) · · · ∂2

∂w1∂zn
logKD(z,w)

...
. . .

...

∂2

∂wn∂z1
logKD(z,w) · · · ∂2

∂wn∂zn
logKD(z,w)

⎞⎟⎟⎟⎟⎟⎠ .

Then every origin-preserving automorphism of D is linear.

Let us first check that (i) holds for Ep1,p2,s .

LEMMA 3.2. The Bergman kernel of Ep1,p2,s satisfies (i).

PROOF. By Theorem 2.6, we see that KEp1,p2,s
(0, 0) > 0 is equivalent to the positivity

of the Fock-Bargmann kernel Kn,s(0, 0). It is obvious to check that Kn,s(0, 0) > 0 from
Example 2.4. �

We next check that (ii) holds for Ep1,p2,s .

LEMMA 3.3. The Bergman kernel of Ep1,p2,s satisfies (ii).

PROOF. By Theorem 2.6, the Bergman kernel of Ep1,p2,s has an form:

(8) KEp1 ,p2,s
((z, ζ ), (w, ζ ′)) = se

s
(

1
p1

+ 1
p2

)
zw

π

∑
k1,k2≥0

ak|p−1(1 + k)|es
(
k1
p1

+ k2
p2

)
zw

×
(
ζ1ζ ′

1

)k1
(
ζ2ζ ′

2

)k2
.

For simplicity of notation, we put

F(z,w)= e
s
(

1
p1

+ 1
p2

)
zw
,
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G((z, ζ ), (w, ζ ′))=
∑

k1,k2≥0

ak|p−1(1 + k)|es
(
k1
p1

+ k2
p2

)
zw

(
ζ1ζ ′

1

)k1
(
ζ2ζ ′

2

)k2
.

Then logKEp1,p2
is expressed as follows:

logKEp1,p2
((z, ζ ), (w, ζ ′)) = log

( s
π

)
+ logF(z,w)+ logG((z, ζ ), (w, ζ ′)) .

By a straightforward calculation, we see that

TEp1,p2
(0, 0) =

⎛⎝c1 0 0
0 c2 0
0 0 c3

⎞⎠ ,

where c1, c2, c3 are positive constants. This completes the proof of the lemma. �

Thus the Bergman kernel of Ep1,p2,s satisfies (i) and (ii). Therefore, we obtain Cartan’s
theorem for our domain.

THEOREM 3.4. Every origin-preserving automorphism of Ep1,p2,s is linear.

3.2. Description of Aut(Ep1,p2,s). In this section, we apply Theorem 3.4 to obtain an
explicit description of the holomorphic automorphism group of Ep1,p2,s . We first show the
invariance of U = {(z, 0, 0) ∈ C3} ⊂ Ep1,p2,s . Although the proof is similar to that of [16,
Lemma 8], we give it here for the sake of completeness.

LEMMA 3.5. Let f be an arbitrary automorphism of Ep1,p2,s . Then the space U is
invariant under f (i.e. f (U) ⊂ U).

PROOF. Let us put f (z, 0, 0) = (f1(z), f2(z), f3(z)). Since f is an automorphism of
Ep1,p2,s , we have

|f2(z)|2p1 + |f3(z)|2p2 < e−s|f1(z)|2 ≤ 1 .

By the above, f2 and f3 are bounded holomorphic functions on C, and thus they are constant
functions by Liouville’s theorem. Since f is an automorphism, f is not a constant function. It
follows that f1 is a non-constant entire function. In particular, f1 is not bounded. Thus there
exists a sequence {zk}k≥0 such that |f1(zk)| → ∞ as k → ∞. Therefore we conclude that
f2, f3 ≡ 0. �

Before proceeding, we pause to recall the following result about the complex ellipsoid
(see [18]):

LEMMA 3.6. Let p1, p2 be positive real numbers such that p1 �= p2 and p1, p2 �= 1.
If f is a linear automorphism of the complex ellipsoid {|ζ1|2p1 + |ζ2|2p2 < 1} ⊂ C2, then f
is given by

f =
(
eiθ1 0
0 eiθ2

)
,

where θ1, θ2 are arbitrary real numbers.
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This lemma will be used in the next lemma, which describes linear automorphisms of
Ep1,p2,s . Since it is not easy to generalize the proof used in [16, Lemma 9] for our case, we
show the next lemma by using different method.

LEMMA 3.7. Let g be an arbitrary linear automorphism of Ep1,p2,s . Then g is given
by

g =
⎛⎝eiθ 0 0

0 eiθ1 0
0 0 eiθ2

⎞⎠ ,

where θ, θ1, θ2 are arbitrary real numbers.

PROOF. Let us put

g(z, ζ ) =
(
a b

c d

) (
z

ζ

)
,

where a ∈ C, b ∈ Mat1×2(C), c ∈ Mat2×1(C), d ∈ Mat2×2(C). Then Lemma 3.5 implies
that c = 0. Since f is an automorphism, we see that a �= 0 and det d �= 0.

We next show that |a| = 1, b = 0. Recall the following transformation formula of TD
under the automorphism ϕ:

TD(z,w) = t Jϕ(w)TD(ϕ(z), ϕ(w))Jϕ(z) ,

where Jϕ(z) is the Jacobi matrix of ϕ at z. Applying this formula to g , we obtain

TEp1,p2 ,s
(0, 0) = t Jg (0)TEp1,p2 ,s

(0, 0)Jg(0) .

It is equivalent to ⎛⎝c1 0 0
0 c2 0
0 0 c3

⎞⎠ = t

(
a b

0 d

) ⎛⎝c1 0 0
0 c2 0
0 0 c3

⎞⎠(
a b

0 d

)
.

This relation gives us c1 = |a|2c1 and ac1b = 0. Since c1 �= 0 and a �= 0, we have |a| = 1
and b = 0 as desired.

Let us turn to the remaining case. Observe that

{(0, ζ ) ∈ Ep1,p2,s} = {0} × {|ζ1|2p1 + |ζ2|2p2 < 1} ,(
eiθ 0
0 d

) (
0
ζ

)
=

(
0
dζ

)
.

Thus g induces a linear automorphism of {|ζ1|2p1 + |ζ2|2p2 < 1}:
gd : {|ζ1|2p1 + |ζ2|2p2 < 1} → {|ζ1|2p1 + |ζ2|2p2 < 1} , ζ �→ dζ .

The above argument, together with Lemma 3.6, implies our desired conclusion. �

We are now ready to determine the automorphism group of our domain Ep1,p2,s .
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THEOREM 3.8. The automorphism group of Ep1,p2,s is generated by

ϕθ,θ1,θ2 : (z, ζ1, ζ2) �→ (eiθ z, eiθ1ζ1, e
iθ2ζ2),

ϕv,p1,p2 : (z, ζ1, ζ2) �→ (
z+ v, e

− s|v|2
2p1

− szv
p1 ζ1, e

− s|v|2
2p2

− szv
p2 ζ2

)
,

where θ, θ1, θ2 ∈ R and v ∈ C.

PROOF. It is not difficult to verify that both ϕθ,θ1,θ2 and ϕv,p1,p2 are elements of
Aut(Ep1,p2,s ). Let ϕ be an arbitrary automorphism of Ep1,p2,s . By Lemma 3.5, there ex-
ists v0 ∈ C such that ϕ(0, 0, 0) = (v0, 0, 0). Then we have ϕ−v0,p1,p2 ◦ϕ(0, 0, 0) = (0, 0, 0).
By Theorem 3.4 and Lemma 3.7, we have ϕ−v0,p1,p2 ◦ ϕ = ϕθ,θ1,θ2 . Namely, we conclude
that ϕ = ϕv0,p1,p2 ◦ ϕθ,θ1,θ2 . �

FIGURE 2.

3.3. General case. Let (p1, . . . , p�) be positive real numbers with pi �= pj for any
1 ≤ i, j,≤ �. In this section, we study the holomorphic automorphism group of Ep,m,n,,s
which is defined by

Ep,m,n,s :=
{
(z, ζ(1), . . . , ζ(�)) ∈ Cn × Cm1 × · · · × Cm� :

�∑
j=1

‖ζ(j)‖2pj < e−s‖z‖2
}
.

In the following, to simplify notation, we write Ẽ instead of Ep,m,n,s . As is already mentioned
in the beginning of §3, the arguments for Ep1,p2,s are naturally generalized for Ẽ after suitable
modifications. Thus we will explain the key steps of our arguments and omit the details. We
first show Cartan’s theorem for Ẽ .

PROPOSITION 3.9. Every origin-preserving automorphism of Ẽ is linear.

PROOF. It is enough to check (i), (ii) for our domain Ẽ . The argument for (i) is identical
to that of Lemma 3.2. In this case TẼ (0, 0) has the following form

TẼ (0, 0) =
(
c1In 0

0 D

)
.
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Here c1 is a positive number andD is an |m|×|m| diagonal matrix with positive entries. Thus
TẼ (0, 0) is positive definite. �

Our next task is to describe all linear automorphisms of Ẽ . In this case we need the
following lemma instead of Lemma 3.6 (see [18]).

LEMMA 3.10. Let (p1, . . . , p�) be positive numbers with pi �= pj for any 1 ≤ i, j,≤
�. Let f be a linear automorphism of the generalized complex ellipsoid Ep,m. Then f is given
by

f (ζ(1), . . . , ζ(�)) =

⎛⎜⎜⎝
U1 0

. . .

0 U�

⎞⎟⎟⎠
⎛⎜⎝ζ(1)...
ζ(�)

⎞⎟⎠ ,

where Ui ∈ U(mi) for any 1 ≤ i ≤ �.

Let us define Ũ ⊂ Ẽ by

Ũ := {(z, 0, . . . , 0) ∈ Cn × C|m|} .
The next lemma gives the invariance of Ũ under the automorphisms. Since the proof is the
same as that of Lemma 3.5, we omit it.

LEMMA 3.11. Let f be an arbitrary automorphism of Ẽ . Then the space Ũ is invari-
ant under f .

We are now in position to describe all linear automorphisms of Ẽ .

LEMMA 3.12. Let g be an arbitrary linear automorphism of Ẽ . Then g is given by

g(z, ζ(1), . . . , ζ(�)) =

⎛⎜⎜⎜⎜⎝
U 0

U1
. . .

0 U�

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
z

ζ(1)
...

ζ(�)

⎞⎟⎟⎟⎠ ,

where U ∈ U(n) and Ui ∈ U(mi) for any 1 ≤ i ≤ �.

PROOF. By Lemma 3.11, we can put

g(z, ζ ) =
(
a b

0 d

) (
z

ζ

)
,

where a ∈ Matn×n(C), b ∈ Matn×|m|(C) and d ∈ Mat|m|×|m|(C). Applying the transforma-
tion formula of TẼ to g , we have the following relation:(

c1In 0
0 D

)
= t

(
a b

0 d

) (
c1In 0

0 D

)(
a b

0 d

)
,

where c1 > 0 and D is a diagonal matrix with positive entries in Mat|m|×|m|(C). Comparing
the (1, 1) block entry and (1, 2) block entry, we have c1In = c1

t aa and c1
t ab = 0. It follows
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that a ∈ U(n) and b = 0. By using the same argument as in Lemma 3.7, we see that d is a
linear automorphism of the generalized complex ellipsoid Ep,m as desired. �

Using the same logic used in the proof of Theorem 3.8, we obtain the following theorem

THEOREM 3.13. The automorphism group of Ep,m,n,s is generated by

ϕ1 : (z, ζ(1), . . . , ζ(�)) �→ (Uz,U1ζ(1), . . . , U�ζ(�)) ,

ϕ2 : (z, ζ(1), . . . , ζ(�)) �→ (
z+ v, e

− s‖v‖2

2p1
− s〈z,v〉

p1 ζ(1), . . . , e
− s‖v‖2

2p�
− s〈z,v〉

p� ζ(�)
)
,

where U ∈ U(n),Uk ∈ U(mk) for any 1 ≤ k ≤ � and v ∈ Cn.

3.4. A further generalization. Here we discuss about a further generalization of
Theorem 3.13. Before doing so, let us pause to describe an outline of logical structure of
§3.3.

Theorem 3.13

Proposition 3.9

Theorem 2.6 Proposition 3.1

Lemma 3.12

Lemma 3.10 Lemma 3.11

We note that Proposition 3.9 remains true for

DP,m,s := {(z, ζ ) ∈ Cn × Cm;P(|ζ1|2, . . . , |ζm|2) < e−s‖z‖2} ,
with the same assumptions as in §2.2. Indeed, it is verified by using Theorem 2.6 and Propo-
sition 3.1.

PROPOSITION 3.14. Every origin-preserving automorphism of DP,m,s is linear.

On the other hand, the proofs of Lemmas 3.10 and 3.11 highly depend on special prop-
erties of the complex ellipsoid. We now assume the following condition:

(I) V = {(z, 0) ∈ Cn × Cm} ⊂ DP,m,s is invariant under the automorphisms of DP,m,s .

We denote by Iso0(DP,m,s) the set of all origin-preserving automorphisms. By Proposition
3.14, we see that

Iso0(DP,m,s) = {f ∈ Aut(DP,m,s) : f is linear} .
Then we can show the next lemma under (I), which is a generalization of Lemma 3.12:

LEMMA 3.15. Let g be an arbitrary linear automorphism ofDP,m,s and suppose that
DP,m,s satisfies (I). Then g is given by

g(z, ζ ) =
(
U 0
0 A

)(
z

ζ

)
,

where U ∈ U(n) and A ∈ Iso0(D
m
P ).
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We note that the condition (I) is used to show that the (2, 1) block entry of g is the zero
matrix.

Let us define

ϕv,α(z, ζ ) = (z+ v, e−
sα1‖v‖2

2 −sα1〈z,v〉ζ1, . . . , e
− sαm‖v‖2

2 −sαm〈z,v〉ζm),

where v ∈ Cn. Thanks to the quasi-homogeneity of P , we observe that ϕv,α is an auto-
morphism of DP,m,s . This observation, together with the above discussion, implies the next
theorem.

THEOREM 3.16. Suppose that DP,m,s satisfies the condition (I). Then the automor-
phism group of DP,m,s is generated by Iso0(DP,m,s) and {ϕv,α}v∈Cn .

From this theorem, one can see that the automorphism group of DP,m,s is noncompact.

4. Cartan’s theorem for finite volume Reinhardt domains. Since our interest is to
give a new family of non-hyperbolic Reinhardt domains with (i), (ii), (iii), we restricted our
attention to some special domains in the previous sections. However, it might be worthwhile
to reformulate Cartan’s theorem (Theorem 1.4) for Reinhardt domains (possibly unbounded
non-hyperbolic). In what follows, we always assume that a Reinhardt domain contains the
origin.

THEOREM 4.1. Let D ⊂ Cn be a Reinhardt domain (possibly unbounded non-hyper-
bolic). Suppose that Vol(D) � ∞ and zi ∈ A2(D) for any 1 ≤ i ≤ n. Then all automor-
phisms f with f (0) = 0 are linear.

PROOF. It is enough to verify (i), (ii) of Proposition 3.1 for our D. Let us begin with a
discussion of the Bergman kernel KD . Put S = {zk1

1 · · · zknn : (k1, . . . , kn) ∈ Zn≥0} ∩ A2(D).
Since D is a Reinhardt domain containing the origin, the set S forms a complete orthogonal
basis of A2(D) (cf. [1]). In particular, by the assumptions of the theorem, we see that the
constant function f ≡ 1 and zi are elements of S. Then, by (1), the Bergman kernel ofD has
the following form:

KD(z, z
′) = c0 +

n∑
r=1

c1rzrz′r +
∑
j∈J

aj (z1z′1)j1 · · · (znz′n)jn ,

where J := {
j = (j1, . . . , jn) ∈ Zn≥0 : zj1

1 · · · zjnn ∈ S\{f, z1, . . . , zn}
}
. By the assumption

of the theorem, we have c0 > 0 and c1r > 0 for any 1 ≤ r ≤ n. Especially we see that
KD(0, 0) > 0. It follows that KD satisfies (i) of Proposition 3.1. We next consider (ii) of
Proposition 3.1. We first observe that

∂2 logKD(z, z′)
∂z′i∂zj

=

(
∂2KD(z,z

′)
∂z′i ∂zj

)
KD(z,w)−

(
∂KD(z, z

′)
∂z′i

) (
∂KD(z, z

′)
∂zj

)
KD(z, z′)2

.
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This, together with the above expression of KD , implies that

∂2 logKD(0, 0)

∂z′i∂zj
=

⎧⎨⎩
c1i

c0
, if i = j

0 , otherwise .

Thus TD(0, 0) is a diagonal matrix with positive entries. Therefore TD(0, 0) is a positive
definite matrix. Hence, KD and TD(0, 0) satisfy (i) and (ii) of Proposition 3.1. This proves
the theorem. �

The next two examples are non-hyperbolic unbounded Reinhardt domains in C2 satisfy-
ing the assumptions of this theorem.

EXAMPLE 4.2 (see [1]). Let s, s′ > 0 and consider the following non-hyperbolic do-
main:

D̂1,1 = {(z1, z2) ∈ C2 : |z2|2 < e−s|z1|
2
s′ } .

Then one can check that C[z1, z2] ⊂ A2(D̂1,1). As an application of the above theorem,
we see that all origin-preserving automorphism of D̂1,1 are linear. We note that this domain
includes, as a special case, the domain D1,1 considered in Remark 2.10.

EXAMPLE 4.3 (see [14]). We next consider the following domain:

ΩW = {(z,w) ∈ C2 : log |w|2 + |z|2 + |w|2 < 1} .
It is known that all monomials zk1wk2 are elements of A2(ΩW). Thus Cartan’s theorem also
holds this non-hyperbolic unbounded Reinhardt domain.

If a Reinhardt domain D is bounded, then the assumption of this theorem is always
verified. On the other hand, if a Reinhardt domain D is unbounded, then there is an example
of finite volume Reinhardt domain D in C2 such that z1, z2 �∈ A2(D):

EXAMPLE 4.4 (see [28]). Let us define

X1 =
{
(z1, z2) ∈ C2 : |z2| < 1

|z1| log |z1| , |z1| > e

}
,

X2 =
{
(z1, z2) ∈ C2 : |z1| < 1

|z2| log |z2| , |z2| > e

}
,

Ω =X1 ∪X2 ∪ {(z1, z2) ∈ C2 : |z1| < 2e, |z2| < 2e}.
Then it is known that the monomials contained in A2(Ω) are precisely

a(z1z2)
k, k = 0, 1, 2, . . . .

Thus Ω is a finite volume Reinhardt domain with z1, z2 �∈ A2(Ω). In [28], by using this
domain Ω , it is also shown that there is a family of domains {Ωk}k∈Z≥0 in C2 such that
A2(Ωk) = span{1, z1z2, . . . , (z1z2)

k−1}.
In view of the above theorem, it might be interesting to ask the following question.
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QUESTION 4.5. Can we find a Reinhardt domainD in Cn such that A2(D) = span{1,
z1, z2, . . . , zn}?

We do not have any such examples at the time of writing this paper. To find such exam-
ples is interesting problem and it will be investigated in the future research. We conclude this
article with the following theorem due to Engliš (see [8]).

THEOREM 4.6. The Bergman space A2(D) is {0} or is infinite-dimensional if D is a
pseudoconvex Reinhardt domain in Cn.

Thus, if there exists a Reinhardt domainD as in the above question, then D must not be
pseudoconvex.

Appendix A. Polylogarithm function. Here we collect basic properties of the poly-
logarithm function. Let us first recall that the following series expansion of the logarithm
function:

− log(1 − z) =
∞∑
k=1

zk

k
,(9)

for |z| < 1. Replacing zk/k by zk/ks , we define the polylogarithm function Lis :

Lis(z) =
∞∑
k=1

zk

ks
,(10)

for |z| < 1, s ∈ C. The polylogarithm function Li−s (z) is a rational function of z if s ∈ Z≥0.
Indeed, it is verified from the following simple facts:

Li0(z) = z

1 − z
,

∂

∂z
Lis (z) = Lis−1(z)

z
.

Let us list the first few cases.

EXAMPLE A.1. If s = 0,−1,−2,−3,−4,−5, then Lis(z) is given as follows:

Li0(z) = z

1 − z
, Li−1 = z

(1 − z)2
, Li−2(z) = z(z+ 1)

(1 − z)3
,

Li−3(z) = z(z2 + 4z+ 1)

(1 − z)4
, Li−4(z) = z(z3 + 11z2 + 11z+ 1)

(1 − z)5
,

Li−5(z) = z(z4 + 26z3 + 66z2 + 26z+ 1)

(1 − z)6
.

It is known that the polylogarithm function Lis has the following form when s = −n is
negative integer:

Li−n(z) = z

(1 − z)n+1

n−1∑
j=0

A(n, j + 1)zj ,
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where A(n,m) is the Eulerian number (cf. [4, Eq. (2.17)]):

A(n,m) =
m∑
k=0

(−1)k
(
n+ 1

k

)
(m− k)n .

By definition, it is easily seen that the m-th derivative of the polylogarithm is given by

∂mLis (z)

∂zm
=

∞∑
k=0

(k + 1)mzk

(k +m)s
.(11)

There is a closed form of the m-th derivative of the polylogarithm:

∂mLi−n(z)
∂zm

= m! ∑n
j=0(−1)n+j (m+ 1)jS(1 + n, 1 + j)(1 − z)n−j

(1 − z)m+n+1 ,

where S(·, ·) denotes the Stirling number of the second kind. This expression is a simple
consequence of the following formula (cf. [4, Eq. 2.10c]):

Li−n(z) =
n∑
j=0

(−1)n+j j !S(1 + n, 1 + j)

(1 − z)j+1 .

The next table gives closed forms of ∂
mLi−n(z)
∂zm

for 1 ≤ m,n ≤ 3.

������m

n
1 2 3

1 − z+1
(z−1)3

z2+4z+1
(z−1)4

− z3+11z2+11z+1
(z−1)5

2 2(z+2)
(z−1)4

− 2
(
z2+7z+4

)
(z−1)5

2
(
z3+18z2+33z+8

)
(z−1)6

3 − 6(z+3)
(z−1)5

6
(
z2+10z+9

)
(z−1)6

− 6
(
z3+25z2+67z+27

)
(z−1)7
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