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Abstract. We prove that Alexandrov’s conjecture relating the area and diameter of a
convex surface holds for the surface of a general ellipsoid. This is a direct consequence of a
more general result which estimates the deviation from the optimal conjectured bound in terms
of the length of the cut locus of a point on the surface. We also prove that the natural exten-
sion of the conjecture to general dimension holds among closed convex spherically symmetric
Riemannian manifolds. Our results are based on a new symmetrization procedure which we
believe to be interesting in its own right.

1. Introduction. Let Σ be a closed oriented surface. (By a surface we always mean
a connected smooth 2-dimensional Riemannian manifold; closed means compact and without
boundary.) Unless otherwise stated, we assume that Σ is convex, i.e. the Gauss curvature K

is non-negative and not identically equal to zero. Let A and D denote the surface area and the
(intrinsic) diameter of Σ , respectively.

This paper is concerned with the following conjecture raised by A. D. Alexandrov in
1955 [2]:

CONJECTURE 1. For any closed oriented convex surface Σ ,

(1)
A

D2 ≤ π

2
≈ 1.5708 .

It can easily be seen that the value on the right hand side of this inequality is attained for
the respective quotient by the doubly-covered disk, i.e. a degenerate surface formed by gluing
two flat disks along their boundaries.

Due to the inequality relating the area and the diameter of a planar convex domain,
namely, A/D2 ≤ π/4, with equality attained only for the disk, it follows that the conjecture
holds among degenerate surfaces made of two copies of the same convex planar domain glued
at the boundary. However, for general convex surfaces the conjecture remains open with the
strongest result so far being, to the best of our knowledge, that by Calabi and Cao [3] yielding

A

D2 ≤ 8

π
≈ 2.5465 ,
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while other (weaker) bounds may be found in [18, 19]. We note that the proof of the above
inequality by Calabi and Cao is done indirectly by means of eigenvalue estimates.

Even within restricted families of surfaces, such as the boundary of parallelepipeds, the
problem does not seem to be easy, mainly due to the difficulties arising in the computation of
the intrinsic diameter of a given surface. The classes for which the conjecture has been proved
are tetrahedra (Makai [13] and Zalgaller [22]), rectangular parallelepipeds (Nikonorov and
Nikonorova [15]) and surfaces of revolution (Makuha [14] and Abreu and the first author [1]).
Except for the last family of surfaces, which contains the double disk, the optimizers in the
first and second cases are not degenerate, being the regular tetrahedron and the parallelepiped
with edge lengths 1, 1 and

√
2, respectively, with the corresponding inequalities satisfied for

surfaces within each family being

A

D2 ≤ 3
√

3
4 ≈ 1.299 and A

D2 ≤ 1 + 2
√

2
3 ≈ 1.276 .

We point out that the result for surfaces of revolution given in [14, 1] is actually stronger,
in that the convexity restriction is replaced by the condition that the surface is diffeomorphic
to the sphere and isometric to a closed surface in R

3. In fact, it is suggested in [1] that it might
be possible to replace convexity by this weaker condition also in the case of general surfaces.

We note that by the Kuiper-Nash embedding theorem, the example in Section 3.1 in [1]
may be C1 isometrically embedded in R

3, and we thus have that there exists a surface in R
3,

homeomorphic to the sphere, for which the quotient A/D2 may be made to be arbitrarily large.
An interesting question is thus whether the conjecture may hold for more general surfaces as
in the case of surfaces of revolution, or whether having non-negative curvature is an essential
condition.

Here we shall go one step further and, having proven the result for spherically symmetric
d-manifolds in R

d+1 – see Theorem 3 in Appendix B –, we conjecture that, under some
assumptions, a similar result will hold in any dimension.

In this paper we relate the quotient between A and D2 to the cut-locus geometry of the
surface Σ , bounding it by the conjectured optimal value plus a deviation term proportional to
the 1-dimensional Hausdorff measure of the cut-locus. This allows us to prove the conjecture
in the case of closed convex surfaces having one point for which the cut locus reduces to a
single point – see Corollary 1 below. Our proof is based on a symmetrization procedure which
transforms a given surface into a surface of revolution, while ensuring that the quotient A/D2

does not decrease. However, the resulting surface is not necessarily closed, and the extra term
depending on the measure of the cut locus appears as a way of estimating the length of the
boundary circle.

In order to state our results, we need some standard notions related to the geometry of a
surface. Given a point p ∈ Σ , let us consider a family of geodesics γθ emanating from p with
initial direction θ ∈ S1. The distance to the cut point of p along γθ , denoted here by dp(θ),
is defined as the supremum over all distances t for which γθ is the minimizing geodesic,
i.e. dist(p, γθ (t)) = t . We clearly have the global bounds ρ ≤ dp(θ) ≤ D, where ρ denotes
the injectivity radius of Σ . The cut locus of p, i.e. the set of all cut points of p, is denoted
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by Cp. A subset of Cp is formed by conjugate cut points, i.e., roughly, those points q ∈ Cp

which can “almost” be joined with p via a 1-parameter family of geodesics θ �→ γθ (the
precise definition is given by means of the vanishing of a Jacobi field along γθ ).

It is well known that Cp is a set of Riemannian measure zero. Moreover, Cp has finite 1-
dimensional Hausdorff measure [8, 10] that we denote by |Cp| and call the total length of Cp.
One of the results of this paper is the following bound.

THEOREM 1. Let Σ be a closed oriented convex surface. Suppose that there is a point
p ∈ Σ such that the set of conjugate points in the cut locus Cp is countable. Then

(2)
A

D2
≤ π

2
+ |Cp|

ρ
.

As a consequence of this theorem, we get an estimate on the deviation from the conjec-
tured optimal value in terms of the cut locus of a point in Σ with the smallest measure.

COROLLARY 1. Conjecture 1 holds true for any closed oriented convex surface Σ for
which there is a point p whose cut locus Cp consists of a single point.

As a large class of surfaces to which the result applies, let us mention rotationally sym-
metric surfaces; indeed, the cut locus of a pole reduces to its antipodal point.

More significantly, the same situation happens for umbilical points on any ellipsoid [11]
and we thus have

COROLLARY 2. Conjecture 1 holds true for ellipsoids.

This paper is organized as follows. In the forthcoming Section 2 we summarize some
basic facts about the geometry of (not necessarily convex) surfaces which will be needed
throughout the paper. In particular, we recall the notion of geodesic polar coordinates based
on an arbitrary point of the surface and present a formula for the total length of the cut locus
of the point. As we were unable to find a direct reference for this formula, we provide a proof
in Appendix A. The symmetrization procedure is performed in Section 3, where Theorem 1
is proved as a consequence of a stronger and more general result (Theorem 2). The latter does
not require the hypothesis that the conjugate cut points are countable.

In Appendix B, we prove a higher-dimensional analogue of Alexandrov’s conjecture for
spherically symmetric manifolds in any dimension d ≥ 2 (Theorem 3). In this proof we only
require that the spherically symmetric manifold is diffeomorphic to the sphere Sd and embed-
ded in R

d+1. This situation includes convex spherically symmetric manifolds diffeomorphic
to the sphere Sd due to the embeddability characterization of [17, Thm. 2.1] combined with
a classical result [9] (in fact, even less restrictive, integral-type conditions on the positivity
of the curvature can be required [5]). Let us remark that surfaces considered in Theorems 1
and 2 are necessarily diffeomorphic to S2 and embeddable in R

3.

2. Preliminaries. Let p be any point on Σ . A useful parameterization of Σ (regard-
less of the sign restriction of its curvature K) is given by the geodesic polar coordinates [4,
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Sec. III.1] based on p, i.e. by the diffeomorphism

Φp : Up → Σ \ (Cp ∪ {p}) : {
(t, θ) �→ expp

(
t cos θ e1 + t sin θ e2

)}
.

Here expp denotes the exponential map on TpΣ , {e1, e2} is an orthonormal basis of TpΣ and

Up := {
(t, θ)

∣
∣ 0 < t < dp(θ), θ ∈ S1} .

In these coordinates, the Riemannian metric of Σ becomes

(3) d�2 = dt2 + Fp(t, θ)2 dθ2 , (t, θ) ∈ Up .

The function F 2
p admits a smooth non-negative square root Fp that plays the role of Jacobian

of Φp and satisfies the Jacobi equation

(4)

⎧
⎪⎪⎨

⎪⎪⎩

∂2
1Fp(t, θ) + Kp(t, θ) Fp(t, θ) = 0 ∀(t, θ) ∈ Up ,

Fp(0, θ) = 0 ∀θ ∈ S1 ,

∂1Fp(0, θ) = 1 ∀θ ∈ S1 .

Here Kp is the Gauss curvature expressed in the geodesic polar coordinates based on p. Note
that the family of geodesics γθ mentioned in the introduction can be related to the exponential
map via γθ (t) = Φp(t, θ).

Since the cut locus Cp is a set of measure zero with respect to the Riemannian measure
of Σ (induced by the Euclidean Lebesgue measure on the tangent plane), the geodesic polar
coordinates represent a useful chart for calculation of integrals. In particular, for the surface
area we have

(5) A :=
∫

Σ

dΣ =
∫

Up

Fp(t, θ) dt dθ ,

irrespectively of the choice of the point p.
The diameter of Σ ,

D := max
p,q∈Σ

dist(p, q) ,

where dist(·, ·) stands for the geodesic distance on Σ , is a less accessible quantity. Using the
geodesic polar coordinates, let us introduce

(6) Dp := max
θ∈S1

dp(θ) ,

i.e., the maximal distance of p to its cut locus measured among all the geodesics γθ emanating
from p. Then we have

(7) D = max
p∈Σ

Dp .

Similarly, the injectivity radius of Σ can be defined through the formulae

(8) ρ := min
p∈Σ

ρp , where ρp := min
θ∈S1

dp(θ) .

Note that ρ > 0, because the geodesic γθ (t) is always minimizing for sufficiently small t

and Σ is compact.
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By the Gauss-Bonnet theorem for closed surfaces, one has the following identity for the
total Gauss curvature

(9)
∫

Σ

K dΣ =
∫

Up

Kp(t, θ) Fp(t, θ) dt dθ = 2π χΣ ,

where χΣ denotes the Euler characteristic of Σ . For orientable surfaces χΣ = 2(1 − gΣ),
where gΣ is the genus of Σ . In our case, when K is in addition non-negative and non-
trivial, we necessarily have gΣ = 0 (Σ is diffeomorphic to the sphere S2) and the total
Gauss curvature thus equals 4π .

Since K is supposed to be non-negative, it follows from (4) that

(10) Fp(t, θ) ≤ t

for every (t, θ) ∈ Up. In particular, Fp is bounded on Up. (For a general closed surface, re-
gardless of the sign restriction of K , the particular bound (10) cannot be ensured, but a similar
bound with the right hand side being replaced by Ct with a suitable constant C does hold,
and Fp is bounded on Up in any case.) Using in addition that Fp is uniformly continuous
on Up, we know that the function Fp admits unique boundary values on ∂Up by the continu-
ous extension. Hence, Fp(dp(θ), θ) is well defined for every θ ∈ S1. Let us also mention that
θ �→ dp(θ) is a Lipschitz continuous function [12]. As a consequence, we have the following
formula for the total length of the cut locus

(11) |Cp| = 1

2

∫

S1

√
Fp

(
dp(θ), θ

)2 + d ′
p(θ)2 dθ .

We were unable to find a direct reference for this formula, and thus present a proof in Ap-
pendix A – cf Proposition 1. For this proof we need the hypothesis of Theorem 1 about the
structure of conjugate points in the cut locus.

Finally, we introduce the quantity

(12) Mp :=
∫

S1

Fp

(
dp(θ), θ

)

dp(θ)
dθ = lim

ε→0

1

ε

∫

S1

∫ dp(θ)

dp(θ)−ε

Fp(t, θ)

t
dt dθ .

Note that the integrand is well defined because dp(θ) > ρ > 0. From (10) we deduce a crude
bound

(13) Mp ≤ 2π .

Estimating dp by the injectivity radius of Σ , we have

(14) Mp ≤ 1

ρ

∫

S1
Fp

(
dp(θ), θ

)
dθ = 1

ρ
lim
ε→0

|Ωε|
ε

,

where

|Ωε| :=
∫

S1

∫ dp(θ)

dp(θ)−ε

Fp(t, θ) dt dθ

denotes the 2-dimensional Riemannian measure of an ε-tubular neighbourhood of Cp (note
that Ωε differs from the ε-tubular neighbourhood of Cp defined by parallel curves!). We
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are more interested in an estimate of the quantity Mp by means of the total length of Cp;
combining the inequality (14) with (11), we obtain

(15) Mp ≤ 2 |Cp|
ρ

.

3. Proof of Theorem 1. Our proof of Theorem 1 is based on a symmetrization pro-
cedure. For every s ∈ [0,Dp), we introduce

(16) fp(s) := 1

2π

∫

S1

Dp

dp(θ)
Fp

(
dp(θ)

Dp

s, θ

)
dθ .

Employing (4), it is easy to check that fp ∈ C∞((0,Dp)) satisfies

(17)

⎧
⎪⎨

⎪⎩

f ′′
p (s) + kp(s)fp(s) = 0 ∀s ∈ (0,Dp) ,

fp(0) = 0 ,

f ′
p(0) = 1 ,

with

kp(s) :=

∫

S1

dp(θ)

Dp

Kp

(
dp(θ)

Dp

s, θ

)
Fp

(
dp(θ)

Dp

s, θ

)
dθ

∫

S1

Dp

dp(θ)
Fp

(
dp(θ)

Dp

s, θ

)
dθ

.

Hence, through the formula for the Riemannian metric on the cross-product manifold (0,Dp)

× S1

d�2 = ds2 + fp(s)2 dθ2 , (s, θ) ∈ (0,Dp) × S1 ,

fp defines a rotationally symmetric surface Σp of the Gauss curvature kp. The curvature kp

is non-negative if it is the case for K . The surface area of Σp reads

(18) Ap := 2π

∫ Dp

0
fp(s) ds =

∫

Up

D2
p

dp(θ)2 Fp(t, θ) dt dθ .

At the same time, it is easily seen that the symmetrization (16) preserves the total Gauss
curvature

(19) 2π

∫ Dp

0
kp(s) fp(s) ds =

∫

Up

Kp(t, θ) Fp(t, θ) dt dθ = 4π ,

the last identity following from (9). On the other hand, it is absolutely necessary to stress that
(contrary to Σ) Σp may not be complete.

Regardless of whether Σp is closed or not, it can be represented as a surface of revolution
embedded in R

3. The embedding is explicitly provided by the mapping

φp : (0,Dp) × S1 → R
3 : {

(s, ϑ) �→ (
rp(s) cos θ, rp(s) sin θ, zp(s)

)}
,

where

rp(s) := fp(s) , zp(s) :=
∫ s

0

√
1 − f ′

p(τ )2 dτ .
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By virtue of (17), we have

(20) f ′
p(s) = 1 −

∫ s

0
kp(τ ) fp(τ ) dτ .

Since kp is non-negative, it follows with help of (19) that −1 ≤ f ′
p ≤ 1 (with the boundary

values attained at Dp and 0, respectively). Consequently, zp is well defined, non-decreasing,
and φp is thus indeed an embedding. As mentioned above, however, φp does not necessarily
represent a closed surface in general. The closedness depends on the value of rp(Dp) =
fp(Dp), which might be different from zero.

As a matter of fact, the boundary of φp is formed by a circle Γp of extrinsic radius fp(Dp)

(by extrinsic we mean that Γp is regarded as a curve in R
3). Let us exclude for a moment the

“singular” situation fp(Dp) = 0 (in which case the surface Σp is closed). By (19) and the
Gauss-Bonnet theorem for surfaces with boundary applied to Σp, it then follows that

(21)
∮

Γp

κp dl = −2π ,

where κp denotes the geodesic curvature of Γp (as a curve on Σp ⊂ R
3). Consequently,

κp = ±fp(Dp)−1 (with the sign depending on the parameterization of Γp) and the normal
curvature of Γp is necessarily zero. At the same time, the length of the boundary circle equals

(22) Lp := |Γp| = 2π fp(Dp) = Dp Mp ,

where Mp was introduced in (12). This formula remains trivially valid for fp(Dp) = 0. We
have the crude bound

(23) Lp ≤ 2π Dp ,

which follows from (13).
By definition (7), Dp ≤ D. At the same time, comparing (5) with (18) and using defini-

tion (6), we have Ap ≥ A. Consequently, we arrive at an intermediate bound

(24)
A

D2 ≤ Ap

D2
p

valid for any p ∈ Σ . The problem of Conjecture 1 is thus reduced to rotationally symmetric
surfaces (albeit possibly not complete).

To prove Theorem 1, we divide Ap into two parts

A(1)
p (τ ) := 2π

∫ τ

0
fp(s) ds , A(2)

p (τ ) := 2π

∫ Dp

τ

fp(s) ds ,

with τ ∈ (0,Dp], and use the following comparison arguments, respectively.

LEMMA 1. A(1)
p (τ ) ≤ πτ 2.

PROOF. Since kp is non-negative, it follows from (17) (or more directly from (20)) that

fp(s) ≤ s for all s ∈ [0,Dp]. Using this estimate in the integral defining A
(1)
p (τ ), we get the

desired inequality. �
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LEMMA 2. A(2)
p (τ ) ≤ π(Dp − τ )2 + Lp(Dp − τ ).

PROOF. Here the idea is to use the geodesic parallel (Fermi) coordinates [4, Sec. III.6]
based on Γp rather than the geodesic polar coordinates. In these coordinates, the Riemannian
metric of Σp becomes

d�2 = dr2 + hp(r)2 du2 , (r, u) ∈ (0,Dp) × Γp ,

where the Jacobian hp ∈ C∞((0,Dp)) satisfies

(25)

⎧
⎪⎨

⎪⎩

h′′
p(r) + kp(Dp − r)hp(r) = 0 ∀r ∈ (0,Dp) ,

hp(0) = 1 ,

h′
p(0) = −κp .

Here the coordinate r is measured from Γp, rather than from p, and the minus sign in front
of κp is required due to the consistency with the convexity of Σp, cf (21). Consequently,

(26) A(2)
p (τ ) =

∫

Γp

∫ Dp−τ

0
hp(r) dr du .

Since kp is non-negative, it follows from (25) that hp(r) ≤ 1−κp r for all r ∈ [0,Dp]. Using
this estimate in (26) and recalling (21), we get the desired inequality. �

Putting these lemmata together, we get

Ap ≤ πτ 2 + π(Dp − τ )2 + Lp(Dp − τ )

for any τ ∈ (0,Dp]. The minimum of the right hand side as a function of τ is achieved for

τmin := Dp

2
+ Lp

4π
,

which is an admissible point from (0,Dp] due to (23). Using this value and expressing Lp in
terms of Mp, cf. (22), we get the bound

(27)
Ap

D2
p

≤ π

2
+ 1

2
Mp

(
1 − Mp

4π

)
.

Plugging this estimate into (24), we obtain the main result of this paper.

THEOREM 2. Let Σ be a closed oriented convex surface. For any point p ∈ Σ , we
have

(28)
A

D2
≤ π

2
+ 1

2
Mp

(
1 − Mp

4π

)
.

Theorem 1 follows as a weaker version of this theorem by neglecting the non-positive
term in the brackets and applying the crude bound (15).
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Appendix A. The total length of the cut locus. This appendix is devoted to a proof
of formula (11) for a general (i.e. not necessarily convex) surface.

PROPOSITION 1. Let Σ be closed surface, and let p be a point in Σ . Assume that the
set of conjugate points in the cut locus Cp is countable. Then the total length of the cut locus
is given by formula (11).

First we recall some definitions and facts from [8], to where we refer for more informa-
tion. Fix p ∈ Σ . A cut point q ∈ Cp is said to be a conjugate cut point if it is conjugate
to p along at least one minimizing geodesic γθ joining p to q (i.e. Fp(t, θ) = 0 for t �= 0,
θ ∈ S1, corresponding to q), and is said to be a non-conjugate cut point otherwise. The order
of a non-conjugate cut point q ∈ Cp is the number of minimizing geodesics joining p to q .
The order is always finite and at least two. A cut point is said to be a cleave point if it is a
non-conjugate cut of order two; it is a non-cleave point otherwise.

The cut locus Cp is a closed, compact, connected and non-empty subset of Σ . The set of
cleave points is a relatively open subset of Cp forming a smooth 1-dimensional submanifold
of Σ . The set of non-cleave points in Cp is a closed subset whose 1-dimensional Hausdorff
measure is zero (in fact, the Hausdorff dimension is 0). It is also known that at a cleave
point q , the two minimizing geodesics joining p to q make the same angle with the tangent
plane at q to the submanifold of cleave points, but from opposite sides.

Moreover, by a theorem of Myers [8, Thm. 2.3], the topological structure of Cp is that
of a local tree. To recall the notion, two other topological definitions are needed. An arc is
a topological space homeomorphic to the unit interval [0, 1]. A tree is is a topological space
with the property that every pair of points q1, q2 is contained in a unique arc with endpoints
q1, q2. A local tree is a topological space in which every point is contained in arbitrarily
small closed neighbourhoods which are themselves trees. For simply connected surfaces,
Cp is a tree. (Convex oriented surfaces considered in this paper are simply connected due
to the Gauss-Bonnet theorem (9) and the text below it; for general convex surfaces the tree
property is also mentioned in [23].)

Each point of a tree is either an endpoint, ordinary point or branch point depending upon
the number (one, two, or more respectively) of connected components possessed by a deleted
neighbourhood of the point. Every endpoint is a conjugate cut point; every cleave point is
ordinary; and every non-conjugate, non-cleave point is a branch point. There are at most
countably many branch points in the cut locus Cp, but the set of endpoints may be uncountable.
For real-analytic manifolds the endpoints are at most finite [16], but there exist examples of
smooth surfaces with an infinite number of endpoints (non-triangulable cut loci) [6]. We refer
to [20] for an interesting numerical study of the structure of cut loci of rotationally symmetric
surfaces.

PROOF OF PROPOSITION 1. The map w : S1 → Cp defined by w(θ) := Φp(dp(θ), θ)

is a continuous proper map (i.e. the inverse image of compact sets is compact). Let

E := {θ ∈ S1 | w(θ) is a non-cleave point of Cp} ,
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E0 := {θ ∈ E | w(θ) is a conjugate cut point of Cp} ,

E1 := {θ ∈ E | w(θ) is a non-conjugate cut point of Cp} .

We have Cp = w(S1) and we know that the 1-dimensional Hausdorff measure of the image
w(E) is zero and that V := Cp \ w(E) is the union of at most countably many smooth con-
nected 1-dimensional manifolds Vn of cleave points. Consequently, |Cp| = |V |.
• Cleave points. Since the Hausdorff 1-measure of a smooth curve is its arclength, the stan-
dard calculus formula, employing the fact that dp is Lipschitz continuous [12] (in fact, the
absolute continuity established in [8, 10] would be sufficient), gives

|Vn| =
∫

I
(1)
n

√
Fp

(
dp(θ), θ

)2 + d ′
p(θ)2 dθ .

Here I
(1)
n ⊂ S1 is one interval from the disjoint union w−1(Vn) = I

(1)
n ∪ I

(2)
n ; w−1(Vn)

has exactly two connected components because Vn is composed of cleave points. Taking this
multiplicity into account, we conclude with

|V | = 1

2

∫

S1\E

√
Fp

(
dp(θ), θ

)2 + d ′
p(θ)2 dθ .

• Non-conjugate non-cleave points. As recalled above, every non-conjugate non-cleave point
is a branch point and there are at most countably many branch points {qn}Nn=1 ⊂ Cp, with
N ∈ {1, . . . ,∞}. Moreover, since the order mn of each qn is finite, it follows that the preimage
w−1(qn) is composed of mn distinct angles θ

(1)
n < θ

(2)
n < · · · < θ

(mn)
n . Consequently, using

in addition that the cut locus Cp is compact, the Lebesgue 1-measure of E1 = ∪∞
n=1w

−1(qn)

is equal to zero and we have
∫

E1

√
Fp

(
dp(θ), θ

)2 + d ′
p(θ)2 dθ = 0 .

• Conjugate cut points. For a general closed (even convex) surface the set of conjugate
cut points can be uncountable, although it must be a totally disconnected set with Hausdorff
dimension being zero [8, Rem. 2.4]. Under our assumption, however, there are at most count-
ably many conjugate cut points {qn}Nn=1 ⊂ Cp, with N ∈ {1, . . . ,∞}. The preimage E0

does not necessarily have the Lebesgue 1-measure equal to zero, however, by definition of
conjugate cut points, we have

∀θ ∈ w−1(qn) , Fp

(
dp(θ), θ

) = 0 and dp(θ) = cn ,

where cn is a constant. Consequently,

∫

E0

√
Fp

(
dp(θ), θ

)2 + d ′
p(θ)2 dθ =

N∑

n=1

∫

w−1(qn)

√
Fp

(
dp(θ), θ

)2 + d ′
p(θ)2 dθ = 0 .

Summing up, the total length of the cut locus Cp is determined by |V |, which coincides
with the formula (11) because the integration over E does not contribute. �
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Appendix B. Alexandrov’s conjecture in higher dimensions. Let Σ be the sphere
Sd with a spherically symmetric Riemannian metric, that is, such that there exists a point
p ∈ Σ for which the metric in the geodesic spherical coordinates about p reads

(29) d�2 = ds2 + fp(s)2dθ2 , (s, θ) ∈ Up := (0,Dp) × Sd−1 .

Here dθ2 is the standard Euclidean metric on the unit sphere Sd−1, Dp is a positive number
and fp ∈ C∞((0,Dp)) is a positive function satisfying the Jacobi equation (17), where kp(s)

should be interpreted as the radial curvature of Σ at q for any q such that dist(p, q) = s.
By the radial curvature we mean the restriction of the sectional curvature functions to all the
planes containing the unit vector field W such that, for any point q ∈ Σ \ ({p} ∪ Cp), W(q) is
the unit vector tangent to the unique geodesic joining p to q (this notion is standardly defined
for manifolds with a pole [7], but it clearly extends as given here to an arbitrary manifold
when parameterized in the geodesic spherical coordinates).

Because of the spherical symmetry (29), the geodesics starting from p have the same
behaviour in all directions, implying that if one geodesic is minimising in one direction up to
time t , the same must happen to all other geodesics emanating from p. Thus the exponential
map depends only on the radial variable and we conclude that while it remains a diffeomor-
phism, the boundary of its image for each such (positive) t must be a (d − 1)-sphere. At a
point for which the exponential map stops being a diffeomorphism, the same must happen at
all other points at the same distance from p and thus the cut locus is either a (d − 1)-sphere
or a point. Since the closure of Σ \ Cp is Σ , which is a closed manifold, we conclude that the
cut locus of p reduces to the single point p∗ := expp({Dp} × Sd−1) ∈ Σ , i.e.

(30) Cp = {p∗} .

We note that the particular two-dimensional case of (30) is covered in [21, Lem. 2.1].
Since Σ is diffeomorphic to Sd , it follows from (29) and (30) that we may respectively

identify p and p∗ with the South and North Poles of Sd . We have Cp∗ = {p} and formulae
analogous to (29) and (17) hold for p∗.

We say that Σ is convex if all the sectional curvatures at all the points on the manifold Σ

are non-negative. In this case, it follows from (17) that

(31) fp(s) ≤ s and fp∗(s) ≤ s

for every s ∈ (0,Dp).
We note that convexity is not necessary to obtain the above estimates. In fact, both in-

equalities in (31) follow from |f ′
p(s)| ≤ 1 for every s ∈ [0,Dp], which is equivalent to the

embeddability of Σ to R
d+1, which in turn can be ensured by assuming mere positivity of

integrals of the radial curvature over polar caps of Sd (which automatically holds under the
convexity assumption); cf [17, Thm. 2.1] and [5]. Let us therefore assume only that Σ is a
spherically symmetric manifold (in the sense of the definition given above) that is isometri-
cally embedded in R

d+1. The manifold Σ can be obtained by rotating a curve around the x1

axis in R
d+1 by the action of SO(d).
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Applying the comparison estimates (31) to the Riemannian volume of Σ , that we denote
again by A, we arrive at

A = |Sd−1|
∫ Dp

0
f d−1

p (s) ds = |Sd−1|
∫ Dp

0
f d−1

p∗ (s) ds

= |Sd−1|
∫ Dp/2

0
f d−1

p (s) ds + |Sd−1|
∫ Dp/2

0
f d−1

p∗ (s) ds

≤ |Sd−1|
2d−1d

Dd
p = |Bd |

2d−1 Dd
p .(32)

Here |Sd−1| denotes the (d − 1)-dimensional volume of the (d − 1)-dimensional sphere
Sd−1 and |Bd | denotes the d-dimensional volume of the d-dimensional unit ball Bd .

Since Σ is spherically symmetric, its diameter D equals the distance between the poles p

and p∗. To see this, it is enough to consider that for any two points a and b in Σ , we have

dist(a, b) ≤ min {dist(a, p) + dist(p, b), dist(a, p∗) + dist(p∗, b)}
≤ 1

2

[
dist(a, p) + dist(p, b) + dist(a, p∗) + dist(p∗, b)

]

= dist(p, p∗) ,

where the equality uses the symmetry assumption through the minimizing property of
geodesics joining p with p∗, namely,

dist(a, p) + dist(a, p∗) = dist(p, p∗) = dist(p, b) + dist(p∗, b) .

We have thus proven the following result.

THEOREM 3. Let Σ be a closed spherically symmetric Riemannian manifold of di-
mension d diffeomorphic to Sd that is isometrically embedded in R

d+1. Then

(33)
A

Dd
≤ |Bd |

2d−1 .

Again, it can be verified that the value on the right hand side of this inequality is attained
for the respective quotient by the degenerate convex surface formed by gluing two balls of
diameter D along their boundaries.

It is thus natural to propose the following extension of Conjecture 1 to any dimension.

CONJECTURE 2. Inequality (33) holds for any closed oriented convex Riemannian
manifold of dimension d .

REMARK 1. Conjecture 2 makes sense also in d = 1, where its validity is trivial.
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