ON THE HOLOMORPHIC AUTOMORPHISM GROUP OF A GENERALIZED HARTOGS TRIANGLE

Akio Kodama

(Received May 23, 2014, revised August 12, 2014)

Abstract

In this paper, we completely determine the structure of the holomorphic automorphism group of a generalized Hartogs triangle and obtain natural generalizations of some results due to Landucci and Chen-Xu. These give affirmative answers to some open problems posed by Jarnicki and Pflug.

1. Introduction. For any positive integers ℓ_{i}, m_{j} and any positive real numbers p_{i}, q_{j} with $1 \leq i \leq I, 1 \leq j \leq J$, we set

$$
\ell=\left(\ell_{1}, \ldots, \ell_{I}\right), m=\left(m_{1}, \ldots, m_{J}\right), p=\left(p_{1}, \ldots, p_{I}\right), q=\left(q_{1}, \ldots, q_{J}\right)
$$

and define a generalized Hartogs triangle $\mathcal{H}_{\ell, m}^{p, q}$ in \mathbf{C}^{N} by

$$
\mathcal{H}_{\ell, m}^{p, q}=\left\{(z, w) \in \mathbf{C}^{N} ; \sum_{i=1}^{I}\left\|z_{i}\right\|^{2 p_{i}}<\sum_{j=1}^{J}\left\|w_{j}\right\|^{2 q_{j}}<1\right\},
$$

where

$$
\begin{aligned}
& z=\left(z_{1}, \ldots, z_{I}\right) \in \mathbf{C}^{\ell_{1}} \times \cdots \times \mathbf{C}^{\ell_{I}}=\mathbf{C}^{|\ell|}, \quad|\ell|=\ell_{1}+\cdots+\ell_{I}, \\
& w=\left(w_{1}, \ldots, w_{J}\right) \in \mathbf{C}^{m_{1}} \times \cdots \times \mathbf{C}^{m_{J}}=\mathbf{C}^{|m|},|m|=m_{1}+\cdots+m_{J}, \\
& \text { and } \mathbf{C}^{N}=\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}, \quad N=|\ell|+|m| .
\end{aligned}
$$

For convenience and no loss of generality, in this paper we always assume that

$$
p_{2}, \ldots, p_{I} \neq 1, \quad q_{2}, \ldots, q_{J} \neq 1
$$

if $I \geq 2$ or $J \geq 2$. Clearly, this domain is not geometrically convex and its boundary is not smooth and contains the origin $0=(0,0)$ of $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$. In the special case where all the $\ell_{i}=m_{j}=1$ and all the p_{i}, q_{j} are positive integers, the structure of the holomorphic automorphism $\operatorname{group} \operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$ of $\mathcal{H}_{\ell, m}^{p, q}$ was already clarified by Landucci [8] and Chen-Xu [3], [4]. Here we would like to remark that these papers contain the following crucial fact: Let $\Phi \in \operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$ and express $\Phi=(f, g)$ with respect to the coordinate system (z, w) in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$. Then the w-component mapping $g: \mathcal{H}_{\ell, m}^{p, q} \rightarrow \mathbf{C}^{|m|}$ does not depend on the variables z; and hence, it has the form $g(z, w)=g(w)$. And, a glance at their proofs of this fact tells us that the assumptions $\ell_{i}, m_{j}=1$ and $p_{i}, q_{j} \in \mathbf{N}$ cannot be avoided with their

2010 Mathematics Subject Classification. Primary 32A07; Secondary 32M05.
Key words and phrases. Generalized Hartogs triangles, Holomorphic automorphisms.
The author is partially supported by the Grant-in-Aid for Scientific Research (C) No. 24540166, the Ministry of Education, Science, Sports and Culture, Japan.
techniques. This raises new difficulties to analyze the structure of $\operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$ in our general case.

The purpose of this paper is to overcome these difficulties and obtain more general results for arbitrary generalized Hartogs triangles $\mathcal{H}_{\ell, m}^{p, q}$. In fact, employing some group-theoretic method, we can avoid their hard part and prove that g is always independent on the variables z for every element $\Phi=(f, g) \in \operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$. Once this is accomplished, our previous results in [6] can be applied to establish the following theorems:

THEOREM 1. Let $\mathcal{H}_{\ell, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}$ with $|m|=1$. Then the holomorphic automorphism group $\operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$ consists of all transformations

$$
\Phi:\left(z_{1}, \ldots, z_{I}, w\right) \longmapsto\left(\tilde{z}_{1}, \ldots, \tilde{z}_{I}, \tilde{w}\right)
$$

of the following form:
(I) $p_{1}=1, q \in \mathbf{N}$: In this case, we have

$$
\tilde{z}_{1}=w^{q} H\left(z_{1} / w^{q}\right), \quad \tilde{z}_{i}=\gamma_{i}\left(z_{1} / w^{q}\right) A_{i} z_{\sigma(i)}(2 \leq i \leq I), \quad \tilde{w}=B w
$$

(think of z_{i} as column vectors), where
(1) $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$, where $B^{\ell_{1}}$ denotes the unit ball in $\mathbf{C}^{\ell_{1}}$;
(2) γ_{i} are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ defined by

$$
\gamma_{i}\left(z_{1}\right)=\left(\frac{1-\|a\|^{2}}{\left(1-\left\langle z_{1}, a\right\rangle\right)^{2}}\right)^{1 / 2 p_{i}}, \quad a=H^{-1}(o) \in B^{\ell_{1}}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard Hermitian inner product on $\mathbf{C}^{\ell_{1}}$ and $o \in B^{\ell_{1}}$ is the origin of $\mathbf{C}^{\ell_{1}}$;
(3) $A_{i} \in U\left(\ell_{i}\right)$, the unitary group of degree ℓ_{i}, and $B \in \mathbf{C}$ with $|B|=1$;
(4) σ is a permutation of $\{2, \ldots, I\}$ satisfying the following: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.
(II) $p_{1} \neq 1$ or $q \notin \mathbf{N}$: In this case, we have

$$
\tilde{z}_{i}=A_{i} z_{\sigma(i)}(1 \leq i \leq I), \quad \tilde{w}=B w,
$$

where $A_{i} \in U\left(\ell_{i}\right), B \in \mathbf{C}$ with $|B|=1$, and σ is a permutation of $\{1, \ldots, I\}$ satisfying the condition: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.

THEOREM 2. Let $\mathcal{H}_{\ell, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}$ with $|m| \geq 2$. Then the holomorphic automorphism group $\operatorname{Aut}\left(\mathcal{H}_{\ell, m}^{p, q}\right)$ consists of all transformations

$$
\Phi:\left(z_{1}, \ldots, z_{I}, w_{1}, \ldots, w_{J}\right) \longmapsto\left(\tilde{z}_{1}, \ldots, \tilde{z}_{I}, \tilde{w}_{1}, \ldots, \tilde{w}_{J}\right)
$$

of the form

$$
\tilde{z}_{i}=A_{i} z_{\sigma(i)}(1 \leq i \leq I), \quad \tilde{w}_{j}=B_{j} w_{\tau(j)} \quad(1 \leq j \leq J)
$$

(think of z_{i}, w_{j} as column vectors), where $A_{i} \in U\left(\ell_{i}\right), B_{j} \in U\left(m_{j}\right)$ and σ, τ are permutations of $\{1, \ldots, I\},\{1, \ldots, J\}$ respectively, satisfying the condition: $\sigma(i)=s, \tau(j)=t$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right),\left(m_{j}, q_{j}\right)=\left(m_{t}, q_{t}\right)$.

Considering the special case where all the $\ell_{i}, m_{j}=1$ in this paper, we obtain natural generalizations of some results due to Landucci [8] and Chen-Xu [3], [4]. In particular, our Theorems 1 and 2 give affirmative answers to some open problems posed in Jarnicki and Pflug [5; Remarks 2.5.15 and 2.5.17].

After some preparations in the next Section 2, we prove our Theorems 1 and 2 in Sections 3 and 4, respectively.
2. Preliminaries and several Lemmas. Throughout this paper, we write $\mathcal{H}=\mathcal{H}_{\ell, m}^{p, q}$ for the sake of simplicity. Also, we often use the following notation: For the given points $z=$ $\left(z_{1}, \ldots, z_{I}\right) \in \mathbf{C}^{|\ell|}, w=\left(w_{1}, \ldots, w_{J}\right) \in \mathbf{C}^{|m|}$ and $p=\left(p_{1}, \ldots, p_{I}\right), q=\left(q_{1}, \ldots, q_{J}\right)$ as in the Introduction, we set

$$
\begin{align*}
& \zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)=(z, w) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}, \\
& \rho^{p}(z)=\sum_{i=1}^{I}\left\|z_{i}\right\|^{2 p_{i}}, \quad \rho^{q}(w)=\sum_{j=1}^{J}\left\|w_{j}\right\|^{2 q_{j}}, \text { and } \tag{2.1}\\
& \mathcal{E}^{p}=\left\{z \in \mathbf{C}^{|\ell|} ; \rho^{p}(z)<1\right\}, \quad \mathcal{E}^{q}=\left\{w \in \mathbf{C}^{|m|} ; \rho^{q}(w)<1\right\} .
\end{align*}
$$

We denote by $B\left(\zeta_{o}, \delta\right)$ the Euclidean open ball of radius $\delta>0$ and center $\zeta_{o} \in \mathbf{C}^{N}$. For a subset S of \mathbf{C}^{N}, the boundary (resp. closure) of S in \mathbf{C}^{N} will be denoted by ∂S (resp. \bar{S}). Also, we write as usual

$$
\zeta^{\alpha}=\zeta_{1}^{\alpha_{1}} \cdots \zeta_{N}^{\alpha_{N}} \quad \text { for } \zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right) \in \mathbf{C}^{N}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbf{Z}^{N}
$$

Let $S_{\mathcal{H}}=\left\{\alpha \in \mathbf{Z}^{N} ; \zeta^{\alpha} \in \mathcal{O}(\mathcal{H}),\left\|\zeta^{\alpha}\right\|_{A^{2}(\mathcal{H})}<\infty\right\}$, where $\mathcal{O}(\mathcal{H})$ denotes the set of all holomorphic functions on \mathcal{H} and $A^{2}(\mathcal{H})$ is the Bergman space of \mathcal{H} with the norm $\|\cdot\|_{A^{2}(\mathcal{H})}$. Then it is known [1] that the Bergman kernel function $K=K_{\mathcal{H}}$ for \mathcal{H} can be expressed as

$$
\begin{equation*}
K(\zeta, \eta)=\sum_{\alpha \in S_{\mathcal{H}}} c_{\alpha} \zeta^{\alpha} \bar{\eta}^{\alpha}, \quad \zeta, \eta \in \mathcal{H} \tag{2.2}
\end{equation*}
$$

with $c_{\alpha}>0$ for each $\alpha \in S_{\mathcal{H}}$. Let $r=\left(r_{1}, \ldots, r_{N}\right) \in \mathbf{R}_{+}^{N}, \zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right) \in \mathbf{C}^{N}$ and set

$$
r \cdot \zeta:=\left(r_{1} \zeta_{1}, \ldots, r_{N} \zeta_{N}\right), \quad 1 / r:=\left(1 / r_{1}, \ldots, 1 / r_{N}\right)
$$

It then follows from (2.2) that, for $r, s \in \mathbf{R}_{+}^{N}$ and $\zeta, \eta \in \mathbf{C}^{N}$,

$$
\begin{equation*}
K(r \cdot \zeta,(1 / r) \cdot \eta)=K(s \cdot \zeta,(1 / s) \cdot \eta) \tag{2.3}
\end{equation*}
$$

whenever $r \cdot \zeta, s \cdot \zeta,(1 / r) \cdot \eta,(1 / s) \cdot \eta \in \mathcal{H}$; hence, for any points $\zeta, \eta \in \mathcal{H}$,

$$
\begin{equation*}
K(r \cdot \zeta,(1 / r) \cdot \eta)=K(\zeta, \eta) \quad \text { if } r \cdot \zeta,(1 / r) \cdot \eta \in \mathcal{H} . \tag{2.4}
\end{equation*}
$$

Although, in the proofs of Lemmas 1 and 2 below, there are some overlaps with the papers by Barrett [1], Landucci [8] and Chen-Xu [3], we carry out the proofs in details for the sake of completeness and self-containedness.

Lemma 1. The Bergman kernel function $K(\zeta, \eta)$ extends holomorphically in ζ and anti-holomorphically in η to an open neighborhood of $(\overline{\mathcal{H}} \backslash\{0\}) \times \mathcal{H}$ in $\mathbf{C}^{2 N}$.

Proof. First of all, let us take two points $\zeta_{0} \in \partial \mathcal{H} \backslash\{0\}, \eta_{o} \in \mathcal{H}$ arbitrarily and represent $\zeta_{o}=\left(z_{o}, w_{o}\right)$ by the (z, w)-coordinates in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$. Since $\zeta_{o}=\left(z_{o}, w_{o}\right) \neq$ $(0,0)$, one can choose two constants r_{o}, s_{o} with $0<r_{o}<s_{o}<1$ in such a way that $\hat{\zeta}_{o}:=$ $\left(r_{o} z_{o}, s_{o} w_{o}\right) \in \mathcal{H}$. Now we fix small balls $B_{\hat{\zeta}_{o}}, B_{\eta_{o}}$ in \mathbf{C}^{N} with centers $\hat{\zeta}_{o}, \eta_{o}$, respectively, such that $\overline{B_{\hat{\zeta}_{o}}} \cup \overline{B_{\eta_{o}}} \subset \mathcal{H}$. Set

$$
A_{\zeta_{o}}:=\left\{(z, w) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} ;\left(r_{o} z, s_{o} w\right) \in B_{\hat{\zeta}_{o}}\right\} .
$$

Then $O_{\zeta_{o} \eta_{o}}:=A_{\zeta_{o}} \times B_{\eta_{o}}$ is a geometrically convex open neighborhood of $\left(\zeta_{o}, \eta_{o}\right)$ in $\mathbf{C}^{2 N}$. We may assume that r_{o}, s_{o} are selected so close to 1 that

$$
\left\{\left(u / r_{o}, v / s_{o}\right) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} ;(u, v) \in B_{\eta_{o}}\right\} \subset \mathcal{H} .
$$

Accordingly we can define a real-analytic function $\widehat{K}=\widehat{K}_{\zeta_{o} \eta_{o}}$ on $O_{\zeta_{o} \eta_{o}}$ by

$$
\widehat{K}((z, w),(u, v))=K\left(\left(r_{o} z, s_{o} w\right),\left(u / r_{o}, v / s_{o}\right)\right),((z, w),(u, v)) \in O_{\zeta_{o} \eta_{o}} .
$$

In this way, we obtain a collection

$$
\mathcal{K}=\left\{\left(O_{\zeta_{o} \eta_{o}}, \widehat{K}_{\zeta_{o} \eta_{o}}\right) ;\left(\zeta_{o}, \eta_{o}\right) \in(\partial \mathcal{H} \backslash\{0\}) \times \mathcal{H}\right\}
$$

satisfying the following: For any elements $\left(O_{\zeta \eta}, \widehat{K}_{\zeta \eta}\right),\left(O_{\zeta^{\prime} \eta^{\prime}}, \widehat{K}_{\zeta^{\prime} \eta^{\prime}}\right) \in \mathcal{K}$, we have that

$$
\widehat{K}_{\zeta \eta}=K \quad \text { on } O_{\zeta \eta} \cap(\mathcal{H} \times \mathcal{H}) \quad \text { and } \quad \widehat{K}_{\zeta \eta}=\widehat{K}_{\zeta^{\prime} \eta^{\prime}} \text { on } O_{\zeta \eta} \cap O_{\zeta^{\prime} \eta^{\prime}}
$$

by (2.4) and (2.3). Therefore these local extensions $\widehat{K}_{\zeta \eta}$ together provide a global extension of K required in Lemma 1.

Here let us recall the structure of the holomorphic automorphism group $\operatorname{Aut}(\mathcal{H})$ (cf. [9]). Since \mathcal{H} is a bounded domain in \mathbf{C}^{N}, it has the structure of a real Lie group with respect to the compact-open topology by a well-known theorem of H. Cartan. Note that $\operatorname{Aut}(\mathcal{H})$ has a countable basis for the open sets and a sequence $\left\{\Phi^{\nu}\right\}$ in $\operatorname{Aut}(\mathcal{H})$ converges if and only if $\left\{\Phi^{\nu}\right\}$ converges uniformly on compact subsets of \mathcal{H} to an element $\Phi \in \operatorname{Aut}(\mathcal{H})$. From now on, we denote by
$G(\mathcal{H})$ the identity component of $\operatorname{Aut}(\mathcal{H})$ with Lie algebra $\mathfrak{g}(\mathcal{H})$.
As is well-known, $\mathfrak{g}(\mathcal{H})$ can be canonically identified with the real Lie algebra of all complete holomorphic vector fields on \mathcal{H}. With this notation, we prove the following:

Lemma 2. Let ζ_{o} be an arbitrary point of $\partial \mathcal{H} \backslash\{0\}$. Then there exist a connected open neighborhood $U_{\zeta_{o}}$ of ζ_{o} in $\mathbf{C}^{N} \backslash\{0\}$ and a connected open neighborhood $W_{\zeta_{o}}$ of the identity element $\operatorname{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ such that every element $\Phi \in W_{\zeta_{o}}$ extends to a holomorphic mapping $\widehat{\Phi}: \mathcal{H} \cup U_{\zeta_{o}} \rightarrow \mathbf{C}^{N}$.

Proof. Let $P: L^{2}(\mathcal{H}) \rightarrow A^{2}(\mathcal{H})$ be the Bergman projection defined by

$$
\operatorname{Pf}(\zeta)=\int_{\mathcal{H}} K(\zeta, \eta) f(\eta) d V_{\eta}, \quad f \in L^{2}(\mathcal{H})
$$

It then follows from Lemma 1 that $P f$ can be extended to a holomorphic function, say $\widehat{P} f$, defined on some domain $\mathcal{H} \cup U_{\zeta_{o}}$, where $U_{\zeta_{o}}$ is a connected open neighborhood of ζ_{o} contained in $\mathbf{C}^{N} \backslash\{0\}$.

Let $\phi \in C_{0}^{\infty}(\mathcal{H})$ be a non-negative function such that $\phi\left(\zeta_{1}, \ldots, \zeta_{N}\right)=\phi\left(\left|\zeta_{1}\right|, \ldots,\left|\zeta_{N}\right|\right)$ and $\int_{\mathcal{H}} \phi(\zeta) d V_{\zeta}=1$. For any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbf{Z}^{N}$ with $\alpha_{j} \geq 0,1 \leq j \leq N$, we set

$$
\phi_{\alpha}(\zeta)=\left(c_{\alpha} \alpha!\right)^{-1}(-1)^{|\alpha|} \partial^{|\alpha|} \phi(\zeta) / \partial \bar{\zeta}_{1}^{\alpha_{1}} \cdots \partial \bar{\zeta}_{N}^{\alpha_{N}}, \quad \zeta \in \mathcal{H}
$$

where c_{α} is the same constant appearing in (2.2) and $\alpha!=\alpha_{1}!\cdots \alpha_{N}!,|\alpha|=\alpha_{1}+\cdots+\alpha_{N}$. Then, thanks to the concrete description of the expansion of K as in (2.2), we can compute explicitly $P \phi_{\alpha}$ as $P \phi_{\alpha}(\zeta)=\zeta^{\alpha}, \zeta \in \mathcal{H}$. Consequently, by analytic continuation

$$
\begin{equation*}
\widehat{P} \phi_{\alpha}(\zeta)=\zeta^{\alpha}, \quad \zeta \in \mathcal{H} \cup U_{\zeta_{o}} \tag{2.5}
\end{equation*}
$$

Now, let us take a sequence $\left\{\Phi^{\nu}\right\}$ in $G(\mathcal{H})$ converging to the identity element id $\mathcal{H}^{\mathcal{H}}$ and express $\Phi^{\nu}=\left(\Phi_{1}^{\nu}, \ldots, \Phi_{N}^{\nu}\right)$ with respect to the ζ-coordinate system in \mathbf{C}^{N}. Let $J_{\Phi^{v}}(\zeta)$ be the Jacobian determinant of Φ^{ν} at $\zeta \in \mathcal{H}$. Then, applying the transformation law by the Bergman projection under proper holomorphic mapping (cf. [2]) and using the fact (2.5), we have that

$$
\begin{align*}
& \left(J_{\Phi^{v}} \cdot\left(\Phi_{1}^{\nu}\right)^{\alpha_{1}} \cdots\left(\Phi_{N}^{v}\right)^{\alpha_{N}}\right)(\zeta)=\left(J_{\Phi^{v}} \cdot P \phi_{\alpha} \circ \Phi^{v}\right)(\zeta) \\
& \quad=P\left(J_{\Phi^{v}} \cdot \phi_{\alpha} \circ \Phi^{v}\right)(\zeta)=\int_{\mathcal{H}} K(\zeta, \eta)\left(J_{\Phi^{v}} \cdot \phi_{\alpha} \circ \Phi^{v}\right)(\eta) d V_{\eta} \tag{2.6}
\end{align*}
$$

for $\zeta \in \mathcal{H}$. Here, since the last term extends holomorphically to the function $\widehat{P}\left(J_{\Phi^{v}} \cdot \phi_{\alpha} \circ \Phi^{\nu}\right)$ on $\mathcal{H} \cup U_{\zeta_{0}}$, we may assume that $J_{\Phi^{v}} \cdot\left(\Phi_{1}^{\nu}\right)^{\alpha_{1}} \cdots\left(\Phi_{N}^{\nu}\right)^{\alpha_{N}}$ is also a holomorphic function defined on $\mathcal{H} \cup U_{\zeta_{o}}$ and satisfies the same equalities there. Moreover, since $\left\{\Phi^{\nu}\right\}$ converges to id $\mathcal{H}_{\mathcal{H}}$ uniformly on compact subsets of \mathcal{H}, we obtain by the Cauchy estimates that

$$
\lim _{v \rightarrow \infty} J_{\Phi^{v}}(\eta)=1 \text { and } \lim _{v \rightarrow \infty}\left(\phi_{\alpha} \circ \Phi^{v}\right)(\eta)=\phi_{\alpha}(\eta)
$$

uniformly on compact subsets of \mathcal{H} and $\operatorname{supp}\left(\phi_{\alpha} \circ \Phi^{\nu}\right)$ are contained in some compact subset of \mathcal{H} for all ν. Hence, the fact (2.5) immediately yields that

$$
\lim _{v \rightarrow \infty}\left(J_{\Phi^{v}} \cdot\left(\Phi_{1}^{v}\right)^{\alpha_{1}} \cdots\left(\Phi_{N}^{\nu}\right)^{\alpha_{N}}\right)(\zeta)=\int_{\mathcal{H}} K(\zeta, \eta) \phi_{\alpha}(\eta) d V_{\eta}=\zeta^{\alpha}, \quad \zeta \in \mathcal{H} \cup U_{\zeta_{o}}
$$

uniformly on compact subsets of $\mathcal{H} \cup U_{\zeta 0}$. Thus, considering the special cases where $\alpha=0$ and $\alpha_{j}=1, \alpha_{k}=0(1 \leq j, k \leq N, j \neq k)$, we obtain that

$$
\begin{equation*}
\lim _{v \rightarrow \infty} J_{\Phi^{v}}(\zeta)=1 \text { and } \lim _{v \rightarrow \infty}\left(J_{\Phi^{v}} \cdot \Phi_{j}^{\nu}\right)(\zeta)=\zeta_{j}, \quad 1 \leq j \leq N, \tag{2.7}
\end{equation*}
$$

uniformly on compact subsets of the domain $\mathcal{H} \cup U_{\zeta_{o}}$. Clearly this says that, after shrinking $U_{\zeta_{o}}$ and passing to a subsequence if necessary, $J_{\Phi^{v}}$ are nowhere vanishing holomorphic functions on $\mathcal{H} \cup U_{\zeta_{o}}$ and so $\Phi^{\nu}: \mathcal{H} \cup U_{\zeta_{o}} \rightarrow \mathbf{C}^{N}$ are holomorphic mappings for all $v=1,2, \ldots$

Since the conclusion of the preceding paragraph is valid for any sequence $\left\{\Phi^{\nu}\right\}$ converging to $\mathrm{id}_{\mathcal{H}}$, it is obvious that there exist an open neighborhood $U_{\zeta_{o}}$ of ζ_{o} and an open neighborhood $W_{\zeta_{o}}$ of id $\mathcal{H}_{\mathcal{H}}$ satisfying the requirement of the lemma.

We now define compact subsets $\partial_{r} \mathcal{H}$ of $\partial \mathcal{H} \backslash\{0\}$ by setting

$$
\partial_{r} \mathcal{H}=\{\zeta \in \partial \mathcal{H} ;\|\zeta\| \geq r\}, \quad 0<r<1
$$

Then we can prove the following:
LEMMA 3. For any compact subset $\partial_{r} \mathcal{H}$ of $\partial \mathcal{H} \backslash\{0\}$ defined as above, there exist a bounded Reinhardt domain D_{r} in $\mathbf{C}^{N} \backslash\{0\}$ and a connected open neighborhood O_{r} of $\mathrm{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ satisfying the following:
(1) $\mathcal{H} \cup \partial_{r} \mathcal{H} \subset D_{r}$;
(2) every element $\Phi \in O_{r}$ extends to a holomorphic mapping $\widehat{\Phi}: D_{r} \rightarrow \mathbf{C}^{N}$.

PROOF. For each point $\zeta_{o} \in \partial \mathcal{H} \backslash\{0\}$, we take a connected open neighborhood $U_{\zeta_{o}}$ of ζ_{o} and a connected open neighborhood $W_{\zeta_{o}}$ of $\mathrm{id}_{\mathcal{H}}$ satisfying the condition in Lemma 2. Then, by the compactness of $\partial_{r} \mathcal{H}$ there are finitely many points $\zeta^{i} \in \partial_{r} \mathcal{H}, 1 \leq i \leq n_{0}$, such that $\partial_{r} \mathcal{H} \subset \bigcup_{i=1}^{n_{0}} U_{\zeta^{i}}$. Since $\partial_{r} \mathcal{H}$ is invariant under the standard action of the N-dimensional torus T^{N} on \mathbf{C}^{N} as well as \mathcal{H}, we can now find a Reinhardt domain D_{r} satisying

$$
\begin{equation*}
\mathcal{H} \cup \partial_{r} \mathcal{H} \subset D_{r} \subset \mathcal{H} \cup\left(\bigcup_{i=1}^{n_{0}} U_{\zeta^{i}}\right) \tag{2.8}
\end{equation*}
$$

Let O_{r} be the connected component of $\bigcap_{i=1}^{n_{0}} W_{\zeta^{i}}$ containing the identity id \mathcal{H}. Then it is clear that the pair $\left(D_{r}, O_{r}\right)$ satisfies the requirement of Lemma 3.

Lemma 4. For any compact subset $\partial_{r} \mathcal{H}$ of $\partial \mathcal{H} \backslash\{0\}$, there exists a bounded Reinhardt domain \widehat{D}_{r} in $\mathbf{C}^{N} \backslash\{0\}$ satisfying the following:
(1) $\mathcal{H} \cup \partial_{r} \mathcal{H} \subset \widehat{D}_{r}$;
(2) every element $X \in \mathfrak{g}(\mathcal{H})$ extends to a holomorphic vector field \widehat{X} on \widehat{D}_{r}.

Proof. By Lemma 3 there exist a bounded Reinhardt domain D_{r} in \mathbf{C}^{N} and a connected open neighborhood O_{r} of $\operatorname{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ such that every element $\Phi \in O_{r}$ extends to a holomorphic mapping $\widehat{\Phi}: D_{r} \rightarrow \mathbf{C}^{N}$. Moreover, for any $\varepsilon>0$ and any compact set $L \subset D_{r}$, it follows from (2.7) and (2.8) that

$$
\begin{equation*}
\|\widehat{\Phi}(\zeta)-\zeta\|<\varepsilon \quad \text { for all } \zeta \in L, \Phi \in O_{r} \tag{2.9}
\end{equation*}
$$

provided that O_{r} is sufficiently small.
Now, let $X \in \mathfrak{g}(\mathcal{H})$ and $\left\{\Phi_{t}=\exp t X\right\}_{t \in \mathbf{R}}$ the one-parameter subgroup of $G(\mathcal{H})$ generated by X. Then, thanks to the fact (2.9), one can choose a constant $\varepsilon_{o}>0$ satisfying the following conditions: Let $\zeta_{o} \in \partial_{r} \mathcal{H}$ and let $B\left(\zeta_{o}, \delta\left(\zeta_{o}\right)\right)$ be a small ball such that $B\left(\zeta_{o}, 2 \delta\left(\zeta_{o}\right)\right) \subset D_{r}$. Then
(2.10) Φ_{t} extends to a holomorphic mapping $\widehat{\Phi}_{t}: D_{r} \rightarrow \mathbf{C}^{N}$; and
(2.11) $\widehat{\Phi}_{t}\left(B\left(\zeta_{o}, \delta\left(\zeta_{o}\right)\right)\right) \subset B\left(\zeta_{o}, 2 \delta\left(\zeta_{o}\right)\right)$
for every $t \in \mathbf{R}$ with $|t|<\varepsilon_{o}$. Under this situation, since $\left\{\Phi_{t}\right\}_{t \in \mathbf{R}}$ is a global one-parameter subgroup of $G(\mathcal{H})$, we obtain by analytic continuation that

$$
\widehat{\Phi}_{s}\left(\widehat{\Phi}_{t}(\zeta)\right)=\widehat{\Phi}_{s+t}(\zeta), \quad \zeta \in B\left(\zeta_{o}, \delta\left(\zeta_{o}\right)\right), \quad \text { whenever }|s|,|t|,|s+t|<\varepsilon_{o}
$$

accordingly $\left\{\widehat{\Phi}_{t}\right\}_{|t|<\varepsilon_{o}}$ is a one-parameter local group of local holomorphic transformations. Let \widehat{X} be the holomorphic vector field on $B\left(\zeta_{o}, \delta\left(\zeta_{o}\right)\right)$ induced by $\left\{\widehat{\Phi}_{t}\right\}_{|t|<\varepsilon_{o}}$. Then it is obvious that \widehat{X} is a unique holomorphic extension of X to $B\left(\zeta_{o}, \delta\left(\zeta_{o}\right)\right)$. Since $\zeta_{o} \in \partial_{r} \mathcal{H}$ is arbitrary and $\partial_{r} \mathcal{H}$ is compact, by repeating the same argument as in the proof of Lemma 3, we can find a Reinhardt domain \widehat{D}_{r} satisfying the requirement of Lemma 4.

Before proceeding, we need to introduce some terminology. Let $T^{N}=(U(1))^{N}$ be the N-dimensional torus. Then T^{N} acts as a group of holomorphic automorphisms on \mathbf{C}^{N} by the standard rule

$$
\alpha \cdot \zeta=\left(\alpha_{1} \zeta_{1}, \ldots, \alpha_{N} \zeta_{N}\right) \quad \text { for } \alpha=\left(\alpha_{i}\right) \in T^{N}, \quad \zeta=\left(\zeta_{i}\right) \in \mathbf{C}^{N}
$$

Let D be an arbitrary Reinhardt domain in \mathbf{C}^{N}. Then, just by the definition, D is invariant under this action of T^{N}. Each element $\alpha \in T^{N}$ then induces an automorphism π_{α} of D given by $\pi_{\alpha}(\zeta)=\alpha \cdot \zeta$, and the mapping ρ_{D} sending α to π_{α} is an injective continuous group homomorphism of T^{N} into $\operatorname{Aut}(D)$. The subgroup $\rho_{D}\left(T^{N}\right)$ of $\operatorname{Aut}(D)$ is denoted by $T(D)$. Analogously, the multiplicative group $\left(\mathbf{C}^{*}\right)^{N}$ acts as a group of automorphisms on \mathbf{C}^{N}. So, denoting by $\Pi(D)=\left\{\alpha \in\left(\mathbf{C}^{*}\right)^{N} ; \alpha \cdot D \subset D\right\}$, we obtain the topological subgroup $\Pi(D)$ of $\operatorname{Aut}(D)$. We have one more important topological subgroup $\operatorname{Aut}_{\text {alg }}(D)$ of $\operatorname{Aut}(D)$ consisting of all elements Φ of $\operatorname{Aut}(D)$ such that the i-th component function Φ_{i} of Φ is given by a Laurent monomial having the form

$$
\begin{equation*}
\Phi_{i}(\zeta)=\lambda_{i} \zeta_{1}^{a_{i 1}} \cdots \zeta_{N}^{a_{i N}}, \quad 1 \leq i \leq N \tag{2.12}
\end{equation*}
$$

where $\left(a_{i j}\right) \in G L(N, \mathbf{Z})$ and $\left(\lambda_{i}\right) \in\left(\mathbf{C}^{*}\right)^{N}$. We call $\operatorname{Aut}_{\text {alg }}(D)$ the algebraic automorphism group of D and each element of $\operatorname{Aut}_{\text {alg }}(D)$ is called an algebraic automorphism of D. It is known [7] that these groups are related in the following manner: The centralizer of the torus $T(D)$ in $\operatorname{Aut}(D)$ is given by $\Pi(D)$, while the normalizer of $T(D)$ in $\operatorname{Aut}(D)$ is given by $\operatorname{Aut}_{\mathrm{alg}}(D)$. Here we consider the mapping $\omega: \operatorname{Aut}_{\mathrm{alg}}(D) \rightarrow G L(N, \mathbf{Z})$ that sends an element Φ of $\operatorname{Aut}_{\text {alg }}(D)$ whose i-th component is given by (2.12) into the element $\left(a_{i j}\right) \in G L(N, \mathbf{Z})$. Then it is easy to see that ϖ is a group homomorphism with $\operatorname{ker} \varpi=\Pi(D)$; and hence it induces a group isomorphism

$$
\operatorname{Aut}_{\operatorname{alg}}(D) / \Pi(D) \xrightarrow{\cong} \mathcal{G}(D):=\varpi\left(\operatorname{Aut}_{\operatorname{alg}}(D)\right) \subset G L(N, \mathbf{Z}) .
$$

Let $G(D)$ be the identity component of $\operatorname{Aut}(D)$. Then we know the following fundamental result due to Shimizu [11]:

Every element $\Phi \in \operatorname{Aut}(D)$ can be written in the form $\Phi=\Phi^{\prime} \Phi^{\prime \prime}$,
where $\Phi^{\prime} \in G(D)$ and $\Phi^{\prime \prime} \in \operatorname{Autalg}^{(D)}$.
Now let us consider the special case where D is our generalized Hartogs triangle \mathcal{H}. Then we have the following:

Lemma 5. Every element $\Phi \in \operatorname{Aut}_{\operatorname{alg}}(\mathcal{H})$ can be written in the form

$$
\begin{aligned}
& \Phi(\zeta)=\left(\lambda_{1} \zeta_{\sigma(1)} \zeta_{N}^{b_{1}}, \ldots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)} \zeta_{N}^{b_{l \mid}}, \lambda_{N} \zeta_{N}\right) \text { or } \\
& \Phi(\zeta)=\left(\lambda_{1} \zeta_{\sigma(1)}, \ldots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)}, \lambda_{|\ell|+1} \zeta_{\tau(|\ell|+1)}, \ldots, \lambda_{N} \zeta_{\tau(N)}\right)
\end{aligned}
$$

according as $|m|=1$ or $|m| \geq 2$, where $\left(\lambda_{i}\right) \in T^{N},\left(b_{i}\right) \in \mathbf{Z}^{|\ell|}$, and σ, τ are permutations of $\{1, \ldots,|\ell|\},\{|\ell|+1, \ldots, N\}$ respectively.

Proof. We assume that the i-th component function Φ_{i} of Φ is given by (2.12).
We first consider the case $|m|=1$. Since every point of the form $(0, w) \in \mathbf{C}^{|\ell|} \times \mathbf{C}$ with $w \in \Delta^{*}=\Delta \backslash\{0\}$, the punctured disc, belongs to \mathcal{H}, it is easily seen that Φ_{N} has the form $\Phi_{N}(\zeta)=\lambda_{N} \zeta_{N},\left|\lambda_{N}\right|=1$, and the matrix $\omega(\Phi) \in G L(N, \mathbf{Z})$ can be written as

$$
\varpi(\Phi)=\left(\begin{array}{cccc}
a_{11} & \cdots & a_{1|\ell|} & a_{1 N} \\
\vdots & \ddots & \vdots & \vdots \\
a_{|\ell| 1} & \cdots & a_{|\ell||\ell|} & a_{|\ell| N} \\
0 & \cdots & 0 & 1
\end{array}\right) \quad \text { with } a_{i j} \geq 0 \text { for } 1 \leq i, j \leq|\ell|
$$

We claim here that the submatrix $A:=\left(a_{i j}\right)_{1 \leq i, j \leq|\ell|}$ is a permutation matrix, that is, there exists a permutation σ of $\{1, \ldots,|\ell|\}$ such that $a_{i j}=\delta_{\sigma(i) j}$ for all $1 \leq i, j \leq|\ell|$. Indeed, notice that the mapping $\zeta \mapsto\left(\zeta_{1}, \ldots, \zeta_{|\ell|}, \lambda_{N}^{-1} \zeta_{N}\right), \zeta \in \mathcal{H}$, belongs to $\operatorname{Aut}_{\text {alg }}(\mathcal{H})$; and hence one may assume that $\Phi_{N}(\zeta)=\zeta_{N}$. Then, for any given point $\zeta_{N} \in \Delta^{*}$, the mapping $\widetilde{\Phi}(z):=\left(\Phi_{1}\left(z, \zeta_{N}\right), \ldots, \Phi_{|\ell|}\left(z, \zeta_{N}\right)\right)$ gives rise to a holomorphic automorphism of the bounded Reinhardt domain $\left\{z \in \mathbf{C}^{|\ell|} ; \rho^{p}(z)<\left|\zeta_{N}\right|^{2 q}\right\}$ containing the origin of $\mathbf{C}^{|\ell|}$ and, in particular, it maps the complex analytic subset $\mathcal{H} \cap\left\{\zeta \in \mathbf{C}^{N} ; \zeta_{i}=0\right\}$ of \mathcal{H} onto some equidimensional complex analytic subset of \mathcal{H} for each $1 \leq i \leq|\ell|$. This yields at once that A is a permutation matrix, as claimed. Therefore, putting $b_{i}=a_{i N}, 1 \leq i \leq|\ell|$, we have seen that Φ has the form

$$
\begin{equation*}
\Phi(\zeta)=\left(\lambda_{1} \zeta_{\sigma(1)} \zeta_{N}^{b_{1}}, \ldots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)} \zeta_{N}^{b_{|\ell|}}, \lambda_{N} \zeta_{N}\right) \tag{2.14}
\end{equation*}
$$

In particular, this says that Φ extends to a holomorphic automorphism of $\mathbf{C}^{|\ell|} \times \mathbf{C}^{*}$ with $\Phi(\partial \mathcal{H} \backslash\{0\}) \subset \partial \mathcal{H} \backslash\{0\}$. Using this fact, we would like to check that $\left|\lambda_{i}\right|=1$ for every $1 \leq i \leq|\ell|$. To this end, let $\sigma(i)=s$ and choose an arbitrary element

$$
\zeta[s]:=\left(0, \ldots, 0, \zeta_{s}, 0, \ldots, 0, \zeta_{N}\right) \in \partial \mathcal{H} \quad \text { with } \zeta_{N} \in \Delta^{*} .
$$

Then, by (2.14), $\Phi(\zeta[s])=\left(0, \ldots, 0, \lambda_{i} \zeta_{s} \zeta_{N}^{b_{i}}, 0, \ldots, 0, \lambda_{N} \zeta_{N}\right) \in \partial \mathcal{H}$. Thus we have

$$
\left|\lambda_{i} \zeta_{S} \zeta_{N}\right|^{b_{i} p_{a}}=\left|\zeta_{N}\right|^{2 q} \quad \text { whenever }\left|\zeta_{S}\right|^{2 p_{b}}=\left|\zeta_{N}\right|^{2 q}<1
$$

where p_{a}, p_{b} are some positive constants appearing in the definition of $\mathcal{H}=\mathcal{H}_{\ell, m}^{p, q}$. Therefore, letting $\left|\zeta_{N}\right| \rightarrow 1$, we conclude that $\left|\lambda_{i}\right|=1$, as desired.

Next we consider the case $|m| \geq 2$. In this case, notice that the Reinhardt domain \mathcal{H} satisfies the condition that $\mathcal{H} \cap\left\{\zeta \in \mathbf{C}^{N} ; \zeta_{i}=0\right\} \neq \emptyset$ for each $1 \leq i \leq N$. Hence every component function Φ_{i} of Φ extends to a holomorphic function on $\mathcal{E}^{p} \times \mathcal{E}^{q}$, where \mathcal{E}^{p} and \mathcal{E}^{q} are the generalized complex ellipsoids defined in (2.1) (cf. [9; p.15]). Consequently, since $\mathcal{E}^{p} \times \mathcal{E}^{q}$ contains the origin $(0,0) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}$, every component $a_{i j}$ of $\varpi(\Phi)=$
$\left(a_{i j}\right) \in G L(N, \mathbf{Z})$ has to be non-negative. Hence $\varpi(\Phi)$ reduces to a permutation matrix, because Φ is a holomorphic automorphism of \mathcal{H} and so it maps the complex hypersurface $\mathcal{H} \cap\left\{\zeta \in \mathbf{C}^{N} ; \zeta_{i}=0\right\}$ of \mathcal{H} onto another one for every $1 \leq i \leq N$. This, combined with the fact that \mathcal{H} contains the points having the form $(0, w)$, yields at once that the mapping $g:=\left(\Phi_{|\ell|+1}, \ldots, \Phi_{N}\right)$ does not depend on the variables z. From these facts, we deduce that there exist permutations σ of $\{1, \ldots,|\ell|\}$ and τ of $\{|\ell|+1, \ldots, N\}$ with respect to which Φ can be written in the form

$$
\Phi(\zeta)=\left(\lambda_{1} \zeta_{\sigma(1)}, \ldots, \lambda_{|\ell|} \zeta_{\sigma(| | \mid)}, \lambda_{|\ell|+1} \zeta_{\tau(|\ell|+1)}, \ldots, \lambda_{N} \zeta_{\tau(N)}\right)
$$

where $\left(\lambda_{i}\right) \in\left(\mathbf{C}^{*}\right)^{N}$. In particular, if we express $\Phi=(f, g)$ by coordinates (z, w) in $\mathbf{C}^{|\ell|} \times$ $\mathbf{C}^{|m|}=\mathbf{C}^{N}$, then f and g may be regarded as the linear automorphisms of $\mathbf{C}^{|\ell|}$ and of $\mathbf{C}^{|m|}$, respectively, such that $f\left(\partial \mathcal{E}^{p}\right) \subset \partial \mathcal{E}^{p}$ and $g\left(\partial \mathcal{E}^{q}\right) \subset \partial \mathcal{E}^{q}$. These inclusions immediately yield that $\left|\lambda_{i}\right|=1$ for every $1 \leq i \leq N$. Therefore we have completed the proof of Lemma 5.

Lemma 6. Let $\Psi \in \operatorname{Aut}(\mathcal{H})$ and write $\Psi=(h, k)$ with respect to the coordinate $\operatorname{system}(z, w)$ in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$. Then $k: \mathcal{H} \rightarrow \mathbf{C}^{|m|}$ does not depend on the variables z; accordingly it has the form $k(z, w)=k(w)$ on \mathcal{H}.

Proof. Once it is shown that g does not depend on z for every $\Phi=(f, g) \in G(\mathcal{H})$, then our conclusion immediately follows from the fact (2.13) and Lemma 5. Thus we have only to show the lemma when $\Psi \in G(\mathcal{H})$.

To this end, pick a point $\zeta_{o}=\left(0, w_{o}\right)=\left(0, \ldots, 0, w_{1}^{o}, \ldots, w_{J}^{o}\right) \in \partial \mathcal{H}$ with

$$
\left\|w_{1}^{o}\right\| \cdots\left\|w_{J}^{o}\right\| \neq 0 \quad \text { and } \quad \rho^{q}\left(w_{o}\right)=1
$$

where ρ^{q} is the function appearing in (2.1), and fix an $r \in \mathbf{R}$ with $0<r<\left\|\zeta_{o}\right\|$. Then $\zeta_{o} \in$ $\partial_{r} \mathcal{H}$ and by Lemma 3 there exist a bounded Reinhardt domain $D:=D_{r}$ in \mathbf{C}^{N} containing $\mathcal{H} \cup \partial_{r} \mathcal{H}$ and an open neighborhood $O:=O_{r}$ of id $\mathcal{H}_{\mathcal{H}}$ in $G(\mathcal{H})$ such that every element $\Phi \in O$ extends to a holomorphic mapping, say again, $\Phi: D \rightarrow \mathbf{C}^{N}$. Here we choose sufficiently small constants δ_{1}, δ_{2} with $0<\delta_{1}<\delta_{2}<1$ and set

$$
\begin{aligned}
U_{i} & =\left\{z \in \mathbf{C}^{|\ell|} ; \rho^{p}(z)<\delta_{i}\right\} \\
V_{i} & =\left\{w \in \mathbf{C}^{|m|} ; 1-\delta_{i}<\rho^{q}(w)<1+\delta_{i},\left\|w_{1}\right\| \cdots\left\|w_{J}\right\| \neq 0\right\}
\end{aligned}
$$

for $i=1,2$. Then $U_{i} \times V_{i}(i=1,2)$ are bounded Reinhardt domains in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$ satisfying the condition

$$
\zeta_{o} \in U_{1} \times V_{1} \subset \overline{U_{1} \times V_{1}} \subset U_{2} \times V_{2} \subset \overline{U_{2} \times V_{2}} \subset D
$$

and the restriction of ρ^{q} to V_{2} gives a C^{ω}-smooth strictly plurisubharmonic function on V_{2}. Moreover, after shrinking O if necessary, we may assume by (2.9) that $\Phi\left(U_{1} \times V_{1}\right) \subset U_{2} \times V_{2}$ for every $\Phi \in O$.

Now, taking an element $\Phi=(f, g) \in O$ and a point $w \in V_{1}$ with $\rho^{q}(w)=1$ arbitrarily, we set $g_{w}(z)=g(z, w), z \in U_{1}$, for a while. Then, since $g_{w}\left(U_{1}\right) \subset V_{2}$, we can define a
C^{ω}-smooth plurisubharmonic function $\hat{\rho}$ on U_{1} by setting $\hat{\rho}(z):=\rho^{q}\left(g_{w}(z)\right), z \in U_{1}$. It then follows that $\hat{\rho}(z)=1$ on U_{1}, since

$$
\Phi\left(U_{1} \times\{w\}\right) \subset \partial \mathcal{H} \cap\left(U_{2} \times V_{2}\right) \subset\left\{(u, v) \in U_{2} \times V_{2} ; \rho^{q}(v)=1\right\} .
$$

This combined with the strictly plurisubharmonicity of ρ^{q} on V_{2} implies that $g_{w}(z)$ is a constant mapping on U_{1}. As a result, defining the real-analytic hypersurface of V_{1} by setting $H:=\left\{w \in V_{1} ; \rho^{q}(w)=1\right\}$, we have shown that
(2.15) for any $w \in H, g_{w}(z)=g(z, w)$ is constant on U_{1}.

Now, being a holomorphic mapping on the Reinhardt domain D containing $\mathcal{H} \cup \partial_{r} \mathcal{H}, g$ can be expanded uniquely as

$$
\begin{equation*}
g(z, w)=g\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)=\sum_{\nu^{\prime}} a_{\nu^{\prime}}\left(\zeta^{\prime \prime}\right)\left(\zeta^{\prime}\right)^{\nu^{\prime}}, \quad \zeta=\left(\zeta^{\prime}, \zeta^{\prime \prime}\right) \in D \tag{2.16}
\end{equation*}
$$

which converges uniformly on compact subsets of D, where

$$
\zeta^{\prime}=\left(\zeta_{1}, \ldots, \zeta_{|\ell|}\right)=z \in \mathbf{C}^{|\ell|}, \quad \zeta^{\prime \prime}=\left(\zeta_{|\ell|+1}, \ldots, \zeta_{N}\right)=w \in \mathbf{C}^{|m|}
$$

$\left.a_{v^{\prime}}\left(\zeta^{\prime \prime}\right)=\left(a_{v^{\prime}}^{1} \zeta^{\prime \prime}\right), \ldots, a_{v^{\prime}}^{|m|}\left(\zeta^{\prime \prime}\right)\right)$ are $|m|$-tuples of holomorphic functions, and the summation is taken over all $\nu^{\prime}=\left(\nu_{1}, \ldots, \nu_{|\ell|}\right) \in \mathbf{Z}^{|\ell|}$ with $\nu_{1}, \ldots, \nu_{|\ell|} \geq 0$ (cf. [9]). In particular, the expansion of g in (2.16) converges uniformly on the domain $U_{1} \times V_{1}$ and every $a_{\nu^{\prime}}\left(\zeta^{\prime \prime}\right)$ is holomorphic on V_{1}. Then the assertion (2.15) tells us that

$$
a_{v^{\prime}}\left(\zeta^{\prime \prime}\right)=0, \quad \zeta^{\prime \prime} \in H, \quad \text { for } v^{\prime} \neq 0
$$

Since $a_{\nu^{\prime}}\left(\zeta^{\prime \prime}\right)$ are holomorphic on V_{1} and H is a real-analytic hypersurface of V_{1}, it is obvious that $a_{\nu^{\prime}}\left(\zeta^{\prime \prime}\right)=0$ on V_{1} for $\nu^{\prime} \neq 0$; and hence, by analytic continuation $g(z, w)=a_{0}\left(\zeta^{\prime \prime}\right)$ does not depend on $z=\zeta^{\prime}$ globally; proving our lemma for every element $\Phi=(f, g)$ contained in the open neighborhood O of $\operatorname{id}_{\mathcal{H}}$ in $G(\mathcal{H})$.

Finally, recall that a connected topological group is always generated by any neighborhood of the identity id. Hence, replacing O by the open neighborhood $O \cap\left\{\Phi^{-1} ; \Phi \in O\right\}$ of $\mathrm{id}_{\mathcal{H}}$ if necessary, we may assume that the given element $\Psi=(h, k) \in G(\mathcal{H})$ can be represented as a finite product $\Psi=\Phi_{1} \ldots \Phi_{s}$ of elements $\Phi_{i} \in O$. This together with the result of the preceding paragraph guarantees that $k(z, w)$ does not depend on the variables z; completing the proof of Lemma 6 .

We finish this section by the following:
Lemma 7. Let Ω be a domain in \mathbf{C}^{n} and let $A: \Omega \rightarrow U(L)$ be a mapping from Ω into the unitary group $U(L)$ of degree L. Assume that all the $i j$-components $a_{i j}$ of A are holomorphic functions on Ω. Then A is a constant mapping.

Proof. By our assumption we have

$$
\sum_{j=1}^{L}\left|a_{i j}(z)\right|^{2}=1, \quad z \in \Omega, \quad \text { for every } 1 \leq i \leq L
$$

Then, since all the $a_{i j}$ are holomorphic on Ω, it is easily seen that $\partial a_{i j}(z) / \partial z_{k} \equiv 0$ on Ω for all i, j and k. Clearly this implies that A is a constant mapping, as desired.
3. Proof of Theorem 1. The proof will be carried out in the following two Subsections.
3.1. CASE (I). $p_{1}=1, q_{1}=q \in \mathbf{N}$: When $I=1$, that is, for the case $\mathcal{H}=\{(z, w) \in$ $\left.\mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\|z\|^{2}<|w|^{2 q}<1\right\}$, we consider the mapping $\Lambda_{1}: \mathcal{H} \rightarrow \mathbf{C}^{\ell_{1}+1}$ defined by

$$
\Lambda_{1}(z, w)=\left(z / w^{q}, w\right), \quad(z, w) \in \mathcal{H} .
$$

Then Λ_{1} gives rise to a biholomorphic mapping from \mathcal{H} onto $B^{\ell_{1}} \times \Delta^{*}$. On the other hand, if we denote by $G(D)$ the identity component of $\operatorname{Aut}(D)$ for a given domain D, we have that $G\left(B^{\ell_{1}} \times \Delta^{*}\right)=G\left(B^{\ell_{1}}\right) \times G\left(\Delta^{*}\right)$ by a well-known theorem of H . Cartan. Moreover, with exactly the same argument as in the proof of Lemma 5, one can see that every element $\Phi \in$ $\operatorname{Aut}_{\text {alg }}\left(B^{\ell_{1}} \times \Delta^{*}\right)$ can be written as in (2.14) with $|\ell|=\ell_{1}, \zeta=\left(\zeta_{1}, \ldots, \zeta_{\ell_{1}}, \zeta_{N}\right) \in B^{\ell_{1}} \times \Delta^{*}$ and $\left|\lambda_{N}\right|=1$. More precisely, we assert here that $\left|\lambda_{i}\right|=1, b_{i}=0$ for every $1 \leq i \leq \ell_{1}$. To verify this, notice that Φ is now regarded as a holomorphic automorphism of $\mathbf{C}^{\ell_{1}} \times \mathbf{C}^{*}$; accordingly, it leaves the boundary of $B^{\ell_{1}} \times \Delta^{*}$ invariant. Thus

$$
\sum_{i=1}^{\ell_{1}}\left|\lambda_{i} \zeta_{\sigma(i)} \zeta_{N}^{b_{i}}\right|^{2}=1 \quad \text { whenever } \quad \sum_{i=1}^{\ell_{1}}\left|\zeta_{i}\right|^{2}=1, \quad \zeta_{N} \in \Delta^{*}
$$

Clearly, this says that $\left|\lambda_{i}\right|=1, b_{i}=0$ for every $1 \leq i \leq \ell_{1}$, as asserted. As a result, we have shown that $\operatorname{Aut}_{\text {alg }}\left(B^{\ell_{1}} \times \Delta^{*}\right)=\operatorname{Aut}_{\text {alg }}\left(B^{\ell_{1}}\right) \times \operatorname{Aut}_{\text {alg }}\left(\Delta^{*}\right)$ and hence $\operatorname{Aut}\left(B^{\ell_{1}} \times \Delta^{*}\right)=$ $\operatorname{Aut}\left(B^{\ell_{1}}\right) \times \operatorname{Aut}\left(\Delta^{*}\right)$ by (2.13). Therefore we conclude that every element $\Phi \in \operatorname{Aut}(\mathcal{H})$ can be described as

$$
\begin{equation*}
\Phi(z, w)=\left(w^{q} H\left(z / w^{q}\right), B w\right), \quad(z, w) \in \mathcal{H}, \tag{3.1}
\end{equation*}
$$

where $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$ and $B \in \mathbf{C}$ with $|B|=1$; proving Theorem 1, (I), in the case of $I=1$.
Next, consider the case where $I \geq 2$. By the identity in [10; Theorem 2.2.5, (2)], it is easy to check that the mapping Φ having the form as in Theorem 1, (I), belongs to $\operatorname{Aut}(\mathcal{H})$. So, taking an arbitrary element $\Phi \in \operatorname{Aut}(\mathcal{H})$, we would like to show that Φ can be described as in the theorem. To this end, write $\Phi=(f, g)$ with respect to the coordinate system (z, w) in $\mathbf{C}^{|\ell|} \times \mathbf{C}$. Then g does not depend on the variables z by Lemma 6 . Hence g induces a holomorphic automorphism of Δ^{*}; so that g has the form $g(w)=B w$ with $|B|=1$. Let us define a holomorphic automorphism Φ_{B} of \mathcal{H} by $\Phi_{B}(z, w)=\left(z, B^{-1} w\right)$. Replacing Φ by $\Phi_{B} \Phi$ if necessary, we may now assume that Φ has the form $\Phi(z, w)=(f(z, w), w)$ on \mathcal{H}. Therefore, if we set

$$
\begin{equation*}
\mathcal{E}_{w}^{p}=\left\{z \in \mathbf{C}^{|\ell|} ; \rho^{p}(z)<|w|^{2 q}\right\}, \quad f_{w}(z)=f(z, w), z \in \mathcal{E}_{w}^{p}, \tag{3.2}
\end{equation*}
$$

for an arbitrarily given point $w \in \Delta^{*}$, then f_{w} is a holomorphic automorphism of \mathcal{E}_{w}^{p}. On the other hand, putting

$$
\begin{equation*}
\mathcal{E}^{p}=\left\{\xi \in \mathbf{C}^{|\ell|} ; \sum_{i=1}^{I}\left\|\xi_{i}\right\|^{2 p_{i}}<1\right\} \quad \text { and } \quad r_{i}=\frac{1}{|w|^{q / p_{i}}}, \quad 1 \leq i \leq I, \tag{3.3}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{I}\right) \in \mathbf{C}^{\ell_{1}} \times \cdots \times \mathbf{C}^{\ell_{I}}=\mathbf{C}^{|\ell|}$, and noting the facts that $p_{1}=1$ and $q \in \mathbf{N}$, we have the biholomorphic mapping $\Lambda: \mathcal{E}_{w}^{p} \rightarrow \mathcal{E}^{p}$ defined by

$$
\Lambda(z)=\left(z_{1} / w^{q}, r_{2} z_{2}, \ldots, r_{I} z_{I}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathcal{E}_{w}^{p} .
$$

Recall here our previous result in [6]: When $p_{1}=1$, every holomorphic automorphism Ψ of \mathcal{E}^{p} has the form

$$
\Psi(\xi)=\left(H\left(\xi_{1}\right), \gamma_{2}\left(\xi_{1}\right) A_{2} \xi_{\sigma(2)}, \ldots, \gamma_{I}\left(\xi_{1}\right) A_{I} \xi_{\sigma(I)}\right),
$$

where $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right), A_{i} \in U\left(\ell_{i}\right)$ and γ_{i} are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ given as in Theorem 1, (I), with $z_{1}=\xi_{1}$, and σ is a permutation of $\{2, \ldots, I\}$ having the property: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$. Then, applying this result to the holomorphic automorphism $\Lambda \circ f_{w} \circ \Lambda^{-1}$ of \mathcal{E}^{p} and noting the fact that $r_{i}=r_{s}$ if $\sigma(i)=s$, one can see that f_{w} has the form

$$
\begin{equation*}
f_{w}(z)=\left(w^{q} H\left(z_{1} / w^{q}\right), \gamma_{2}\left(z_{1} / w^{q}\right) A_{2} z_{\sigma(2)}, \ldots, \gamma_{I}\left(z_{1} / w^{q}\right) A_{I} z_{\sigma(I)}\right), \tag{3.4}
\end{equation*}
$$

where $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right), A_{i} \in U\left(\ell_{i}\right)$ and γ_{i} are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ determined uniquely by H, and σ is a permutation of $\{2, \ldots, I\}$ having the property: $\sigma(i)=s$ occurs only when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$. Of course, all the H, A_{i}, γ_{i} and σ are determined by the given point $w \in \Delta^{*}$; accordingly, expressing them as $H^{w}, A_{i}^{w}, \gamma_{i}^{w}$ and σ^{w}, we obtain a family $\mathcal{F}=\left\{\left(H^{w}, A_{i}^{w}, \gamma_{i}^{w}, \sigma^{w}\right)\right\}_{w \in \Delta^{*}}$. The only thing which has to be proved now is that all the members $\left(H^{w}, A_{i}^{w}, \gamma_{i}^{w}, \sigma^{w}\right)$ of \mathcal{F} are independent on the parameter w. To prove this, put

$$
\begin{align*}
& \mathcal{H}^{1}=\left\{\left(z_{1}, w\right) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\left\|z_{1}\right\|^{2}<|w|^{2 q}<1\right\} \quad \text { and } \\
& \mathcal{E}_{w}^{1}=\left\{z_{1} \in \mathbf{C}^{\ell_{1}} ;\left\|z_{1}\right\|^{2}<|w|^{2 q}\right\}, \quad w \in \Delta^{*}, \tag{3.5}
\end{align*}
$$

and regard these as complex submanifolds of \mathcal{H} and of \mathcal{E}_{w}^{p}, respectively, in the canonical manner. It then follows from (3.4) that $f_{w}\left(\mathcal{E}_{w}^{1}\right)=\mathcal{E}_{w}^{1}$ and $\Phi\left(\mathcal{H}^{1}\right)=\mathcal{H}^{1}$. Therefore, denoting by f_{w}^{1}, Φ^{1} the restrictions of f_{w}, Φ to $\mathcal{E}_{w}^{1}, \mathcal{H}^{1}$, respectively, we see that Φ^{1} defines a holomorphic automorphism of \mathcal{H}^{1} having the form

$$
\Phi^{1}\left(z_{1}, w\right)=\left(w^{q} H^{w}\left(z_{1} / w^{q}\right), w\right)=\left(f_{w}^{1}\left(z_{1}\right), w\right), \quad\left(z_{1}, w\right) \in \mathcal{H}^{1}
$$

and the same situation as in the case $I=1$ above occurs for the domain \mathcal{H}^{1} and its automorphism Φ^{1} of \mathcal{H}^{1}. Consequently, by (3.1) we conclude that the automorphism H^{w} of $B^{\ell_{1}}$ is, in fact, independent on $w \in \Delta^{*}$; and so is γ_{i}^{w}. This combined with the fact that $f_{w}(z)=f(z, w)$ is holomorphic on \mathcal{H} implies that every component of A_{i}^{w} is holomorphic in $w \in \Delta^{*}$. Thus
A_{i}^{w} is a unitary matrix independent on w by Lemma 7. Notice that the mapping Φ_{o} defined by

$$
\Phi_{o}(z, w)=\left(w^{q} H\left(z_{1} / w^{q}\right), \gamma_{2}\left(z_{1} / w^{q}\right) A_{2} z_{2}, \ldots, \gamma_{I}\left(z_{1} / w^{q}\right) A_{I} z_{I}, w\right), \quad(z, w) \in \mathcal{H}
$$

is now a holomorphic automorphism of \mathcal{H}. Then $\Phi_{o}^{-1} \Phi$ is also a holomorphic automorphism of \mathcal{H} and it has the form

$$
\Phi_{o}^{-1} \Phi(z, w)=\left(z_{1}, z_{\sigma^{w}(2)}, \ldots, z_{\sigma^{w}}(I), w\right), \quad(z, w) \in \mathcal{H}
$$

from which it follows at once that σ^{w} is actually independent on $w \in \Delta^{*}$. Therefore we have completed the proof of Theorem 1, (I).
3.2. CASE (II). $p_{1} \neq 1$ or $q_{1}=q \notin \mathbf{N}$: Clearly we have only to show that every element $\Phi \in \operatorname{Aut}(\mathcal{H})$ can be described as in Theorem 1, (II).

First, consider the case $p_{1} \neq 1$. By the same reasoning as in the previous Subsection, we may assume that Φ has the form $\Phi(z, w)=(f(z, w), w)$ on \mathcal{H}. Therefore, if we define the domain \mathcal{E}_{w}^{p} and the mapping f_{w} by (3.2) for any given point $w \in \Delta^{*}$, then f_{w} is a holomorphic automorphism of \mathcal{E}_{w}^{p}. Moreover, letting \mathcal{E}^{p} and r_{i} be the same objects appearing in (3.3), we obtain the biholomorphic mapping $\Lambda: \mathcal{E}_{w}^{p} \rightarrow \mathcal{E}^{p}$ defined by

$$
\begin{equation*}
\Lambda(z)=\left(r_{1} z_{1}, \ldots, r_{I} z_{I}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathcal{E}_{w}^{p} . \tag{3.6}
\end{equation*}
$$

Then, by recalling the result of [6] in the case $p_{1} \neq 1$ and by repeating exactly the same argument as in Subsection 3.1, it can be shown that f_{w} has the form

$$
\begin{equation*}
f_{w}(z)=\left(A_{1} z_{\sigma(1)}, \ldots, A_{I} z_{\sigma(I)}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathcal{E}_{w}^{p} \tag{3.7}
\end{equation*}
$$

where $A_{i} \in U\left(\ell_{i}\right)$ and σ is a permutation of $\{1, \ldots, I\}$ satisfying the following: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$. Therefore we have completed the proof of Theorem 1, (II), in the case $p_{1} \neq 1$.

Next, consider the case $q \notin \mathbf{N}$. Of course, it suffices to consider the case $q \notin \mathbf{N}$ and $p_{1}=1$. Take an element $\Phi \in \operatorname{Aut}(\mathcal{H})$ arbitrarily. Again we may assume that Φ has the form $\Phi(z, w)=(f(z, w), w)$ on \mathcal{H}. For an arbitrarily given point $w \in \Delta^{*}$, let $\mathcal{E}_{w}^{p}, f_{w}$ (resp. \mathcal{E}^{p}, r_{i}) be the same objects appearing in (3.2) (resp. in (3.3)) and let $\Lambda: \mathcal{E}_{w}^{p} \rightarrow \mathcal{E}^{p}$ be the biholomorphic mapping defined in (3.6). Then, by the same reasoning as above, f_{w} is a holomorphic automorphism of \mathcal{E}_{w}^{p}. Once it is shown that f_{w} is linear, that is, it is the restriction to \mathcal{E}_{w}^{p} of some linear transformation of $\mathbf{C}^{|\ell|}$, then the method used in the preceding paragraph can be applied to prove that f_{w} is independent on w and, in fact, it has the form as in (3.7). Therefore we have only to verify that f_{w} is linear. For this purpose, recall the following fact in Lemma 5: Let Ψ be an element of $\operatorname{Aut}_{\text {alg }}(\mathcal{H})$ having the form $\Psi(z, w)=(h(z, w), w)$ on \mathcal{H}. Then, for any point $w \in \Delta^{*}, h_{w}(z)=h(z, w)$ is a linear mapping of z. This together with the fact $\operatorname{Aut}(\mathcal{H})=G(\mathcal{H}) \operatorname{Aut}_{\text {alg }}(\mathcal{H})$ by (2.13) immediately yields that it suffices to show the linearity of f_{w} for every $\Phi=(f, g) \in G(\mathcal{H})$ with $g(w)=w$.

Now consider again the domain $\mathcal{E}_{w}^{1} \subset \mathbf{C}^{|\ell|}$ defined in (3.5) and the holomorphic automorphism $\Lambda \circ f_{w} \circ \Lambda^{-1}$ of \mathcal{E}^{p}. Then, in exactly the same way as in Subsection 3.1, one can see that $f_{w}\left(\mathcal{E}_{w}^{1}\right)=\mathcal{E}_{w}^{1}$ and f_{w} is a linear automorphism of \mathcal{E}_{w}^{p} if and only if the restriction
f_{w}^{1} of f_{w} to \mathcal{E}_{w}^{1} is a linear automorphism of \mathcal{E}_{w}^{1}. Consequently, the proof is now reduced to showing that f_{w}^{1} is a linear automorphism of \mathcal{E}_{w}^{1}. Now, assume to the contrary that there exists an element $\Phi=(f, g) \in G(\mathcal{H}), g(w)=w$, such that f_{w}^{1} is not a linear automorphism of \mathcal{E}_{w}^{1}. Then, since Φ leaves all slices $\mathcal{E}_{w}^{p} \times\{w\}, w \in \Delta^{*}$, invariant and $f_{w}\left(\mathcal{E}_{w}^{1}\right)=\mathcal{E}_{w}^{1}$, one can find a complete holomorphic vector field X on \mathcal{H} satisfying the following two conditions: For any point $w \in \Delta^{*}$,
(3.8) X is tangent to the complex submanifold $\mathcal{E}_{w}^{1} \times\{w\}$ of \mathcal{H}; and
(3.9) the restriction of X to $\mathcal{E}_{w}^{1} \times\{w\}$, say again X, is a non-zero complete holomorphic vector field having the form

$$
X=\sum_{k=1}^{\ell_{1}}\left(\alpha_{k}(w)+\sum_{\mu, \nu=1}^{\ell_{1}} \beta_{\mu \nu}^{k}(w) \zeta_{\mu} \zeta_{\nu}\right) \frac{\partial}{\partial \zeta_{k}},
$$

where $\alpha_{k}, \beta_{\mu \nu}^{k}$ are holomorphic functions on Δ^{*} (cf. [12; Proposition 2]).
Here we know that $X \neq 0$ if and only if $\alpha_{k}(w) \neq 0$ for some k. Moreover, we may assume by Lemma 4 that X extends holomorphically across the set $\partial \mathcal{H} \backslash\{0\}$.

From now on, for any given point $w \in \Delta^{*}$, we identify naturally $\mathcal{E}_{w}^{1} \times\{w\}$ with \mathcal{E}_{w}^{1}; so that X is regarded as a complete holomorphic vector field on \mathcal{E}_{w}^{1} and

$$
\rho_{w}\left(z_{1}\right)=\rho_{w}\left(\zeta_{1}, \ldots, \zeta_{\ell_{1}}\right):=\sum_{j=1}^{\ell_{1}}\left|\zeta_{j}\right|^{2}-|w|^{2 q}
$$

is a defining function of \mathcal{E}_{w}^{1} in $\mathbf{C}^{\ell_{1}}$. Note that X is now defined on some domain in $\mathbf{C}^{\ell_{1}}$ containing the closure $\overline{\mathcal{E}_{w}^{1}}$ of \mathcal{E}_{w}^{1}. It then follows from the tangency condition $\operatorname{Re}\left(X \rho_{w}\right)=0$ on the boundary $\partial \mathcal{E}_{w}^{1}$ that

$$
\begin{equation*}
\operatorname{Re}\left\{\sum_{k=1}^{\ell_{1}}\left(\alpha_{k}(w)+\sum_{\mu, v=1}^{\ell_{1}} \beta_{\mu \nu}^{k}(w) \zeta_{\mu} \zeta_{\nu}\right) \bar{\zeta}_{k}\right\}=0 \quad \text { whenever } \rho_{w}\left(\zeta_{1}, \ldots, \zeta_{\ell_{1}}\right)=0 \tag{3.10}
\end{equation*}
$$

Fix an index k with $\alpha_{k}(w) \neq 0$ and consider the points $\left(0, \ldots, 0, \zeta_{k}, 0, \ldots, 0\right) \in \mathbf{C}^{\ell_{1}}$ with $\left|\zeta_{k}\right|^{2}=|w|^{2 q}$. Then, by routine computations it follows from (3.10) that

$$
\alpha_{k}(w)+\overline{\beta_{k k}^{k}(w)}|w|^{2 q}=0, \quad w \in \Delta^{*} .
$$

Hence we have

$$
\overline{\left(\frac{d \beta_{k k}^{k}(w)}{d w}\right)} \cdot|w|^{2 q}+\overline{\beta_{k k}^{k}(w)} \cdot q w|w|^{2(q-1)}=0
$$

or equivalently

$$
\frac{d \beta_{k k}^{k}(w)}{d w} w+q \beta_{k k}^{k}(w)=0
$$

Let $\beta_{k k}^{k}(w)=\sum_{v} A_{v} w^{v}$ be the Laurent expansion of $\beta_{k k}^{k}$ on Δ^{*}, where $v \in \mathbf{Z}$. Inserting this into the equation above, we then obtain that

$$
(q+v) A_{v}=0 \quad \text { for all } v \in \mathbf{Z}
$$

Since $0<q \notin \mathbf{N}$ by our assumption, this implies that $A_{\nu}=0$ for all $v \in \mathbf{Z}$. Thus $\beta_{k k}^{k}(w)=0$ and so $\alpha_{k}(w)=0$ on Δ^{*}, a contradiction. Eventually we have shown that every automorphism f_{w} is linear; and accordingly, $\operatorname{Aut}(\mathcal{H})$ consists only of linear automorphisms having the description as in Theorem 1, (II), as desired.
4. Proof of Theorem 2. Clearly the mapping Φ having the form as in Theorem 2 belongs to $\operatorname{Aut}(\mathcal{H})$. Conversely, take an arbitrary element $\Phi \in \operatorname{Aut}(\mathcal{H})$ and write $\Phi=$ $\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ with respect to the coordinate system $\zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)$ in \mathbf{C}^{N}. Then, since $|m| \geq 2$, by the same reasoning as in the proof of Lemma 5 every component function Φ_{i} extends to a unique holomorphic function $\widehat{\Phi}_{i}$ defined on $\mathcal{E}^{p} \times \mathcal{E}^{q}$. Accordingly, we obtain a holomorphic extension $\widehat{\Phi}:=\left(\widehat{\Phi}_{1}, \ldots, \widehat{\Phi}_{N}\right): \mathcal{E}^{p} \times \mathcal{E}^{q} \rightarrow \mathbf{C}^{N}$ of Φ. We first assert that $\widehat{\Phi}\left(\mathcal{E}^{p} \times \mathcal{E}^{q}\right) \subset \mathcal{E}^{p} \times \mathcal{E}^{q}$. To prove this, represent again $\Phi=(f, g)$ and $f=\left(f_{1}, \ldots, f_{I}\right), g=$ $\left(g_{1}, \ldots, g_{J}\right)$ by coordinates $(z, w)=\left(z_{1}, \ldots, z_{I}, w_{1}, \ldots, w_{J}\right)$ in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$. Let \hat{f}, \hat{g} be the holomorphic extensions of f, g to $\mathcal{E}^{p} \times \mathcal{E}^{q}$, respectively. Since $g(z, w)$ does not depend on the variables z by Lemma $6, \hat{g}$ gives now a holomorphic automorphism of \mathcal{E}^{q} with $\hat{g}(0)=0$; consequently it follows from our result of [6] that \hat{g} can be written in the form

$$
\begin{equation*}
\hat{g}(w)=\left(B_{1} w_{\tau(1)}, \ldots, B_{J} w_{\tau(J)}\right), \quad w=\left(w_{1}, \ldots, w_{J}\right) \in \mathcal{E}^{q} \tag{4.1}
\end{equation*}
$$

where $B_{j} \in U\left(m_{j}\right), 1 \leq j \leq J$, and τ is a permutation of $\{1, \ldots, J\}$ such that $\tau(j)=t$ if and only if $\left(m_{j}, q_{j}\right)=\left(m_{t}, q_{t}\right)$. On the other hand, picking a point $z_{o} \in \mathcal{E}^{p}$ arbitrarily, we have $\left(z_{o}, w\right) \in \mathcal{H}$ for all points $w \in \mathbf{C}^{|m|}$ with $\rho^{p}\left(z_{o}\right)<\rho^{q}(w)<1$; and hence $\rho^{p}\left(f\left(z_{o}, w\right)\right)<\rho^{q}(g(w))<1$ for such points. So, taking account of the maximum principle for the continuous plurisubharmonic function $\rho^{p}\left(\hat{f}\left(z_{o}, w\right)\right)$ on \mathcal{E}^{q}, we obtain that $\rho^{p}\left(\hat{f}\left(z_{o}, w\right)\right)<1$ for all $w \in \mathcal{E}^{q}$. Thus $\hat{f}\left(\mathcal{E}^{p} \times \mathcal{E}^{q}\right) \subset \mathcal{E}^{p}$ and so $\widehat{\Phi}\left(\mathcal{E}^{p} \times \mathcal{E}^{q}\right) \subset \mathcal{E}^{p} \times \mathcal{E}^{q}$. Also, repeating exactly the same argument for the holomorphic extension $\widehat{\Psi}$ of the inverse $\Psi:=\Phi^{-1}$ of Φ, we obtain the same conclusion $\widehat{\Psi}\left(\mathcal{E}^{p} \times \mathcal{E}^{q}\right) \subset \mathcal{E}^{p} \times \mathcal{E}^{q}$. Then

$$
\widehat{\Phi} \circ \widehat{\Psi}(z, w)=\widehat{\Psi} \circ \widehat{\Phi}(z, w)=(z, w), \quad(z, w) \in \mathcal{E}^{p} \times \mathcal{E}^{q}
$$

by analytic continuation. Hence $\widehat{\Phi}$ is a holomorphic automorphism of the bounded Reinhardt domain $\mathcal{E}^{p} \times \mathcal{E}^{q}$. Moreover, since

$$
\sum_{i=1}^{I}\left\|f_{i}(z, w)\right\|^{2 p_{i}}<\sum_{j=1}^{J}\left\|g_{j}(w)\right\|^{2 q_{j}}=\sum_{j=1}^{J}\left\|w_{j}\right\|^{2 q_{j}}, \quad(z, w) \in \mathcal{H}
$$

by (4.1), it follows that $\widehat{\Phi}(0,0)=(0,0)$ by taking the limit $(z, w) \rightarrow(0,0)$ through \mathcal{H}. Then, as an immediate consequence of a well-known theorem of H. Cartan, it follows that $\widehat{\Phi}$ is a linear automorphism of $\mathcal{E}^{p} \times \mathcal{E}^{q}$.

Let us define the mapping $\hat{f}_{o}: \mathcal{E}^{p} \rightarrow \mathbf{C}^{|\ell|}$ by setting $\hat{f_{o}}(z):=\hat{f}(z, 0), z \in \mathcal{E}^{p}$. Then it is easily seen that \hat{f}_{o} is a holomorphic automorphism of \mathcal{E}^{p}. So, our previous result [6]
implies that it can be expressed as

$$
\begin{equation*}
\hat{f}_{o}(z)=\left(A_{1} z_{\sigma(1)}, \ldots, A_{I} z_{\sigma(I)}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathcal{E}^{p} \tag{4.2}
\end{equation*}
$$

where $A_{i} \in U\left(\ell_{i}\right), 1 \leq i \leq I$, and σ is a permutation of $\{1, \ldots, I\}$ such that $\sigma(i)=s$ occurs only when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$. Now define the linear automorphism $\widehat{\Phi}_{o}$ of $\mathcal{E}^{p} \times \mathcal{E}^{q}$ by

$$
\widehat{\Phi}_{o}(z, w)=\left(\hat{f}_{o}(z), \hat{g}(w)\right), \quad(z, w) \in \mathcal{E}^{p} \times \mathcal{E}^{q}
$$

and consider the holomorphic automorphism

$$
\begin{equation*}
\Gamma(z, w)=\widehat{\Phi}_{o}^{-1} \circ \widehat{\Phi}(z, w), \quad(z, w) \in \mathcal{E}^{p} \times \mathcal{E}^{q} \tag{4.3}
\end{equation*}
$$

of $\mathcal{E}^{p} \times \mathcal{E}^{q}$. Then Γ can be written in the form

$$
\Gamma(z, w)=(z+M w, w), \quad(z, w) \in \mathcal{E}^{p} \times \mathcal{E}^{q}
$$

(think of z, w as column vectors), where M is a certain $|\ell| \times|m|$ matrix. Thus, denoting by Γ^{n} the n-th iteration of Γ, we have

$$
\Gamma^{n}(z, w)=(z+n M w, w), \quad(z, w) \in \mathcal{E}^{p} \times \mathcal{E}^{q}, \quad n=1,2, \ldots
$$

Hence M has to be the zero matrix, that is, Γ is the identity transformation of $\mathcal{E}^{p} \times \mathcal{E}^{q}$, since $\left\{\Gamma^{n}\right\}_{n=1}^{\infty}$ is contained in the isotropy subgroup K_{0} of $\operatorname{Aut}\left(\mathcal{E}^{p} \times \mathcal{E}^{q}\right)$ at the origin $0=(0,0) \in$ $\mathcal{E}^{p} \times \mathcal{E}^{q}$ and K_{0} is compact, as is well-known. Therefore we have shown that $\widehat{\Phi}=\widehat{\Phi}_{o}$ has the form described in Theorem 2; thereby completing the proof.

References

[1] D. E. BARRETT, Holomorphic equivalence and proper mapping of bounded Reinhardt domains not containing the origin, Comment. Math. Helvetici 59 (1984), 550-564.
[2] S. BELL, Analytic hypoellipticity of the $\bar{\partial}$-Neumann problem and extendability of holomorphic mappings, Acta Math. 147 (1981), 109-116.
[3] Z. H. Chen and D. K. Xu, Proper holomorphic mappings between some nonsmooth domains, Chin. Ann. of Math. Ser. B 22 (2001), 177-182.
[4] Z. H. CHEN AND D. K. XU, Rigidity of proper self-mapping on some kinds of generalized Hartogs triangle, Acta Math. Sin. (Engl. Ser.) 18 (2002), 357-362.
[5] M. JARnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, EMS Textbooks in Math., Euro. Math. Soc., Zürich, 2008.
[6] A. Kodama, On the holomorphic automorphism group of a generalized complex ellipsoid, Complex Var. Elliptic Equ. 59 (2014), 1342-1349.
[7] A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, Osaka J. Math. 41 (2004), 85-95.
[8] M. LANDUCCI, Proper holomorphic mappings between some nonsmooth domains, Ann. Mat. Pura Appl. CLV (1989), 193-203.
[9] R. NARASIMHAN, Several complex variables, Univ. Chicago Press, Chicago and London, 1971.
[10] W. RUdin, Function theory in the unit ball of \mathbf{C}^{n}, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
[11] S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119-152.
[12] T. SunADA, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111-128.

Faculty of Mathematics and Physics
Institute of Science and Engineering
Kanazawa University
KANAZAWA 920-1192
JAPAN
E-mail address: kodama@staff.kanazawa-u.ac.jp

