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Abstract. Based on the analogies between knot theory and number theory, we study a
deformation theory for SL2-representations of knot groups, following after Mazur’s deforma-
tion theory of Galois representations. Firstly, by employing the pseudo-SL2-representations,
we prove the existence of the universal deformation of a given SL2-representation of a finitely
generated group Π over a perfect field k whose characteristic is not 2. We then show its
connection with the character scheme for SL2-representations ofΠ when k is an algebraically
closed field. We investigate examples concerning Riley representations of 2-bridge knot groups
and give explicit forms of the universal deformations. Finally we discuss the universal de-
formation of the holonomy representation of a hyperbolic knot group in connection with
Thurston’s theory on deformations of hyperbolic structures.

Introduction. The motivation of this paper is coming from the analogies between knot
theory and number theory. The study of those analogies is now called arithmetic topology
([11]). In particular, it has been known that there are close analogies between Alexander-
Fox theory and Iwasawa theory, where the Alexander polynomial and the Iwasawa polyno-
mial (p-adic zeta function) are analogous objects, for instance ([8], [11, Chapters 8–12]). As
Mazur pointed out ([10], [11, Chapters 13, 14]), from the viewpoint of group representations,
Alexander-Fox theory and Iwasawa theory are concerned about 1-dimensional representations
of knot and Galois groups, respectively, and it would be interesting to pursue the analogies
further for higher dimensional representations.

As a first step to explore this perspective, in this paper, we study a deformation theory
for representations of knot groups, following after the deformation theory for Galois repre-
sentations ([9]). In fact, we develop a general theory on deformations for SL2-representations
of a finitely generated group. We deal with only SL2-representations, since our main inter-
est is applications to knot theory and 3-dimensional topology (hyperbolic geometry) where
the character varieties of SL2-representations of fundamental groups have often been studied.
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See [3] for example. We note that while Galois deformation theory is concerned with p-adic
deformation of a continuous representation of a profinite group over a finite residue field, our
work deals with infinitesimal deformation of a representation of any finitely generated group
over any perfect residue field whose characteristic is not 2 (for example, the field of complex
numbers), and that our universal deformation space may be regarded as an infinitesimal (1-
parameter) deformation over a complete local algebra of the character variety over a filed (see
Theorem 3.2.1). Thus our work is applicable to geometry and topology.

The contents of this paper are as follows. In Section 1, following Wiles ([23] for GL2

case) and Taylor ([20] for GLn case), we introduce the notion of a pseudo-SL2-representation
ofΠ over a commutative ring and prove the existence of the universal deformation of a given
pseudo-SL2-representation over a perfect field. In Section 2, for a given representation over a
perfect field k whose characteristic is not 2

ρ : Π −→ SL2(k) ,

we prove, using the result in Section 1, that there exists the universal deformation of ρ

ρ : Π −→ SL2(Rρ) ,

which parametrizes all lifts of ρ to SL2-representations over complete local O-algebras where
O a complete discrete valuation ring whose residue field is k. A merit to make use of pseudo-
representations is to enable us to relate the universal deformation ring with the character
scheme/variety of SL2-representations where the latter has been extensively studied in the
context of topology (e.g., [3], [6], [16] etc). In fact, in Section 3, when k is an algebraically
closed field, we show the relation between the universal deformation ring Rρ and the SL2-
character scheme of Π . In Section 4, we investigate examples concerning Riley represen-
tations of 2-bridge knot groups ([17]) and give explicit forms of universal deformations. In
Section 5, we apply our deformation theory to the case where Π is the fundamental group
of the complement of a hyperbolic knot in the 3-sphere and ρ is the associated holonomy
representation, and describe the universal deformation ring by Thurston’s deformation theory
of hyperbolic structures ([21]). We observe that our result is similar to the case of p-adic
ordinary Galois representations where the universal deformation is described by Hida’s defor-
mation of p-adic ordinary modular forms ([4], [5]).

Acknowledgments. We would like to thank Gregory Brumfiel, Shinya Harada, Takahiro Kitayama,
Tomoki Mihara, Sachiko Ohtani, Adam Sikora, and Seidai Yasuda for useful communications.

NOTATION. For a local ring R, we denote by mR the maximal ideal of R. For an
integral domain k, we denote by char(k) the characteristic of k.

1. Pseudo-representations and their deformations. In Sections 1 and 2, we develop
a deformation theory of representations for any finitely generated group. We consider only
SL2-representations, since our main concern is applications to knot theory and 3-dimensional
topology where SL2-representations of fundamental groups have been often studied. See [3]
for example. Moreover, while Galois deformation theory is concerned with p-adic deforma-
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tion of a continuous representation of a profinite group over a finite residue field, we study
infinitesimal deformation of a representation of any finitely generated group over any perfect
residue field whose characteristic is not 2 (for example, the field of complex numbers). Thus
our work is applicable to geometry and topology.

In Subsection 1.1, we introduce the notion of a pseudo-SL2-representation of a finitely
generated group. This notion was originally introduced by Wiles ([23] for GL2 case) and by
Taylor ([20] for GLn case) with the intention of applications to p-adic Galois representations.
In Subsection 1.2, we show the existence of the universal deformation of a given pseudo-SL2-
representation over any perfect field.

1.1. Pseudo-SL2-representations. Let Π be a finitely generated group. Let A be a
commutative ring with identity. A map T : Π → A is called a pseudo-SL2-representation
over A if the following four conditions are satisfied:

(P1) T (1) = 2,
(P2) T (g1g2) = T (g2g1) for any g1, g2 ∈ Π ,
(P3) T (g1)T (g2)T (g3)+ T (g1g2g3)+ T (g1g3g2)− T (g1g2)T (g3)− T (g2g3)T (g1)

− T (g1g3)T (g2) = 0 for any g1, g2, g3 ∈ Π ,
(P4) T (g)2 − T (g2) = 2 for any g ∈ Π .

Note that the conditions (P1) through (P3) are nothing but Taylor’s conditions for a pseudo-
representation of degree 2 ([20]) and that (P4) is the condition for determinant 1. By the
invariant theory of matrices ([15, Theorem 4.3]), the trace tr(ρ) of a representation ρ : Π →
SL2(A) satisfies the conditions (P1) through (P4). Conversely, a pseudo-SL2-representation
is shown to be obtained as the trace of a representation under certain conditions (See Theorem
2.2.1 below).

1.2. Deformations of pseudo-SL2-representations. We fix a perfect field k and a com-
plete discrete valuation ring O with the residue field O/mO = k. We may take O to be the
Witt ring of k if char(O) �= char(k), and O = k[[h̄]], the formal power series ring of a vari-
able h̄ over k, if char(O) = char(k). There is a unique subgroup V of O× such that k× � V

and O× = V ×(1+mO). The composition map ϕ : k× � V ↪→ O× is called the Teichmüller
lift which satisfies ϕ(α)modmO = α for α ∈ k. It is extended to ϕ : k ↪→ O by ϕ(0) := 0.
Let C be the category of complete local O-algebras with residue field k. A morphism in C is
an O-algebra homomorphism inducing the identity on residue fields.

Let T : Π → k be a pseudo-SL2-representation over k. A couple (R, T ) is called
an SL2-deformation of T if R ∈ C and T : Π → R is a pseudo-SL2-representation over
R such that T mod mR = T . In the following, we say simply a deformation of T for an
SL2-deformation. A deformation (RT ,T ) of T is called a universal deformation of T if
the following universal property is satisfied: “For any deformation (R, T ) of T there exists a
unique morphismψ : RT → R in C such thatψ◦T = T ." So the correspondenceψ �→ ψ◦T

gives the bijection

HomC(RT , R) � {(R, T ) | deformation of T } .
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Note that a universal deformation of T is unique (if it exists) up to O-isomorphism in the
obvious sense. The O-algebra RT is called the universal deformation ring of T .

THEOREM 1.2.1. For a pseudo-SL2-representation T : Π → k, there exists a univer-
sal deformation (RT ,T ) of T .

PROOF. Let R := O[[Xg ; g ∈ Π]] be the ring of formal power series over O with
variables Xg indexed by elements of Π . By definition, the ring R consists of formal power
series of variables Xgi ’s where indices gi ’s belong to a finite subset of G. Let ϕ : k ↪→ O
be the Teichmüller lift. We set Tg := Xg + ϕ(T (g)) for g ∈ G. Consider the ideal I of R
generated by the elements of following type:

(1) T1 − 2 = X1 + ϕ(T (1))− 2,
(2) Tg1g2 − Tg2g1 = Xg1g2 −Xg2g1 ,
(3) Tg1Tg2Tg3 + Tg1g2g3 + Tg1g3g2 − Tg1g2Tg3 − Tg2g3Tg1 − Tg1g3Tg2 ,
(4) T 2

g − Tg2 − 2,
where g, g1, g2, g3 ∈ Π . We then set RT := R/I and define a map T : Π → RT by
T (g) := Tg mod I. Then we note that RT ∈ C, and by the conditions (P1) through (P4),
T : Π → RT is a pseudo-SL2-representation and T mod mRT

= T . Hence (RT ,T ) is a

deformation of T .
Next let (R, T ) be any deformation of T . Define a morphism ψ : R → R in C by

ψ(f (Xg )) := f (Tg − ϕ(T (g))) for f (Xg ) ∈ R. Note that Tg − ϕ(T (g)) ∈ mR and hence
f (Tg − ϕ(T (g))) is well-defined since R is complete with respect to the mR-adic topology.
By (P1) through (P4),ψ(I) = 0 and hence we have the induced O-algebra homomorphism in
C, denoted by the same ψ , ψ : RT → R. Then we easily see that ψ ◦T = T . The uniqueness
of ψ follows from the fact that RT is generated by Xg (g ∈ Π) as an O-algebra. �

2. The universal deformation for representations. In this section, we are concerned
with deformations of SL2-representations of a finitely generated groupΠ .

In Subsection 2.1, we recall two theorems due to Carayol [2] and Nyssen [13]. In Sub-
section 2.2, by using them, we prove that there is a bijective correspondence given by the trace
between SL2-representations (up to strict equivalence) and pseudo-SL2-representations, and
then derive the existence of the universal deformation of an SL2-representation over a field.

2.1. Carayol’s and Nyssen’s theorems. Two representations ρ, ρ′ : Π → GLn(A) over
a commutative ring A with identity are said to be equivalent, written as ρ ∼ ρ′, if there is
γ ∈ GLn(A) such that ρ′(g) = γ−1ρ(g)γ for any g ∈ Π . When A is a local ring, ρ, ρ′
are said to be strictly equivalent, written as ρ ≈ ρ′, if there is γ ∈ In + Mn(mA) such that
ρ′(g) = γ−1ρ(g)γ for any g ∈ Π . We say that a representation ρ : Π → GLn(k) over a
field k is absolutely irreducible if for an algebraic closure k of k the composite of ρ with the
inclusion GLn(k) ↪→ GLn(k) is an irreducible representation. This condition is independent
of the choice of an algebraic closure k. We recall the following theorem due to Carayol and
Serre.
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THEOREM 2.1.1 ([2, Theorem 1]). Let ρ, ρ′ : Π → GLn(A) be representations over
a local ring A with the residue field k = A/mA. If the residual representation ρ mod mA :
Π → GLn(k) is absolutely irreducible and tr(ρ) = tr(ρ′), then we have ρ ∼ ρ′.

Next we recall the degree 2 case of a theorem by Nyssen.

THEOREM 2.1.2 ([13, Theorem 1]). LetA be a Henselian separated local ring with the
residue field k := A/mA and let T : Π → A be a Taylor’s pseudo-representation of degree 2
over A. Assume that there is an absolutely irreducible representation ρ : Π → GL2(k) such
that tr(ρ) = T mod mA. Then there exists a unique representation ρ : Π → GL2(A) such
that tr(ρ) = T .

2.2. Deformations of an SL2-representations. As in Subsection 1.2, let us fix a perfect
field k and a complete discrete valuation ring O with the residue field O/mO = k. We
assume char(k) �= 2. Let C be the category of complete local O-algebras with residue field
k where a morphism is an O-algebra homomorphism inducing the identity on residue fields.
We note that 2 is invertible in O and hence in any R ∈ C. Let ρ : Π → SL2(k) be a given
representation. We call a couple (R, ρ) an SL2-deformation of ρ if R ∈ C and ρ : Π →
SL2(R) is a representation such that ρ mod mR = ρ. In the following, as in the case of
pseudo-SL2-representations, we say simply a deformation of ρ for an SL2-deformation. A
deformation (Rρ,ρ) of ρ is called a universal deformation of ρ if the following universal
property is satisfied: “For any deformation (R, ρ) of ρ there exists a unique morphism ψ :
Rρ → R in C such that ψ ◦ ρ ≈ ρ.” So the correspondenceψ �→ ψ ◦ ρ gives the bijection

HomC(Rρ, R) � {(R, ρ) | deformation of ρ}/ ≈ .

Note that a universal deformation of ρ is unique (if it exists) up to O-isomorphism in the
obvious sense. The O-algebra Rρ is called the universal deformation ring of ρ.

A deformation (R, ρ) of ρ gives rise to a deformation (R, tr(ρ)) of the pseudo-SL2-
representation tr(ρ) : Π → k. The following theorem asserts that this correspondence is
actually bijective under the assumption that ρ is absolutely irreducible.

THEOREM 2.2.1. Let ρ : Π → SL2(k) be an absolutely irreducible representation
and let R ∈ C. Then the correspondence ρ �→ tr(ρ) gives the following bijection:

{ρ : Π → SL2(R) | deformation of ρ over R}/ ≈
−→ {T : Π → R | deformation of tr(ρ) over R} .

PROOF. Firstly let us show the surjectivity. Let T : Π → R be a pseudo-SL2-represen-
tation such that T mod mR = tr(ρ). By Theorem 2.1.2, there exists a unique representation
ρ1 : Π → GL2(R) such that tr(ρ1) = T . Note that ρ1 is actually an SL2(R)-representation,
because we have 2 det(ρ1(g)) = tr(ρ1(g))

2 − tr(ρ1(g
2)) = T (g)2 − T (g2) = 2 for any

g ∈ Π and 2 ∈ R×. Since tr(ρ1 mod mR) = T mod mR = tr(ρ) and ρ is absolutely
irreducible, Theorem 2.1.1 implies that ρ ∼ ρ1 mod mR . So there is γ ∈ GL2(k) such that
ρ(g) = γ−1(ρ1 mod mR)(g)γ . Choose a lift γ ∈ GL2(R) of γ and define a representation
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ρ : Π → SL2(R) by ρ(g) := γ−1ρ1(g)γ for g ∈ Π . Then (R, ρ) is a deformation of ρ and
tr(ρ) = tr(ρ1) = T .

Next let us show the injectivity. Let ρ, ρ′ : Π → SL2(R) be deformations of ρ such
that tr(ρ) = tr(ρ′). Since ρ is absolutely irreducible, Theorem 2.1.1 implies ρ ∼ ρ′. So
there is γ ∈ GL2(R) such that ρ′(g) = γ−1ρ(g)γ for g ∈ Π . Taking mod mR, we have
ρ(g) = γ−1ρ(g)γ for g ∈ Π where we put γ := γ mod mR . Since ρ is irreducible, Schur’s
lemma implies that γ is a scaler matrix over k, say γ = aI2, a ∈ k×. Take a lift a ∈ R×
of a and set γ ′ := aI2. Then γ γ ′−1 ≡ I2 mod mR and ρ′(g) = (γ γ ′−1)−1ρ(g)(γ γ ′−1) for
g ∈ Π . Hence ρ′ ≈ ρ. �

THEOREM 2.2.2. Let ρ : Π → SL2(k) be an absolutely irreducible representation.
Then there exists the universal deformation (Rρ,ρ) of ρ, where Rρ is given as RT for T :=
tr(ρ) in Theorem 1.2.1.

PROOF. By Theorem 1.2.1, there exists the universal deformation (RT ,T ) of a pseudo-
SL2-representation T = tr(ρ). By Theorem 2.2.1, we have a deformation ρ : Π → SL2(RT )

of ρ such that tr(ρ) = T . We claim that (RT ,ρ) is the universal deformation of ρ and hence
Rρ = RT . Let (R, ρ) be any deformation of ρ. By the universality of (RT ,T ), there exists a
unique morphism ψ : RT → R in C such that ψ ◦ T = tr(ρ). Since tr(ψ ◦ ρ) = ψ ◦ tr(ρ) =
ψ ◦ T = tr(ρ), Theorem 2.2.1 implies ψ ◦ ρ ≈ ρ. �

Finally we recall a basic fact on a presentation of a complete local O-algebra, which
will be used later. For R ∈ C, we define the relative cotangent space t∗

R/O of R by the

k-vector space mR/(m
2
R + mOR) and the relative tangent space tR/O of R by the dual k-

vector space of t∗
R/O. We note that they are the same as the cotangent and tangent spaces of

R/mOR = R ⊗O k, respectively. The following Lemma 2.2.3 may be a well-known fact
which is proved using Nakayama’s lemma (cf. [22, Lemma 5.1]).

LEMMA 2.2.3. Let d be the dimension of tR/O over k and assume d < ∞. For a
given system of parameters x1, . . . , xd of the local k-algebra R ⊗O k, there is a surjective
O-algebra homomorphism

λ : O[[X1, . . . , Xd ]] −→ R

in C such that the image of λ(Xi) in R ⊗O k is xi (1 ≤ i ≤ d).

3. Character schemes. In this section, we show the relation between the universal
deformation ring in Sections 1, 2 and the character scheme of SL2-representations.

In Subsection 3.1, we recall the constructions and some facts concerning the SL2-charac-
ter scheme and the skein algebra over an algebraically closed field and then describe their
relation. For the details, we consult [3], [7, Chapter 1], [12] and [19]. In Subsection 3.2,
we give the relation between the universal deformation ring and the character scheme via
the skein algebra. Our universal deformation ring may be regarded as an infinitesimal (1-
parameter) deformation of the universal character algebra.

As in Sections 1 and 2, let Π be a finitely generated group.
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3.1. Character schemes and skein algebras. Let k be an algebraically closed field and
consider the functor F from the category of commutative k-algebras to the category of sets
defined by

A �→ F(A) := the set of all representations Π → SL2(A) .

The functor F is represented by a commutative k-algebra A(Π), called the universal SL2-
representation algebra of Π over k, and we have the universal SL2-representation ρuniv :
Π → SL2(A(Π)) which satisfies the following property: “For any commutative k-algebra
A and a representation ρ : Π → SL2(A), there is a unique k-algebra homomorphism
ψ : A(Π) → A such that ρ = ψ ◦ ρuniv.” In fact, when Π is given by generators g1, . . . , gs
subject to the relations rq = 1 (q ∈ Q), the universal SL2-representation algebra A(Π) is

given by the quotient of the polynomial ring k[X(m)ij (1 ≤ m ≤ s, 1 ≤ i, j ≤ 2)] by the

ideal J generated by det(X(m)) − 1 (1 ≤ m ≤ s) and (rq)ij (q ∈ Q, 1 ≤ i, j ≤ 2), where

X(m) := (X
(m)
ij ) and (rq)ij denotes the (i, j)-entry of the matrix rq(X(1), . . . , X(s)), and the

universal representation ρuniv is given by ρuniv(gm) = X(m) mod J for 1 ≤ m ≤ s. We
denote the affine scheme Spec(A(Π)) by R(Π) and call it the SL2-representation scheme
of Π over k. We identify a prime ideal p ∈ R(Π) with the corresponding representation
ρp := ψp ◦ ρuniv : Π → SL2(A(Π)/p), where ψp : A(Π) → A(Π)/p is the natural homo-
morphism. We set R(Π) := R(Π)(k) = Spm(A(Π)) and call it the SL2(k)-representation
variety of Π . It is an affine algebraic set over k which parametrizes all representationsΠ →
SL2(k), obtained as ρm = ψm ◦ ρuniv for m ∈ R(Π), where ψm : A(Π) → A(Π)/m = k

is the natural homomorphism. We identify a maximal ideal m ∈ R(Π) and the correspond-
ing representation ρm. We denote by k[R(Π)] the coordinate ring of R(Π). We note that
k[R(Π)] is the quotient of A(Π) by the nilradical, k[R(Π)] = A(Π)/

√
0.

The adjoint action of the group scheme GL2 on B(Π) is defined by sending the (i, j)-
entry of X(m) to the (i, j)-entry of P−1X(m)P for P ∈ GL2. Let B(Π) be the invariant
subalgebra of A(Π) under this action of GL2, B(Π) := A(Π)GL2, which we call the univer-
sal SL2-character algebra of Π over k. We denote by X(Π) the affine scheme Spec(B(Π)),
namely, the algebro-geometric quotient of R(Π) by the adjoint action of GL2, and call it
the SL2-character scheme of Π over k. We have a morphism R(Π) → X(Π) induced by
the inclusion B(Π) ↪→ A(Π). We write [p](= [ρp]) for the image of p(= ρp). We set
X (Π) := X(Π)(k) = Spm(B(Π)) and call it the SL2(k)-character variety of Π . It is an
algebraic set which parametrizes all characters tr(ρ) of representations ρ : Π → SL2(k). Un-
der the natural morphismR(Π) → X (Π), we write [ρ] ∈ X (Π) for the image of ρ ∈ R(Π).
We note that [ρ] = [ρ′] if and only if tr(ρ) = tr(ρ′). We denote by k[X (Π)] the coordinate
ring of X (Π). We note that k[X (Π)] is the invariant subring of k[R(Π)] under the conjugate
action of GL2(k), k[X (Π)] = k[R(Π)]GL2(k) and k[X (Π)] = B(Π)/

√
0. For g ∈ Π , define

τg : R(Π) → k by τg (ρ) := tr(ρ(g)). It is known ([LM, Corollary 1.34]) that k[X (Π)] is
generated over k by finitely many τg ’s.

According to [19, 3.1] and [16, Definition 2.5], we define the k-algebra C(Π) by

C(Π) := k[tg (g ∈ Π)]/I ,
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where tg is a variable for each g ∈ Π and I is the ideal of the polynomial ring k[tg (g ∈ Π)]
generated by the polynomials of the form

t1 − 2 , tg1 tg2 − tg1g2 − tg−1
1 g2

(g1, g2 ∈ Π) .
We call C(Π) the skein algebra of Π over k. We note that C(Π) is Noetherian since Π is
finitely generated. We denote the affine scheme Spec(C(Π)) by Xskein(Π) and call it the
skein scheme of Π over k. Since tr(ρuniv(g)) ∈ B(Π) for g ∈ Π and we have the formula,
which is derived by the Cayley-Hamilton theorem,

tr(ρuniv(g1))tr(ρuniv(g2))− tr(ρuniv(g1g2))− tr(ρuniv(g−1
1 g2)) = 0 (g1, g2 ∈ Π) ,

we obtain a k-algebra homomorphism

ιΠ : C(Π) −→ B(Π)

defined by ι(tg ) := tr(ρuniv(g)) for g ∈ Π , and hence a morphism of schemes

ιaΠ : X(Π) −→ Xskein(Π) .

We define the discriminant ideal Δ(Π) of C(Π) by the ideal generated by the images of the
elements in k[tg (g ∈ π)] of the form

Δ(g1, g2) := tg1g2g
−1
1 g−1

2
− 2 = t2g1

+ t2g2
+ t2g1g2

− tg1 tg2 tg1g2 − 4 (g1, g2 ∈ π) ,
and the discrimiant subscheme by V (Δ(Π)) = Spec(C(Π)/Δ(Π)). Since C(Π) is Noether-
ian, Δ is generated by finitely manyΔ(g(i)1 , g

(i
2 ), i = 1, . . . , n. We set Δ := Δ(g

(1)
1 , g

(2)
2 ) · · ·

Δ(g
(n)
1 , g

(n)
2 ) ∈ C(Π) and define the open subschemes Xskein(Π)irr and X(Π)irr of Xskein(Π)

and X(Π), respectively, by

Xskein(Π)irr := Xskein(Π) \ V (Δ(Π)) = Xskein(Π)Δ ,

X(Π)irr := X(Π) \ (ιaΠ)−1(V (Δ(Π))) = X(Π)ιΠ (Δ) .

In fact, it is shown ([19, 4.1], [12, §3]) that p ∈ X(Π) belongs to X(Π)irr if and only if ρp
is an absolutely irreducible representation. Here a representation ρ : Π → SL2(A) with a
commutative ring A is said to be absolutely irreducible if the composite of ρ with the natural
map SL2(A) → SL2(κ(p)) is absolutely irreducible over the residue field κ(p) = Ap/pAp

for any p ∈ Spec(A).

THEOREM 3.1.1 ([19, 4.3], [12, Corollary 6.8]). The restriction of ιaΠ to X(Π)irr gives
an isomorphism

X(Π)irr � Xskein(Π)irr .

In terms of algebras, ιΠ induces an isomorphism between C(Π) and B(Π) if Δ is inverted:

C(Π)Δ � B(Π)ιΠ (Δ) .

COROLLARY 3.1.2. Let ρ : Π → SL2(k) be an irreducible representation and let
[ρ] ∈ X (Π) also denote the corresponding maximal ideal of B(Π). Then we have an iso-
morphism of local rings:

C(Π)ιaΠ ([ρ]) � B(Π)[ρ] .
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3.2. The relation between the universal deformation ring and the character scheme.
Let k be an algebraically closed field with char(k) �= 2 and let O be a discrete valuation
ring with residue field k. Let ρ : Π → SL2(k) be an irreducible representation and let
T : Π → k be a pseudo-SL2-representation over k given by the character tr(ρ). Let RT (=
Rρ) be the universal deformation ring of T (or ρ) as in Sections 1 and 2. Recall that the
universal deformation ring RT is a complete local O-algebra whose residue field is k. On the
other hand, let B(Π) be the universal SL2-character algebra of Π over k. Then we have the
following

THEOREM 3.2.1. Assume that ρ is irreducible and let [ρ] denote the corresponding
maximal ideal of B(Π). We have an isomorphism of k-algebras

RT ⊗O k � B(Π)∧[ρ] ,

where B(Π)∧[ρ] denotes the [ρ]-adic completion of B(Π). So, the universal deformation ring
can be considered as an infinitesimal deformation of the universal character algebra. For the
case that char(O) = char(k), we have an isomorphism of O-algebras

RT � B(Π)∧[ρ]⊗̂kO ,
where O is considered as a k-algebra by the natural inclusion k ↪→ O.

PROOF. By the construction of RT in the proof of Theorem 1.2.1, we have

RT = O[[Xg (g ∈ Π)]]/I,
where I is the ideal of the power series ring O[[Xg (g ∈ Π)]] generated by elements of the
form: setting Tg := Xg + ϕ(T (g)), ϕ being the Teichmüller lift,

(1) T1 − 2,
(2) Tg1g2 − Tg2g1 ,
(3) Tg1Tg2Tg3 + Tg1g2g3 + Tg1g3g2 − Tg1g2Tg3 − Tg2g3Tg1 − Tg1g3Tg2 ,
(4) T 2

g − Tg2 − 2,
where g, g1, g2, g3 ∈ Π .

On the other hand, since the maximal ideal [ρ] of B(Π) corresponds to the maximal
ideal (tg − T (g) (g ∈ Π)) of C(Π), Corollary 3.1.2 yields

B(Π)∧[ρ] � k[[xg (g ∈ Π)]]/I∧ ,

where xg := tg − T (g) (g ∈ Π) and I∧ is the ideal of the power series ring k[[xg (g ∈ Π)]]
generated by elements of the form t1 − 2, tg1 tg2 − tg1g2 − tg−1

1 g2
(g1, g2 ∈ Π). So, in order

to show that the correspondence Xg ⊗ 1 �→ xg (resp. Xg �→ xg ⊗ 1) gives the desired
isomorphism RT ⊗O k � B(Π)∧[ρ] (resp. RT � B(Π)∧[ρ]⊗̂kO for the case that char(O) =
char(k)), it suffices to show the following

LEMMA 3.2.2. Let T be a function on Π with values in an integral domain whose
characteristic is not 2. Let (P) be the relations given by

(P1) T (1) = 2,
(P2) T (g1g2) = T (g2g1),
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(P3) T (g1)T (g2)T (g3)+ T (g1g2g3)+ T (g1g3g2)− T (g1g2)T (g3)

− T (g2g3)T (g1)− T (g1g3)T (g2) = 0,
(P4) T (g)2 − T (g2) = 2,

and let (C) be the relations given by
(C1) T (1) = 2,
(C2) T (g1)T (g2) = T (g1g2)+ T (g−1

1 g2),
where g, g1, g2, g3 are any element in Π .

Then (P) and (C) are equivalent.

PROOF OF LEMMA 3.2.2. (P) ⇒ (C): Letting g2 = g1 in (P3), we have

T (g1)
2T (g3)− T (g2

1 )T (g3)+ T (g2
1g3)+ T (g1g3g1)− 2T (g1g3)T (g1) = 0 .

Using (P2) and (P4), we have

2(T (g3)+ T (g2
1 g3)− T (g1g3)T (g1)) = 0 .

Letting g3 be replaced by g−1
1 g2 in the above equation and noting T has the value in an integral

domain whose characteristic is not 2, we obtain (C2).
(C) ⇒ (P). Letting g2 = 1 in (C2) and using (C1), we have

T (g) = T (g−1) for any g ∈ Π .

Exchanging g1 and g2 in (C2) each other and using the above relation, we have

T (g2)T (g1) = T (g2g1)+ T (g−1
2 g1) = T (g2g1)+ T (g−1

1 g2)

and hence we obtain (P2). Next letting g1 be replaced by g1g3 in (C2), we have

(3.2.2.1) −T (g1g3)T (g2)+ T (g1g3g2)+ T (g−1
3 g−1

1 g2) = 0 ,

and letting g2 be replaced by g2g3 in (C2), we have

(3.2.2.2) −T (g1)T (g2g3)+ T (g1g2g3)+ T (g−1
1 g2g3) = 0 .

By (C2), we have

T (g−1
3 g−1

1 g2) = T (g3)T (g
−1
1 g2)− T (g3g

−1
1 g2)

= T (g3)T (g1)T (g2)− T (g1g2)T (g3)− T (g3g
−1
1 g2) .

Hence, using (P2) proved already, we have

(3.2.2.3)
T (g−1

3 g−1
1 g2)+ T (g−1

1 g2g3) = T (g1)T (g2)T (g3)− T (g1g2)T (g3)

−T (g3g
−1
1 g2)+ T (g−1

1 g2g3)

= T (g1)T (g2)T (g3)− T (g1g2)T (g3) .

Summing up (3.2.2.1) and (3.2.2.2) together with (3.2.2.3), we obtain (P3). Finally putting
g1 = g2 in (C2) and using (C1), we obtain (P4). �
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By Lemma 2.2.3 and Theorem 3.2.1, we have the following

COROLLARY 3.2.3. Assume that [ρ] is a regular point of the scheme X(Π), namely,
B(Π)[ρ] is a regular local ring. Then the dimension d of the relative tangent space tRT /O
of RT is equal to the dimension of the irreducible componennt of X(Π) containing [ρ], and
B(Π)∧[ρ] is a power series ring over k on a regular system of parameters x1, . . . , xd . Hence
we have a surjective O-algebra homomorphism

λ : O[[X1, . . . , Xd ]] −→ RT

in C such that the image of λ(Xi) in RT ⊗O k � B(Π)∧[ρ] is xi (1 ≤ i ≤ d).

4. Examples for 2-bridge knot groups. In this section, we investigate examples con-
cerning Riley representations of 2-bridge knot groups.

In Subsection 4.1, we recall some results on the Riley representations of 2-bridge knot
groups. We refer to [1] for basic information on 2-bridge knots and [17], [18] for the details
on Riley representations. In Subsection 4.2, we describe the character scheme/variety of SL2-
representations of a 2-bridge knot group. For this, we refer to [6]. In Subsection 4.3, we give
an explicit form of the universal deformation of a Riley representation.

4.1. 2-bridge knots and Riley representations. LetK be a 2-bridge knot in the 3-sphere
S3, given as the Schubert form b(m, n) where m and n are odd integers with m > 0,−m <

n < m and g.c.d(m, n) = 1. Let ΠK be the knot group π1(S
3 \K). The groupΠK is known

to have a presentation of the form

ΠK = 〈a, b | wa = bw〉 ,
where w is a word w(a, b) of a and b which has the following symmetric form

w = w(a, b) = aε1bε2 · · · aεm−2bεm−1 ,

εi = (−1)[in/m] = εm−i ([ · ] = Gauss symbol) .

Let F be the free group generated by a and b, and let π : F → ΠK be the natural homomor-
phism.

Let A be a commutative ring with identity. For α ∈ A× and β ∈ A, we consider two
matrices C(α) and D(α, β) in SL2(A) defined by

(4.1.1) C(α) :=
(
α 1
0 α−1

)
, D(α, β) :=

(
α 0
β α−1

)

and we set

W(α, β) := C(α)ε1D(α, β)ε2 · · ·C(α)εm−2D(α, β)εm−1 .

It is easy to see that there are (Laurent) polynomialswij (t, u) ∈ Z[t±, u] (1 ≤ i, j ≤ 2) such
that W(α, β) = (wij (α, β)). Let f(α,β) : F → SL2(A) be the homomorphism defined by

f(α,β)(a) := C(α), f(α,β)(b) := D(α, β) .

We call a representation

ρ : ΠK −→ SL2(A)
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the Riley representation over A of type (α, β), denoted by r(α,β), if f(α,β) factors through ρ,
namely, ρ ◦ π = f(α,β).

Let k be an algebraically closed field. The following Theorem 4.1.2 was proved by Riley
[17], [18] for the case where k is the field of complex numbers. The proof therein works as
well for any algebraically closed field.

THEOREM 4.1.2 ([17], [18]). Let ϕ(t, u) := w11(t, u)+(t−1− t)w12(t, u) ∈ Z[t±, u].
(1) There is a unique polynomialΦ(x, u) ∈ Z[x, u] such that

Φ(t + t−1, u) = t lϕ(t, u)

for an integer l.
(2) The homomorphism f(α,β) (α ∈ k×, β ∈ k) factors through the Riley representation

r(α,β) over k if and only if we have

Φ(α + α−1, β) = 0 .

(3) Any non-Abelian SL2(k)-representation of ΠK is equivalent to a Riley representa-
tion r(α,β) for some α ∈ k× and β ∈ k.

For the properties of the polynomialΦ(x, u), Riley showed, among others, the following

PROPOSITION 4.1.3 ([17]). The polynomial Φ(2, u) = ϕ(1, u) ∈ Z[u] is monic up to
multiplication by ±1 and its discriminant disc(Φ(2, u)) is an odd integer. If char(k) does not
divide disc(Φ(2, u)), then any root of Φ(2, u) = 0 in k is non-zero and simple.

By Hensel’s lemma, we have the following

COROLLARY 4.1.4. Let O be a complete discrete valuation ring with residue field k.
For any root β of Φ(2, u) = 0 in k, there is a unique power series u(x) ∈ O[[x − 2]]× such
that β = u(2)modmO and Φ(x, u(x)) ≡ 0 in O[[x − 2]].

EXAMPLE 4.1.5. (1) LetK be the trefoil b(3, 1). Then we havew = ab and ϕ(t, u) =
t2(t2 + t−2 + u− 1). Hence Φ(x, u) = x2 + u− 3 and Φ(2, u) = u+ 1. Therefore β = −1
and u(x) = 3 − x2 for any k.

(2) Let K be the figure eight b(5, 3). Then we have w = ab−1a−1b and ϕ(t, u) =
u2 + (t2 + t−2 − 3)u − (t2 + t−2 − 3). Hence Φ(x, u) = u2 + (x2 − 5)u − (x2 − 5)
and Φ(2, u) = u2 − u + 1. Therefore, if char(k) �= 2, 3, then β = 1

2 (1 ± √−3) ∈ k and

u(x) = 1
2 {5 − x2 ±

√
(x2 − 1)(x2 − 5)} ∈ O[[x− 2]]× where

√
(x2 − 1)(x2 − 5) stands for

an element of O[[x − 2]] whose square is (x2 − 1)(x2 − 5).

4.2. Character varieties. We keep the notations in Subsection 3.1. Let k denote an
algebraically closed field and let X (ΠK) denote the SL2(k)-character variety of ΠK . The
proof of Proposition 1.4.1 of [3] tells us that any τg (g ∈ ΠK ) is given as a polynomial
of τa(= τb) and τab with coefficients in Z. In particular, the coordinate ring k[X (ΠK)] is
generated by τa and τab. We let x and y denote the variables corresponding, respectively, to
the coordinate functions τa and τab on X (ΠK) embedded in k2. This variable x is consistent
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with the variable x of Φ(x, u) in Theorem 4.1.2 (and so causes no confusion). In fact, the
coordinate variables x and y are related with t and u in Theorem 4.1.2 by

x = t + t−1, y = t2 + t−2 + u = x2 + u− 2 ,

since we have

τa(r(α,β)) = tr(C(α)) = α + α−1 , τab(r(α,β)) = tr(C(α)D(α, β)) = α2 + α−2 + β .

By Theorem 4.1.2 (2), (3), characters of irreducible SL2(k)-representations of ΠK cor-
respond bijectively to points on the algebraic curve in k2 defined by the equation

Φ(x, y − x2 + 2) = 0 ,

except the finitely many intersection points with the algebraic curve y − x2 + 2 = 0. The
points on the latter curve y−x2+2 = 0 correspond (not bijectively) to characters of reducible
SL2(k)-representations ofΠK . It is also shown ([6, Proposition 3.4.1]) that the ideal generated
by Φ(x, y − x2 + 2) in k[x, y] is a radical ideal. Thus we have the following

THEOREM 4.2.1 ([6, Theorem 3.3.1]). The character variety X (ΠK) is the affine al-
gebraic curve in k2 defined by the equation

(y − x2 + 2)Φ(x, y − x2 + 2) = 0 ,

and the coordinate ring of X (ΠK) is given by

k[X (ΠK)] � k[x, y]/((y − x2 + 2)Φ(x, y − x2 + 2)) .

Here the points on the algebraic curve Φ(x, y − x2 + 2) = 0 correspond bijectively to
irreducible SL2(k)-characters of ΠK except the finitely many intersection points with the
algebraic curve y−x2 +2 = 0, and the points on y−x2 +2 = 0 correspond (not bijectively)
to reducible SL2(k)-characters of ΠK .

EXAMPLE 4.2.2. (1) WhenK is the trefoil b(3, 1), we see Φ(x, y− x2 + 2) = y− 1.
Hence X (ΠK) is given by (y − x2 + 2)(y − 1) = 0.

(2) When K is the figure eight b(5, 3), we have Φ(x, y − x2 + 2) = y2 − (1 + x2)y +
2x2 − 1. Hence X (ΠK) is given by (y − x2 + 2){y2 − (1 + x2)y + 2x2 − 1} = 0.

Przytycki and Sikora proved the following theorem for the case where k is the field of
complex numbers. Their proof works well for any algebraically closed field whose character-
istic is not 2.

THEOREM 4.2.3 ([16, Theorem 7.3]). Assume char(k) �= 2. Then the universal SL2-
character algebra B(ΠK) is reduced and hence B(ΠK) = k[X (ΠK)].

4.3. The universal deformation. As in Subsection 3.2, let k be an algebraically closed
field with char(k) �= 2 and let O be a complete discrete valuation ring with residue field k.
We assume further that char(k) does not divide the discriminant of Φ(2, u) ∈ Z[u].

Let ρ : ΠK → SL2(k) be a Riley representation r(1,β) so that

ρ(a) := C(1), ρ(b) := D(1, β) ,
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where β is a root ofΦ(2, β) = 0. By Proposition 4.1.3, ρ is irreducible and (x, y) = (2, β+2)
is a non-singular point on X (ΠK).

Let u(x) be the power series in Corollary 4.1.4 and set u(x) := u(x)modmO. By
Theorem 4.2.1, we have the isomorphism

(4.3.1) k[X (ΠK)]∧[ρ] � (k[x, y]/(Φ(x, y − x2 + 2)))∧(x−2,y−(β+2)) � k[[x − 2]],

where the second isomorphism is given by y �→ x2 + u(x)− 2. So x − 2 is a local parameter
of X (ΠK) at [ρ].

Let (Rρ,ρ) be the universal deformation of ρ. By Theorem 3.2.1, Theorem 4.2.3 and
(4.3.1), we have

Rρ ⊗O k � k[[x − 2]] ,

where Ta modI = tr(ρ(a)) ∈ Rρ corresponds to x. By Corollary 3.2.3, we have

LEMMA 4.3.2. The dimension of the relative tangent space tRρ/O is 1 and there is a
surjective O-algebra homomorphism

λ : O[[X]] −→ Rρ

in C such that λ(X) = tr(ρ(a))− 2.

In the following Theorem 4.3.3, we show that the map λ in Lemma 4.3.2 is in fact an
isomorphism, and we give an explicit form of the universal deformation (Rρ,ρ). We remark
on the notation used in the following: For p(x) ∈ O[[x − 2]] with p(2) ∈ O×,

√
p(x) stands

for an element in O[[x − 2]] whose square is p(x). If p(2) = 1, we adopt the unique one
normalized by

√
p(2) = 1. For p(x) ∈ O[[x − 2]] with p(2) ∈ mO,

√
p(x) is an element

of a quadratic extension of E((x − 2)) whose square is p(x), where E is the field of fractions
of O. In particular,

√
x − 2 is a prime element of a quadratic extension L of E((x − 2)) and

we denote by O[[√x − 2]] the integral closure of O[[x − 2]] in L. For p(x) ∈ O[[x − 2]]
with p(2) = 0, we may write p(x) = (x − 2)p1(x) with p1(x) ∈ O[[x − 2]] and so we have
p(x)√
x−2

= √
x − 2p1(x) ∈ O[[√x − 2]].

THEOREM 4.3.3. We let v(x) :=
√

1 + x2−4
u(x)

∈ O[[x − 2]]× and define U(x) ∈
SL2(O[[√x − 2]]) by

U(x) :=

⎛
⎜⎜⎜⎝

1√
v(x)

1 − v(x)√
v(x)

√
x2 − 4√

x2 − 4

2
√
v(x)

1 + v(x)

2
√
v(x)

⎞
⎟⎟⎟⎠ .

We define A(x), B(x) ∈ SL2(O[[x − 2]]) by
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A(x) := U(x)C(t)U(x)−1 =

⎛
⎜⎜⎝

x

2
1

x2 − 4

4

x

2

⎞
⎟⎟⎠ ,

B(x) := U(x)D(t, u(x))U(x)−1 =

⎛
⎜⎜⎝

x

2

(1 − v(x))2u(x)

x2 − 4

(1 + v(x))2u(x)

4

x

2

⎞
⎟⎟⎠ ,

where t is an element O[[√x − 2]] such that t + t−1 = x and C(t),D(t, u(x)) are the
matrices over O[[√x − 2]] defined in (4.1.1). We define the deformation of ρ

ρu : ΠK −→ SL2(O[[x − 2]])
by

ρu(a) := A(x), ρu(b) := B(x) .

Then there is an isomorphism ψ : Rρ
∼→ O[[x − 2]] in C such that ψ ◦ ρ ≈ ρu.

PROOF. Firstly, let us check that U(x) ∈ SL2(O[[√x − 2]]) and A(x), B(x) ∈
SL2(O[[x − 2]]). Since v(2) = 1,

√
v(x) ∈ O[[x − 2]]× and 1 − v(x) = (x − 2)p(x)

with some p(x) ∈ O[[x−2]] and hence all entries ofU(x) are lying in O[[√x − 2]]. Further
we easily see detU(x) = 1 and also U(2) = I . As for A(x), B(x), we see immediately
that detA(x) = detC(t) = 1 and detB(x) = detD(t, u(x)) = 1. The straightforward com-
putations of U(x)C(t)U(x)−1 and U(x)D(t, u(x))U(x)−1 using t + t−1 = x, t − t−1 =√
x2 − 4, x2 − 4 + u(x) = v(x)2u(x) yield the desired matrices in the statement, from which

we easily see that all entries of A(x) and B(x) are lying in O[[x − 2]].
Next, let us show that ρu is a deformation of ρ over O[[x − 2]]. Since ρu is equiv-

alent to the Riley representation r(t,u(x)) over O[[√x − 2]], ρu is indeed a representation.
Since A(2)modmO[[x−2]] = C(1) and B(2)modmO[[x−2]] = D(1, β), we find that ρu mod
mO[[x−2]] = ρ.

Finally, by the universality of (Rρ,ρ), we have a homomorphismψ : Rρ → O[[x− 2]]
in C such that ψ ◦ ρ ≈ ρu. So we have ψ(tr(ρ(a))) = tr(ρu(a)) = x. On the other hand, by
Lemma 4.3.2, we have λ(X) = tr(ρ(a))− 2. Thereforeψ ◦ λ(X) = x − 2 and hence ψ ◦ λ is
an isomorphism O[[X]] � O[[x − 2]]. Since λ is surjective, ψ and λ must be isomorphisms
in C. �

REMARK 4.3.4. (1) By the construction of ρu, if ρ is defined over a subfield k′ of k,
the representation ρu is also defined over a ring O′[[x − 2]], where O′ is a complete discrete
valuation ring with residue field k′. For example, if ρ is defined over a prime field Fp of p
elements, ρu can be defined over Zp[[x − 2]], where Zp is the ring of p-adic integers.

(2) Suppose char(O) = char(k) so that O = k[[h̄]]. Then the representation ρu is
independent of h̄. However, there are deformations of ρ which depend on h̄. For example,
letting ρn(a) := A((1 + h̄)n + (1 + h̄)−n) and ρn(b) := B((1 + h̄)n + (1 + h̄)−n) for n ∈ Z,
we have a family of deformations ρn of ρ̄ over k[[h̄]].
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EXAMPLE 4.3.5. (1) Let K be the trefoil b(3, 1) and assume char(k) �= 2. We then
have β = −1, u(x) = 3−x2 and v(x) = 1√

x2−3
. For example, we can consider ρ = r(1,−1) :

ΠK → SL2(Fp) for an odd prime number p, where Fp ⊂ k. Then ρu can be a representation
into SL2(Zp[[x − 2]]), strictly equivalent to ρ over O[[x − 2]].

(2) Let K be the figure eight b(5, 3) and assume char(k) �= 2, 3. We then have β =
1
2 (1±√−3), u(x) = 1

2 {5−x2 ±
√
(x2 − 1)(x2 − 5)} and v(x)2 = 1

2 {x2 −2± (x2−4)
√
x2−1√

x2−5
}.

For example, we can consider ρ = r(1,β) : ΠK → SL2(Fp(β)) for p �= 2, 3, where Fp(β) ⊂
k. Then ρu can be a representation into SL2(Zp[β][[x − 2]]), strictly equivalent to ρ over
O[[x − 2]].

5. The universal deformation of a holonomy representation. In this section, we
apply our deformation theory to the case whereΠ is the fundamental group of the complement
of a hyperbolic knot in the 3-sphere and ρ is (a lift of) the holonomy representation.

In Subsection 5.1, we recall Thurston’s theorem on deformations of hyperbolic structures
([21]). In Subsection 5.2, we then describe the universal deformation of ρ by using Thurston’s
theorem, and discuss some analogies with p-adic Galois deformations.

In this section, we work over the field k = C of complex numbers.

5.1. Holonomy representation and Thurston’s theorem. Let K be a hyperbolic knot
in the 3-sphere S3 and let ΠK := π1(S

3 \ K) be the knot group. The complement S3 \
K is a complete hyperbolic 3-manifold of finite volume with a cusp, which is given as a
quotient of the hyperbolic 3-space H

3 by a discrete, torsion free subgroup of PSL2(C) =
SL2(C)/{±I } = Aut(H3). To the complete hyperbolic structure on S3 \ K we can associate
a faithful representation ρhol : ΠK → PSL2(C), called the holonomy representation. The
holonomy representation ρhol can be lifted to an SL2(C)-representation, and thus we fix such
a lift

ρhol : ΠK −→ SL2(C) ,

which is known to be irreducible.
Let X (ΠK) be the SL2(C)-character variety of ΠK as defined in Subsection 3.1 and

let X (ΠK)hol be the irreducible component of X (ΠK) containing [ρhol]. We choose any
meridian μ of the knot K and consider the map τμ : X(ΠK)hol → C defined by τμ([ρ]) =
tr(ρ)(μ). Then Thurston has proved the following

THEOREM 5.1.1 ([21]). The map τμ is bianalytic in a neighborhood of [ρhol].
Therem 5.1.1 implies that X (ΠK)hol is a complex algebraic curve and τμ gives a local

parameter around the smooth point [ρhol]. Hence we have the following

COROLLARY 5.1.2. We have the following isomorphism of C-algebras

C[X (ΠK)]∧[ρhol] � C[[z]] ,
where z is a variable corresponding to τμ − τμ(ρhol) = τμ − 2.
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5.2. The universal deformation of the holonomy representation. Let

ρhol : ΠK −→ SL2(Rρhol)

be the universal deformation of ρhol in Theorem 2.2.2, where the universal deformation ring
Rρhol is a complete local algebra over O = C[[h̄]]. We assume that the universal SL2-
character algebra B(ΠK) is reduced so that B(ΠK) = k[X (ΠK)]. Then, by Theorem 3.2.1
and Corollary 5.1.2, we have the following

THEOREM 5.2.1. Under the above assumption, we have the following isomorphism of
O-algebras

Rρhol � O[[z]] .
REMARK 5.2.2. The analogy between the structures of X (ΠK)hol and the deformation

space of nearly ordinaryp-adic Galois representations was firstly pointed out by Kazuhiro Fu-
jiwara (cf. [11, Chapter 14]). Theorem 5.2.1 may make this analogy more precise as follows:
Let D be the irreducible component of the deformation space of hyperbolic structures on
S3 \K containing the complete hyperbolic structure, say z◦ . By Thurston’s theory on hyper-
bolic Dehn filling ([21]), a neighborhood of z◦ in D is homeomorphic to a neighborhood of
[ρhol] in X(ΠK)

hol, associating to an (incomplete) hyperbolic structure the holonomy repre-
sentation. So Theorem 5.2.1 gives the isomorphism between the universal deformation ring
Rρhol and the complete local ring of D at z◦, where the parameter z in Theorem 5.2.1 may also
be considered as hyperbolic structure (Dehn filling coefficient). Noting that the restriction of
ρ to the peripheral group of K (the fundamental group of the boundary of a tubular neigh-
borhood of K) is equivalent to an uppertriangular representation, this isomorphism is quite
analogous to the isomorphism between the universal deformation ring for p-adic ordinary
Galois representatios and the p-adic ordinary Hecke algebra, which implies that any p-adic
ordinary deformation of a given modular Galois representation over Fp is associated to a p-
adic ordinary modular form (cf. [5]). Here we may observe that hyperbolic structures (Dehn
filling coefficients) correspond to p-adic ordinary modular forms (p-adic weights). See also
Ohtani’s article [14] for a related analogy.
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