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Abstract. The purpose of this paper is to give positive answers to some questions
which are related to Fox, Rhodes, Gottlieb-Fox, and Gottlieb-Rhodes groups. Firstly, we show
that for a compactly generated Hausdorff based G-space (X, x0,G) with free and properly
discontinuous G-action, if (X, x0,G) is homotopically n-equivariant, then the n-th Gottlieb-
Rhodes group Gσn(X, x0, G) is isomorphic to the n-th Gottlieb-Fox group Gτn(X/G, p(x0)).
Secondly, we prove that every short exact sequence of groups is n-Rhodes-Fox realizable for
any positive integer n. Finally, we present some positive answers to restricted realization prob-
lems for Gottlieb-Fox groups and Gottlieb-Rhodes groups.

1. Introduction. The n-th Fox homotopy group or the n-th torus homotopy group
τn(X, x0) of a based space (X, x0) was given by Fox in 1945 to explain a geometric inter-
pretation of the classical Whitehead product of elements of higher homotopy groups ([5, 6]).
For a transformation group (X,G) or a G-space X, Rhodes introduced the n-th Rhodes group
σn(X, x0,G), where x0 is a base point in X, which is an analogue of the higher homotopy
groups πn(X, x0). In 1983, Woo and Yoon [19] investigated Gottlieb-Rhodes groups which
is a generalization of classical Gottlieb groups, and extended some results on classical Got-
tlieb groups to Gottlieb-Rhodes groups. Golasiński, Gonçalves, and Wong [8] in 2007 studied
Gottlieb-Fox groups and Gottlieb-Rhodes groups, and presented some interesting properties
of those.

The purpose of this paper is to give some positive answers to the following questions
which are related to Fox groups, Rhodes groups, Gottlieb-Fox groups, and Gottlieb-Rhodes
groups.

The first one is when Gottlieb-Rhodes groups of a space X with free and properly discon-
tinuous G-action are isomorphic to Gottlieb-Fox groups of its orbit space X/G. The second
one is a realization problem for Rhodes groups. And the third one is about some restricted
realization problems for Fox, Rhodes, Gottlieb-Fox, and Gottlieb-Rhodes groups.

In 2007, Golasiński, et al. showed in [8, Theorem 1.2] that for a finite group G and a posi-
tive integer n, if G acts freely on a based space (X, x0), then the Rhodes group σn(X, x0,G) of
(X,G) is isomorphic to the Fox group τn(X/G) of its orbit space under the isomorphism Φn

induced from a regular covering projection. By the same argument as in the proof of [8, The-
orem 1.2] we may also conclude that if an arbitrary group G acts freely and properly discon-
tinuously on a based space (X, x0), then for any n ≥ 1, σn(X, x0,G) is isomorphic to the Fox
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group τn(X/G) under the isomorphism Φn. Thus it is natural to ask whether Gσn(X, x0,G)

is isomorphic to Gτn(X/G,p(x0)) for all n under the same isomorphism Φn. But we can
not expect a positive answer to this question as in Example 3.3, since Gτn(X/G,p(x0)) is
abelian and Gσn(X, x0,G) is not abelian in general. However we can show in Theorem 3.11
that for a compactly generated Hausdorff based G-space (X, x0,G) with free and properly
discontinuous G-action, if (X, x0,G) is homotopically n-equivariant, then the n-th Gottlieb-
Rhodes group Gσn(X, x0,G) is isomorphic to the n-th Gottlieb-Fox group Gτn(X/G,p(x0)).
As a byproduct, we can conclude that for a compactly generated Hausdorff based G-space
(X, x0,G) with free and properly discontinuous G-action, if (X, x0,G) is homotopically n-
equivariant, then Gσn(X, x0,G) is abelian.

In order to give an affirmative answer to the second question, we apply the result of
Lokutsievskii [13]. Recall that if a group G acts freely and properly discontinuously on a
topological space X, then p : X → X/G is a regular covering projection and there is a group
extension 1 → π1(X) → π1(X/G) → G → 1. It is natural to ask whether the converse of
this holds, i.e., given any group extension 1 → N → Γ → G → 1, there exits a topological
space X on which G acts freely and proper discontinuously such that the extension 1 → N →
Γ → G → 1 is isomorphic to 1 → π1(X) → π1(X/G) → G → 1. The positive answer to
this question seems to be well-known or a folklore. But we can not find any reference except
Lokutsievskii’s paper. In [13], Lokutsievskii presented these in very details. In fact, he showed
that given an extension of groups 1 → N → Γ → G → 1 with finite G, there is a K(N, 1)-
complex X with a free G-action such that 1 → π1(X) → π1(X/G) → G is isomorphic to
the given extension. Moreover, he proved that there is a one to one correspondence between
the set of all free actions up to homotopy conjugation of G on K(N, 1)-complexes and the
set of all classes of isomorphic extensions of N by G. Without any difficulty we have the
same result of his for the case of arbitrary group extensions. Using this result, we show in
Theorem 4.8 that every short exact sequence of groups is n-Rhodes-Fox realizable for any
positive integer n, more precisely, for any extension of groups 1 → N → Γ → G → 1
and any positive integer n, there is a K(N, 1)-complex X with free G-action such that for
any positive integer n, the exact sequence of groups 1 → τn(X) → σn(X,G) → G → 1 is
isomorphic to 1 → N → Γ → G → 1.

For the third question, recall the following question posed by Oprea and Strom [15]: for
a finitely generated abelian group Γ and a positive integer n, is there a finite CW -complex or
a compact manifold X with Gn(X) ∼= Γ ? They proved that for any finitely generated abelian
group Γ , there exists a compact manifold X with G1(X) ∼= Γ . For n > 1, they proved that for
a finite abelian group Γ , there is an N so that for each n ≥ N there is a compact manifold X

with Γ isomorphic to a subgroup of G2n(X). Moreover they showed using rational homotopy
theory that for any even number n, any torsion-free abelian group cannot be realized as Gn(X)

for a finite complex X.
It can be seen in Lemma 4.14 that if Γ is an arbitrary abelian group and n is any positive

integer, then τn(K(Γ, n)) = Gτn(K(Γ, n)) ∼= Γ . Thus if there is no restrictions on spaces,
then the third question about Fox-groups and Gottlieb-Fox groups is trivial like the ordinary
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Gottlieb groups ([15]). In Theorems 4.15 and 4.16, we prove that for a finitely generated
abelian group Γ and any positive integer n, there exists a compact manifold X which is a
Gottlieb-Fox space such that τn(X) = Gτn(X) ∼= Γ . Also we show in Theorem 4.18 that
if Γ is a finitely generated abelian group, N is a free abelian subgroup of Γ , and G is a
torsion subgroup of Γ , then for any positive integer n, there exists a compact G-manifold X

such that the group extension 1 → Gτn(X) → Gσn(X,G) → G → 1 is isomorphic to
1 → N → Γ → G → 1.

2. Preliminaries. Through out this paper, every group is a discrete group and all
spaces considered are supposed to be topological spaces.

In this section, we collect some basic properties and definitions of Fox, Rhodes, Gottlieb,
Gottlieb-Fox, and Gottlieb-Rhodes groups. We also briefly recall some miscellaneous facts
which we will used in the main results. For more details, we recommend corresponding
references.

1. ([6, 7]) The n-th Fox homotopy group or the n-th torus homotopy group of a based
space (X, x0) is defined to be τn(X, x0) := π1(X

T n−1
, cx0), where XT n−1

is the space of con-
tinuous maps from the (n − 1)-dimensional torus T n−1 to X with the compact open topology
and cx0 is the constant map based at x0. It is clear that τ1(X, x0) = π1(X, x0). It can be
seen that for a path connected space X, τn(X, x0) is independent of the base point x0 up to
isomorphism groups. Thus τn(X, x0) is usually simply denoted by τn(X) for a path connected
space X. The following are well-known facts concerning Fox homotopy groups:

(a) For any positive integer n ≥ 2, the sequence

1 →
n∏

i=2

πi(X, x0)
αi → τn(X, x0) → τn−1(X, x0) → 1

is split exact, where αi is the binomial coefficient
(
n−2
i−2

)
.

Moreover,
∏n

i=2 πi(X, x0)
αi ∼= τn−1(ΩX, cx0), where ΩX is the loop space of X and cx0 is

the constant map based at x0.
(b) The Whitehead product of two elements α∈πm(X, x0), β ∈πn(X, x0) in πm+n−1(X,

x0) is a commutator when πm+n−1(X, x0) is embedded in τk(X, x0) for k ≥ m + n + 1.
In [7] Golasiński et al. reformulate the definition of Fox homotopy groups and investigate
generalized Fox homotopy groups.

2. For a transformation group (X,G) or a G-space X, the n-th Rhodes group σn(X, x0,

G), where x0 is a base point in X, is defined to be
⋃

g∈G

{[f ; g] | f : I × T n−1 → X, f (0, t1, . . . , tn−1) = x0, f (1, t1, . . . , tn−1) = g · x0)}

with the operation [f1; g1] ∗ [f2; g2] := [f1 + g1 · f2; g1g2]. It is clear that τn(X, x0) ∼=
σn(X, x0, {e}). It can be seen that for a path connected G-space X, τn(X, x0,G) is indepen-
dent of the base point x0 up to isomorphism groups. Thus σn(X, x0,G) is usually simply
denoted by σn(X,G) for a path connected G-space X. It is well-known that the sequence
1 → τn(X, x0) → σn(X, x0,G) → G → 1 is exact.
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3. ([10, 11]) Let (X, x0) be a based space. Consider the class of continuous maps F :
X×Sn → X such that F(x, s0) = x, where x ∈ X and s0 is a base point of Sn. Then the map
f : Sn → X defined by f (s) := F(x0, s), where x0 is a base point of X, represents an element
[f ] ∈ πn(X, x0). The set of all elements [f ] ∈ πn(X, x0) obtained by the above manner from
some F forms a subgroup of πn(X, x0), which is called the n-th Gottlieb group Gn(X, x0),
and the map F is said to be an associated or affiliated map to f . For a compactly generated
Hausdorff space X, it can be seen that Gn(X, x0) is the same as the evaluation subgroup of
πn(X, x0), i.e., Gn(X, x0) = Im(ev∗ : πn(X

X, 1X) → πn(X, x0)). By definition, a path
connected space X is n-Gottlieb if Gn(X) = πn(X). If X is n-Gottlieb for all n ≥ 1, then it
is said to be Gottlieb. It is well-known that any H -space is a Gottlieb space.

4. ([7, 8, 9, 19]) Let X be a G-space. For any [f ; g] ∈ σn(X, x0,G), a continu-
ous map H : X × I × T n−1 → X is said to be an associated or affiliated map to f if
H(x, 0, t1, . . . , tn−1)= x,H(x, 1, t1, . . . , tn−1)= g · x,H(x0, s, t1, . . . , tn−1)=f (s, t1, . . . ,

tn−1). The n-th Gottlieb-Rhodes group Gσn(X, x0,G) is defined to be the subgroup of σn(X,

x0,G) which consists of elements [f ; g] such that f has an associated map. For a compactly
generated Hausdorff space X with G-action, it can be seen that Gσn(X, x0,G) is the same as
the evaluation subgroup of σn(X, x0,G), i.e., Gσn(X, x0,G) = Im(ev∗ : σn(X

X, 1X,G) →
σn(X, x0,G)). For a based space (X, x0), if we consider X as X with trivial G-action, then the
n-th Gottlieb-Fox group Gτn(X, x0) is defined to be Gσn(X, x0, {e}). A path connected space
X is said to be n-Gottlieb-Fox if Gτn(X) = τn(X), and a path connected G-space X is said to
be n-Gottlieb-Rhodes if Gσn(X,G) = σn(X,G). By definition, a path connected space X is
Gottlieb-Fox if it is n-Gottlieb-Fox for all n ≥ 1 and a path connected G-space X is Gottlieb-
Rhodes if it is n-Gottlieb-Rhodes or all n ≥ 1. The following facts about Gottlieb-Fox and
Gottlieb-Rhodes groups have been shown in [7, 8, 9]:

(a) For a compactly generated Hausdorff space X with G-action, the sequence 1 →
Gτn(X, x0) → Gσn(X, x0,G) → G0 → 1 is exact, where G0 is the subgroup of G con-
sisting of elements g considered as homeomorphisms of X which are freely homotopic to
1X.

(b) For a compactly generated Hausdorff space X and an integer n ≥ 2, there is a split
exact sequence of groups:

1 → Gτn−1(ΩX, cx0) → Gτn(X, x0) → Gτn−1(X, x0) → 1 ,

where ΩX is the loop space of X and cx0 is the constant map based at x0. Moreover Gτn−1

(ΩX, cx0)
∼= ∏n

i=2 Gi(X, x0)
αi ,where αi := (

n−2
i−2

)
, and Gτn(X, x0) ∼= ∏n

i=2 Gi(X, x0)
γi ,

where γi := (
n−1
i−1

)
.

(c) For a compactly generated Hausdorff space X and any positive integer n, Gτn(X, x0)

is central in τn(X, x0) so that Gτn(X, x0) is abelian. But for a compactly generated Hausdorff
space X with G-action, Gσn(X, x0,G) is not necessarily abelian in general.

(d) For all k ≤ n, τk(S
n) ∼= πk(S

n).
(e) Let G be any abelian group and n ≥ 2. For any K(G, n)-complex X, if k < n then

τk(X) = 1, and if k ≥ n then τk(X) ∼= G(k−1
k−n). In particular, τk(K(G, 1)) ∼= G for all k ≥ 1.
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(f) A compactly generated Hausdorff path connected space X is n-Gottlieb if and only if
it is n-Gottlieb-Fox.

5. ([16, 17, 20]) By definition, a transformation group (X,G) admits a family of pre-
ferred paths at x0 if it is possible to associate with every element g1 of G a path k1 from
g1 · x0 to x0 such that the path k0 associated with the identity element e is cx0 and for every
pair of elements g1, g2 the path k1,2 from g1g2 · x0 to x0 is homotopic to g1 · k2 + k1. For a
transformation group (X,G) and g ∈ G, a continuous map H : X × I → X is said to be a
homotopy of order g if H(x, 0) = x,H(x, 1) = g · x. A family K of preferred paths at x0 is
called a family of preferred traces at x0 if for every preferred path kg in K , kg is the trace of
a homotopy of order g , where kg is the inverse path of kg . The following shows that why the
notions of preferred paths or preferred traces are important.

(a) The transformation group (X,G) admits a family of preferred paths at x0 if and only
if σn(X, x0,G) is a split extension of τn(X, x0) by G.

(b) If the transformation group (G,G) admits a family of preferred paths at e, then
σn(X, x0,G) ∼= τn(X, x0) × G.

(c) (X,G) admits a family of preferred traces at x0

if and only if Gσ1(X, x0,G) ∼= Gτ1(X, x0) � G0

if and only if Gσ1(X, x0,G) ∼= Gτ1(X, x0) × G0.
6. ([4, 18]) By definition, a group G is said to act properly discontinuously on a space

X if every point x ∈ X has a neighborhood U such that {g ∈ G | g · U ∩ U 	= ∅} is finite.
It is well-known that (a) if G acts freely and properly discontinuously on a path connected
Hausdorff space X, then p : X → X/G is a regular covering projection (b) if G acts freely
on a connected CW -complex X, then G acts also properly discontinuously on X.

7. (cf. [4]) By definition, an extension of a group N by a group G is a short exact
sequence of groups 1 → N → Γ → G → 1. Two group extensions 1 → N1 → Γ1 →
G1 → 1 and 1 → N2 → Γ2 → G2 → 1 are said to be isomorphic if there are isomorphisms
N1 → N2, G1 → G2 and Γ1 → Γ2 such that the following diagram commutes:

1 �� N1 ��

∼=
��

Γ1 ��

∼=
��

G1 ��

∼=
��

1

1 �� N2 �� Γ2 �� G2 �� 1 .

3. When are Gottlieb-Rhodes groups of a compactly generated Hausdorff space
X with free and properly discontinuous G-action isomorphic to Gottlieb-Fox groups of
its orbit space X/G? In this section we investigate the question stated in the title above.
Let G be a group which acts freely and properly discontinuously on a space X with a base
point x0. Then p : X → X/G be a regular covering projection. In 2007, Golasiński, et al.
[8] showed that for a finite group H and any positive integer n, if H acts freely on a space Y ,
then the Rhodes group σn(Y, y0,H) of (Y,H) is isomorphic to the Fox group τn(Y/H) of its
orbit space under the map Φn below which is induced from the regular covering projection p.
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They used the result of Armstrong [3] and the mathematical induction. Since the proof given
in [8] for the case of finite groups works in general, we have the following theorem.

THEOREM 3.1 (cf. [8, Theorem 1.2]). Let G be a group which acts freely and prop-
erly discontinuously on a based space (X, x0). Then

Φn : σn(X, x0,G) → τn(X/G,p(x0))

defined by Φn([f ; g]) = [p ◦ f ] is an isomorphism for all n ≥ 1, where p : X → X/G is a
regular covering projection.

Due to Theorem 3.1 it can be naturally asked whether Gσn(X, x0,G) is isomorphic
to Gτn(X/G,p(x0)) for all n under the same isomorphism Φn. But we can not expect a
positive answer to this question, since Gτn(X/G,p(x0)) is abelian and Gσn(X, x0,G) is not
necessarily abelian in general. We will give an example which shows that Gσn(X, x0,G) is
not isomorphic to Gτn(X/G,p(x0)). Other examples can be founded in [8, Example 2.3].

LEMMA 3.2 ([8, Example 2.6]). Let a finite group G act freely on an odd dimensional
sphere X = S2n+1. Then G = G0, where G0 is the subgroup of G consisting elements g

considered as homeomorphisms of X which are freely homotopic to 1X.

PROOF. It follows from the Lefschetz fixed point theorem (cf. [12]) and the Hopf clas-
sification theorem (cf. [12]) as explained in [8, Example 2.6]. �

EXAMPLE 3.3. It is well-known that a finite group G acts freely on some sphere if
and only if G satisfies both the p2 and the 2p condition for all primes p, i.e., every subgroup
of order p2 or 2p is cyclic (cf. [1]). Let X be an odd dimensional sphere S3 or S7, and let G

be a nonabelian group which acts freely on X. For instance, if G is the generalized quaternion
group, then G acts freely on S3. Note that G = G0 by Lemma 3.2. Since S3 and S7 are
H -spaces, they are Gottlieb-Fox and so Gτ1(X) = τ1(X) = {1}. Since 1 → Gτ1(X) →
Gσ1(X,G) → G → 1 is exact, it follows that Gσ1(X,G) ∼= G. Since Gτ1(X/G) is abelian,
Gσ1(X,G) can not be isomorphic to Gτ1(X/G).

The n = 1 case of the following proposition was proved in [19, Theorem 1.2]. To help to
understand Definition 3.5 and Remark 3.6 we give a proof of the following proposition which
is along the lines of the proof of [19, Theorem 1.2].

PROPOSITION 3.4. Let (X, x0,G) be a based G-CW -complex. Suppose that there
exists an associated map H : X × I × T n−1 → X such that

H(x, 0, t1, . . . , tn−1) = x ,

H(x, 1, t1, . . . , tn−1) = g · x ,

H(x0, s, t1, . . . , tn−1) = f (s, t1, . . . , tn−1) .

Then for any [f ′; g] ∈ Gσn(X, x0,G) with [f ; g] = [f ′; g], there exists also an associated
map H ′ : X × I × T n−1 → X such that H ′(x, 0, t1, . . . , tn−1) = x, H

′
(x, 1, t1, . . . , tn−1) =

g · x, and H ′(x0, s, t1, . . . , tn−1) = f ′(s, t1, . . . , tn−1).
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PROOF. Let F : I × T n−1 × I → X be a homotopy between f and f ′ such that

F(s, t1, . . . , tn−1, 0) = f (s, t1, . . . , tn−1) ,

F (s, t1, . . . , tn−1, 1) = f ′(s, t1, . . . , tn−1) ,

F (0, t1, . . . , tn−1, t) = x0 ,

F (1, t1, . . . , tn−1, t) = g · x0 .

Let Z be the subcomplex of X × I × T n−1 given by (X × 0 × T n−1) ∪ (X × 1 × T n−1) ∪
(x0 × I × T n−1). Define a homotopy K : Z × I → X on Z as follows:

K(x, 0, t1, . . . , tn−1, t) := x ,

K(x, 1, t1, . . . , tn−1, t) := g · x ,

K(x0, s, t1, . . . , tn−1, t) := F(s, t1, . . . , tn−1, t) .

Note that K|Z×0 = H |Z. By the homotopy extension property, there exists a homotopy
L : X×I ×T n−1 ×I → X on X such that L(−,−,−, 0) = H and L(−,−,−, t)|Z×I = K .
Then it can be easily seen that H ′ := L(−,−,−, 1) : X × I × T n−1 → X is an associated
map to f ′. �

DEFINITION 3.5. A based G-space (X, x0,G) with free and properly discontinuous
G-action is said to be homotopically n-equivariant if it satisfies the following: for any ho-
motopy class [f ; g] ∈ σn(X, x0,G), [f ; g] ∈ Gσn(X, x0,G) if and only if there exist
[f ′; g] ∈ Gσn(X, x0,G) with [f ; g] = [f ′; g] and an associated G-map H : X × I ×
T n−1 → X to f ′ such that H(x, 0, t1, . . . , tn−1) = x, H(x, 1, t1, . . . , tn−1) = g · x, and
H(x0, s, t1, . . . , tn−1) = f ′(s, t1, . . . , tn−1). Here G acts trivially on I × T n−1. If (X, x0,G)

is homotopically n-equivariant for any n ≥ 1, then we say that it is homotopically equivariant.

REMARK 3.6. Let (X, x0,G) be a based G-space with free and properly discontinu-
ous G-action and [f ; g] ∈ Gσn(X, x0,G). Then there exists an associated map H : X ×
I × T n−1 → X to f such that H(x, 0, t1, . . . , tn−1) = x, H(x, 1, t1, . . . , tn−1) = g · x,
and H(x0, s, t1, . . . , tn−1) = f (s, t1, . . . , tn−1). Suppose that the map H is a G-map. Let
[f ′; g] ∈ Gσn(X, x0,G) with [f ; g] = [f ′; g]. Suppose that f and f ′ are G-homotopy
equivalent. Let Z be the subcomplex of X × I × T n−1 given by (X × 0 × T n−1) ∪ (X × 1 ×
T n−1) ∪ (x0 × I × T n−1) ∪ (

⋃
g∈G g · x0 × I × T n−1). Define a homotopy K : Z × I → X

on Z as follows:

K(x, 0, t1, . . . , tn−1, t) := x ,

K(x, 1, t1, . . . , tn−1, t) := g · x ,

K(x0, s, t1, . . . , tn−1, t) := F(s, t1, . . . , tn−1, t) ,

K(g · x0, s, t1, . . . , tn−1, t) := g · F(s, t1, . . . , tn−1, t) for any g ∈ G .

If we applyZ andK to Z and K , respectively, in the proof of Proposition 3.4, then we may see
from the G-homotopy extension property (cf. [2]) that [f ′; g] has also an associated G-map
H ′. But it is not necessarily that f and f ′ are G-homotopy equivalent. Thus in Definition 3.5
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we require that for any [f ; g] ∈ Gσn(X, x0,G), there exists an associated G-map H to f ′,
where [f ; g] = [f ′; g]. When we consider the notion of homotopically n-equivariantness,
we may assume that representations of homotopy classes [f ; g] ∈ Gσn(X, x0,G) have an
associated G-map.

It can be seen from the argument of the proof of [10, Theorem I.3] or [19, Theorem 1.3]
that for any G-CW -complex X, if λ : I → X is a path from x0 ∈ X to x1 ∈ X, then λ induces
an isomorphism

λ∗ : Gσn(X, x0,G)
∼=→ Gσn(X, x1,G)

such that λ∗([f ; g]) = [λnρn + f + gλn; g], where ρn : I × T n−1 → I × T n−1 is a map
defined by ρn(s, t1, . . . , tn−1) := (1 − s, t1, . . . , tn−1) and λn : I × T n−1 → X is a map de-
fined by λn(s, t1, t2, . . . , tn−1) := λ(s). By the similar argument, we can show the following
proposition which says that the notion of homotopically n-equivariant is independent of the
base point for a path connected free G-CW -complex.

PROPOSITION 3.7. Let X be a path connected CW -complex with free G-action and
n a positive integer. If (X, x0,G) is homotopically n-equivariant for some x0 ∈ X, then
(X, x1,G) is homotopically n-equivariant for any x1 ∈ X.

PROOF. For any point x1 ∈X, let λ be a path from x0 to x1. Let [f ′; g]∈Gσn(X, x1,G).
Since λ∗ : Gσn(X, x0,G) → Gσn(X, x1,G) is an isomorphism, there exists [f ; g] ∈
Gσn(X, x0,G) such that [f ′; g] = [λnρn + f + gλn; g]. Since (X, x0,G) is homotopi-
cally n-equivariant, it follows from Remark 3.6 that there exist an associated G-map H :
X × I × T n−1 → X to f such that H(x, 0, t1, . . . , tn−1) = x, H(x, 1, t1, . . . , tn−1) = g · x,
and H(x0, s, t1, . . . , tn−1) = f (s, t1, . . . , tn−1). Consider a map p : X × T n−1 → X defined
by p(x, t1, . . . , tn−1) := x. It is clear that p is a G-map. Define A := ⋃

g∈G{g ·x1}. It is clear

that A× I ×T n−1 is a G-CW -subcomplex of X × I ×T n−1. Define F : A× I ×T n−1 → X

by F(g · x1, s, t1, . . . , tn−1) := g · λnρn(s, t1, . . . , tn−1) for any g ∈ G. It is clear that for any
(g · x1, t1, . . . , tn−1) ∈ A × T n−1, F(g · x1, s, t1, . . . , tn−1) = g · x1 so that F |A×{0}×T n−1 =
p|A×{0}×T n−1 , and F is a G-map. By the G-homotopy extension property, there is a G-
homotopy K : X× I ×T n−1 → X such that K|X×{0}×T n−1 = p and K|A×I×T n−1 = F . Thus
for any x ∈ X, K(x, s, t1, . . . , tn−1) = x and K(x1, s, t1, . . . , tn−1) = λnρn(s, t1, . . . , tn−1).
Define L : X × I × T n−1 → X by L(x, s, t1, . . . , tn−1) :=

⎧
⎪⎪⎨

⎪⎪⎩

K(x, 3s, t1, . . . , tn−1) if 0 ≤ s ≤ 1
3

H(K(x, 1, t1, . . . , tn−1), 3s − 1, t1, . . . , tn−1) if 1
3 ≤ s ≤ 2

3

g · K(x, 3(1 − s), t1, . . . , tn−1) if 2
3 ≤ s ≤ 1 .

It is clear that L is a G-map such that

L(x1, s, t1, . . . , tn) = (λnρn + f + gλn)(s, t1, . . . , tn) ∈ Gσn(X, x1,G) .

Hence L is an associated G-map to f ′ so that (X, x1,G) is homotopically n-equivariant. �
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PROPOSITION 3.8. Let G be a group which acts freely and properly discontinuously
on a space X with a base point x0. If (X, x0,G) is homotopically n-equivariant, then it is
homotopically k-equivariant for every 1 ≤ k ≤ n.

PROOF. Let k be an integer with 1 ≤ k ≤ n and [f ; g] ∈ Gσk(X, x0,G). Then there
exists an associated map H : X × I × T k−1 → X to f such that

H(x, 0, t1, . . . , tk−1) = x ,

H(x, 1, t1, . . . , tk−1) = g · x ,

H(x0, s, t1, . . . , tk−1) = f (s, t1, . . . , tk−1) .

Define a map f : I × T n−1 −→ X by f (s, t1, . . . , tn−1) := f (s, t1, . . . , tk−1) and a map
H : X × I × T n−1 → X by H(s, t1, . . . , tn−1) := H(s, t1, . . . , tk−1). It is clear that [f ; g] ∈
Gσn(X, x0,G). Since (X, x0,G) is homotopically n-equivariant, it follows from Remark 3.6
that there exist an associated G-map F : X × I × T n−1 → X to f such that

F(x, 0, t1, . . . , tn−1) = x ,

F (x, 1, t1, . . . , tn−1) = g · x
F(x0, s, t1, . . . , tn−1) = f (s, t1, . . . , tn−1) = f (s, t1, . . . , tk−1) .

Define a map F : X × I × T k−1 → X by

F(x, s, t1, . . . , tk−1) := F(x, s, t1, . . . , tk−1, 0, . . . , 0) .

Then it is clear that F is an associated G-map to f . Hence [f ; g] is homotopically k-
equivariant. This completes the proof. �

EXAMPLE 3.9. (a) Let Zm = 〈1〉 act freely and properly discontinuously on S1 ⊂ C

by 1 · eiθ = ei(θ+ 2π
m

). By Lemma 3.2, it follows that (Zm)0 = Zm. Since S1 is an H -
space, it is Gottlieb-Fox and so τn(S

1) = Gτn(S
1) ∼= Z for any n ≥ 1. Thus we may see

that (S1,Zm) is Gottlieb-Rhodes. It can be easily seen that for any n ≥ 1, σn(S
1, 1,Zm) =

Gσn(S
1, 1,Zm) ∼= Z, which is generated by [f ; g], where f = {eiθ | 0 ≤ θ ≤ 2π

m
}. Define a

homotopy H : S1 × I × T n−1 → S1 by H(eiθ , s, t1, . . . , tn−1) := ei(θ+ 2πs
m ). It can be easily

checked that H is an associated G-map to f . Hence (S1,Zm) is homotopically equivariant.
(b) Let n ≥ 2 and m be positive integers. Consider S2n−1 as the unit sphere in C

n,
i.e., S2n−1 := {(z1, . . . , zn) ∈ C

n | |z1|2 + · · · + |zn|2 = 1}. Then the map (z1, . . . , zn) →
(e

2πi
m z1, . . . , e

2πi
m zn) defines a free action of the finite cyclic group Zm on S2n−1. By Lemma

3.2, it follows that (Zm)0 = Zm. Since τ1(S
2n−1) = Gτ1(S

2n−1) = 1, we may see that
σ1(S

2n−1,Zm) ∼= Gσ1(S
2n−1,Zm) ∼= Zm. Moreover it can be seen that Gσ1(S

2n−1,Zm)

is generated by [f1; g], where f1 = {(eiθ , 0, . . . , 0) | 0 ≤ θ ≤ 2π
m

}. Define a homotopy
H1 : S2n−1 × I → S2n−1 by

H1((z1, . . . , zn), s) = (e
2πsi
m z1, . . . , e

2πsi
m zn) .
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It can be checked that H1 is an associated Zm-map to f1. Thus (S2n−1,Zm) is homotopically
1-equivariant. By the same argument, we may see that Gσ2n−2(S

2n−1,Zm) ∼= Zm which is
generated by [f2n−2; g], where f2n−2 : I × T 2n−3 → S2n−1 is defined by f2n−2(s, t1, . . . ,

t2n−3) := f1(s). Define a homotopy H2n−2 : S2n−1 × I × T 2n−3 → S2n−1 by

H2n−2((z1, . . . , zn), s, t1, . . . , t2n−3) := H1((z1, . . . , zn), s) .

It can be seen that H2n−2 is an associated Zm-map to f2n−2. Thus we can conclude that
(S2n−1,Zm) is also homotopically (2n − 2)-equivariant. Moreover it follows from Proposi-
tion 3.8 that (S2n−1,Zm) is homotopically k-equivariant for any 1 ≤ k ≤ 2n − 2.

It is of interest to find out which spaces with free and properly discontinuous G-action
are homotopically n-equivariant owing to Theorem 3.11, which is one of the main results of
this paper.

The following lemma is immediate and we state it without its proof.

LEMMA 3.10. For any n ≥ 1, let in : I×T n−1 ↪→ I×T n and πn : I×T n � I×T n−1

be the map defined by

in : (s, t1, . . . , tn−1) → (s, t1, . . . , tn−1, 0)

πn : (s, t1, . . . , tn−1, tn) → (s, t1, . . . , tn−1) .

The maps in and πn induces the following injective homomorphisms and surjective homomor-
phisms:

(a) in∗ : Gσn+1(X, x0,G) � Gσn(X, x0,G), in∗([f ; g]) = [f ◦ in; g].
(b) in∗ : Gτn+1(X, x0) � Gτn(X, x0), in∗([f ]) = [f ◦ in].
(c) πn∗ : Gσn(X, x0,G) ↪→ Gσn+1(X, x0,G), πn∗([f ; g]) = [f ◦ πn; g].
(d) πn∗ : Gτn(X, x0) ↪→ Gτn+1(X, x0), πn∗([f ]) = [f ◦ πn].
THEOREM 3.11. Let G be a group which acts freely and properly discontinuously on

a compactly generated Hausdorff space X with a base point x0. If (X, x0,G) is homotopically
n-equivariant, then the map

Φk : Gσk(X, x0,G) → Gτk(X/G,p(x0))

defined by Φk([f ; g]) = [p ◦ f ] is an isomorphism for all 1 ≤ k ≤ n, where p : X → X/G

is a regular covering projection.

PROOF. We will show this by induction. Consider first the n = 1 case. Take any
[f ; g] ∈ Gσ1(X, x0,G). Since (X, x0,G) is homotopically n-equivariant, it follows from
Proposition 3.8 and Remark 3.6 that there exists an affliated G-map H : X × I → X to f

such that H(x, 0) = x,H(x, 1) = g · x and H(x0, t) = f (t). Define a map K : X/G × I →
X/G by K(p(x), t) = p ◦ H(x, t). In order to see that K is well-defined, suppose that
p(x1) = p(x2). Then x1 = g · x2 for some g ∈ G. Since H is a G-map, it follows that

K(p(x1), t) = p ◦ H(x1, t) = p ◦ H(g · x2, t)

= p(g · H(x2, t)) = p(H(x2, t)) = K(p(x2), t) .
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Thus K is well-defined continuous map. Since K(p(x), 0) = p(x) = K(p(x), 1) and
K(p(x0), t) = p ◦ f (t), it follows that [p ◦ f ] ∈ Gτ1(X/G). Suppose now that [f1; g] =
[f2; g]. It is clear that f1 � f2, and so Φ([f1; g]) = [p ◦f1] = [p ◦f2] = Φ([f2; g]). Hence
we can define a well-defined homomorphism

Φ1 : Gσ1(X, x0,G) → Gτ1(X/G,p(x0))

by Φ1([f ; g]) = [p ◦ f ]. Recall that p∗ : σ1(X, x0,G) → τ1(X/G,p(x0)) defined by
p∗([f ; g]) = [p ◦ f ] is an isomorphism ([16], [8, Theorem 1.2]). Thus a restriction homo-
morphism Φ = p∗|Gσ1(X,x0,G) is a monomorphism.

In order to show that Φ1 is surjective, take any [f ] ∈ Gτ1(X/G,p(x0)). Then there
exists a cyclic homotopy F : X/G × I → X/G such that F(p(x0), t) = f (t). For each
p(x) ∈ X/G, define fp(x) : I → X/G by fp(x)(t) := F(p(x), t). Since fp(x)(t) is a
loop at p(x0) in X/G, it follows from the lifting theorem ([14, Lemma 54.1]) that for any
x ∈ p−1(p(x)), there exists a unique lifting path f̃p(x) : I → X such that p ◦ f̃p(x) = fp(x)

and f̃p(x)(0) = x. Now define H : X × I → X by H(x, t) := f̃p(x)(t). It is clear that
H is well-defined and continuous, since I is locally compact Hausdorff (cf. [14]). Note that
H(x, 0) = x and H(x, 1) = g · x for some g ∈ G. Thus H is a homotopy between 1X and
g · 1X. and thereby [f̃p(x0); g] ∈ Gσ1(X, x0,G). Therefore

Φ1([f̃p(x0); g]) = [p ◦ f̃p(x0)] = [fp(x0)] = [f ] .

Hence Φ1 is surjective and thereby Gσ1(X, x0,G) ∼= Gτ1(X/G,p(x0)).
Now assume that Φk : Gσk(X, x0,G) ∼= Gτk(X/G,p(x0)) is true for k < n. From

Lemma 3.10 we have the following commutative diagram:

Gτn−1(ΩX, cx0)

��

Kn

��
1 �� Gτn(X, x0) ��

��

Gσn(X, x0,G) ��

��

G0 �� 1

1 �� Gτn−1(X, x0) �� Gσn−1(X, x0,G) �� G0 �� 1 ,

where cx0 is the constant loop at x0, G0 is the subgroup of G consisting of elements g consid-
ered as homeomorphisms of X which are freely homotopic to 1X, and Kn := ker(Gσn(X, x0,

G) → Gσn−1(X, x0,G)). It can be easily seen that Gτn−1(ΩX, x0) ∼= Kn. Note that
Gτn(X, x0)/Gτn−1(ΩX, cx0)

∼= Gτn−1(X, x0). Note also that

Kn
∼= Gτn−1(ΩX, cx0) = τn−1(ΩX, cx0)

∼=
n∏

i=2

πi(X, x0)
αi .

Consider the following commutative diagram:
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∏n
i=2 πi(X, x0)αi

∼=
��

1 �� Kn
��

��

Gσn(X, x0,G) ��

��

Gσn−1(X, x0,G) ��

∼=
��

1

1 �� Gτn−1(Ω(X/G), cp(x0))
�� Gτn(X/G,p(x0)) �� Gτn−1(X/G, p(x0)) �� 1

τn−1(Ω(X/G), cp(x0))

∼=
��∏n

i=2 πi(X/G, x0)αi .

Since πi(X) = πi(X/G) for i ≥ 2, we have Gτn−1(Ω(X/G), cx0)
∼= Kn. Hence Φn :

Gσn(X, x0,G) → Gτn(X/G,p(x0)) is an isomorphism by the five lemma. This completes
the proof. �

COROLLARY 3.12. Let G be a group which acts freely and properly discontinuously
on a compactly generated Hausdorff space X with a base point x0. If (X, x0,G) is homotopi-
cally equivariant, then the map

Φn : Gσn(X, x0,G) → Gτn(X/G,p(x0))

defined by Φn([f ; g]) = [p ◦ f ] is an isomorphism for all n, where p : X → X/G is a
regular covering map.

PROOF. This follows immediately from Theorem 3.11. �

As we mentioned in preliminaries, Gottlieb-Rhodes groups Gσn(X,x0,G) are not abelian
in general. But, it follows immediately from Theorem 3.11 that for a compactly gener-
ated Hausdorff based G-space (X, x0,G) with free and properly discontinuous G-action, if
(X, x0,G) is homotopically n-equivariant, then Gσn(X, x0,G) is abelian.

COROLLARY 3.13. Let G be a group which acts freely and properly discontinuously
on a compactly generated Hausdorff space X with a base point x0. If (X, x0,G) is homotopi-
cally n-equivariant, then Gσn(X, x0,G) is abelian.

EXAMPLE 3.14. Let n and m be positive integers which are greater than or equal to
2. Consider S2n−1 with free and properly discontinuous Zm-action in Example 3.9. Then
(S2n−1,Zm) is homotopically k-equivariant for any 1 ≤ k ≤ 2n − 2 by Example 3.9. Hence
we see that Gσk(S

2n−1,Zm) ∼= Gτk(S
2n−1/Zm) for all 1 ≤ k ≤ 2n − 2 by Theorem 3.11.

Therefore we conclude that Gσk(S
2n−1,Zm) is abelian for all 1 ≤ k ≤ 2n − 2 by Corol-

lary 3.13. Similarly we can show that Gσk(S
1,Zm) ∼= Gτk(S

1/Zm) and Gσk(S
1,Zm) is

abelian for all k ≥ 1 by Example 3.9, Theorem 3.11, and Corollary 3.13.
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COROLLARY 3.15. Let G be a group which acts freely and properly discontinuously
on a compactly generated Hausdorff path-connected space X with a base point x0. Let n be
any positive integer. If (X, x0,G) is homotopically n-equivariant, then X/G is n-Gottlieb
if and only if X is n-Gottlieb-Rhodes. Thus if (X, x0,G) is homotopically equivariant, then
X/G is Gottlieb if and only if X is Gottlieb-Rhodes.

PROOF. Recall that a compactly generated Hausdorff path connected space X is n-
Gottlieb if and only if it is n-Gottlieb-Fox. Note that the isomorphisms σk(X,G) ∼= τk(X/G)

and Gσk(X,G) ∼= Gτk(X/G) are given by the same map Φk . Thus we may see from Theo-
rems 3.1 and 3.11 that

X/G is n-Gottlieb if and only if X/G is n-Gottlieb-Fox

if and only if τk(X/G) = Gτk(X/G) for all 1 ≤ k ≤ n

if and only if σk(X,G) = Gσk(X,G) for all 1 ≤ k ≤ n

if and only if X is n-Gottlieb-Rhodes .

Hence we have the desired result. �

4. Realization problems. By definition, an extension of a group N by a group G is a
short exact sequence of groups 1 → N → Γ → G → 1. Two extensions 1 → N1 → Γ1 →
G1 → 1 and 1 → N2 → Γ2 → G2 → 1 are said to be isomorphic if there are isomorphisms
N1 → N2, G1 → G2 and Γ1 → Γ2 such that the following diagram commutes:

1 �� N1 ��

��

Γ1 ��

��

G1 ��

��

1

1 �� N2 �� Γ2 �� G2 �� 1 .

DEFINITION 4.1 ([13, Definition 2.1]). Let θ1 and θ2 be actions of groups G1 and G2

on spaces X1 and X2, respectively. The action θ1 is said to be homotopy conjugate to θ2,
denoted by θ1 ∼ θ2, if there exists a homotopy equivalence h : X1 → X2 and an isomorphism
ϕ : G1 → G2 such that h ◦ θ1(G) = θ2(ϕ(g)) ◦ h for all g ∈ G1.

REMARK 4.2. If we denote the actions θ1 and θ2 by · and ∗, respectively, then the
condition above in Definition 4.1 can be rephrased as follows: h(g · x) = ϕ(g) ∗ h(x) for all
g ∈ G1 and all x ∈ X1.

LEMMA 4.3. Let θ1 and θ2 be free and properly discontinuous actions of groups G1

and G2 on path-connected spaces X1 and X2, respectively. Assume that θ1 is homotopy con-
jugate to θ2, then the short exact sequences 1 → π1(X1) → π1(X1/G1) → G1 → 1 and
1 → π1(X2) → π1(X2/G2) → G2 → 1 are isomorphic so that the following diagram
commutes:
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1 �� π1(X1) ��

∼=
��

π1(X1/G1) ��

∼=
��

G1 ��

∼=
��

1

1 �� π1(X2) �� π1(X2/G2) �� G2 �� 1 .

PROOF. It can be proved by the same argument as in [13, Lemma 2.1]. �

LEMMA 4.4. Let θ1 and θ2 be free actions of groups G1 and G2 on CW -complexes X1

and X2 of the type K(N, 1), respectively. Assume that there exist isomorphisms ϕ : G1 → G2

and ξ : π1(X1/G1) → π1(X2/G2) such that the following diagram commutes:

π1(X1/G1) ��

ξ

��

G1

ϕ

��
π1(X2/G2) �� G2 .

Then θ1 is homotopy conjugate to θ2 by the isomorphism ϕ and a homotopy equivalence
h : X1 → X2 such that ξ ◦ pr1∗ = pr2∗ ◦ h∗, where pri∗ : π1(Xi) → π1(Xi/Gi).

PROOF. It can be proved by the same argument as in [13, Lemma 2.2]. �

LEMMA 4.5. Let 1 → N → Γ → G → 1 be an exact sequence of groups. Then there
exist a K(N, 1)-complex X and a free action θ of G on X such that the following diagram
commutes:

1 �� N ��

∼=
��

Γ ��

∼=
��

G ��

∼=
��

1

1 �� π1(X) �� π1(X/G) �� G �� 1 .

Here X/G is a K(Γ, 1)-complex.

PROOF. It can be proved by the same argument as in [13, Lemma 2.3]. �

THEOREM 4.6. Let 1 → N → Γ → G → 1 be an exact sequence of groups. Then
there is a one-to-one correspondence between the following two sets:

(a) the set of all free actions up to homotopy conjugation of G on K(N, 1)-complexes,
(b) the set of all classes of isomorphic extensions of N by G.

PROOF. It follows from Lemmas 4.3, 4.4, and 4.5. �

DEFINITION 4.7. Let n be a positive integer.
(1) An exact sequence of groups 1 → N → Γ → G → 1 is said to be n-Rhodes-Fox
realizable if there exists a path-connected space X with G-action such that 1 → τn(X) →
σn(X,G) → G → 1 is isomorphic to 1 → N → Γ → G → 1, i.e., the following diagram
commutes:
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1 �� N ��

∼=
��

Γ ��

∼=
��

G ��

∼=
��

1

1 �� τn(X) �� σn(X,G) �� G �� 1 .

(2) An exact sequence of groups 1 → N → Γ → Q → 1 with N abelian is said to be
n-(Gottlieb-Rhodes)-(Gottlieb-Fox) realizable if there exists a path-connected space X with
G-action such that 1 → Gτn(X) → Gσn(X,G) → G0 → 1 is isomorphic to 1 → N →
Γ → Q → 1, i.e., the following diagram commutes:

1 �� N ��

∼=
��

Γ ��

∼=
��

Q ��

∼=
��

1

1 �� Gτn(X) �� Gσn(X,G) �� G0 �� 1 .

THEOREM 4.8. Every short exact sequence of groups 1 → N → Γ → G → 1
is n-Rhodes-Fox realizable for any positive integer n. More precisely, there is a K(N, 1)-
complex X with free G-action such that for any positive integer n, the exact sequence of
groups 1 → τn(X) → σn(X,G) → G → 1 is isomorphic to 1 → N → Γ → G → 1.

PROOF. From Lemma 4.5 it follows that there exists a free G-CW -complex X of the
type K(N, 1) such that 1 → τ1(X) → τ1(X/G) → G → 1 is isomorphic to 1 → N →
Γ → G → 1. Note that X/G is a CW -complex of the type K(Γ, 1). From Theorem 3.1 and
the definition of homomorphisms τ1(X) → τ1(X/G) and τ1(X) → σ1(X,G) it follows that
the following diagram commutes:

τ1(X) ��

=
��

τ1(X/G)

∼=
��

τ1(X) �� σ1(X,G) .

Thus we can show that 1 → τ1(X) → σ1(X,G) → G → 1 is isomorphic to 1 → N →
Γ → G → 1. Since X and X/G are CW -complexex of the type K(N, 1) and K(Γ, 1),
respectively, it follows from [9, Example 1.4] that τn(X) ∼= N and τn(X/G) ∼= Γ for all
n ≥ 1. By the definition of homomorphisms τ1(X) → τ1(X/G), τn(X) → τn(X/G), and
τn(X) → σn(X/G) we may see that the following diagram commutes:

τ1(X) ��

∼=
��

τ1(X/G)

∼=
��

τn(X) ��

=
��

τn(X/G)

∼=
��

τn(X) �� σn(X,G) .
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Hence we may conclude that 1 → N → Γ → G → 1 is isomorphic to 1 → τn(X) →
σn(X,G) → G → 1. �

COROLLARY 4.9. Let 1 → N → Γ → G → 1 be a short exact sequence of abelian
groups. If the realizable free G-CW -complex X in Theorem 4.8 admits a homotopically n-
equivariant for a positive integer n, then the short exact sequence is n-(Gottlieb-Rhodes)-
(Gottlieb-Fox) realizable.

PROOF. Note that X and X/G are K(N, 1)-complex and K(Γ, 1)-complex, respec-
tively. Since any H -space is Gottlieb-Fox, it follows that X and X/G are Gottlieb-Fox. Thus
τn(X) = Gτn(X) and τn(X/G) = Gτn(X/G). From Theorems 3.1 and 3.11 it follows
that σn(X,G) ∼= τn(X/G) = Gτn(X/G) ∼= Gσn(X,G). Hence we can conclude that the
following diagram commutes so that 1 → N → Γ → G → 1 is n-(Gottlieb-Rhodes)-
(Gottlieb-Fox) realizable:

1 �� Gτn(X) ��

∼=
��

Gσn(X,G) ��

∼=
��

G0 ��

∼=
��

1

1 �� N �� Γ �� G �� 1 .

�

The following proposition implies that the n-th Rhodes groups and the n-th Gottlieb-
Rhodes groups preserve the product. The versions of the first Rhodes groups and the first
Gottlieb-Rhodes groups was proved in [16, Theorem 8] and [19, Theorem 1.9], respectively.
Since their arguments can be applied to the higher dimensional case, we omit the proof of the
following.

PROPOSITION 4.10. Let G and H be groups acting on spaces X and Y , respectively.
Then the following hold:

(1) σn(X, x0,G) × σn(Y, y0,H) ∼= σn(X × Y, (x0, y0),G × H), where G × H acts
componentwisely on the product space X × Y .

(2) Gσn(X, x0,G) × Gσn(Y, y0,H) ∼= Gσn(X × Y, (x0, y0),G × H), where G × H

acts componentwisely on the product space X × Y .

EXAMPLE 4.11. It can be easily seen that there exist three non-isomorphic extensions
of Z by Z2 as follows:

(a) 1 ��
Z

1 �→(1,0)
��
Z × Z2

(x,1) �→1
��
Z2 �� 1 .

(b) 1 ��
Z

1 �→2
��
Z

1 �→1
��
Z2 �� 1 .

(c) 1 ��
Z

1 �→(1,0)
��
Z � Z2

(x,1) �→1
��
Z2 �� 1 .
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Let X be the space S1 × S∞, where S∞ = ˜K(Z2, 1) is an infinite dimensional sphere. Note
that X is a CW -complex of the type K(Z, 1). From Theorem 4.8 it follows that the exact
sequences above are n-Rhodes-Fox realizable for any positive integer n. We give a realization
of them as follows. Consider S1 := {eiθ | 0 ≤ θ ≤ 2π} ⊂ C. Let 1 be a base point of S1 and
n a positive integer.

(a) Assume that Z2 acts on S1 trivially and acts on S∞ by the reflection in the center.
Then 1 · (x, y) = (x,−y) where (x, y) ∈ S1 × S∞. From Proposition 4.10 it follows that
σn(S

1 × S∞,Z2) ∼= τn(S
1) × σn(S

∞,Z2). By Theorem 3.1 we may see that σn(S
∞,Z2) ∼=

τn(K(Z2, 1)) ∼= Z2. Therefore σn(S
1 × S∞,Z2) ∼= Z × Z2. Hence the first extension is

n-Rhodes-Fox realizable by X with the Z2-action above.
(b) Assume that Z2 acts on S1 by 1 · eiθ = ei(θ+π) and acts on S∞ trivially. By Propo-

sition 4.10, we have σn(S
1 × S∞,Z2) ∼= σn(S

1,Z2) × τn(S
∞) ∼= σn(S

1,Z2). Let f be the
upper half-circle in S1 from 1 to −1. Then 1 ·f is the lower half-circle from −1 to 1. Thus we
may see that if α is a loop based at 1 whose winding number is 1, then α = f + 1 · f . Hence
every loop based at 1 is generated by [f ; 1]. It is clear that every element in σ1(S

1, 1,Z2)

is generated by a linear combination of f and α. Thus every path in σ1(S
1, 1,Z2) is gen-

erated by [f ; 1] and so σ1(S
1, 1,Z2) ∼= Z. Hence σ1(S

1 × S∞,Z2) ∼= Z. By the proof
of Theorem 4.8, we may conclude that σn(S

1 × S∞,Z2) ∼= Z and the second extension is
n-Rhodes-Fox realizable by X with the Z2-action above.

(c) Assume that Z2 acts diagonally on S1 and S∞ by the reflection in the y-axis and by
the reflection in the center, respectively. Let s0 be a base point of S∞ and h be an arbitrary
path from s0 to 1 · s0. Note that h+ 1 ·h is an inessential loop, since S∞ is contractible. It can
be easily seen that [(c1, h), 1] is a torsion-element of order 2, where c1 is the constant loop in
S1 based at 1. Thus we may see that σ1(S

1 × S∞,Z2) is isomorphic to Z × Z2 or Z � Z2.
Let fu be the upper half-circle and fl be the lower half-circle from 1 to −1 in S1. It is clear
that fu is not homotopic to fl . Note that fu + 1 · fl is a loop in S1 based at 1 whose winding
number is 1, and fl + 1 ·fu is a loop based in S1 at 1 whose winding number is −1. It implies
that σ1(S

1 ×S∞,Z2) is not an abelian group and so σ1(S
1 ×S∞,Z2) ∼= Z�Z2. By the proof

of Theorem 4.8, we may conclude that σn(S
1 × S∞,Z2) ∼= Z�Z2 and the third extension is

n-Rhodes-Fox realizable by X with the Z2-action above.

Recall that a transformation group (X,G) admits a family of preferred traces at x0 if and
only if Gσ1(X, x0,G) ∼= Gτ1(X, x0)�G0 if and only if Gσ1(X, x0,G) ∼= Gτ1(X, x0)×G0.
By the same argument as in the proof of [20, Theorem 3, Theorem 4], we can show the
following theorem without any difficulty.

THEOREM 4.12. For a transformation group (X,G) and any n ≥ 1, the following are
equivalent:

(a) (X,G) admits a family of preferred traces at x0.
(b) Gσn(X, x0,G) ∼= Gτn(X, x0) � G0.
(c) Gσn(X, x0,G) ∼= Gτn(X, x0) × G0.
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COROLLARY 4.13. Let 1 → N → Γ → Q → 1 be a short exact sequence of groups
with N abelian. Suppose that Γ is isomorphic to the semidirect product N � Q but not the
direct product N × Q. Then for any positive integer n, there is no K(N, 1)-complex X with
free G-action such that G0 = Q and 1 → Gτn(X) → Gσn(X,G) → G0 → 1 is isomorphic
to 1 → N → Γ → Q → 1.

PROOF. By Theorem 4.8, there is a K(N, 1)-complex X with free Q-action such that
σn(X,G) ∼= τn(X) � Q. Since N is abelian, it follows that X is an H -space and so τn(X) =
Gτn(X). Suppose that there is a K(N, 1)-complex X with free G-action such that G0 ∼= Q

and 1 → Gτn(X) → Gσn(X,G) → G0 → 1 is isomorphic to 1 → N → Γ → Q → 1.
Then Gσn(X,G) ∼= Gτn(X)�G0 ∼= N�Q. But by Theorem 4.12, Gσn(X,G) ∼= Gτn(X)×
G0 ∼= N × Q, which makes a contradiction. �

LEMMA 4.14. Let Γ be an abelian group and X a K(Γ, 1)-space. Then for any posi-
tive integer n, τn(X) = Gτn(X) ∼= Γ .

PROOF. Since Γ is abelian, any K(Γ, 1)-space X is an H -space and so it is a Gottlieb-
Fox space. Thus τn(X) = Gτn(X) ∼= ∏n

i=1 Gi(X)γi , where γi = (
n−1
i−1

)
. Since X is a

K(Γ, 1)-space, the n-th homotopy group πi(X) is trivial for any i ≥ 2. Thus Gi(X) is also
trivial for any i ≥ 2. Therefore we may conclude that τn(X) ∼= ∏n

i=1 Gi(X)γi ∼= G1(X) =
π1(X) ∼= Γ . �

THEOREM 4.15. Let Γ be a finitely generated abelian group and n any positive inte-
ger. Then there exists a compact manifold X such that τn(X) ∼= Γ .

PROOF. Since Γ is finitely generated abelian, it follows that there exist nonnegative
integers s and t such that Γ ∼= (

⊕s
i=1 Z)⊕(

⊕t
j=1 Zmj ). Define X as

∏s
i=1 Sn

i ×∏t
j=1 S2n+1

j /

Zmj , where Zmj acts freely on S2n+1
j as in Example 3.9. Note that τn(S

n) ∼= Z. Since

1 → τn(S
2n+1) → σn(S

2n+1,Zmj ) → Zmj → 1 is exact and τn(S
2n+1) ∼= πn(S

2n+1) = 1,
we may see that σn(S

2n+1,Zmj )
∼= Zmj . From Theorem 3.1 it follows that τn(S

2n+1/Zmj )
∼=

σn(S
2n+1,Zmj )

∼= Zmj . By Proposition 4.10, we can conclude that τn(X) ∼= Γ . �

As we noted earlier, Oprea and Strom [15] proved the n = 1 case of the following
theorem. They showed that the higher dimensional version of the following theorem does
not hold in ordinary Gottlieb groups. But for Gottlieb-Fox groups, we can show that for any
positive integer n, every finitely generated abelian group is realized by the n-th Gottlieb-Fox
group of a compact manifold,

THEOREM 4.16. Let Γ be a finitely generated abelian group and n any positive inte-
ger. Then there exists a compact manifold X such that Gτn(X) ∼= Γ .

PROOF. The n = 1 case was shown in [15, Theorem 3.1]. Let n ≥ 2 be a positive inte-
ger and Γ ∼= (

⊕s
i=1 Z) ⊕ (

⊕t
j=1 Zmj ). Put X := ∏s

i=1 S1
i × ∏t

j=1 S2n+1
j /Zmj , where Zmj

acts freely on S2n+1
j as in Example 3.9. Note that τn(S

1) = Gτn(S
1) ∼= Z by Lemma 4.14, and

σn(S
2n+1,Zmj )

∼= Zmj as in the proof of Theorem 4.15. Since Gτn(S
2n+1) ≤ τn(S

2n+1) =
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πn(S
2n+1) = 1 and 1 → Gτn(S

2n+1) → Gσn(S
2n+1,Zmj ) → (Zmj )0 → 1 is exact,

it follows from Lemma 3.2 that Gσ2(S
3,Zmj )

∼= Zmj . By Example 3.9 we may see that
(S2n+1,Zmj ) is homotopically n-equivariant. Thus it follows from Theorem 3.11 that

Gτn(S
2n+1/Zmj )

∼= Gσn(S
2n+1,Zmj )

∼= Zmj .

Hence we may see from Proposition 4.10 that

Gτn(X) ∼= Gτn

( s∏

i=1

S1
i

)
× Gτn

( t∏

j=1

S2n+1
j /Zmj

)

∼=
s⊕

i=1

Gτn(S
1
i ) ⊕

t⊕

j=1

Gτn(S
2n+1
j /Zmj )

∼=
s⊕

i=1

Z ⊕
t⊕

j=1

Zmj
∼= Γ .

�

COROLLARY 4.17. Let Γ be a finitely generated abelian group and n any positive
integer. Then there exists a compact manifold X which is a Gottlieb-Fox space such that
τn(X) = Gτn(X) ∼= Γ .

PROOF. It follows immediately from Theorems 4.15 and 4.16. �

THEOREM 4.18. Let Γ be a finitely generated abelian group. Then for any positive
integer n, there exists a compact G-manifold X such that the exact sequence of groups 1 →
Gτn(X) → Gσn(X,G) → G → 1 is isomorphic to 1 → N → Γ → G → 1, where N is a
free abelian subgroup of Γ and G is a torsion subgroup of Γ .

PROOF. Let Γ ∼= (
⊕s

i=1 Z) ⊕ (
⊕t

j=1 Zmj ). Put N := ⊕s
i=1 Z and G := ∏t

j=1 Zmj .

Define X as
∏s

i=1 S1
i × ∏t

j=1 S2n+1
j . Let G act on each S1

i trivially and act freely on each

S2n+1
j as in Example 3.9. Note that τn(S

1) = Gτn(S
1) ∼= Z. Since Gτn(S

2n+1) ≤ τn(S
2n+1)

= πn(S
2n+1) = 1 and 1 → Gτn(S

2n+1) → Gσn(S
2n+1,Zmj ) → (Zmj )0 → 1 is exact,

it follows from Lemma 3.2 that Gσn(S
2n+1,Zmj )

∼= Zmj . Thus we may conclude from
Proposition 4.10 that

Gσn(X,G) ∼= Gτn

( s∏

i=1

S1
i

)
× Gσn

( t∏

j=1

S2n+1
j ,G

)

∼=
s⊕

i=1

Gτn(S
1
i ) ⊕

t⊕

j=1

Gσn(S
2n+1
j ,Zmj )

∼=
s⊕

i=1

Z ⊕
t⊕

j=1

Zmj
∼= Γ .
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Note that Gτn(X) ∼= ⊕s
i=1 Gτn(S

1
i ) ⊕ ⊕t

j=1 Gτn(S
2n+1
j ) ∼= ⊕s

i=1 Z. Moreover it can be
seen that 1 → Gτn(X) → Gσn(X,G) → G → 1 is isomorphic to 1 → N → Γ → G → 1.
This completes the proof. �
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