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Abstract. We use the solution space of a pair of ODEs of at least second order to
construct a smooth surface in Euclidean space. We describe when this surface is a proper
embedding which is geodesically complete with finite total Gauss curvature. If the associated
roots of the ODEs are real and distinct, we give a universal upper bound for the total Gauss
curvature of the surface which depends only on the orders of the ODEs and we show that the
total Gauss curvature of the surface vanishes if the ODEs are second order. We examine when
the surfaces are asymptotically minimal.

1. Introduction.
1.1. Historical context. Let Σ be a finitely connected non-compact geodesically

complete Riemann surface. If the Gauss curvature K is integrable with respect to the Rie-
mannian element of volume, dvol, then the total Gauss curvature is given by K[Σ] :=∫
Σ
K dvol. The total Gauss curvature plays an important role in many settings – and the

role is subtly different in each application. Cohn-Vossen [7, 8] showed that

(1.a) K[Σ] ≤ 2πχ(Σ) .

Subsequently, Huber [12] reproved this result and showed additionally that if the total volume
ofΣ was finite, then equality holds. We also refer to a more recent derivation of Equation (1.a)
by Bleecker [1] of using work of Chern. Higher dimensional analogues have been studied –
see, for example, Dillen and Kühnel [9].

Mafra [20] examined the question of whether a holomorphic curve in C
2 with finite total

Gauss curvature is contained in an algebraic curve. Shioya [25] showed that if K[Σ] < 2π ,
then any maximal geodesic outside a sufficiently large compact set in Σ forms almost the
same shape as that of a maximal geodesic in a flat cone. Shioya [26] subsequently considered
the case where K[Σ] = 2π (see also related work in Shiohama et al. [22, 23, 24]). Carron
et al. [3] showed the existence of geometrically bound states if K[Σ] < ∞ and Σ is not
homeomorphic to the plane. Li et al. [17] examined conformal maps of the 2-disk into R

n

under the condition that the total Gauss curvature was at most 2π .

2010 Mathematics Subject Classification. Primary 53A05; Secondary 53C21.
Key words and phrases. Geodesically complete surface, finite total Gauss curvature, Gauss–Bonnet theorem,

asymptotically minimal, constant coefficient ordinary differential equation.



2 P. GILKEY, C.Y. KIM AND J.H. PARK

The total Gauss curvature is central to the study of minimal surfaces. If the surface is
minimal, Chern and Osserman [5] improved Equation (1.a) to become

K[Σ] ≤ 2π(χ(Σ)− e)

where e denotes the number of ends. We refer to subsequent work of Jorge and Meeks [14],
and Kobuku et al. [15] (among others). We also refer to the discussion in Chen and Cheng
[4] or Seo [21] where the ambient space is Hn, to Esteve and Palmer [10] where the ambient
manifold is a Cartan–Hadamard manifold, and to Ma [18] and Ma, Wang, and Wang [19]
where the ambient space is Lorentzian.

Integrals of the Gauss curvature are not only important in the 2-dimensional setting. For
example, Willerton [28] used the total Gauss curvature to examine the leading terms in the
magnitude of an arbitrary homogeneous Riemannian manifold. Hwang et al. [13] used the
total Gauss curvature to study the eigenvalues of the Laplacian. The total Gauss curvature
plays an important role in Ricci flow. Li [16] showed the lowest eigenvalue in a family of
geometric operators was monotonic under the normalized Ricci flow if the initial manifold had
nonpositive total Gauss curvature. Chow et al. [6] gave a necessary and sufficient condition
for the asymptotic volume ratio to be positive that involved the average Gauss curvature.
That total Gauss curvature has also been studied for connections other than the Levi–Civita
connection, see, for example, the discussion in Stephanov et al. [27].

1.2. Outline of the paper. In this paper, we shall discuss a family of non-compact
real analytic isometric embeddings Σ of the plane in Euclidean space R

n which arise as the
solution space to a pair of ODE’s. The condition thatΣ is real analytic is, of course, important
as otherwise one could simple take a flat plane and put a small bump in it; this would, of course
produceK[Σ] = 0 and for many of our examples,K[Σ] is strictly negative.

We shall assume that all the roots of the associated characteristic polynomials are simple
to avoid notational complexities with the multiplicities; the second author is investigating
what happens when the roots have higher multiplicities in his thesis. We shall also assume
that the real roots of the associated characteristic polynomials are dominant, i.e. control the
asymptotic behavior of the embedding at infinity. Under these conditions, we will show in
Theorem 1.7 that the surface Σ is properly embedded, is geodesically complete, and has
infinite volume. We will also show in Theorem 1.8 that the Gauss curvatureK ∈ L1(Σ, dvol)
and hence the total Gauss curvature K[Σ] is well defined. In Example 8.2, we show that
|K|[Σ] can be infinite if the real roots are not dominant.

In Theorem 1.11, we use the Gauss–Bonnet theorem to express K[Σ] in terms of inte-
grals along the coordinate curves. The case where the two ODE’s are second order is particu-
larly tractable; we will use Theorem 1.11 to prove Theorem 1.12 which shows thatK[Σ] = 0
if n1 = n2 = 2. In Example 8.5, we show K[Σ] can be negative if n1 = n2 = 3 so this result
is non-trivial. If all the roots of the associated ODE’s are real, we will show in Theorem 1.13
that there is a uniform upper bound for |K|[Σ] which depends only on the dimension; again,
this uses Theorem 1.11. In Example 8.6, we will provide a family of examplesΣk where this
condition fails and where limk→∞K[Σk] = −∞. If all the roots are real and if there are at
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least two positive and at least two negative roots for each ODE, we show in Theorem 1.15
that the mean curvature vector H goes to zero at infinity and that H ∈ L3(Σ, dvol) so Σ
is asymptotically minimal; in Example 8.7 we show the condition that there are at least two
roots of each sign is essential in this regard and in Example 8.8 we show that p = 3 is optimal
if a uniform estimate is required.

The present paper grew out of the study of curves of finite total first curvature given by an
ODE with two other authors [11]. We begin by reviewing these results for the convenience of
the reader as many of our subsequent theorems depend on these results. The rest of the intro-
duction is then a careful statement of the main results of the paper. Section 2 is an introduction
to the geometry of surfaces embedded in R

n and expresses the relevant geometric quantities
we shall need in terms of the exterior algebra as this is a convenient formalism for our pur-
poses. In Section 3, we demonstrate Theorem 1.7, in Section 4 we establish Theorem 1.8,
in Section 5 we derive Theorem 1.11, and in Section 6 we use the Gauss–Bonnet theorem to
prove Theorem 1.12; this expressK[Σ] in terms of the curves defined by the two ODE’s and
plays a central role in the proof of Theorem 1.13 which gives a uniform estimate for K[Σ].
In Section 7, we examine the norm of the mean curvature vector and prove Theorem 1.15.
We conclude the paper in Section 8 by presenting some Mathematica calculations using a
Mathematica program constructed by M. Brozos-Vazquez [2] to discuss various illustrative
examples.

1.3. Curvature. If �u, �v ∈ R
n, let (�u, �v) := u1v1 + · · · + unvn and ||�u||2 := (�u, �u).

We extend (·, ·) to an inner product on tensors on all types and, in particular, to the exterior
algebra on Rn. If σ : R → Rn is an immersed curve, then the element of arc length ds = dsσ ,
the first curvature κ = κσ , and the total first curvature κ[σ ] are defined, respectively, by:

ds := ||σ̇ (t)||dt, κσ (t) := ||σ̇ (t) ∧ σ̈ (t)||
||σ̇ (t)||3 ,

κ[σ ] :=
∫

σ

κds =
∫ ∞

−∞
||σ̇ (t) ∧ σ̈ (t)||

||σ̇ (t)||2 dt .

IfΣ is an immersed surface in Rn, let dvol be the Riemannian measure and letK be the Gauss
curvature. If |K| is in L1(M, dvol), let K[Σ] := ∫

Σ
K dvol.

1.4. Curves defined by ODEs. We review briefly some previous results that we shall
need and refer to the discussion in [11] for further details. If φ = φ(t) is a smooth real valued
function, let φ(i) be the i th derivative. Let

P(φ) := φ(n) + cn−1φ
(n−1) + · · · + c0φ

be a real constant coefficient ordinary differential operator of order n ≥ 2. Let S = S(P )
be the solution space of P , let P = P(P ) be the characteristic polynomial of P , and let
R = R(P ) be the roots of P :

S := {φ ∈ C∞(R) : P(φ) = 0} , P(λ) := λn + cn−1λ
n−1 + · · · + c0 ,

R := {λ ∈ C : P(λ) = 0} .
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Enumerate the roots in the form R = {s1, . . . , sk, z1, . . . , zu, z̄1, . . . , z̄u} where the {si} are
the distinct real roots of P for 1 ≤ i ≤ k and where the {zj = aj + bj

√−1} are the distinct
complex roots of P for 1 ≤ j ≤ u where bj > 0. We order the real roots so s1 > · · · > sk

and the complex roots so a1 ≥ a2 ≥ · · · . If there are no real roots, we set k = 0; if there are
no complex roots, we set u = 0.

DEFINITION 1.1. Let 
(·) be the real part of a complex number. We shall say that
a root λ ∈ R is dominant if 
(λ) > 
(μ) for all μ ∈ R − {λ} and if 
(λ) > 0 or if

(λ) < 
(μ) for all μ ∈ R − {λ} and if 
(λ) < 0; note that a dominant root is necessarily
real and is either s1 or sk . One has that s1 is dominant if s1 > 0 and if s1 > a1 and similarly
that sk is dominant if 0 > sk and if au > sk . If s1 is dominant and if λ ∈ R − {s1} satisfies

(λ) ≥ 
(μ) for all μ ∈ R−{s1}, then we say λ is sub-dominant. Similarly if sk is dominant
and if λ ∈ R−{sk} satisfies 
(λ) ≤ 
(μ) for allμ ∈ R−{sk}, then we say λ is sub-dominant.

If all the roots are simple (i.e. have multiplicity 1 so n = k + 2u), then the canonical
basis for the solution space S consists of the functions:

(1.b) {esi t , eaj t cos(bj t), eaj t sin(bj t)} for 1 ≤ i ≤ k and 1 ≤ j ≤ u .

The functions {esi t } do not appear, of course, if there are no real roots and, similarly, the
functions {eaj t cos(bj t), eaj t sin(bj t)} do not appear if there are no complex roots. More
generally, if si is a real root of multiplicity ν ≥ 2, then we must replace the single function
esi t in Equation (1.b) by the ν functions

{esit , tesi t , . . . , tν−1esit }
while if zj is a complex root of multiplicity ν ≥ 2, then we must replace the pair of functions
{eaj t cos(bj t), eaj t cos(bj t)} in Equation (1.b) by the 2ν functions:

{eaj t cos(bj t), teaj t cos(bj t), . . . , tν−1eaj t cos(bj t) ,

eaj t sin(bj t), teaj t sin(bj t), . . . , tν−1eaj t sin(bj t)} .
Let {φ1, . . . , φn} be an enumeration of the canonical basis for S described above. We define
the associated curve σ = σP by setting:

σ(t) := (φ1(t), . . . , φn(t)) : R → R
n .

If {s1, sk} are dominant roots, then these roots control the behavior of ‖σ‖ at infinity, i.e.:

lim
t→∞ e

−s1t‖σ‖ = 1 , and lim
t→−∞ e

−skt‖σ‖ = 1 .

We refer to [11] for the proof of the following result:

THEOREM 1.2. If all the roots of P are simple and if {s1, sk} are dominant roots, then
σ is a proper embedding of R in Rn of infinite length with κ[σ ] < ∞.

REMARK 1.3. In Example 8.1 we will see that κ[σ ] can be infinite if there exists a
complex root λ ∈ R with 
(λ) maximal or minimal.
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We have taken the standard inner product on Rn to define the element of arc length ds
and the geodesic curvature κ . The precise inner product is irrelevant; Theorem 1.2 continues
to hold for an arbitrary positive definite inner product on Rn. Equivalently, this shows that it
is not necessary to choose the standard basis for S in defining σ ; any basis will do. Conse-
quently, Theorem 1.2 is really a result about the solution space S. If a1 ≥ s1 or sk ≥ au, then
the dominant exponential involves sin and cos. This implies that the total first curvature is
infinite. There are analogous results when multiple roots are permitted; as they are a bit more
complicated to state, we shall refer to [11] for details.

If all the roots of P are real and simple, then the associated curve is of the form

σ(t) = σs1,...,sn(t) := (es1t , . . . , esnt ) where s1 > · · · > sn .
There is a uniform estimate for the total first curvature [11] of such a curve:

THEOREM 1.4. κ[σs1,...,sn] ≤ 2(n− 1)n.

REMARK 1.5. Let σk(t) := (et , cos(kt), sin(kt), e−t ) so Rk = {±1,±√−1}. In Ex-
ample 8.4, we will show that limk→∞ κ[σk] = ∞ so the assumption all the roots are real is
essential to establish a uniform upper bound.

1.5. Surfaces defined by a pair of ODEs. We establish some basic notational con-
ventions for the remainder of the paper. Let n1 (resp. n2) be the order, let R1 (resp. R2) be
the roots, and let σ1 (resp. σ2) be the curve defined by the ODE P1 (resp. P2). We assume
that all the roots are simple and express:

R1 = {r1, . . . , rk, a1 ± b1
√−1, . . . , ap ± bp

√−1} ,
R2 = {s1, . . . , s
, c1 ± d1

√−1, . . . , cq ± dq
√−1} ,

σ1(t1) := (er1t1, . . . , erkt1, ea1t1 cos(b1t1), e
a1t1 sin(b1t1), . . . ) ,

σ2(t2) := (es1t2, . . . , es
t2, ec1t2 cos(d1t2), e
c1t2 sin(d1t2), . . . ) .

Let n = n1n2 and let Σ : R2 → Rn be defined by:

Σ(t1, t2) := σ1(t1)⊗ σ2(t2) .

If {φ1,1, . . . , φn1,1} (resp. {φ1,2, . . . , φn2,2}) is the standard basis for the solution space of
P1 (resp. P2), then the coordinates of Σ are the collection of functions {φi,1(t1)φj,2(t2)} for
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

DEFINITION 1.6. Let P1 and P2 be real ODEs with simple roots. We say that the real
roots are dominant if {r1, rk} are dominant roots for P1 and {s1, s
} are dominant roots for P2.

We shall establish the following generalization of Theorem 1.2 in Section 2.

THEOREM 1.7. If all the roots of P1 and of P2 are simple and if the real roots are
dominant roots, then Σ is a proper embedding of R2 in Rn which is geodesically complete
and which has infinite volume.

We shall establish the following result in Section 4:
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THEOREM 1.8. If all the roots of P1 and of P2 are simple and if the real roots are
dominant, then there exist ε = ε(Σ) > 0 and C = C(Σ) > 0 so

(1) |K(t1, t2)| ≤ Ce−ε‖(t1,t2)‖.
(2) g|K(t1, t2)| ≤ Ce−ε‖(t1,t2)‖.
(3) |K|[Σ] < ∞.

REMARK 1.9. We will show in Example 8.2 that this can fail if the real roots are not
dominant.

DEFINITION 1.10. Let σ be an immersed curve in Rn − {0} so that σ ∧ σ̇ = 0; this is
the case if σ is defined by a constant coefficient ODE of course. We define:

Θσ (t) := (σ̇ (t) ∧ σ(t), σ̇ (t) ∧ σ̈ (t))
‖σ̇ (t) ∧ σ(t)‖ · ‖σ̇ (t)‖3 .

If Θds is integrable, we set

Θ[σ ] :=
∫ ∞

−∞
Θ(σ)ds =

∫ ∞

−∞
(σ̇ (t) ∧ σ(t), σ̇ (t) ∧ σ̈ (t))
‖σ̇ (t) ∧ σ(t)‖ · ‖σ̇ (t)‖2

dt .

We use the Cauchy–Schwarz inequality to see

(1.c) |Θσ (t)| ≤ κσ (t) so |Θ|[σ ] ≤ κ[σ ] .
Consequently, if all the roots of P are simple and if the real roots are dominant, thenΘ[σ ] :=∫
σ
Θds is well defined. For example, if σ(t) = eate1 + ebte2 is a curve in R2 for a > 0 > b,

then

Θ(σ)ds = e(2a+2b)t
(
(ae1 + be2) ∧ (e1 + e2), (ae1 + be2) ∧ (a2e1 + b2e2)

)

e(a+b)t‖(ae1 + be2) ∧ (e1 + e2)‖ · {a2e2at + b2e2bt} dt

= e(a+b)t
(
(a − b)e1 ∧ e2, (ab

2 − a2b)e1 ∧ e2
)

‖(a − b)e1 ∧ e2‖ · {a2e2at + b2e2bt} dt(1.d)

= (a − b)ab(b− a)

|a − b|
e(a+b)t

a2e2at + b2e2bt
dt .

Since a > 0 > b, the coefficient is |(a − b)ab| > 0 and Θ[σ ] = κ[σ ] > 0.
If P1 and P2 are admissible, then |K|[Σ] is finite and we set K[Σ] := ∫

Σ
K dvol. We

will use the Gauss–Bonnet theorem to establish the following result in Section 5:

THEOREM 1.11. If all the roots of P1 and of P2 are simple and if the real roots are
dominant, then 0 = K[Σ] − 2Θ[σ1] − 2Θ[σ2] + 2π .

The 4-dimensional setting is particularly tractable. We will establish the following result
in Section 6:

THEOREM 1.12. If all the roots of P1 and of P2 are simple, if the real roots are dom-
inant, and if n1 = n2 = 2, then K[Σ] = 0.
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NOTE. In Example 8.3, we will present an example where n1 = n2 = 2 and where
|K|[Σ] = 0 so this result is non-trivial.

Although Theorem 1.8 shows K[Σ] is well defined, it does not provide a useful upper
bound for the total Gauss curvature of Σ . Suppose the roots of P1 and P2 are real, simple,
and dominant. This means that

(1.e)
σ1(t1) = (er1t1, . . . , erkt1) for r1 > 0 > rk ,

σ2(t2) = (es1t2, . . . , es
t2) for s1 > 0 > s
 .

In this setting, we combine Theorem 1.4, Equation (1.c), and Theorem 1.11 to obtain:

THEOREM 1.13. If the roots of P1 and P2 are real and simple, and if the real roots
are dominant, then |K|[Σ] ≤ 2π + 4n1(n1 − 1)+ 4n2(n2 − 1) .

REMARK 1.14. We will show in Example 8.5 that this result is non-trivial;K[Σ] does
not vanish identically if n1 > 2 and n2 > 2. Furthermore, we will give a family of surfaces
Σk in R8 where one of the sub-dominant roots is complex where limk→∞K[Σk] = −∞ so
there is no universal bound in this setting.

Let Lij be the second fundamental form; this is vector valued and takes values in TΣ⊥
(see Section 2 for details). The unnormalized mean curvature vectorH is given by:

H = g ijLij ∈ TΣ⊥ .

We omit the normalizing factor of 1
n

as it plays no role. The surface is minimal if and only if
H = 0. In Section 7 we will show the surface is asymptotically minimal if there are at least
two positive and at least two negative roots for each ODE:

THEOREM 1.15. Assume that the roots of P1 and P2 are real and simple, and that the
real roots are dominant. Assume that r1 > r2 > 0 > rk−1 > rk and that s1 > s2 > 0 >
s
−1 > s
.

(1) There exists ε = ε(Σ) > 0 and C = C(Σ) > 0 so ‖H‖ ≤ Ce−ε‖(t1,t2)‖.
(2) H ∈ L3(Σ, dvol).

REMARK 1.16. In Example 8.7, we will show H need not be bounded if 0 > r2 and
0 > s2. Fix p < 3. In Example 8.8, we will exhibit a surface Σp satisfying the hypotheses
of Theorem 1.15 whereH does not belong to Lp. This shows that p = 3 is the best universal
estimate.

Throughout this paper, we will let C = C(Σ) denote a generic positive constant that can
depend on Σ but not on (t1, t2).

2. The geometry of surfaces embedded in Rn. LetΣ(t1, t2) be an immersed surface
in Rn. The components gij of the Riemannian metric and the Riemannian measure dvol onΣ
are defined by setting:

gij := (∂tiΣ, ∂tj Σ) and dvol := gdt1dt2 where g := √
g11g22 − g12g12 .
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Let ∇ be the Levi–Civita connection ofΣ . If πΣ denotes orthogonal projection on the tangent
space ofΣ and if X and Y are tangent vector fields alongΣ , then:

∇XY = πΣ {XY(Σ)} .
The curvature tensor is given by R(X, Y )Z := (∇X∇Y − ∇Y∇X − ∇[X,Y ])Z. The second
fundamental form L(X, Y ) is defined to be:

(2.a) L(X, Y ) = (1 − πΣ){XY(Σ)} .
The second fundamental form is vector valued and takes values in TΣ⊥. Let {X,Y } be lin-
early independent tangent vector fields along Σ . The Gauss curvatureK is given by:

K := (R(X, Y )Y,X)g−2 .

One has the Theorema Egregium of Gauss:

(2.b) K = {(L(X,X),L(Y, Y )) − (L(X, Y ), L(X, Y ))}g−2 .

If σ is a curve in Σ and if ν is a unit normal to σ̇ in Σ , the geodesic curvature is:

κg (σ ) := (∇σ̇ σ̇ , ν)‖σ̇‖−2 .

This vanishes if and only if σ is a geodesic and changes sign if we change the sign of the
normal.

We now introduce a convenient formalism to discuss various geometric quantities in
terms of wedge products. Although the formulas are well-known, we shall give the proofs to
establish notation. Fix a point (a, b) of Σ . Let γ1(t1) := Σ(t1, b) and γ2(t2) := Σ(a, t2) be
the coordinate curves through (a, b). Let

Σ/i := ∂tiΣ , Σ/ij := ∂ti ∂tj Σ , L̃ij := Σ/1 ∧Σ/2 ∧Σ/ij .
LEMMA 2.1. Let {e1, e2} be an orthonormal frame for TΣ so Σ/1 ∧Σ/2 is a positive

multiple of e1 ∧ e2. Choose the normal to γ1 in Σ which points in the direction ofΣ/2.

(1) g = ||Σ/1 ∧Σ/2||.
(2) κg(γ1) = (Σ/1 ∧Σ/2,Σ/1 ∧Σ/11) · g−1‖Σ/1‖−3.
(3) Σ/1 ∧Σ/2 ∧Σ/ij = ge1 ∧ e2 ∧ Lij .
(4) K = g−4{(L̃11, L̃22)− (L̃12, L̃12)}.
PROOF. Fix a point P ∈ Σ and let {e1, e2} be an orthonormal basis for TPΣ . Complete

{e1, e2} to an orthonormal basis {e1, . . . , en} for Rn. We may assume the basis chosen so that
Σ/1 = a1e1 and Σ/2 = b1e1 + b2e2 where b2 > 0. Then

Σ/1 ∧Σ/2 = a1b2e1 ∧ e2 and ||Σ/1 ∧Σ/2||2 = a2
1b

2
2 .

We show that g = ‖Σ/1 ∧Σ/2‖ and establish Assertion 1 by computing:

g11 = a2
1 , g22 = b2

1 + b2
2 , g12 = a1b1 ,

g2 = g11g22 − g2
12 = a2

1(b
2
1 + b2

2)− a2
1b

2
1 = a2

1b
2
2 .
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With our normalizations, e2 is the normal to γ̇1 in Σ which points in the direction of Σ/2.
Further normalize the orthonormal frame so that Σ/11 = c1e1 + c2e2 + c3e3. We prove
Assertion 2 by computing:

Σ/1 ∧Σ/2 = a1b2e1 ∧ e2 = ge1 ∧ e2 ,

Σ/1 ∧Σ/11 = a1c2e1 ∧ e2 + a1c3e1 ∧ e3 ,

(Σ/1 ∧Σ/2,Σ/1 ∧Σ/11) = a1c2g ,

κg (γ1) = c2a
−2
1 = (Σ/1 ∧Σ/2,Σ/1 ∧Σ/11)a

−3
1 g−1 .

The second fundamental formLij of Equation (2.a) is the projection ofΣ/ij on TΣ⊥. Expand

Σ/ij = Γij
1e1 + Γij

2e2 + Lij
3e3 + · · · + Lij

nen

where theΓij k are the Christoffel symbols of the Levi–Civita connection and where the second
fundamental form is given by Lij = Lij

3e3 + · · · + Lij
nen. By Assertion 1, Σ/1 ∧ Σ/2 =

ge1 ∧ e2. We derive Assertion 3 and Assertion 4 from Equation (2.b) and complete the proof
by computing:

L̃ij = ge1 ∧ e2 ∧
n∑

ν=1

Lij
νeν = g

n∑

ν=3

Lij
νe1 ∧ e2 ∧ eν ,

(L̃ij , L̃kl) = g2
n∑

ν=3

Lij
νLkl

ν = g2(Lij , Lkl) ,

K = g−2{(L11, L22)− (L12, L12)} = g−4{(L̃11, L̃22)− (L̃12, L̃12)} .
�

3. The proof of Theorem 1.7. Assume that all the roots of P1 and of P2 are simple
and that the real roots are dominant. We adopt the notation of Section 1.5 throughout. We
shall concentrate on the first quadrant t1 ≥ 0 and t2 ≥ 0 for the most part as the remaining
quadrants can be handled similarly by reparametrizingΣ to set t̃i = ±ti as necessary. Set

(3.a) ε1 = ε1(Σ) = min{r1, s1,−rk,−s
} > 0 .

Choose α1 ∈ R1 − {r1} so a1 := 
(α1) is maximal. Similarly, choose β1 ∈ R2 − {s1} so
c1 := 
(β1) is maximal; both α1 and β1 are sub-dominant. Let

(3.b) G(t1, t2) := e2r1t1+(s1+c1)t2 + e(r1+a1)t1+2s1t2 .

The following estimates are fundamental:

LEMMA 3.1. Assume that all the roots of P1 and of P2 are simple and that the real
roots are dominant. There exist Ci = Ci(Σ) > 0 so that:

(1) If t1 ≥ 0 and t2 ≥ 0, then C1G(t1, t2) ≤ g(t1, t2) ≤ C2G(t1, t2).
(2) For any (t1, t2) ∈ R2, ‖Σ(t1, t2)‖ ≥ ε1‖(t1, t2)‖.
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PROOF. Assertion 1 will show that g and G grow at approximately the same rate on
the first quadrant. We begin the proof of Assertion 1 by estimating g from below. Suppose
first that β1 = c1 is real. We consider two of the coordinate functions which define Σ ,
{ψ1(t1, t2) := er1t1es1t2, ψ2(t1, t2) := er1t1ec1t2}. We use Lemma 2.1 to estimate:

g = ‖Σ/1 ∧Σ/2‖ ≥ ∣
∣∂t1ψ1 · ∂t2ψ2 − ∂t1ψ2 · ∂t2ψ1

∣
∣

= r1(s1 − c1)e
2r1t1+(s1+c1)t2 .

If, on the other hand, β1 = c1 + d1
√−1 for d1 = 0, then we consider the three coordinate

functions:

ψ1(t1, t2) := er1t1+s1t2 , ψ2(t1, t2) := er1t1+c1t2 cos(d1t2) ,

ψ3(t1, t2) := er1t1+c1t2 sin(d1t2)

and estimate similarly

g ≥
∑

1≤i<j≤3

{
(∂t1ψi · ∂t2ψj − ∂t1ψj · ∂t2ψi)2

}1/2

≥ r1(s1 − c1)e
2r1t1+(s1+c1)t2 .

We have shown g ≥ Ce2r1t1+(s1+c1)t2 for some C. By reducing C if necessary, we have
similarly that g ≥ Ce(r1+a1)t1+2s1t2 . We average these two estimates to establish the lower
bound of Assertion 1 by showing:

g ≥ 1
2CG(t1, t2) .

To establish the upper estimate of Assertion 1, we shall assume, for the sake of simplicity,
that all the roots are real as that is the case in which we shall use it; the general case can be dealt
with using the arguments above. The coordinate functions of Σ take the form φij (t1, t2) =
eri t1+sj t2 . Then

g2 = ‖Σ/1 ∧Σ/2‖2 = 1
2

∑
(i,j) =(a,b){∂t1φij ∂t2φab − ∂t1φab∂t2φij }2

= 1
2

∑
(i,j) =(a,b) e2(ri+ra)t1+2(sj+sb)t2(risb − rasj )

2 .

If i = a, then j = b. Choose the notation so 1 ≤ j < b. We then have that 2ri + 2ra ≤ 4r1
and 2sj + 2sb ≤ 2s1 + 2s2. Thus we may bound

(3.c) {∂t1φij ∂t2φab − ∂t1φab∂t2φij }2 ≤ Ce4r1t1+(2s1+2s2)t2 .

On the other hand, if i = a, choose the notation so that 1 ≤ i < a. We then have 2ri + 2ra ≤
2r1 + 2r2 and 2sj + 2sb ≤ 4s1. The upper bound of Assertion 1 then follows Equation (3.c)
and from the estimate:

{∂t1φij ∂t2φab − ∂t1φab∂t2φij }2 ≤ Ce(2r1+2r2)t1+4s1t2 .

Suppose t1 ≥ 0 and t2 ≥ 0. Since r1 > 0 and s1 > 0, we may estimate

‖Σ(t1, t2)‖2 ≥ e2r1t1+2s1t2 ≥ 1
2 (2r1t1 + 2s1t2)2

≥ 2r2
1 t

2
1 + 2s2

1 t
2
2 ≥ ε2

1‖(t1, t2)‖2 .



PROPER SURFACES 11

Assertion 2 then follows for t1 ≥ 0 and t2 ≥ 0. We set t̃i = ±ti as appropriate to reparametrize
Σ and establish Assertion 2 in the remaining quadrants. �

By Lemma 3.1, g > 0. This implies Σ is an immersion. We show that Σ has infinite
volume by estimating

vol(Σ)=
∫ ∞

−∞

∫ ∞

−∞
g(t1, t2)dt1dt2

≥
∫ ∞

−∞

∫ ∞

−∞
r1(s1 − c1)e

2r1t1+(s1+c1)t2dt1dt2 = ∞ .

Let C be a compact subset of Rn. Since Σ is continuous and C is closed, Σ−1(C) is closed.
Since C is compact, C is bounded so we can find R so that ‖C‖ ≤ R. Thus if (t1, t2) ∈
Σ−1(C), then ε1‖(t1, t2)‖ ≤ ‖Σ(t1, t2)‖ ≤ R. This shows that Σ−1(C) is bounded and
hence, being closed, is compact. Since the inverse image of a compact set is compact, Σ is a
proper map.

Let σ(u) = Σ(t1(u), t2(u)) be a unit speed geodesic in Σ . Then ‖σ̇‖ = 1 and σ̈ (u) ⊥
Tσ(u)Σ . Choose a maximal domain [0, u0) for σ . Suppose u0 < ∞. As σ is a unit speed
curve in Rn,

‖σ(0)− σ(u)‖ ≤ u0 so ‖σ(u)‖ ≤ ‖σ(0)‖ + u0

for u < u0. We use Lemma 3.1 to see that

ε1‖(t1(u), t2(u))‖ ≤ ‖σ(u)‖ ≤ u0 + ‖σ(0)‖ .
Since (t1(u), t2(u)) is uniformly bounded, we may choose a sequence of values un which
converge to u0 so that {t1(un)} and {t2(un)} are convergent sequences, i.e. so that for some
(t01 , t

0
2 ) we have that:

lim
n→∞(t1(un), t2(un)) = (t01 , t

0
2 ) .

Since Σ is continuous, this implies limn→∞ σ(un) exists and belongs toΣ . This implies that
σ can be extended smoothly beyond the limiting value of u0; this contradiction shows Σ is
geodesically complete.

Let Ψ1(t1, t2) := er1t1+s1t2 and Ψ2(t1, t2) := erkt1+s1t2 be two of the coordinate functions
of Σ . Suppose that Σ(t1, t2) = Σ(t̃1, t̃2). Then Ψ1(t1, t2) = Ψ1(t̃1, t̃2) and Ψ2(t1, t2) =
Ψ2(t̃1, t̃2). Consequently:

e(r1−rk)t1 = Ψ1(t1, t2)Ψ2(t1, t2)
−1 = Ψ1(t̃1, t̃2)Ψ2(t̃1, t̃2)

−1 = e(r1−rk)t̃1 .

Since r1 − rk > 0, we conclude t1 = t̃1. A similar argument shows t2 = t̃2 so Σ is 1-1. This
completes the proof of Theorem 1.7. �

REMARK 3.2. It is possible to prove Theorem 1.7 under somewhat weaker assump-
tions. If we assume there exist roots λ1, λ2 ∈ R1 and λ3, λ4 ∈ R2 so that 
(λ1) > 0 > 
(λ2)

and 
(λ3) > 0 > 
(λ4), then Theorem 1.7 continues to hold. We omit details in the interests
of brevity.
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4. The proof of Theorem 1.8. We now examine the Gauss curvatureK . We suppose
t1 ≥ 0 and t2 ≥ 0 as the remaing 3 quadrants can be handled similarly. We begin with the
following estimate:

LEMMA 4.1. There exists a constant C = C(Σ) so that if t1 ≥ 0 and t2 ≥ 0 then:

(1) (L̃11, L̃22) ≤ Ce(4r1+2a1)t1+(4s1+2c1)t2 .
(2) (L̃12, L̃12) ≤ Ce(4r1+2a1)t1+(4s1+2c1)t2 .

PROOF. Expand

σ1(t1) =
n1−1∑

i=0

φi(t1)ei and σ2(t2) =
n2−1∑

j=0

ψj(t2)fj .

We assume φ0(t1) = er1t1 andψ0(t2) = es1t2 . We also assume that φi(t1) andψj (t2) for i ≥ 1
and j ≥ 1 have one of the following 3 forms:

φi(t1) = eai t1 , or φi(t1) = eait1 cos(bit1) , or φi(t1) = eai t1 sin(bit1) , and

ψj(t2) = ecj t2 , or ψj (t2) = ecj t2 cos(dj t2) , or ψj (t2) = ecj t2 sin(dj t2) .

We order the roots so r1 = a0 > a1 ≥ a2 ≥ · · · and s1 = c0 > c1 ≥ c2 ≥ · · · ; thus the
remaining exponentials grow less rapidly. Exponential growth of the form

e(ai1+ai2+ai3 )t1+(cj1 +cj2 +cj3 )t2

in Σ/1 ∧Σ/2 ∧Σ/ij arises from terms of the form

(em1 ⊗ fk1) ∧ (em2 ⊗ fk2) ∧ (em3 ⊗ fk3)

where {i1, i2, i3} is a permutation of {m1,m2,m3} and {j1, j2, j3} is a permutation of
{k1, k2, k3}. Possible terms of maximal growth can be enumerated as follows:

Type 1. Terms involving e3r1t1 . This corresponds to i1 = i2 = i3 = 0 and hence
{k1, k2, k3} are distinct. Thus these grow at most like e(s1+2c1)t2 in t2.

Type 2. Terms involving e3s1t2 . This corresponds to j1 = j2 = j3 = 0 and hence
{m1,m2,m3} are distinct. Thus these grow at most like e(r1+2a1)t1 in t1.

Type 3. Terms involving at least 2 different exponentials in t1 and at least 2 different
exponentials in t2. Here at least one of the {i1, i2, i3} involves an index which is not 0 and at
least one of the {j1, j2, j3} involves an index which is not 0. Thus those grow at most like
e(2r1+a1)t1+(2s1+c1)t2 .

When considering (L̃ij , L̃kl), terms must be paired against like terms. Let

ξM,K := (em1 ⊗ fk1) ∧ (em2 ⊗ fk2) ∧ (em3 ⊗ fk3) .

Then (ξM,K, ξM̃,K̃) = 0 if {m1,m2,m3} is not a permutation of {m̃1, m̃2, m̃3} or if {k1, k2, k3}
is not a permutation of {k̃1, k̃2, k̃3}. Thus terms of Type 1 must be paired against terms of Type
1, of Type 2 against Type 2, and of Type 3 against Type 3. We consider L̃11 = Σ/1 ∧Σ/2 ∧
Σ/11. We have

Σ/1 ∧Σ/11 = ((∂t1σ1 ⊗ σ2) ∧ (∂t1∂t1σ1 ⊗ σ2)) .
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In this expression, σ2 can be treated as a constant vector and essentially ignored for the mo-
ment. Since at least 2 different terms must occur in any non-zero wedge product, there are
no e2r1t1 exponentials appearing. Thus there are no terms of Type 1 in L̃11. Similarly there
are no terms of Type 2 in L̃22. Thus (L̃11, L̃22) contains only terms of Type 3 so Assertion 1
follows. Next, we shall consider L̃12 = Σ/1 ∧Σ/2 ∧Σ/12. We have

Σ/1 ∧Σ/12 = (∂t1σ1 ⊗ σ2) ∧ (∂t1σ1 ⊗ ∂t2σ2) .

In this expression, ∂t1σ1 can be treated as a constant vector and essentially ignored for the
moment. Since at least 2 different terms must occur in any non-zero term, there are no e2s1t2

exponentials appearing. Thus there are no terms of Type 2 to be considered and, similarly no
terms of Type 1 to be considered and Assertion 2 follows. �

We apply Lemma 2.1 and Lemma 4.1 to estimate therefore that:

(4.a)
|K| ≤ Cg−4e(4r1+2a1)t1+(4s1+2c1)t2 ,

g|K| ≤ Cg−3e(4r1+2a1)t1+(4s1+2c1)t2 .

We use Lemma 3.1 to estimate g2 ≥ ε2e(3r1+a1)t1+(3s1+c1)t2 . Raising this to the third and
fourth power yields

(4.b)
g4 ≥ ε4e(6r1+2a1)t1+(6s1+2c1)t2 ,

g3 ≥ ε3e(
9
2 r1+ 3

2 a1)t1+( 9
2 s1+ 3

2 c1)t2 .

Let ε1 be as in Equation (3.a). Choose ε2 = ε2(Σ) > 0 to measure the spectral gap, i.e. so:

r1 − ε2 ≥ 
(λ) ≥ rk + ε2 for all λ ∈ R1 − {r1, rk} ,
s1 − ε2 ≥ 
(μ) ≥ s
 + ε2 for all μ ∈ R2 − {s1, s
} .

Combining Equation (4.a) with Equation (4.b) then yields the estimates:

|K| ≤ Ce(−2r1t1−2s1t2) ≤ Ce−2ε1(t1+t2) ≤ Ce−2ε1‖(t1,t2)‖ ,
g|K| ≤ Ce((4− 9

2 )r1+(2− 3
2 )a1)t1+((4− 9

2 )s1+(2− 3
2 )c1)t2

=Ce−
1
2 (r1−a1)t1− 1

2 (s1−c1)t2 ≤ Ce−
1
2 (ε2t1+ε2t2) ≤ Ce−

1
2 ε2‖(t1,t2)‖ .

This establishes Assertion 1 and Assertion 2 on the first quadrant t1 ≥ 0 and t2 ≥ 0; we
use similar arguments to establish these estimates in the remaining quadrants. Integrating the
estimate for g|K| in polar coordinates then shows |K|[Σ] ≤ Cε−1

2 which completes the proof
of Theorem 1.8. �

REMARK 4.2. It is not necessary to assume that roots μ of P1 with r1 > 
(μ) > rk

are simple; multiple roots can appear in this range as the exponential estimates swamp any
powers of t1. Similarly, it is not necessary to assume that the remaining roots μ of P2 with
s1 > 
(μ) > s
 are simple; the arguments go through unchanged. More care must be taken,
however, if the dominant roots r1 or rk of P1 or the dominant roots s1 or s
 of P2 are not
simple and a further investigation by the second author into this case is planned.
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5. The proof of Theorem 1.11. Adopt the notation of Definition 1.10.

LEMMA 5.1. Let γ±r (t) := Σ(t,±r) = σ1(t) ⊗ σ2(±r). If all the roots of P1 and of
P2 are simple and if the real roots are dominant, then:

lim
r→∞

∫ r

−r
κg (γ±r )(t)ds = −Θ[σ1] .

PROOF. We will use the inward unit normal to apply the Gauss–Bonnet theorem. This
points in the direction of ∓Σ/1 ∧Σ/2(t,±r). Lemma 2.1 shows that:

κg(t,±r)ds = ∓(Σ/1 ∧Σ/2,Σ/1 ∧Σ/11) · g−1‖Σ/1‖−2(t,±r)dt .
First let t2 = r . We express σ2(t2) = es1t2(f1 + E(t2)) where the remainder E(t2) is expo-
nentially suppressed, i.e. satisfies an estimate of the form ‖E(t2)‖ ≤ e−εt2 for some ε > 0 if
t2 >> 0. In this setting, to simplify the notation, we shall simply write σ2(t2) ∼ es1t2f1. We
compute:

Σ/1 ∼ σ̇1 ⊗ es1rf1 , Σ/2 ∼ σ1 ⊗ s1e
s1rf1 ,

g = ‖Σ/1 ∧Σ/2‖ ∼ |s1|e2s1rf 2
1 ‖σ̇1 ∧ σ1‖ , Σ/11 ∼ σ̈1 ⊗ es1rf1 ,

κg (γr)ds = −(Σ/1 ∧Σ/2,Σ/1 ∧Σ/11)g
−1‖Σ/1‖−2dt

∼ − s1e
4s1r

|s1|e4s1r

(σ̇1(t1) ∧ σ1(t1), σ̇1(t1) ∧ σ̈1(t1))

‖σ1(t1) ∧ σ̇1(t1)‖ · ‖σ̇1(t1)‖2
dt .

This gives −Θ(σ1)dt in the limit since s1 > 0. We do not need to change the sign of the
normal but again get a negative sign if sk < 0 since + sk|sk | = −1. �

We apply the Gauss–Bonnet theorem to the square Σ([−r, r] × [−r, r]). Let αi be the
interior angles. We then have:

2π =
∫ r

−r

∫ r

−r
K(t1, t2)gdt1dt2 +

4∑

i=1

(π − αi)+
∫ r

−r
κg(Σ(t, r))ds

+
∫ r

−r
κg(Σ(t,−r))ds +

∫ r

−r
κg(Σ(r, t))ds +

∫ r

−r
κg (Σ(−r, t))ds .

We examine the angle α1 at Σ(r, r). Because Σ/1(r, r) ∼ r1Σ(r, r) and becauseΣ/2(r, r) ∼
s1Σ(r, r),Σ/1 andΣ/2 point in approximately the same direction. Consequently, cos(α1) ∼ 1
and α1 ∼ 0. Keeping careful track of the signs shows the other angles also are close to 0.
Theorem 1.11 then follows from Lemma 5.1. �

6. The proof of Theorem 1.12. We apply Theorem 1.11 to the setting n1 = n2.
Let {ξ1, ξ2} be the standard orthonormal basis for R2. Suppose σ(t) = eat e1 + ebt e2 for
a > 0 > b. We use Equation (1.d) to see that:

Θ[σ ] =
∫ ∞

−∞
|(a − b)ab|e(a+b)t
a2e2at + b2e2bt dt =

∫ ∞

−∞
|(a − b)ab|e(a−b)t
a2e2(a−b)t + b2

dt .
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We have a − b > 0. We change variables setting x := e(a−b)t to express

Θ[σ ] =
∫ ∞

0

|ab|
a2x2 + b2

dx =
∫ ∞

0

|a|
|b|

1
a2

b2 x
2 + 1

dx .

We again change variables setting y = |a|
|b|x to express

Θ[σ ] =
∫ ∞

0

1

y2 + 1
dy = π

2
.

Theorem 1.12 now follows from Theorem 1.11. �

7. The proof of Theorem 1.15. Let Σ(t1, t2) = σ1(t1)⊗ σ2(t2) where

σ1(t1) = (er1t1, . . . , erkt1) for r1 > r2 > 0 > rk−1 > rk,

σ2(t2) = (es1t2, . . . , es
t2) for s1 > s2 > 0 > s
−1 > s
 .

We focus on the first quadrant and assume t1 ≥ 0 and t2 ≥ 0; the other quadrants are handled
similarly. By Lemma 3.1, g is growing exponentially at ∞ and the growth rate is controlled
by the function G of Equation (3.b); this need not be the case if s2 << 0 and t2 << 0. Let
{ei} (resp. {fa} and {ei ⊗ fa}) be an orthonormal basis for Rn1 (resp. Rn2 and Rn1n2 ) so that
summing over i, a, and (i, a), yields:

σP1(t1) = erit1ei , σP2(t2) = esat2fa , Σ(t1, t2) = eri t1+sat2ei ⊗ fa .

We express ‖H‖ in terms of wedge products and establish its asymptotic growth rate at infinity
as follows:

LEMMA 7.1. Let Σ satisfy the hypotheses of Theorem 1.15. Adopt the notation estab-
lished above.

(1) Let H := Σ/1 ∧Σ/2 ∧ (g11Σ/22 + g22Σ/11 − 2g12Σ/12) ∈ Λ3(Rn1n2). Then:

‖H‖ = g−3‖H‖ .
(2) Let H := e5r1t1+(3s1+s2+s3)t2 + e(3r1+r2+r3)t1+5s1t2 + e(4r1+r2)t1+(4s1+s2)t2 . There exist

constants Ci = Ci(Σ) > 0 so that if t1 ≥ 0 and if t2 ≥ 0, then

C1g
−3H ≤ ‖H‖ ≤ C2g

−3H .

PROOF. The unnormalized mean curvature vector is given by H = g ijLij ∈ TPΣ
⊥.

Let {ξ1, ξ2} be an orthonormal frame for TΣ so Σ/1 ∧Σ/2 = gξ1 ∧ ξ2. By Lemma 2.1,

Σ/1 ∧Σ/2 ∧Σ/ij = gξ1 ∧ ξ2 ∧ Lij .
Since g11 = g−2g22, g22 = g−2g11, g12 = −g−2g12, and since {ξ1, ξ2, Lij } form an orthogo-
nal set, we prove Assertion 1 by computing:

‖H‖ = g−2‖g22L11 + g11L22 − 2g12L12‖
= g−3‖Σ/1 ∧Σ/2 ∧ {g22Σ/11 + g11Σ/22 − 2g12Σ/12}‖
= g−3‖H‖ .
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If {ua, vb,wc} are distinct pairs of indices, set

ξua,vb,wc := (eu ⊗ fa) ∧ (ev ⊗ fb) ∧ (ew ⊗ fc) .

If ω ∈ Λ3(Rn1n2), let c(ξua,vb,wc, ω) denote the coefficient of ξua,vb,wc in ω. Since ω =∑
ξ c(ξ, ω)ω, there exist constants Ci = Ci(n1, n2) so that

C1

∑

ξ

|c(ξ, ω)| ≤ ‖ω‖ ≤ C2

∑

ξ

|c(ξ, ω)| .

We wish to show that H controls the growth rate of ‖H‖ at infinity. Thus we must estimate
each coefficient c(ξ,H) from above by H and exhibit 3 different ξ which we will use to
estimate ‖H‖ from below in terms of the 3 terms comprising H. We shall use the same
argument given to establish Lemma 4.1. We may express

c(ξua,vb,wc,Σ/1 ∧Σ2 ∧Σ/μν)(t1, t2) = e(ru+rv+rw)t1+(sa+sb+sc)t2cμν,ua,vb,wc
where

c11,ua,vb,wc = det

⎛

⎝
ru rv rw

sa sb sc

r2
u r2

v r2
w

⎞

⎠ , c22,ua,vb,wc = det

⎛

⎝
ru rv rw

sa sb sc

s2
a s2

b s2
c

⎞

⎠,

c12,ua,vb,wc = det

⎛

⎝
ru rv rw

sa sb sc

rusa rvsb rwsc

⎞

⎠.

Terms of Type 1. Suppose u = v = w = 1. Then c(ξ1a,1b,1c, L̃11) = 0 and
c(ξ1a,1b,1c, L̃12) = 0. Since {a, b, c} are distinct, we may bound

(7.a) |c(ξ1a,1b,1c,H)(t1, t2)| ≤ |c22,1a,1b,1c|e5r1t1+(3s1+s2+s3)t2 ≤ CH(t1, t2) .
Let ξ = ξ11,12,13. As g22 ≥ Ce2r1t1+2s1t2 and as cμν,1a,1b,1c = 0 for (μ, ν) = (2, 2),

(7.b)
‖H(t1, t2)‖ ≥ |c22,11,12,13|e2r1t1+2s1t2e3r1t1+(s1+s2+s3)t2

= r1(s1 − s2)(s1 − s3)(s2 − s3)e
5r1t1+(3s1+s2+s3)t2 .

Terms of Type 2. Suppose a = b = c = 1. We argue similarly to conclude:

(7.c)
|c(ξu1,v1,w1,H)(t1, t2)| ≤ CH(t1, t2) ,
‖H(t1, t2)‖ ≥ s1(r1 − r2)(r1 − r3)(r2 − r3)e

(3r1+r2+r3)t1+5s1t2 .

Terms of Type 3. We suppose (u, v,w) = (1, 1, 1) and (a, b, c) = (1, 1, 1). The
following upper bound is then immediate:

(7.d) |c(ξua,vb,wc,H)(t1, t2)| ≤ Ce(4r1+r2)t1+(4s1+s2)t2 .

Let ξ = ξ11,12,21. We expand, modulo lower order terms,

g11 = r2
1 e

2r1t1+2s1t2 + · · · , g12 = r1s1e
2r1t1+2s1t2 + · · · ,

g22 = s2
1e

2r1t1+2s1t2 + · · · .
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We compute, again modulo lower order terms, that:

|c(ξ11,12,21,H)(t1, t2)| = ∣
∣c(ξ11,12,21, g22L̃11 + g11L̃22 − 2g12L̃12)

∣
∣

= e(4r1+r2)t1+(4s1+s2)t2
∣
∣s2

1c11,11,12,21 + r2
1 c22,11,12,21 − 2r1s1c12,11,12,21

∣
∣ + · · ·

= e(4r1+r2)t1+(4s1+s2)t2{r1(r1 − r2)s1(s1 − s2)(2r1s1 − r2s1 − r1s2)} + · · · .
Since {r1(r1 − r2)s1(s1 − s2)(2r1s1 − r2s1 − r1s2)} > 0, we have

(7.e) |c(ξ11,12,21,H)(t1, t2)| ≥ Ce(4r1+r2)t1+(4s1+s2)t2 .

Assertion 2 now follows from Equation (7.a)–Equation (7.e). �

We restrict to the first quadrant t1 ≥ 0 and t2 ≥ 0. By Lemma 3.1,

(7.f) g ≥ Ce2r1t1+(s1+s2)t2 and g ≥ Ce(r1+r2)t1+2s1t2

for some C > 0. We use Equation (7.f) to see if δ ∈ [0, 1], then:

(7.g) gk ≥ Cekδ{2r1t1+(s1+s2)t2}+k(1−δ){(r1+r2)t1+2s1t2} .

We apply Lemma 7.1.
7.1. The proof that ‖H‖ is exponentially decaying. Let δ ∈ [0, 1]. We use Equa-

tion (7.g) and Lemma 7.1. We bound terms of Type I by:

g−3e5r1t1+(3s1+2s2)t2 ≤ Cea1(δ)t1+a2(δ)t2 for

a1(δ) = 5r1 − 3{δ2r1 + (1 − δ)(r1 + r2)} and

a2(δ) = 3s1 + 2s2 − 3{δ(s1 + s2)+ (1 − δ)2s1} .
We show such terms exhibit exponential decay by estimating:

a1(
2
3 ) = 5r1 − 4r1 − r1 − r2 = −r2 < 0 ,

a2(
2
3 ) = 3s1 + 2s2 − 2s1 − 2s2 − 2s1 = −s1 < 0 .

The terms of Type 2 are estimated similarly. We estimate the terms of Type 3:

g−3e(4r1+r2)t1+(4s1+s2)t2 ≤ Cea1(δ)t1+a2(δ)t2 for

a1(δ) = 4r1 + r2 − 3{δ(2r1)− (1 − δ)(r1 + r2)} and

a2(δ) = 4s1 + s2 − 3{δ(s1 + s2)− 3(1 − δ)(2s1)} .
We take δ = 1

2 and show such terms exponential decay by computing:

a1(
1
2 ) = 4r1 + r2 − 3r1 − 3

2r1 − 3
2r2 = − 1

2r1 − 1
2r2 < 0 ,

a2(
1
2 ) = 4s1 + s2 − 3

2s1 − 3
2s2 − 3s1 = − 1

2s1 − 1
2 s2 < 0 .

This completes the proof that ‖H‖ decays exponentially. �
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7.2. The proof that ‖H‖ ∈ L3(gdt1dt2). We examine

g‖H‖3 = g−8‖Σ/1 ∧Σ/2 ∧ {g22Σ/11 + g11Σ/22 − 2g12Σ/12}‖3 .

We estimate the terms of type 1. Set

a1(δ) := 3(5r1)− 8{δ2r1 + (1 − δ)(r1 + r2)} ,
a2(δ) := 3(3s1 + 2s2)− 8{δ(s1 + s2)+ (1 − δ)2s1} .

We take δ = 7
8 to compute:

a1(
7
8 ) = 15r1 − 14r1 − r1 − r2 = −r2 < 0 ,

a2(
7
8 ) = 9s1 + 6s2 − 7s1 − 7s2 − 2s1 = −s2 < 0 .

The terms of Type 2 are estimated similarly. To estimate the terms of Type 3, we take δ = 1
2

and compute:

a1(
1
2 )= 3{4r1 + r2} − 8{δ(2r1)+ (1 − δ)(r1 + r2)}

= 12r1 + 3r2 − 8{ 3
2r1 + 1

2 r2} = −r2 < 0 ,

a2(
1
2 )= 3{4s1 + s2} − 8{δ(2s1)+ (1 − δ)(s1 + s2)}

= 12s1 + 3s2 − 8{ 3
2s1 + 1

2 s2} = −s2 < 0 .

This estimates all the terms comprising g‖H‖3; thus g‖H‖3dt1dt2 is integrable. �

8. Examples. In this section, we present a number of examples to illustrate vari-
ous points; many of them were Mathematica assisted and used a program developed by M.
Brozos-Vazquez [2].

8.1. Finite total first curvature. Theorem 1.2 shows the total first curvature of σ is
finite if all the roots of P are simple and if the real roots of P are dominant. This can fail if a
dominant root is complex.

EXAMPLE 8.1. Let σ(t) := (et cos(t), et sin(t), e−t ). The dominant root here is com-
plex. We show that κds is not in L1 by computing:

σ̇ = (et (cos(t)− sin(t)), et (cos(t)+ sin(t)),−e−t ) ,
σ̈ = (−2et sin(t), 2et cos(t), e−t ) ,
‖σ̇ ∧ σ̈‖ = {4e4t + 10}1/2 ,

κds = {4e4t + 10}1/2{2e2t + e−t }−1dt .

8.2. Finite total Gauss curvature. Theorem 1.8 shows that if all the roots of P1 and
P2 are simple and if the real roots are dominant, then the total Gauss curvature is finite. This
can fail if one of the dominant roots is complex.
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EXAMPLE 8.2. Let σ1(t1) = (et1 cos(t1), et1 sin(t1), e−t1) and σ2(t2) = (et2, e−t2).
Set E1 := (e4t1−4t2 + e4(t1+t2) + 4e−4t1 + 6e4t1 + 5e−4t2 + 5e4t2 + 2). We use a Mathematica
notebook [2] to see that:

gK = − 16(e4t1 + 2)(e4t2 + 1)e10t1+6t2E0.5
1

(2e4(t1+t2) + e8(t1+t2) + 6e8t1+4t2 + 5e4t1+8t2 + 5e4t1 + e8t1 + 4e4t2)2
.

This permits to estimate for t1 ≥ 0 and t2 ≥ 0 that:

gK ≤ − 16e4t1+4t2+10t1+16t2+(4t1+4t2)/2

(
(2 + 1 + 6 + 5 + 5 + 1 + 4)e8t1+8t2

)2 = −16

24
e0t1+6t2 .

Thus gKdt1dt2 is not integrable for 0 ≤ t1 < ∞ and 0 ≤ t2 < ∞.

8.3. The total Gauss curvature if n1 = n2 = 2. In Theorem 1.13, we showed that if
the roots of P1 and P2 are real and simple and if n1 = n2 = 2, thenK[Σ] = 0. This result is
non-trivial; there are examples where |K|[Σ] = 0 in this setting.

EXAMPLE 8.3. Let σ1(t1) = (et1, e−2t1) and σ2(t2) = (et2, e−2t2). We use Mathemat-
ica [2] to compute:

gK = 9.e−6(t1+t2)(e6(t1+t2) − 4)
(
e−8(t1+t2)(e6(t1+t2) + e6(2t1+t2) + e6(t1+2t2) + 4e6t1 + 4e6t2)

)1.5 ,

∫

R2
gKdt1dt2 = 0 , and

∫

R2
|gK|dt1dt2 ≈ .811319 .

The Gauss curvature changes sign; it is positive for 6t1 + 6t2 > ln(4) and negative for 6t1 +
6t2 < ln(4). It does not vanish identically and Theorem 1.12 is non-trivial.

8.4. Uniform estimates on the first curvature. Let σ be defined by an ODE where
the dominant roots of P are real. If all the roots are real, then Theorem 1.4 gives a uniform
estimate for the total first curvature which depends only on the dimension. If sub-dominant
complex roots are permitted, then no such uniform upper bound exists.

EXAMPLE 8.4. Let σk(t) = (et , cos(kt), sin(kt), e−t ) for k ≥ 1. We have

σ̇k(t) = (et ,−k sin(kt), k cos(kt),−e−t ) ,
σ̈k(t) = (et ,−k2 cos(kt),−k2 sin(kt), e−t ) ,
‖σ̇k(t)‖2 = e2t + k2 + e−2t , ‖σ̇k(t) ∧ σ̈k(t)‖ ≥ k3,

lim
k→∞ κ[σk] ≥ lim

k→∞

∫ ∞

−∞
k3

e2t + k2 + e−2t dt ≥ lim
k→∞

∫ 1

0

k3

e2 + k2 + 1
dt

= lim
k→∞

k3

e2 + k2 + 1
= ∞ .

8.5. Applying the Gauss–Bonnet Theorem with all real roots. Because K[Σ] can
be non-zero if n1 > 2 and n2 > 2, Theorem 1.13 is non-trivial.
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EXAMPLE 8.5. We examine the identity E := K[Σ] − 2Θ[σ1] − 2Θ[σ2] + 2π = 0.
We take σ1(t1) = (et1, ea1t1, ea2t1) and σ2(t2) = (et2, eb1t2, eb2t2) where 0 ≥ a1 > a2 and
0 ≥ b1 > b2. We computed [2] that:

a1 a2 b1 b2 K[Σ] Θ[σ1] Θ[σ2] E |K|[Σ]
0 −1 0 −1 −1.8649 1.10423 1.10423 1 ∗ 10−3 1.866
0 −2 0 −3 −2.0356 1.07859 1.04485 7 ∗ 10−4 2.26658

−1 −1.1 −1 −1.2 −1.51466 1.26238 1.09344 .06 1.73122
−1 −2 −1 −2 −1.96762 1.07875 1.07875 5 ∗ 10−4 2.27566
−1 −5 −1 −5 −1.96884 1.07859 1.07859 8 ∗ 10−7 2.3783
−2 −4 −1 −3 −1.88447 1.09513 1.10423 6 ∗ 10−7 2.56669
−5 −6 −1 −2 −2.17533 .975259 1.07861 1 ∗ 10−4 3.33547
−5 −6 −7 −8 −2.43838 .975259 .947119 5 ∗ 10−5 4.32915

These calculations show that K takes on both positive and negative values since |K|[Σ] =
K[Σ]. If, for example, (a1, a2, b1, b2) = (−5,−6,−7,−8), then

|Θ|[σ1] ≈ 2.03662 = Θ[σ1] ≈ .975259 ,

|Θ|[σ2] ≈ 2.10877 = Θ[σ2] ≈ .947119

Θ takes on both positive and negative values.

8.6. A uniform estimate on the Gauss curvature does not exist if complex roots
are allowed. If we allow complex roots, no uniform upper bound is possible. We extend
Example 8.4 as follows.

EXAMPLE 8.6. Let Σk(t1, t2) := (et1, cos(kt1), sin(kt1), e−t1) ⊗ (et2, e−t2). We use

Mathematica [2] to express gK := −E1 · E2 · E
1
2

3 · E−2
4 where:

E1 := 4(e4t2 + 1)e4t1+6t2 ,

E2 := 2(k2 + 1)k2e2t1 + 2(k2 + 1)k2e6t1 + (k2 + 1)e8t1 + k2

+2(k4 + 3k2 − 1)e4t1 + 1 ,

E3 := e−4(t1+t2) (2k2e4(t1+t2) + 2(k2 + 1)e2t1+4t2 + 2(k2 + 1)e6t1+4t2

+(k2 + 1)e2t1+8t2 + (k2 + 1)e6t1+8t2 + (k2 + 4)e4t1+8t2

+(k2 + 1)e2t1 + (k2 + 1)e6t1 + (k2 + 4)e4t1 + 4e8t1+4t2 + 4e4t2
)

,

E4 := 2k2e4(t1+t2) + 2(k2 + 1)e2t1+4t2 + 2(k2 + 1)e6t1+4t2

+(k2 + 1)e2t1+8t2 + (k2 + 1)e6t1+8t2 + (k2 + 4)e4t1+8t2

+(k2 + 1)e2t1 + (k2 + 1)e6t1 + (k2 + 4)e4t1 + 4e8t1+4t2 + 4e4t2 .
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As a function of k, this is behaving like 1 · k4 · k · k−4 and thus the integral goes to infinity as
k → ∞. We also examineΘ(σ1,k) computing

Θ(σ1,k) =
{

4 − k4

(k2 + e−2t + e2t )(k2e−2t + k2e2t + k2 + e−2t + e2t + 4)0.5

}

.

This is growing linearly in k as k → ∞ and hence limk→∞Θ(σ1,k) = ∞. We examine the
identity Ek := K[Σk] − 2Θ[σ1,k] − 2Θ[σ2] + 2π = 0 numerically:

k K[Σk] Θ[σ1,k] Θ[σ2] Ek
0 −0.933127 1.10423 π

2 2.96624 ∗ 10−9

1 −2.15652 0.49253 π
2 −7.07655 ∗ 10−10

2 −4.74826 −0.803332 π
2 −4.54394 ∗ 10−9

3 −7.77242 −2.31541 π
2 6.01698 ∗ 10−9

4 −10.9544 −3.90643 π
2 −6.68724 ∗ 10−8

10 −30.8223 −13.8403 π
2 8.18756 ∗ 10−7

50 −165.483 −81.1709 π
2 1.25382 ∗ 10−7

200 −671.171 −334.015 π
2 .000010552

2000 −6739.86 −3368.36 π
2 −6.08458 ∗ 10−6

20000 −67426.9 −33711.9 π
2 −0.000982013

200000 −674297 −337147 π
2 −0.0211308

8.7. The norm of the mean curvature vector. Let

σ1(t1) = (er1t1, . . . , erkt1) and σ2(t2) = (es1t2, . . . , es
t2)

for r1 > · · · > rk and s1 > · · · > s
. By Lemma 3.1 and Lemma 7.1, there exist constants
Ci > 0 so

C1 ≤ g

e2r1t1+(s1+s2)t2 + e(r1+r2)t1+2s1t2
≤ C2

‖H‖ ≥ C3g
−3{e5r1t1+(3s1+s2+s3)t2 + e(3r1+r2+r3)t1+5s1t2 + e(4r1+r2)t1+(4s1+s2)t2} .

EXAMPLE 8.7. If we set t1 = t2 = t , r1 = s1, r2 = s2, and r3 = s3, then we get

‖H‖(t) ≥ C
e(8r1+r2+r3)t

e3(3r1+r2)t = Ce(−r1−2r2+r3)t .

If we take r1 = 1, r2 = −3, and r3 = −4, then ‖H‖ ≥ Ce(−1+6−4)t and this tends to infinity
as t becomes large. Thus Assertion 1 of Theorem 1.15 can fail if we permit r2 or s2 to be
negative.

EXAMPLE 8.8. We set r1 = s1, r2 = s2, and r3 = s3. We restrict to t1 ≤ t2 and
estimate

‖H‖2g ≥ C
e2{(3r1+r2+r3)t1+5s1t2}

e5((r1+r2)t1+2r1t2)
= Ce(r1−3r2+2r3)t1 ,

∫

Σ

‖H‖2 dvol ≥
∫ ∞

0

∫ t2

0
Ce(r1−3r2+2r3)t1dt1dt2
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= C

r1 − 3r2 + 2r3

∫ ∞

0
{(e(r1−3r2+2r3)t2 − 1}dt2 .

This is infinite provided r1 − 3r2 + 2r2 > 0. We could, for example, take r1 = 10, r2 = 2,
and r3 = 1. So in general ‖H‖ is not in L2. More generally, let p > 2. We may estimate:

‖H‖pg ≥ C
ep{(3r1+r2+r3)t1+5r1t2}

e(3p−1){(r1+r2)t1+2r1t2}
∫

Σ

‖H‖p dvol ≥ C

∫ ∞

0

∫ t2

0
e(r1+(1−2p)r2+pr3)t1+(2−p)r1t2dt1dt2

= C

(r1 + (1 − 2p)r2 + pr3)

∫ ∞

0
{e((3−p)r1+(1−2p)r2+pr3)t2 − e(2−p)r1t2}dt2 .

This will be divergent if r1 + (1 − 2p)r2 + pr3 > 0 and (3 − p)r1 + (1 − 2p)r2 + pr3 > 0.
Given 2 < p < 3, we can take r1 = 1 and r2 and r3 very close to zero to see these inequalities
are satisfied and the integral is divergent. Thus p = 3 is the best that can be established in
general although in specific cases, better convergence can be obtained.
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