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Abstract. We introduce a Möbius invariant energy associated to planar domains, as
well as a generalization to space curves. This generalization is a Möbius version of Banchoff-
Pohl’s notion of area enclosed by a space curve. A relation with Gauss-Bonnet theorems for
complete surfaces in hyperbolic space is also described.

1. Introduction. For smooth knots K ⊂ R
3 a functional called Möbius energy was

introduced in [12] as the integral along K of a certain function V (·,K). This function, called
r−2-renormalized potential, was defined by

(1) V (p,K) = lim
ε→0

(∫
|q−p|>ε

dq

|q − p|2 − 2

ε

)
, p, q ∈ K .

This is an instance of a general procedure that can be used to renormalize diverging integrals
(i.e., to associate them with finite values). First, one removes a certain ε-neighborhood of the
set where the integrand blows up. Then one restricts the integration to the complement of this
ε-neighborhood, and expands the result as a Laurent series in ε. The renormalized integral is
then defined as the constant term of this series.

Similar energies have been considered, for instance taking different exponents in the
denominator of (1). The Möbius energy however has the nice property of being invariant under
conformal transformations of space (cf. [3]). Among recent investigations, let us mention the
solution of a conjecture about the minimal energy of a link in [4].

A similar construction of Möbius invariant energy for closed surfaces is found in [1]. For
surfaces with boundary, a Möbius invariant function in the style above has not been considered
yet. Also, a similar Möbius invariant energy for domains Ω ⊂ R

n is still not known. In this
direction, a renormalized potential in the style of (1) is studied in [14]; for a regular domain
Ω ⊂ R

n and α ∈ (0, n) define

V (α)(p,Ω) =
∫

Ω

|q − p|α−ndq .
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This coincides up to a constant factor with the Riesz potential of the characteristic function of
Ω . For α < 0, the integral

∫
Ω

|q −p|α−ndq would diverge whenever p ∈ Ω . Hence, the pro-
cedure described above was used in [14] to define a renormalized potential V (α)(p,Ω) for all
α. These potentials appear in convexity theory under the name of dual mixed volumes or dual
Quermassintegrals (cf. [11]). Unfortunately, for negative α the integral

∫
Ω

V (α)(p,Ω)dp

diverges, as V (α)(p,Ω) blows up when p approaches the boundary ∂Ω .
In the present paper, we take α = −2 and give a second renormalization to assign a

finite value to the integral of V (−2)(·,Ω) in the case of planar domains Ω ⊂ R
2. The choice

α = −2 makes the resulting energy scale invariant. Our first main goal then is to show that it
is actually Möbius invariant. This is done by means of a Gauss-Bonnet formula for complete
surfaces in hyperbolic space obtained in [17].

Another basic tool in our work is the infinitesimal cross-ratio. This is a Möbius invariant
complex-valued differential 2-form defined on the space of point pairs of R2. The real part
of this 2-form also exists in higher dimensions. This real valued 2-form is uniquely charac-
terized by invariance under Möbius transformations (cf. [9]). Following this line, we find
natural extensions of our results to higher dimensions, not for domains but for space curves.
Concretely, we find a new Möbius invariant functional for space curves, which can be de-
scribed as a renormalization of the measure of the set of circles linked with the curve. Again,
this functional appears in a Gauss-Bonnet formula for surfaces in hyperbolic space.

Besides connections to knot energies and hyperbolic geometry, our results may be in-
teresting from the viewpoint of integral geometry. Indeed, owing to divergence problems,
almost nothing is known about integral geometry under the Möbius group (an exception is
[10]). Here, the use of renormalizations allows us to extend some results of euclidean integral
geometry to Möbius geometry. For instance, our functional for space curves can be seen as a
Möbius invariant version of Banchoff-Pohl’s notion of the area enclosed by a space curve (cf.
[5]).

Next we sketch our results briefly. For a planar region Ω ⊂ R
2 we consider the renor-

malized potential (cf. Definition 3.1)

V (w,Ω) = lim
ε→0

( ∫
Ω\Bε(w)

d2z

|z − w|4 − π

ε2

)
,

where d2z is the area element of R2, and Bε(w) = {z : |z − w| ≤ ε}. After studying the
blow-up of V (·,Ω) near ∂Ω (cf. Proposition 3.4) we define the energy E(Ω) of a region Ω

bounded by a smooth curve K of length L(K) as

(2) E(Ω) = lim
δ→0

(∫
Ωδ

V (w,Ω)d2w + π

4δ
L(K)

)
,

where Ωδ ⊂ Ω is the set of points whose distance from Ωc = R
2 \Ω is larger than δ. This is

a renormalization of the integral of V (·,Ω). Alternatively, given a smoothly embedded curve
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K ⊂ R
2 we define (cf. Definition 3.11)

(3) E(K) = lim
ε→0

(
2L(K)

ε
−
∫

Ω×Ωc\Δε

d2wd2z

|z − w|4
)

,

where Δε ⊂ R
2 × R

2 consists of pairs (w, z) with |z − w| < ε. For Ω ⊂ R
2 with boundary

K , both energies are related by E(Ω) = E(K) + π2χ(Ω)/4 (cf. Proposition 3.13). Among
several expressions for these energies we point out the following one which involves no limit:

E(K) = −1

2

∫
K×K

sin θp sin θq
dpdq

|q − p|2 ,

where dp, dq denote the arc-length elements, and θp (resp. θq ) is the angle between q − p

and K at p (resp. at q) .
Considering R

2 as the ideal boundary of Poincaré half-space model of hyperbolic space
H

3, we can assume K to be the ideal boundary of a smooth surface S ⊂ H
3 meeting R

2

orthogonally. Then we have the following Gauss-Bonnet formula (cf. Proposition 3.17)
∫

S

κ dS = 2πχ(S) + 2

π

∫
R2×R2

(#(�wz ∩ S) − λ2(w, z; K))
d2wd2z

|z − w|4 − 4

π
E(K) ,

where κ denotes the extrinsic curvature of S, and �wz denotes the geodesic with ideal end-
points w, z, while λ(w, z; K) is the algebraic intersection number of K with the segment
[zw] ⊂ R

2. As a consequence, we get the Möbius invariance of E(K) and E(Ω) (cf. Corol-
lary 3.18). Moreover, we get lower bounds for these energies in Corollary 3.20.

For a closed curve K ⊂ R
3 we define E(K) as the renormalized measure of the set of

circles linked with K . Indeed, there is a natural (Möbius invariant) measure dγ on S(1, 3),
the space of oriented circles γ ⊂ R

3. To be precise, we define

E(K) = lim
ε→0

(
3πL(K)

8ε
− 3

16π

∫
Sε(1,3)

λ2(γ,K)dγ

)

where Sε(1, 3) is the set of oriented circles with radii larger than ε, and λ(γ,K) denotes
the linking number between γ and K . This is motivated by (3), and indeed both definitions
coincide when K is planar. Again, we find an expression of E(K) that involves no renormal-
ization:

E(K) = −1

2

∫
K×K

cos τ sin θp sin θq
dpdq

|q − p|2 ,

where τ is the angle between the two oriented planes through p, q tangent to K at p and q

respectively. It is interesting to remark that replacing cos τ by sin τ gives the so-called writhe
of K , a Möbius invariant functional for space curves discovered by Banchoff and White in
[6]. Besides, if the power in the denominator is replaced by 1 or 0, one gets respectively the
length of K and Banchoff-Pohl’s notion of the area enclosed by K .

Again, E(K) appears in a Gauss-Bonnet formula: if a surface S ⊂ H
4 in Poincaré half-

space model of 4-dimensional hyperbolic space meets the ideal boundary orthogonally along
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a closed curve K , then (cf. Corollary 4.16)

1

π

∫
N1S

κ de dS = 2πχ(S) + 3

4π2

∫
L2

(#(� ∩ S) − λ2(�,K))d� − 4

π
E(K) ,

where κ denotes the Lipschitz-Killing curvature defined on the unit normal bundle N1S, and
de denotes the length element of N1

x S. The second integral is taken over the space L2 of
oriented totally geodesic planes � ⊂ H

4, which is naturally identified with S(1, 3), and the
measure d� corresponds to dγ . By construction, these two integrals are invariant under isome-
tries of H4. This shows the Möbius invariance of E(K).

In Proposition 4.18 we provide an alternative construction of E(K) inspired by (2).
There, we consider an ε-parallel curve Kε , integrate the product of linking numbers
λ(γ,K)λ(γ,Kε) over all circles γ , and apply renormalization as ε goes down to 0. Finally,
in Section 5 we go back to the planar case and give some Möbius invariant expressions of the
energy of a domain.

Acknowledgement. The authors would like to thank Professor M. Kanai for helpful suggestions.

2. Möbius energy for pairs of planar domains.
2.1. Infinitesimal cross ratio. We start fixing some notations, and introducing some

tools. We will be considering pairs of complex numbers (w, z) = (u + iv, x + iy) ∈ C × C.
We denote the diagonal in C × C by Δ = {(w,w)}. The infinitesimal cross ratio (cf. [10]) is
a complex valued 2-form on C × C \ Δ given by

ωcr = dw ∧ dz

(w − z)2 = (du + idv) ∧ (dx + idy)

(w − z)2 .

Like the classical cross-ratio of 4-tuples of complex numbers, the 2-form ωcr is invariant under
the diagonal action of orientation preserving Möbius transformations: h(z) = (az+ b)/(cz+
d) where a, b, c, d ∈ C and ad − bc �= 0. Recall that such an h defines a transformation
h : CP1 → CP

1 of the Riemann sphere CP
1 = C ∪ {∞}. For simplicity we will work with

C instead of CP1. This causes no trouble, except that h is not defined in one point.
Both the real part and the imaginary part of the infinitesimal cross ratio are exact forms:

(4)

d

(
�e

dw

w − z

)
=d

(
�e

dz

z − w

)
=−�eωcr , d

(
�m dw

w − z

)
=d

(
�m dz

z − w

)
=−�mωcr .

Direct computation shows

(5) �eωcr ∧ �eωcr = �mωcr ∧ �mωcr = 2
d2w ∧ d2z

|z − w|4 ,

where d2w = du ∧ dv, d2z = dx ∧ dy are the area elements in C. At some places we
will omit the wedges in the exterior product of forms, specially when these are understood as
measures. Note that the form in (5) is invariant under all Möbius transformations, preserving
orientation or not.
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2.2. The Möbius energy of pairs of disjoint planar domains. Let Ω1,Ω2 be a pair
of disjoint domains in R

2 with smooth regular boundaries. Suppose each pair of particles in
Ω1 and Ω2 has a mutual repelling force between them. Assume this force has magnitude r−5

where r denotes the distance between the particles. The reason for this exponent will be clear
below. Under these assumptions the corresponding energy for the interaction of Ω1 and Ω2

would be the following

DEFINITION 2.1. The Möbius mutual energy between Ω1 and Ω2 is defined as

E(Ω1,Ω2) =
∫

Ω1×Ω2

d2wd2z

|z − w|4 ,

where d2w (resp. d2z) denotes the area element in Ω1 ⊂ R
2 (resp. Ω2 ⊂ R

2).

This energy is invariant under Möbius transformations. Indeed, (5) implies

E(Ω1,Ω2) = 1

2

∫
Ω1×Ω2

�eωcr ∧ �eωcr = 1

2

∫
Ω1×Ω2

�mωcr ∧ �mωcr .

PROPOSITION 2.2. Let Ω1,Ω2 ⊂ R
2 be a pair of disjoint planar domains with smooth

regular boundaries K1 = ∂Ω1, K2 = ∂Ω2. Then E(Ω1,Ω2) can be expressed by the follow-
ing double contour integrals

E(Ω1,Ω2) = −1

2

∫
K1×K2

cos θ1 cos θ2
dp1dp2

|p2 − p1|2 ,(6)

E(Ω1,Ω2) = −1

2

∫
K1×K2

sin θ1 sin θ2
dp1dp2

|p2 − p1|2 ,(7)

where dpi is the length element on Ki , and θi is the oriented angle from the positive tangent
of Ki at pi to the vector p2 − p1.

PROOF. Put

(8) λ = −�e
dw

w − z
, ρ = −�e

dz

z − w
, ω = �eωcr ,

so that dλ = dρ = ω. By Stokes’ theorem∫
Ω1×Ω2

ω ∧ ω =
∫

(K1×Ω2)∪(Ω1×K2)

λ ∧ ω =
∫

K1×Ω2

λ ∧ ω .

Since λ ∧ ω = ω ∧ ρ − d(λ ∧ ρ),∫
Ω1×Ω2

ω ∧ ω =
∫

K1×Ω2

ω ∧ ρ −
∫

K1×K2

λ ∧ ρ = −
∫

K1×K2

λ ∧ ρ .

Then (6) follows from elementary computations. The same arguments with �e replaced by
�m in (8) proves (7). �

COROLLARY 2.3. Under the above hypothesis

(9) E(Ω1,Ω2) = −1

4

∫
K1×K2

−→
dp1 · −→

dp2

|p2 − p1|2 ,
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where
−→
dp1 · −→dp2 = du1 ∧ du2 + dv1 ∧ dv2 is a 2-form on K1 × K2 where pi = (ui, vi) ∈ Ki .

PROOF. Let φi be the angle of the tangent vector to Ki from the x-axis (i = 1, 2). Then

cos θ1 cos θ2 + sin θ1 sin θ2 = cos(θ1 − θ2) = cos(φ1 − φ2) = cos φ1 cos φ2 + sin φ1 sin φ2.

Let dpi denote the length element of Ki . As dui = cos φidpi, dvi = sin φidpi the above
equation implies

(10) (cos θ1 cos θ2 + sin θ1 sin θ2)dp1dp2 = −→
dp1 · −→dp2 .

Therefore, by averaging (6) and (7) we have

E(Ω1,Ω2) = −1

4

∫
K1×K2

cos θ1 cos θ2 + sin θ1 sin θ2

|p2 − p1|2 dp1dp2 = −1

4

∫
K1×K2

−→
dp1 · −→dp2

|p2 − p1|2 .

�

3. Renormalized Möbius energy of planar domains. Let Ω ⊂ R
2 be a planar do-

main with compact smooth boundary K = ∂Ω . We will define a Möbius invariant energy
associated to Ω . One cannot take E(Ω,Ω) because of the blow up of ωcr near the diagonal
Δ ⊂ Ω × Ω . We introduce two kinds of renormalizations and show that they produce es-
sentially the same energy. The first one is described next, and the second one appears later in
Subsection 3.3.

3.1. Renormalized potential. The first approach consists of two steps. Firstly we
define a renormalized potential at every point of the domain. The integral of this potential is
divergent when the boundary is not empty. Hence we need a second step where this integral
is renormalized.

DEFINITION 3.1 ([1, 14]). Let w be a point in Ω \ ∂Ω . We define the renormalized
r−4-potential of Ω at w by

(11) V (w,Ω) = lim
ε→0

( ∫
Ω\Bε(w)

d2z

|z − w|4 − π

ε2

)
.

PROPOSITION 3.2 ([14]). The renormalized potential of Ω at an interior point w is
given by

V (w,Ω) = −
∫

Ωc

d2z

|z − w|4 ,(12)

where Ωc = R
2 \ Ω denotes the complement of Ω . Hence −∞ < V (w,Ω) < 0.

PROOF. Since ∫
R2\Bε(w)

d2z

|z − w|4 = π

ε2
,

if ε > 0 is such that Bε(w) ⊂ Ω then∫
Ω\Bε(w)

d2z

|z − w|4 − π

ε2 =
∫

Ω\Bε(w)

d2z

|z − w|4 −
∫
R2\Bε(w)

d2z

|z − w|4 =−
∫
R2\Ω

d2z

|z − w|4 .

�
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In view of (12) one can interpret −V (w,Ω) as the area of the image of Ωc after an
inversion with respect to a circle of center w and radius 1. Indeed, the Jacobian of such an
inversion is precisely −|w − z|−4.

LEMMA 3.3. Given κ ∈ R, let Ω be a domain bounded by a curve of constant signed
curvature κ (i.e., Ω is a disk for κ > 0, a half-plane for κ = 0 and the complement of a disk
if κ < 0). Let w ∈ Ω be a point at distance δ > 0 from ∂Ω . Then,

V (w,Ω) = − π

δ2

1

(2 − κδ)2 = − π

4δ2 (1 + κδ + O(δ2)) .

PROOF. An easy computation shows in the three cases (κ > 0, κ = 0 and κ < 0) that
the inversion with respect to a circle of center w and radius 1 maps ∂Ω to a circle of radius

R = 1

δ(2 − κδ)
.

Hence,

−V (w,Ω) = πR2 = π

δ2

1

(2 − κδ)2
.

�

PROPOSITION 3.4. Let δ = d(·,K) denote the distance function to K defined on Ω .
Let ε > 0 be such that, whenever δ(w) < ε, there is a unique p ∈ K with d(w,K) = |w−p|.
For every such w,

(13) V (w,Ω) = −
(

π

4δ(w)2
+ κ(p)π

4δ(w)

)
+ O(1) ,

where κ(p) is the curvature of K at p, and O(1) stands for a bounded function on Ω .

PROOF. After a motion of R2 we can assume that w = (0, δ), p = (0, 0), and ∂Ω

coincides near p with the graph of a function g(x) = O(x2). Let Ωp be the domain bounded
by a curve of constant curvature such that ∂Ω and ∂Ωp have second order contact at p, and
w ∈ Ωp. Let ∂Ωp coincide locally with the graph of a function f (x).

By the previous lemma, we only need to show that
∫ ε

−ε

∫ g(x)

f (x)

1

(x2 + (y − δ)2)2
dydx < C , ∀δ > 0

for some C > 0 which can be chosen independently of w.
Let F(x, y) be such that

∂F

∂y
= 1

(x2 + y2)2
.

Then ∫ g(x)

f (x)

1

(x2 + (y − δ)2)2
dy = F(x, g(x) − δ) − F(x, f (x) − δ) .
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Let the previous integral be denoted by I (δ). Taylor’s theorem for F(x, y) on the variable y

around y = f (x) − δ yields

I (δ) = ∂F

∂y
(x, f (x) − δ)(g(x) − f (x)) + 1

2

∂2F

∂y2
(x, ξ)(g(x) − f (x))2

for some ξ = ξ(x) in (f (x) − δ, g(x) − δ) or (g(x) − δ, f (x) − δ). Hence

I (δ) = g(x) − f (x)

(x2 + (f (x) − δ)2)2 − 2ξ(g(x) − f (x))2

(x2 + ξ2)3 = g(x) − f (x)

(x2 + (f (x) − δ)2)2 + O(ε) ,

since
|ξ |(g(x) − f (x))2

(x2 + ξ2)3 ≤ (g(x) − f (x))2

x5 = O(x6)

x5 = O(ε) .

Finally, we use that g(x) − f (x) = ax3 + O(x4) for some a ∈ R, so∫ ε

−ε

I (δ)dx =
∫ ε

−ε

ax3

(x2 + (f (x) − δ)2)2 dx +
∫ ε

−ε

O(x4)

(x2 + (f (x) − δ)2)2 dx + O(ε) .

This is uniformly bounded since∫ ε

−ε

x3

(x2 + (f (x) − δ)2)2
dx = 0

because f (x) is even, and∫ ε

−ε

O(x4)

(x2 + (f (x) − δ)2)2
dx ≤

∫ ε

−ε

O(x4)

x4
dx .

�

3.2. Renormalized energy of planar domains. The potential V (w,Ω) is not inte-
grable over Ω . Hence we take the following renormalization.

DEFINITION 3.5. We define the renormalized Möbius energy of the domain Ω by

E(Ω) = lim
δ→0

(∫
Ωδ

V (w,Ω)d2w + π

4δ
L(K)

)
,(14)

where Ωδ = {w ∈ Ω : d(w,K) ≥ δ}, and L(K) denotes the length of the boundary.

In some sense, E(Ω) is also a renormalization of E(Ω,Ωc). Indeed, (12) shows that

(15) E(Ω) = lim
δ→0

(
π

4δ
L(K) −

∫
Ωδ×Ωc

d2wd2z

|z − w|4
)

.

Although d2wd2z/|z − w|4 is invariant under Möbius transformations, it is not clear at
this moment that E(Ω) is Möbius invariant. This will be shown later. First we must prove the
convergence of (14).

PROPOSITION 3.6. Given Ω ⊂ R
2 with compact smooth boundary, the limit in (14)

exists and is finite.
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PROOF. Take ε as in Proposition 3.4. If 0 < δ < ε, then∫
Ωδ

V (w,Ω)d2w =
∫

Ωε

V (w,Ω)d2w +
∫

Nε(K)\Nδ(K)

V (w,Ω)d2w ,

where Nδ(K) = {w ∈ Ω : d(w,K) ≤ δ}. If we express the arc-length parameter of K by s,
Proposition 3.4 implies∫

Nε(K)\Nδ(K)

V (w,Ω)d2w = −π

4

∫ L(K)

0

∫ ε

δ

(1 − κ(s)t)

(
1

t2
+ κ(s)

t

)
dtds + O(ε)

= −π

4

(
1

δ
− 1

ε

)
L(K) − π

4
(ε − δ)

∫ L(K)

0
κ2(s)ds + O(ε) ,

which completes the proof. �

COROLLARY 3.7. If Ω ⊂ R
2 is a planar domain with smooth regular boundary K of

length L(K), then

E(Ω) = lim
δ→0

( π

4δ
L(K) − E(Ωδ,Ω

c)
)

= lim
δ→0

(
π

4δ
L(K) − 1

2

∫
Kδ×K

cos θp cos θq

dpdq

|q − p|2
)

= lim
δ→0

(
π

4δ
L(K) − 1

2

∫
Kδ×K

sin θp sin θq
dpdq

|q − p|2
)

= lim
δ→0

(
π

4δ
L(K) − 1

4

∫
Kδ×K

−→
dp · −→

dq

|q − p|2
)

,

where Kδ = ∂Ωδ, and θp (resp. θq) denotes the oriented angle from the positive tangent
vector of K (resp. Kδ) at p (resp. at q) to the vector q − p.

PROOF. The first equality is immediate from (15). The rest follows respectively from
(6), (7) and (9). Remark that the orientations of K as K = ∂Ω and K = ∂Ωc are opposite.
The signs in the last three lines follow from this fact. �

THEOREM 3.8. If Ω ⊂ R
2 is a planar domain with smooth regular boundary K of

length L(K), then

(16) E(Ω) = lim
ε→0

(
L(K)

2ε
− 1

4

∫
K×K\Δε

−→
dp · −→

dq

|q − p|2
)

+ π

8

∫
K

κ(s)ds ,

where Δε = {(p, q) : |p − q| ≤ ε}, and κ is the curvature of K with the orientation induced
by Ω .

We postpone the proof to Proposition 4.21 where the latter equality is generalized to space
curves.
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PROPOSITION 3.9. We have
(17)

lim
ε→0

(
L(K)

ε
− 1

2

∫
K×K\Δε

cos θp cos θq
dpdq

|q − p|2
)

= −1

2

∫
K×K

sin θp sin θq
dpdq

|q − p|2 .

Again, the proof is postponed to next section (cf. Propositions 4.8 and 4.11).
Finally we arrive at an expression of the energy that involves no renormalization.

THEOREM 3.10. If Ω ⊂ R
2 is a planar domain with smooth regular boundary K of

length L(K), then

E(Ω) = lim
ε→0

(
L(K)

ε
− 1

2

∫
K×K\Δε

cos θp cos θq

dpdq

|q − p|2
)

+ π

8

∫
K

κ(s)ds(18)

= −1

2

∫
K×K

sin θp sin θq
dpdq

|q − p|2 + π

8

∫
K

κ(s)ds ,(19)

where κ is the curvature of K , with the orientation induced by Ω .

Note the absence of limit in (19). We remark that the first term in (19) is equal (up to a factor)
to the symmetric energy of [7] when K is a single convex curve. In case Ω is compact, the
last term in (18) and (19) is π2χ(Ω)/4.

PROOF. Both sin θp and sin θq are O(|q − p|) as we will see in (36). Hence,

lim
ε→0

∫
K×K\Δε

sin θp sin θq
dpdq

|q − p|2 =
∫

K×K

sin θp sin θq
dpdq

|q − p|2 .

By applying (10), (17), and the above equation to (16), we obtain the conclusion. �

3.3. Renormalized energy of plane curves. Let us introduce an alternative renor-
malization of E(Ω,Ωc) (cf. (15)).

DEFINITION 3.11. Let K ⊂ R
2 be a smooth compact curve bounding a region Ω ⊂

R
2. We define the renormalized energy of the curve K as

E(K) = lim
ε→0

(
2L(K)

ε
−
∫

Ω×Ωc\Δε

d2wd2z

|z − w|4
)

,

where Δε = {(w, z) : |z − w| ≤ ε}, a neighborhood of the diagonal in R
2 × R

2.

It must be noticed that this energy E(K) does not coincide with the classical Möbius
energy of curves introduced in [12].

In the following, Ω ⊂ R
2 will always denote the compact domain bounded by K .

The following notation will be convenient. Let Ω induce an orientation on K = ∂Ω .
Given w, z ∈ R

2 let us consider the linking number

(20) λ(w, z,K) =
∑

x∈[wz]∩K

ε(x)
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where [wz] denotes the (oriented) line segment from z to w, and ε is the sign of the in-
tersection. Of course, λ(w, z,K) = 0 if w, z are both in Ω or both in Ωc. Otherwise
λ(w, z,K) = ±1.

PROPOSITION 3.12. With the notation introduced above,

E(K) = 1

2

∫
R2×R2\Δ

(#([wz] ∩ K) − λ2(w, z,K))
d2wd2z

|z − w|4 .

PROOF. Let m = 1
2 (z+w), r = |z−w|, and θ be the angle between [wz] and any fixed

direction. Then
d2wd2z = −rd2mdθdr .

Thus ∫
R2×R2\Δε

#([wz] ∩ K)
d2wd2z

|z − w|4 =
∫ ∞

ε

(∫ 2π

0

∫
R2

#([wz] ∩ K)d2mdθ

)
dr

r3
.

Fixed r > 0, the integral between brackets runs over all the positions of an oriented segment
of length r , and d2mdθ is the Haar measure of the group of rigid plane motions. Hence
Poincaré’s formula (cf. [16, (7.11)]) gives∫ ∞

ε

∫ 2π

0

∫
R2

#([wz] ∩ K)d2mdθ
dr

r3
=
∫ ∞

ε

4rL(K)
dr

r3
= 4

ε
L(K) .

Finally

lim
ε→0

∫
R2×R2\Δε

(#([wz]∩K)−λ2(w, z,K))
d2wd2z

|z − w|4=lim
ε→0

(
4L(K)

ε
−2

∫
Ω×Ωc\Δε

d2wd2z

|z − w|4
)

.

�

The two energies E(Ω) and E(K) do not coincide, but they are related as follows.

PROPOSITION 3.13. Let Ω ⊂ R
2 be a compact domain with smooth boundary K .

Then

E(K) = −1

2

∫
K×K

sin θp sin θq

dpdq

|q − p|2 = E(Ω) − π2

4
χ(Ω) ,

where χ(Ω) denotes the Euler characteristic of Ω .

PROOF. The second equality is a consequence of formula (19) and the Gauss-Bonnet
theorem in R

2. In order to prove the first equality, let us consider the space A(1, 2) of lines in
R

2. This is a 2-dimensional manifold admitting an invariant measure given by d� = dr ∧ dθ

where (r, θ) are the polar coordinates of the point in � that is closest to the origin. We can
describe each pair (w, z) ∈ R

2 × R
2 \ Δ by the line � through them, and two arc-length

parameters t, s along �. With this notation we have (cf. [16, equation (4.2)])

d2wd2z = |t − s|dtdsd� .

On the other hand,

(21) #([wz] ∩ K) − λ2(w, z,K) =
∑

ε(p)ε(q) ,
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where the sum runs over all ordered pairs of distinct points p, q in [wz] ∩ K . Indeed, if a

and b are respectively the numbers of positive and negative intersections of [wz] with K , then
(21) boils down to

a + b − (a − b)2 = a(a − 1) + b(b − 1) − 2ab .

Hence, by the previous proposition,

(22) E(K) = −1

2

∫
A(1,2)

∑
p,q∈�∩K

ε(p)ε(q)

|q − p| d� .

It was shown in [15, Section 2] that for any measurable function f on K × K∫
A(1,2)

∑
p,q∈�∩K

f (p, q)ε(p)ε(q)d� =
∫

K×K

f (p, q) sin θp sin θq
dpdq

|q − p| .

Taking f (p, q) = |q − p|−1, the result follows. �

With Theorem 3.8 we get

COROLLARY 3.14. Let K ⊂ R
2 be a simple closed curve (not necessarily connected).

Then

E(K) = lim
ε→0

(
L(K)

2ε
− 1

4

∫
K×K\Δε

−→
dp · −→dq

|q − p|2
)

.

REMARK 3.15. In particular, if Ω is convex, we have from (22) that

E(K) =
∫

A(1,2)

1

L(� ∩ Ω)
d� ,

where L(� ∩ Ω) is the length of the chord. This extends in some sense the Crofton formulas
discussed in [16, Chapter 4].

It turns out that E(K) appeared in a Gauss-Bonnet formula for complete surfaces in hy-
perbolic space, with a tame behaviour at infinity. Before recalling the formula, let us describe
this condition on the asymptotic behaviour of the surfaces.

DEFINITION 3.16. Let f : S � H
n be an immersion of a C2-differentiable surface S

in hyperbolic space. We say that S has cone-like ends if

i) S is the interior of a compact surface with boundary S, and taking the Poincaré half-
space model of hyperbolic space, f extends to a C2-differentiable immersion f :
S � R

n,
ii) C = f (∂S) is a collection of connected simple closed curves contained in ∂∞H

n, the
boundary of the model, and

iii) f (S) is orthogonal to ∂∞H
n along C.

The reason for the name surfaces with cone-like ends is that they are asymptotically close
the ‘cone’ formed by the family of geodesics starting at a point and ending in C. However, it
must be noted that there are other notions in the literature named similarly, and with different
meanings.
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PROPOSITION 3.17 ([17]). Let S ⊂ H
3 ⊂ R

3 be a surface in Poincaré half-space
model with cone-like ends on the curve K = ∂∞S ⊂ ∂∞H

3 ≡ R
2. Then the following holds

with Φ(K) depending only on K;

(23)
∫

S

κ dS = 2πχ(S) + 2

π

∫
R2×R2

(#(�wz ∩ S) − λ2(w, z,K))
d2wd2z

|z − w|4 − Φ(K) ,

where κ denotes the extrinsic curvature of S, and �wz denotes the geodesic with ideal end-
points w, z.

Given K ⊂ R
2, and R > 0 we take the surface S = K × (0, R ] ∪ Ω × {R} ⊂ H

3. By
taking limits as R → ∞, the equation above becomes

(24) Φ(K) = 2

π

∫
R2×R2

(#([wz] ∩ K) − λ2(w, z,K)))
d2wd2z

|z − w|4 = 4

π
E(K) .

COROLLARY 3.18. The energies considered are Möbius invariant in the following
sense:

(1) If K ⊂ R
2 is a smooth closed curve, then E(K) = E(f (K)) for every Möbius

transformation f leaving K closed.
(2) If Ω ⊂ R

2 is bounded by a closed curve, then E(Ω) = E(f (Ω)) for every Möbius
transformation f such that Ω,f (Ω) are both compact or both unbounded.

PROOF. Clearly, Φ(K) is invariant since all other terms in (23) are invariant. Together
with (24), this proves the first statement. The second part follows then by Proposition 3.13. �

PROPOSITION 3.19. Let Ω ⊂ R
2 be a compact domain with smooth boundary K =

∂Ω . Then

E(K) = π2

2
χ(Ω) +

∫
NT (Ω)

d2wd2z

|z − w|4 ,

where NT (Ω) is the set of pairs (w, z) ∈ Ω × Ω such that any circle γ containing w and z

intersects K .

PROOF. Let Q ⊂ H
3 be the intersection of all geodesic half-spaces (closed sets in H

3

bounded by totally geodesic planes) containing Ωc in its ideal set. This is a kind of convex
hull of Ωc, and is bounded by a surface S of class C1. With the arguments of [17, Proposition
3], one can approximate S by a sequence of surfaces Sn with cone-like ends and with total
curvatures converging to 0. Then Proposition 3.17 and (24) give

0 = 2πχ(Ω) + 2

π

∫
R2×R2

(#(�wz ∩ S) − λ2(w, z,K)))
d2wd2z

|z − w|4 − 4

π
E(K) .

Note that the integrand above is 2 if w, z ∈ Ω and �wz ∩Q �= ∅; otherwise it is 0. But � meets
the convex hull Q if and only if every geodesic plane ℘ containing � meets Ωc. �

COROLLARY 3.20. Let Ω be compact with n connected components and let the
boundary K = ∂Ω have k components. Then E(Ω) ≥ (2n + k)π2/4 with equality only
if n = k = 1 and Ω is a disk.
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PROOF. Given a compact domain Ω ⊂ R
2, we have from Theorem 3.10 that

E(Ω) = E(R2 \ Ω) + π2

2
χ(Ω) .

Let Ω be a compact connected domain with non-connected boundary. Then R
2 \ Ω =

∪k
i=1Ωi for a collection of domains Ωi (one of them, say Ω1, non-compact) with connected

boundaries Ki = ∂Ωi . Hence

(25) E(Ω) =
k∑

i=1

E(Ωi) +
∑
i �=j

E(Ωi,Ωj ) + π2

2
χ(Ω) .

Clearly E(Ωi,Ωj ) > 0, and by the previous proposition

E(Ωi) = E(Ki) + π2

4
≥ 3π2

4
, for i > 1, E(Ω1) = E(K1) − π2

4
≥ π2

4
.

Plugging these inequalities and χ(Ω) = k − 2 into (25) yields

E(Ω) ≥ 3(k − 1)π2

4
+ π2

4
+ π2

2
χ(Ω) = (k + 2)π2

4
.

If Ω has n connected components, we just need to use again that mutual energies are positive
to get the stated inequality.

Suppose now that we have the equality in the inequalities above. Then clearly k = 1, and
NT (Ω) has empty interior. Let now D be a maximal closed disc contained in Ω . If Ω �= D,
then Ω has a larger diameter than D. But then (w, z) ∈ NT (Ω) whenever |z − w| is close to
the diameter of Ω . We conclude that Ω = D. �

4. A new Möbius invariant functional for space curves. As a first step towards
generalization of the previous results to higher dimensions, we look again at the infinitesimal
cross-ratio.

4.1. The infinitesimal cross-ratio in higher dimensions.
4.1.1. The real part. The real part of the infinitesimal cross-ratio was extended to

higher dimensions in [10]. To be precise, the following 2-form ω in R
n ×R

n \ Δ was consid-
ered:

ω = d

(∑n
i=1(zi − wi)dwi

|z − w|2
)

(26)

= −
∑n

i=1 dwi ∧ dzi

|z − w|2 + 2
(
∑n

i=1(zi − wi)dwi) ∧ (
∑n

j=1(zj − wj)dzj )

|z − w|4 .

This form is invariant under the diagonal action of Möbius transformations h; i.e., (h×h)∗ω =
ω. For n = 2 we have ω = �eωcr . More generally, if I : R2 → S2 is a conformal mapping
with image in a round sphere S2 ⊂ R

n, then (I × I)∗ω = �eωcr .
We give two additional interpretations of ω. For the first one, let Ψ : Sn×S

n\Δ → T ∗
S

n

be the bijection given by Ψ (x, y) = (x, Ψx(y)), where Ψx : Sn \ {x} → (x)⊥ ≡ T ∗
x S

n is
the stereographic projection. Then ω is essentially equal to the pull-back of the canonical
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symplectic form ωT ∗Sn of T ∗
S

n through Ψ . To be precise, if I : Sn → R
n is the inverse of a

stereographic projection, then

(I × I)∗Ψ ∗ωT ∗Sn = −2ω .

For the second interpretation, let G be the space of unitary geodesics in H
n+1, considered

modulo shifts in their arc-length parametrization. The tangent space T�G is the space of Jacobi
fields along the geodesic � that are orthogonal to it. If ( , ) denotes the Riemann metric of
H

n+1 and ∇ is the corresponding Levi-Civita connection, then

ωg (ξ, η) = (ξ(t),∇.
�
η(t)) − (η(t),∇.

�
ξ(t))

is independent of t ∈ R. Indeed, the derivative with respect to t is easily seen to vanish. This
defines an isometry-invariant symplectic form on G. Using the Poincaré half-space model for
H

n+1 we can relate ωg with ω as follows. Given (w, z) ∈ R
n × R

n \ Δ we let � ∈ G be
the oriented geodesic with ideal endpoints w, z at −∞,∞ respectively. Given a local choice

of a point �(t), we define a 1-form ω1 by ω1(η) = (η(t),
.
�(t)). Application of the invariant

formula for exterior derivatives shows that dω1 = ωg . By taking �(t) = (1/2)(z + w, |z −
w|) ∈ H

n+1 (and
.
�(t) = (1/2)(z − w, 0) ∈ ToH

n+1), one checks that dω1 = 2ω.
4.1.2. The imaginary part. It was shown (in a more general context) in [9] that ω

is the unique (up to normalization) Möbius invariant 2-form in the space of point pairs Rn ×
R

n \ Δ for n ≥ 3. Still, the imaginary part of ωcr can be generalized to higher dimensions
as a differential form, not in the space of point pairs, but in the space of codimension 2-
subspheres. We describe this differential form next, altough it will not be used in this paper.
Let S(n−2, n) be the set of oriented codimension 2 subspheres in S

n. We can realize Sn in the
Minkowski space Rn+2

1 as the intersection of the light cone and a space-like affine hyperplane.
The action of the orentation preserving Möbius transformations on S

n corresponds to the
linear action of the Lorentz group SO(n + 1, 1). Therefore S(n − 2, n) can be identified
with the set G of oriented timelike codimension 2 subspaces of Rn+2

1 . This space is a non-
compact Grassmannian manifold G = SO(n+1, 1)/SO(2)×SO(n−1, 1) with an indefinite
pseudo inner product 〈 , 〉. Just like in compact case, G has a Kähler form ωK defined by
ωK(u, v) = 〈Ju, v〉 (u, v ∈ TΠG,Π ∈ G), where J is the complex structure given by a
90◦ degrees rotation which can be considered as an element of SO(2). By construction, this
Kähler form ωK is invariant under orientation preserving Möbius transformations. This form
generalizes the imaginary part of ωcr in the following sense.

PROPOSITION 4.1. When n = 2,

�mωcr = −1

2
ωK .

To be precise, the right hand side should be understood to be −(1/2)(f × f )∗ωK , where
f : R2 → S

2 \ {pt.} is the inverse of an orientation preserving stereographic projection.

PROOF. As both ωcr and ωK are invariant under Möbius transformations, we may fix a
point Π in G. Suppose e0, e1, e2, e3 form a pseudo-orthonormal basis of R4

1 with e0 ·e0 = −1
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and ei · ej = δij ((i, j) �= (0, 0)). Assume Π = Span〈e0, e1〉. Then TΠG ∼= Hom(Π,Π⊥)

is spanned by vij (i = 0, 1, j = 2, 3), where vij ∈ Hom(Π,Π⊥) is given by vij (ei) = ej

and vij (e1−i ) = 0. They form a pseudo-orthonormal basis of TΠG with 〈v0j , v0j 〉 = −1 and
〈v1j , v1j 〉 = 1 (j = 2, 3).

Since the complex structure J is obtained by 90◦ degrees rotation in the e2e3-plane,
namely, J (vi2) = vi3 (i = 0, 1), we have ωK(v02, v03) = −1, ωK(v12, v13) = 1, and
ωK(vij , vkl) = 0 if {vij , vkl} is not equal to {v02, v03} or {v12, v13}.

On the other hand, by a suitable identification, Π correspnds to ((u, v), (x, y)) =
((1, 0), (−1, 0)) in R

2 × R
2 \ Δ and vij correspond to

v02 = ∂

∂v
+ ∂

∂y
, v03 = − ∂

∂u
+ ∂

∂x
, v12 = ∂

∂v
− ∂

∂y
, v13 = − ∂

∂u
− ∂

∂x
.

One should take care not to use a stereographic projection form the north pole here as it is
orientation reversing. Now a direct computation shows that ωK = −2�mωcr . �

4.2. Mutual energies for space curves. Let K1,K2 ⊂ R
3 be a pair of disjoint ori-

ented space curves. Each of them is the boundary of an orientable surface Ωi (Seifert surface),
but we will need these surfaces to be disjoint. This is not possible if K1,K2 are linked. Hence
we consider K1,K2 ⊂ R

3 ⊂ R
n for n ≥ 5. Then there exist disjoint orientable surfaces

Ω1,Ω2 ⊂ R
n with ∂Ωi = Ki . Now we can generalize the definition 2.1 to space curves.

DEFINITION 4.2. In the situation described above, we define the mutual energy of
K1,K2 by

E(K1,K2) = 1

2

∫
Ω1×Ω2

ω ∧ ω .

This definition does not depend on the choice of Ω1,Ω2 as shown by the following
proposition.

PROPOSITION 4.3. In the situation above,

(27) E(K1,K2) = −1

2

∫
K1×K2

cos θ1 cos θ2
dp1dp2

|p2 − p1|2 ,

where θi ∈ [0, π] is the angle between
−→
dpi and p2 − p1.

PROOF. The proof of (6) also works here but using

λ =
∑

(zi − wi)dzi

|z − w|2 , ρ =
∑

(zi − wi)dwi

|z − w|2 ,

so that dλ = dρ = ω (cf. (26)). �

4.3. Linking with circles. Next we give an interpretation of E(K1,K2) as the aver-
age of some linking numbers with circles. Recall the following result of Banchoff and Pohl
[5]: given two disjoint oriented curves K1,K2 ⊂ R

3,∫
A(1,3)

λ(�,K1) · λ(�,K2)d� =
∫

K1×K2

cos θ1 cos θ2dp1dp2
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where A(1, 3) is the space of lines � ⊂ R
3, endowed with a (suitably normalized) invariant

measure d�, and λ denotes the linking number. Note that the integrand on the left hand side
is independent of the orientation of �. It changes sign when we change the orientation of K1

or K2.
We now look for an analogue of the previous result in the realm of Möbius geometry.

The role of lines will be played by circles. Let us denote the set of all oriented circles γ ⊂ R
3

by S(1, 3). This is a homogeneous space of the Möbius group Möb3 with isotropy group
S

1 × Möb1. Since these are unimodular groups, the space of circles S(1, 3) admits a measure
dγ invariant under Möb3 (cf. [16, p.168 (c)]). Let us describe this measure explicitly. Each
circle γ ⊂ R

3 is uniquely determined by its center c ∈ R
3, the radius r > 0, and a unit vector

u ∈ S
2 orthogonal to the plane containing γ . Then the (unique up to a constant factor) Möbius

invariant measure on the space of circles is

(28) dγ = 1

r4 drdcdu

where dc is the volume element of c ∈ R
3, and du denotes the area element of u ∈ S

2. Indeed,
the latter measure is clearly invariant under the group Sim3 generated by rigid motions and
homotheties of R3. Such transformations act transitively on the space of circles. Hence, every
two measures on S(1, 3) that are invariant under Sim3 must be a constant multiple of each
other. But clearly the measures invariant under Möb3, which we know exist, are also invariant
under Sim3.

Our next goal is to compute

I3(K1,K2) =
∫
S(1,3)

λ(γ,K1) · λ(γ,K2)dγ .

It will be useful to take Ω1,Ω2 disjoint surfaces with ∂Ωi = Ki . This is not possible
if the curves are linked. To solve this we consider again K1,K2 ⊂ R

n with n ≥ 5, and we
consider the general problem of determining

In(K1,K2) =
∫
S(n−2,n)

λ(ξ,K1) · λ(ξ,K2)dξ ,

where dξ is the conformally invariant measure in the space of oriented codimension 2 spheres
S(n − 2, n). Just like in the case n = 3, this space admits a Möbius invariant measure given
in terms of the radius r , the center c ∈ R

n and a normal direction u ∈ S
n−1 by

dξ = 1

rn+1 drdcdu .

Note that considering K1,K2 ⊂ R
n ⊂ R

n+p one has In(K1,K2) = cn,pIn+p(K1,K2) for a
constant cn,p to be computed. Therefore, it is enough to consider the problem for n ≥ 5.

Let S(0, n) = R
n × R

n \ Δ denote the space of point pairs (oriented 0-spheres). We
consider the flag space

(29) F = {(w, z; ξ) ∈ S(0, n) × S(n − 2, n) : w, z ∈ ξ} .
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There is a natural double fibration

F
π1

����
��
��
��
�

π2

���
���

���
���

S(0, n) S(n − 2, n)

with π1, π2 the obvious maps. Note that F can be identified with S(0, n) × G+(2, n) where
G+(2, n) denotes the Grassmannian of oriented planes in R

n. This way π1 is just the projec-
tion on the first factor. Note that the dimensions of F ,S(0, n), and S(n − 2, n) are given by
4n − 4, 2n, and 2n respectively.

PROPOSITION 4.4. Let Ω1,Ω2 ⊂ R
n be disjoint surfaces with boundary K1,K2

respectively. Then

In(K1,K2) =
∫

Ω1×Ω2

((π1)∗ ◦ π∗
2 )(dξ) = −2vol(Sn−1)vol(Sn−2)

n(n − 1)π
·
∫

Ω1×Ω2

ω ∧ ω

where (π1)∗ denotes integration along the fibers of π1.

PROOF. We show first the second equality. Again, it will be useful to consider Rn as the
ideal boundary of Hn+1. Given an orthonormal frame o; e1, . . . , en+1 of Hn+1, we consider
the geodesic �(t) = expo(te1), and the codimension 2 geodesic plane L = expo(en ∧ en+1)

⊥.
This defines an element (w, z; ξ) ∈ F , where z = limt→−∞ �(t), w = limt→+∞ �(t), and
ξ ⊂ S

n is the set of ideal points of L. Using such local frames one can write

(30) dξ = ωn+1 ∧ ω1,n+1 ∧ · · · ∧ ωn−1,n+1 ∧ ωn ∧ ω1,n ∧ . . . ωn−1,n ,

where ωi = 〈do, ei〉, and ωij = 〈∇ei , ej 〉, where ∇ is the riemannian connection of Hn+1.
Indeed, the right hand side is a common expression of the isometry invariant measure of
(codimension 2) geodesic planes of Hn+1 (cf. [16, (17.35)]). Hence both sides coincide except
for a constant factor. To find this factor, we assume by invariance that o = (0, . . . , 0, 1) in
the half-space model, and ei is the canonical basis. Then r = 1, and dr = ωn+1, dc =
ω1,n+1 ∧ · · · ∧ ωn−1,n+1 ∧ ωn, du = ω1,n ∧ · · · ∧ ωn−1,n. This shows (30).

Now, given (w, z) ∈ S(0, n) we take a frame p; u1, u2, . . . , un+1 defining an element
(w, z; ξ0) ∈ F as explained above. Then, for any other point (w, z; ξ) ∈ π−1

1 (w, z) in the
fiber we can choose a frame p; e1, e2, . . . , en+1 with e1 = u1. Note that,

ωn ∧ ωn+1 = 〈en ∧ en+1, dp ∧ dp〉 = 〈
∑

2≤i<j≤n+1

pij ui ∧ uj , dp ∧ dp〉 ,

ω1,n ∧ ω1,n+1 = 〈en ∧ en+1,∇e1 ∧ ∇e1〉 = 〈
∑

2≤i<j≤n+1

pij ui ∧ uj ,∇e1 ∧ ∇e1〉 ,

where pij are the Plücker coordinates of en ∧ en+1 in
∧2

(e1)
⊥ ⊂ ∧2

TpH
n+1, i.e.,

pij =
∣∣∣∣ 〈en, ui〉 〈en, uj 〉

〈en+1, ui〉 〈en+1, uj 〉
∣∣∣∣ .
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This way, the fiber π−1
1 (w, z) is identified with a submanifold P (given by the Plücker rela-

tions) of the unit sphere SN−1 with N = (
n
2

)
. Thus

(31) dξ =
∑

i<j,r<s

pijprs〈ui, dp〉 ∧ 〈uj , dp〉 ∧ 〈ui,∇e1〉 ∧ 〈uj ,∇e1〉 ∧ dP ,

where dP is the volume element on P induced by the metric of SN−1. Now, since P ⊂ S
N−1

and P is isometric to the Grassmannian of oriented 2-planes in R
n,∫

P

p2
ij dP =

(
n

2

)−1 ∫
P

∑
2≤r<s≤n+1

p2
rsdP =

(
n

2

)−1

vol(P ) =
(

n

2

)−1 vol(Sn−1)vol(Sn−2)

2π
.

Let this constant be denoted by β. On the other hand, the function pij is odd with respect to
the symmetry of SN−1 fixing (ui)

⊥. Hence,∫
P

pijprsdP = 0 for {i, j } �= {r, s} .

Therefore

π1∗π∗
2 dξ =

∫
π−1

1 (w,z)

π∗
2 dξ = β

∑
2≤i<j≤n+1

〈ui, dp〉 ∧ 〈uj , dp〉 ∧ 〈ui,∇e1〉 ∧ 〈uj ,∇e1〉

= β
∑

2≤i<j≤n+1

ωi ∧ ωj ∧ ω1i ∧ ω1j = −β

2
dω1 ∧ dω1 = −2β · ω ∧ ω

since dω1 = 2ω.
In order to show the first equality, let us consider the region U = π−1

1 (Ω1 × Ω2) ⊂ F ,
and the mapping φ = π2|U : U → S(n − 2, n). By (31), one can check that the multiplicity
of ξ ∈ S(n − 2, n) as an image value of φ (taking orientations into account) is given by

ν(ξ) =
∑

z1∈ξ∩Ω1,z2∈ξ∩Ω2

ε(z1)ε(z2) = (ξ · Ω1)(ξ · Ω2) = λ(ξ,K1)λ(ξ,K2) ,

where ε(zi) is the contribution of zi to the algebraic intersection ξ · Ωi . Here S(n − 2, n) was
oriented by dξ , and we used the orientation in U ≡ Ω1 ×Ω2 ×P given by dΩ1 ∧dΩ2 ∧dP .
Finally, the coarea formula and integration along the fibers yield

In(K1,K2)=
∫
S(n−2,2)

ν(ξ)dξ =
∫

U

π∗
2 (dξ) =

∫
π−1

1 (Ω1×Ω2)

π∗
2 (dξ) =

∫
Ω1×Ω2

(π1)∗π∗
2 dξ .

�

In particular, the constant cn,p determined by In(K1,K2) = cn,pIn+p(K1,K2) is given
by

cn,p = vol(Sn+p)vol(Sn+p−1)n(n − 1)

vol(Sn)vol(Sn−1)(n + p)(n + p − 1)
.

COROLLARY 4.5. The mutual energy of a pair of disjoint space curves is given by

E(K1,K2) = − 3

16π

∫
S(1,3)

λ(γ,K1)λ(γ,K2)dγ .
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REMARK 4.6. Note that E(K1,K2) = 0 does not imply that every circle is trivially
linked with K1 or with K2. An example where the mutual energy vanishes is given by a pair
of circles K1,K2 such that K1 is orthogonal to every sphere containing K2. For instance, K1

can be the line of points p ∈ R
3 such that |q − p| is constant for all q ∈ K2.

4.4. Renormalized measure of circles linking a space curve. Let us now consider
a single space curve K ⊂ R

3 which is assumed to be closed but not necessarily connected.
We will define a functional E(K) such that E(K1 ∪ K2) = E(K1) + E(K2) + 2E(K1,K2)

whenever K1,K2 are disjoint. Our results are closely analogous to the following formula due
to Banchoff and Pohl (cf.[5])

(32)
∫

A(1,3)

λ(�,K)2d� = −
∫

K×K

cos τ sin θp sin θqdpdq =
∫

K×K

cos θp cos θqdpdq ,

where θp ∈ [0, π] (resp. θq ∈ [0, π]) is the angle between
−→
dp (resp.

−→
dq) and q − p, and τ is

the angle between the two oriented planes through p, q tangent to K at p and q respectively.

These planes are oriented by
−→
dp ∧ (q − p) and

−→
dq ∧ (q − p) respectively. In order to define

E(K) it would be natural to consider∫
S(1,3)

λ(γ,K)2dγ.

However this integral diverges due to the blow up of the density dγ = r−4drdcdu when the
radius r goes to 0. Hence we take the following renormalization.

DEFINITION 4.7. Let K ⊂ R
3 be a smooth, closed (maybe non-connected) space

curve. We define

E(K) = lim
ε→0

(
3πL(K)

8ε
− 3

16π

∫
Sε(1,3)

λ(γ,K)2dγ

)
,

where Sε(1, 3) is the subset of S(1, 3) containing the circles of radius r > ε .

The following proposition gives two expressions of E(K) which involve no renormal-
ization.

PROPOSITION 4.8. The previous limit exists, and coincides with the following integral

E(K) = 3

16π

∫
S(1,3)

(#(K ∩ [γ ]) − λ(γ,K)2)dγ ,

where [γ ] denotes the disk with boundary γ . The previous integral converges and coincides
with

(33) E(K) = −1

2

∫
K×K

cos τ sin θp sin θq
dpdq

|q − p|2 ,

where θp, θq and τ are as in (32).

PROOF. Let A(2, 3) be the space of oriented affine planes of R3, which are given by a
direction u ∈ S

2 and a signed distance ρ from the origin. Let

d℘ = dρdu
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which defines an invariant measure on A(2, 3). From the expression (28) of dγ ,
(34)∫
Sε(1,3)

#(K∩[γ ])dγ =
∫

A(2,3)

∫ ∞

ε

∫
℘

#(Bc(r)∩℘∩K)
dcdrd℘

r4
= π

ε

∫
A(2,3)

#(℘∩K)d℘ ,

where dc denotes the area element of c inside ℘. From this, Crofton’s formula (cf. [16,
(14.73)]) yields the first equation, except for the convergence of the integral.

To see the second part we start with the following equality, which can be proved like
(21):

(35) #([γ ] ∩ K) − λ2(γ,K) =
∑
x,y

ε(x)ε(y) ,

where the sum runs over the pairs x, y ∈ K ∩ [γ ], and ε(x), ε(y) are the intersection signs of
K and [γ ]. Integrating (35) with respect to γ and using (28) yields∫

S(1,3)

(#([γ ] ∩ K) − λ2(γ,K))dγ = −
∫

A(2,3)

∫ ∞

0

1

4

∫
℘

∑
x,y

ε(x)ε(y)
1

r4 dcdrd℘ ,

where the sum runs over the pairs x, y ∈ K ∩ Bc(r) ∩ ℘. Now, an elementary computation
shows

E(K) = − 1

π

∫
A(2,3)

∑
x,y∈℘∩K

ε(x)ε(y)

|y − x| d℘ .

Finally, by the results of Pohl [15, Section 2] we get

E(K) = −1

2

∫
K×K

cos τ sin θp sin θq
dpdq

|q − p|2 .

We can now check the convergence of the integrals since

(36) sin θp = κ(p)

2
|q − p| + O(|q − p|2)

where κ denotes the curvature of K . Indeed, let f : (0, ε) → R
3 be an embedding with

f ((0, ε)) ⊂ K and |f ′(s)| = 1 for all s ∈ (0, ε). Then, for p = f (s), q = f (t)

| sin θp|=
∣∣∣∣f ′(s) × (f (t) − f (s))

|f (t) − f (s)|
∣∣∣∣=|f ′(s) × (f ′(s)(t − s) + 1

2f ′′(s)(t − s)2 + O(|t − s|3)|
|f (t) − f (s)|

= 1

2
|f ′′(s)||t − s| + O((t − s)2) .

�

By Proposition 3.13 we have

COROLLARY 4.9. When K is a planar curve, Definitions 3.11 and 4.7 of the energy
E(K) coincide.

In particular E(K) > 0 for K planar and convex. This explains the choice of the sign
in the definition of E. However, for space curves there is no lower (nor upper) bound of E.
Indeed, if two arcs of K come close to each other (not orthogonally) then E(K) blows up to
±∞.
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REMARK 4.10. The functional E is continuous with respect to the topology of uni-
form C2 convergence. Even more, suppose a sequence of closed curves Kn ⊂ R

3 converging
pointwise to a closed embedded curve K ⊂ R

3 in the C1 topology, and with uniformly
bounded curvature. Then limn→∞ E(Kn) = E(K). This follows from (33), and Lebesgue’s
dominated convergence theorem, which applies here in virtue of (36).

It is interesting to recall that the writhe of K is given by

W(K) = 1

4π

∫
K×K

sin τ sin θp sin θq

dpdq

|q − p|2 .

Also, W(K) is the average of signed self-intersections of projections of K . A remarkable
fact is that the writhe is invariant under orientation preserving Möbius transformations (cf.
[6]). We will see below that E(K) not only has an integral expression similar to W(K), but it
shares also this invariance (cf. Corollary 4.17).

PROPOSITION 4.11.

(37) E(K) = lim
ε→0

(
L(K)

ε
− 1

2

∫
K×K\Δε

cos θp cos θq

dpdq

|q − p|2
)

.

PROOF. We use intergation by parts, as in Proposition 5 of [5]. Given p, q ∈ K ×K \Δ

let e1, e2, e3 be an orthonormal moving frame (locally defined on K × K \ Δ with e1 =
(q − p)/|q − p|, and e3⊥TpK . As usual let ωi = dp · ei , and ωij = dei · ej . Then

cos θp cos θq
dp ∧ dq

|q − p|2 = −d(|q − p|) ∧ ω1

|q − p|2 = d

(
1

|q − p|
)

∧ ω1

= d

(
ω1

|q − p|
)

− 1

|q − p|dω1 = d

(
ω1

|q − p|
)

− ω12 ∧ ω2

|q − p| − ω13 ∧ ω3

|q − p|
=d

(
ω1

|q − p|
)

+ cos τ sin θp sin θq
dp ∧ dq

|q − p|2 ,

since ω2 = sin θpdp,ω3 = 0, and ω12 = cos τ sin θq |q − p|−1dq . On the other hand∫
K×K\Δε

d
ω12

|q − p| =
∫

∂Δε

ω12

|q − p| = 2
∫

K

1

ε
dq + O(ε) = 2

ε
L(K) + O(ε) .

�

Propositions 4.3 and 4.11 imply

COROLLARY 4.12. Let K1,K2 be a pair of disjoint oriented curves. Then

(38) E(K1 ∪ K2) = E(K1) + E(K2) + 2E(K1,K2) .

With the equation above and Definition 4.7 we recover Corollary 4.5.

PROPOSITION 4.13. We have

E(K) = lim
ε→0

(
L(K)

2ε
− 1

4

∫
K×K\Δε

−→
dp · −→

dq

|q − p|2
)

,
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where
−→
dp · −→

dq = dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3.

PROOF. It is elementary to see

−→
dp · −→

dq = (cos θp cos θq + cos τ sin θp sin θq)dpdq .

Now averaging (33) and (37) gives the result. �

COROLLARY 4.14. Let K1,K2 be a pair of disjoint curves. Then

E(K1,K2) = −1

4

∫
K1×K2

−→
dp · −→

dq

|q − p|2 .

It is interesting to remark that if the power of the denominator is replaced by 1 then the
previous integral becomes von Neumann’s formula for the mutual inductance, up to a constant
factor.

4.5. Gauss-Bonnet theorem for complete surfaces in hyperbolic space. Next we
show the Möbius invariance of E(K). To this end we will use a Gauss-Bonnet formula for
complete surfaces in hyperbolic space.

Let S ⊂ H
4 be a surface in hyperbolic 4-space (Poincaré model) with cone-like ends on

the curve K ⊂ R
3 = ∂∞H

4 (recall Definition 3.16). Given an element (x, e) ∈ N1S, the unit
normal bundle of S, the Lipschitz-Killing curvature κ(x, e) is defined as the determinant of
the endomorphism de(x,e) of T(x,e)(N

1S). We are interested in the integral of κ(x, e) along
the fibers N1

x S of N1S. Using Gauss equation one gets easily

(39)
1

π

∫
N1

x S

κ(x, e)de = κi(x) + 1 ,

where de is the volume element on N1
x S, and κi denotes the Gauss (intrinsic) curvature of S.

The additive constant 1 comes from the sectional curvature of the ambient space H
4. Given

ε > 0 put Sε = {x ∈ S : x4 ≥ ε}. Then, the classical intrinsic Gauss-Bonnet formula gives∫
Sε

(κi + 1)dS = 2πχ(Sε) + A(Sε) −
∫

∂Sε

kg = 2πχ(Sε) + A(Sε) − L(K)

ε
+ O(ε) ,

where kg is the geodesic curvature in Sε . We used kg = 1 + O(ε2), and the fact that the
euclidean lengths of ∂Se and K have a difference of order ε2. Taking ε → 0 we get

(40)
1

π

∫
N1S

κ(x, e)dedS =
∫

S

(κi(x) + 1)dS = 2πχ(S) + lim
ε→0

(
A(Sε) − L(K)

ε

)
.

The convergence of the integrals follows from the hypothesis that S has cone-like ends by the
same arguments as Proposition 7 in [17]. This formula appeared in a more general setting
in [2]. The limit in (40) was called the renormalized area of S. Here we will use a different
renormalization that leads to the same value.

PROPOSITION 4.15. Let L2 denote the space of oriented 2-dimensional geodesic
planes in H

4. Let L2,ε be the subset of L2 consisting of the planes which define a circle
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in R
3 = ∂∞H

4 of radius larger than ε. Then the renormalized area of S is given by

lim
ε→0

(
A(Sε) − L(K)

ε

)
= lim

ε→0

(
3

4π2

∫
L2

#(� ∩ Sε)d� − L(K)

ε

)

= lim
ε→0

(
3

4π2

∫
L2,ε

#(� ∩ S)d� − 3L(K)

2ε

)
,

where d� is the pull-back of dγ through the map L2 → S(1, 3) given by � �→ γ = ∂∞�.

PROOF. The first equality follows immediately from the Crofton formula (cf. [16,
p.245]). In order to check the second equality, we need the following claim: given two sur-
faces R, S ⊂ H

4 with cone-like ends on the same ideal curve K ⊂ ∂∞H
4, one has

(41) lim
ε→0

∫
L2

(#(� ∩ Rε) − #(� ∩ Sε))d� = lim
ε→0

∫
L2,ε

(#(� ∩ R) − #(� ∩ S))d� .

To show this, we consider

F = {(p, �) ∈ H
4 × L2 : p ∈ �}

and the projections p1 : F → H
4, p2 : F → L2. Denoting by h the last coordiante function

on H
4, and by r the radius function on L2, equation (41) is equivalent to

lim
ε→0

∫
{h◦p1>ε}

(1R ◦ p1 − 1S ◦ p1) p∗
2d� = lim

ε→0

∫
{r◦p1>ε}

(1R ◦ p1 − 1S ◦ p1) p∗
2d�

where 1R, 1S are the indicator functions of S,R respectively. Hence, to prove (41) it is enough
to show the absolute convergence of

(42)
∫

F

(1R ◦ p1 − 1S ◦ p1) p∗
2d� =

∫
L2

(#(� ∩ R) − #(� ∩ S))d� .

With the same arguments as in Section 3 of [17] one shows that∫
L2

(#(� ∩ R) − λ2(�,K))d�

is absolutely convergent. Hence we have convergence in (42), and (41) follows.
Therefore, it is enough to prove the second equality of the statement in the particular

case S = K × (0,∞) ⊂ H
4. In this case, by the Crofton formula

∫
L2

#(� ∩ Sε)d� = 4π2

3
A(Sε) = 4π2

3
L(K)

∫ ∞

ε

1

t2
dt = 4π2

3ε
L(K) .

By (34) and [16, (14.73)] we have
∫
L2,ε

#(� ∩ S)d� = 2π2

ε
L(K) .

Hence, all the limits in the statement vanish trivially for S = K × (0,∞). �
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By the previous proposition, equation (40) becomes

∫
S

(κi + 1)dS = 2πχ(S) + lim
ε→0

(
3

4π2

∫
L2,ε

#(� ∩ S)d� − 3

2ε
L(K)

)
.

Combining this with Definition 4.7 we get the following

COROLLARY 4.16. For any surface S ⊂ H
4 with cone-like ends

1

π

∫
N1S

κ(x, e)dedS=
∫

S

(κi(x)+1)dS=2πχ(S)+ 3

4π2

∫
L2

(#(�∩S)−λ2(�,K))d�− 4

π
E(K) ,

where d� is the invariant measure on L2 corresponding to dγ .

COROLLARY 4.17. E(K) is invariant under Möbius transformations.

PROOF. All other terms in the equation above are invariant under isometries of H4. �

4.6. Expressions via parallel curves. Here we show the following

PROPOSITION 4.18. Let K be a closed space curve with nowhere vanishing curvature
κ . Let Kε be an ε-parallel curve given by Kε = {x + ε n(x) : x ∈ K}, where n is the unit
principal normal vector to K . Then

(43) E(K) = lim
ε→0

( π

4ε
L(K) + E(K,Kε)

)
− π

8

∫
K

κ(p)dp .

REMARK 4.19. The hypothesis that κ is nowhere zero is no loss of generality: per-
forming a Möbius transformation we can bring every space curve K to a position K̃ with
non-vanishing curvature. Moreover this transformation can be taken arbitrarily close to the
identity. Indeed, let C(K) denote the curvature tube of K , namely, C(K) = ∪p∈KCO(p),
where CO(p) denotes the osculating circle to K at p. Let us take the image of K after an
inversion in a sphere with a sufficiently large radius r whose center does not belong to C(K),
and is at distance r from K . Then an orientation reversing isometry of R3 gives the desired
K̃ .

We will need the following estimate.

LEMMA 4.20. Let K be a simple smooth space curve with non-vanishing curvature.
Let ε and δ be small positive numbers with δ � ε. Then for any point p in K we have

(44)
∫

Kδ∩Bε(p)

vp · −→
dq

|q − p|2 = π

δ
− 2

ε
− π

2
κ(p) + O(ε) ,

where vp is the unit tangent vector to K at p.

PROOF. Suppose K can be expressed as K = f (S1) by an embedding f which is
parametrized by the arc-length. We can assume that p = f (0) = 0. Then Kδ is given by
Kδ = fδ(S

1), where fδ = f + δκ−1f ′′. Note that f ′ · f ′ ≡ 1 and f ′′ · f ′′ = κ2 imply

f ′ · f ′′ = 0, f ′ · f ′′′ = −κ2, f ′′ · f ′′′ = κκ ′, and f ′ · f (4) = −3κκ ′ .
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The numerator inside the integral of (44) can be estimated as

(45) f ′(0) · f ′
δ (s) = (1 − κ(0)δ) + O(1)δs + O(s2)

since direct computation shows

f ′(0) · f ′
δ (0) = 1 − κ(0)δ ,

f ′(0) · f ′′
δ (0) = O(1)δ .

On the other hand, the denominator inside the integral of (44) can be estimated as

fδ(s) · fδ(s) = f (s) · f (s) + 2
δ

κ(s)
f (s) · f ′′(s) + δ2

= δ2 + (
s2 + O(s4)

)+ 2δ

(
1

κ(0)
+ O(s)

)(
−κ2(0)

2
s2 + O(s3)

)

= δ2 + (1 − κ(0)δ) s2 + δO(s3) + O(s4)

= (
δ2 + (1 − κ(0)δ)s2)(1 + O(1)s2) ,(46)

since
sδ

δ2 + (1 − κ(0)δ)s2
= O(1) ,

s2

δ2 + (1 − κ(0)δ)s2
= O(1) .

Let us denote κ(0) and κ ′(0) simply by κ and κ ′ in what follows. Let s− < 0 and s+ > 0
be parameters when fδ(s) passes through ∂Bε(f (0)). Then, since s± = O(ε), equation (46)
implies

s± = ±
√

ε2 − δ2

1 − κδ
+ O(ε3) .

Therefore, by (46) and (45), the left hand side of (44) can be estimated as

∫ √
ε2−δ2
1−κδ +O(ε3)

−
√

ε2−δ2
1−κδ

+O(ε3)

{
(1 − κδ) + O(1)δs + O(1)s2

} (
1 + O(1)s2

)
δ2 + (1 − κδ)s2 ds

=
∫ √

ε2−δ2
1−κδ

−
√

ε2−δ2
1−κδ

1 − κδ

δ2 + (1 − κδ)s2 ds + O(ε)

= 2

δ

√
1 − κδ arctan

(√
ε2 − δ2

δ

)
+ O(ε)

= 2

δ

(
1 − κ

2
δ
)(π

2
− δ

ε

)
+ O(ε) ,

which coincides with the right hand side of (44). �

We remark that the same proof, with minor modifications, shows (44) when K and Kδ

are planar (not necessarily convex) curves with K = ∂Ω and Kδ = ∂Ωδ. Proposition 4.18 is
immediate from Proposition 4.13, Corollary 4.14, and the following
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PROPOSITION 4.21. Let K be a smooth simple space curve with non-vanishing cur-
vature κ . Let Kδ be a δ-parallel of K in the principal normal direction. Then

lim
ε→0

(
L(K)

2ε
− 1

4

∫
K×K\Δε

−→
dp · −→dq

|q − p|2
)
= lim

δ→0

(
π

4δ
L(K)− 1

4

∫
K×Kδ

−→
dp · −→dq

|q − p|2
)
−π

8

∫
K

κ(p)dp .

PROOF (OF PROPOSITION 4.21 AND THEOREM 3.8). We first fix ε so that 0 < ε <

1/ maxp∈K κ(p). Suppose δ < ε. Then

−1

4

∫
K×Kδ

−→
dp · −→

dq

|q − p|2 = −1

4

∫
p∈K

(∫
q∈Kδ∩Bε(p)

vp · −→
dq

|q − p|2 +
∫

q∈Kδ\Bε(p)

vp · −→
dq

|q − p|2
)

dp .

Clearly

lim
δ→0

∫
p∈K

∫
q∈Kδ\Bε(p)

vp · −→dq

|q − p|2 =
∫

p∈K

∫
q∈K\Bε(p)

vp · −→dq

|q − p|2 .

Therefore, if δ � ε we have, by (44)

−1

4

∫
K×Kδ

−→
dp · −→dq

|q − p|2 = −1

4

∫
p∈K

(
π

δ
− 2

ε
− π

2
κ(p) +

∫
K\Bε(p)

vp · −→
dq

|q − p|2
)

dp + O(ε)

=−π

4δ
L(K) + L(K)

2ε
+ π

8

∫
K

κ(p)dp − 1

4

∫
K×K\Δε

−→
dp · −→dq

|q − p|2 + O(ε) ,

which implies

lim
δ→0

(
π

4δ
L(K)− 1

4

∫
K×Kδ

−→
dp · −→

dq

|q − p|2
)

− π

8

∫
K

κ(p)dp= lim
ε→0

(
L(K)

2ε
− 1

4

∫
K×K\Δε

−→
dp · −→dq

|q − p|2
)

.

This completes the proof. �

5. Möbius invariant expressions . For a compact simply connected domain Ω ⊂ R
2

with smooth boundary K = ∂Ω , Theorem 1 in [17] yields

(47) E(Ω) = π2

2
+ 1

4

∫
K×K

θ sin θ
dpdq

|q − p|2
where θ is the oriented angle at p between K (positively oriented), and the circle through p

and q that is positively tangent to K at q . More precisely, θ ∈ R is the unique continuous
determination of this angle defined on K × K that vanishes on the diagonal. Note that, unlike
the previous expressions we obtained, the integrand in (47) is Möbius invariant.

Next we generalize (47) to compact domains, not necessarily simply connected. By
equation (38) it is enough to give analogous expressions for the mutual energy E(Ω1,Ω2) of
two disjoint simply connected domains Ω1,Ω2. To this end, we will work with the flag space

F = {(w, z; ξ) ∈ S(0, 2) × S(1, 2) : w, z ∈ ξ}
which has natural projections π1 : F → S(0, 2) and π2 : F → S(1, 2). By thinking of R2

as the ideal boundary of half-space model of H3, each element (w, z; γ ) ∈ F corresponds to
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a pair (�, ℘) where � ⊂ H
3 is a geodesic line contained in the geodesic plane ℘ ⊂ H

3. Let
us choose (locally) an orthonormal frame (o; e1, e2, e3) with o ∈ �, e1 ∈ To�, e3⊥To℘. It is
easy to check that the 1-form ω23 = 〈∇e2, e3〉 is independent of this choice. Hence it defines
a global 1-form ϕ on F . By construction, ϕ is Möbius invariant, it vanishes on the fibers of
π2 and measures the oriented angle on the fibers of π1. The interest of ϕ comes from the fact
that dϕ = 2π∗

1 �m (ωcr) (cf. [17, Remark 3]).

LEMMA 5.1. Let c(t) = (z(t), w(t); γ (t)) be a curve in F , such that z(t) ≡ z is
constant and the circles γ (t) are all mutually tangent at z. Then ϕ(c′(0)) = 0.

PROOF. The curve c(t) corresponds to a family of pairs (�(t), ℘ (t)) with �(t) ⊂ ℘(t) ⊂
H

3. By hypothesis, these geodesics �(t) have a common ideal endpoint z. By a Möbius
transformation we can send z to infinity. This way, the geodesics �(t) become vertical lines
in the model. Morevoer, by hypothesis the totally geodesic planes ℘(t) are mapped to a
family of vertical parallel affine planes in the model. Then we can choose a moving frame
o(t), e1(t), e2(t), e3(t) adapted to (the image of) (�(t), ℘ (t)) as above and such that o(t) =
(o1(t), o2(t), 1), and e1(t), e2(t), e3(t) are constant vectors, forming an orthonormal basis of
R

3. Then clearly ϕ(c′(t)) = 〈e′
2(t), e3(t)〉 = 0. �

PROPOSITION 5.2. Let pi : S1 → Ki be regular parametrizations, and let θ(s, t) =
θ(p1(s), p2(t)) ∈ [0, 2π) be the oriented angle between the circle through p2(t) that is
positively tangent to K1 at p1(s), and the circle through p1(t) that is positively tangent to
K2 at p2(t). Then

E(Ω1,Ω2) = π2

2
− 1

8

∫
S1×S1

∂θ(s, t)

∂s

∂θ(s, t)

∂t
dtds .

PROOF. Let us pick up a point qi ∈ Ωi (i = 1, 2) in the interior of each region. We
denote Ω∗

i = Ωi \ {qi}. For each region, we take an orientation preserving diffeomorphism

Fi : S1 × [0, 1) −→ Ω∗
i i = 1, 2 ,

such that Fi(t, 0) = pi(t). The vector field Xi = ∂Fi(x, t)/∂x is defined on Ω∗
i and vanishes

nowhere. Let us define a section s1 : Ω∗
1 × Ω∗

2 → F such that s1(w, z) = (w, z; ξ) with
X1(w) ∈ Twξ . Similarly, we define s2 on Ω∗

1 × Ω∗
2 so that X2(z) ∈ Tzξ if s2(w, z) =

(w, z; ξ). Let Ωi,ε = Ωi \ Bε(qi). Then

E(Ω1,Ω2) = lim
ε→0

1

8

∫
Ω1,ε×Ω2,ε

d(s∗
1ϕ) ∧ d(s∗

2ϕ) .

By Stokes,

∫
Ω1,ε×Ω2,ε

d(s∗
1ϕ) ∧ d(s∗

2ϕ) =
∫

(∂Ω1,ε×Ω2,ε )∪(Ω1,ε×∂Ω2,ε )

s∗
1ϕ ∧ d(s∗

2ϕ) .
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Integration on ∂Ω1,ε × Ω2,ε vanishes by Lemma 5.1. Using d(s∗
1ϕ ∧ s∗

2 ϕ) = ds∗
1ϕ ∧ s∗

2 ϕ −
s∗

1 ϕ ∧ ds∗
2ϕ we get∫

Ω1,ε×∂Ω2,ε

s∗
1 ϕ ∧ d(s∗

2ϕ) = −
∫

Ω1,ε×∂Ω2,ε

d(s∗
1ϕ ∧ s∗

2 ϕ) +
∫

Ω1,ε×∂Ω2,ε

ds∗
1ϕ ∧ s∗

2ϕ

and the latter integral vanishes again by Lemma 5.1. Taking care of orientations we conclude

E(Ω1,Ω2) =
∫

K1×K2

s∗
1ϕ ∧ s∗

2ϕ

− lim
ε→0

(∫
(K1×∂Bε(q2))∪(∂Bε(q1)×K2)

s∗
1ϕ ∧ s∗

2ϕ +
∫

∂Bε(q1)×∂Bε(q2)

s∗
1 ϕ ∧ s∗

2 ϕ

)
.

Clearly, ∫
K1×K2

s∗
1 ϕ ∧ s∗

2 ϕ =
∫
S1×S1

∂θ(s, t)

∂s

∂θ(s, t)

∂t
dtds .

Applying the latter to the pairs of curves (K1, ∂Bε(q2)), (∂Bε(q1),K2)), (∂Bε(q1), ∂Bε(q2)),
and taking limits gives the result. �

PROPOSITION 5.3. Assume Ki = ∂Ωi is connected for i = 1, 2, and let K∗
i = Ki \

{p0
i } for some arbitrary point p0

i ∈ Ki . Then

E(Ω1,Ω2) = 1

4

∫
K∗

1 ×K∗
2

θ sin θ
dp1dp2

|p2 − p1|2 ,

where θ(p1, p2) is any continuous determination on K∗
1 × K∗

2 of the oriented angle between
the circle positively tangent to K1 at p1, and the circle positively tangent to K2 at p2.

PROOF. Let us use the notations from the previous proof, with the convention S
1 =

[0, 1]/ ∼, where 0 ∼ 1. We can assume p0
i = Fi(0, 0). Let Ω ′

i = Fi

(
(S1 \ {0}) × [0, 1)

)
.

To simplify the notation we will identify Ω ′
i ≡ (0, 1) × [0, 1). We will also write (x, t) ≡

F1(x, t) = w, (y, u) ≡ F2(y, u) = z. Since Ω ′
1 × Ω ′

2 is (homotopically) contractible, the
restrictionF |Ω ′

1×Ω ′
2

is a trivial bundle (i.e., there exists a bundle isomorphism τ : F |Ω ′
1×Ω ′

2
→

Ω ′
1 × Ω ′

2 × S
1). Moreover the row in the diagram below lifts

Ω ′
1 × Ω ′

2 × R⏐⏐�
Ω ′

1 × Ω ′
2

sj−−−−→ F |Ω ′
1×Ω ′

2

τ−−−−→∼=
Ω ′

1 × Ω ′
2 × S

1

i.e., there exist fj : Ω ′
1 × Ω ′

2 → R such that (w, z; exp(ifj (w, z)) = τ (sj (w, z)).
Let now ρ : R → R be a C∞ monotone function such that ρ(x) = 0 for x ≤ 0 and

ρ(x) = 1 for x ≥ 1. Given ε > 0 we define

hε(x, t, y, u) = ρ(u/ε)f1(x, t, y, u) + ρ(t/ε)f2(x, t, y, u) .

Then sε(x, t, y, u) = τ−1(w, z; exp(ihε(x, t, y, u)) defines a section sε of π over Ω ′
1 × Ω ′

2
which we identified to (0, 1)×[0, 1)× (0, 1)×[0, 1). Hence we have s∗

ε ϕ defined on (0, 1)×
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[0, 1) × (0, 1) × [0, 1). In fact, it extends to S
1 × [0, 1) × S

1 × [0, 1). Next we take a small
δ > 0 and we apply Stokes theorem to the manifold Uδ = S

1 × [0, 1 − δ] × S
1 × [0, 1 − δ]:

4
∫

Uδ

dzdw

|z − w|4 =
∫

∂Uδ

s∗
ε ϕ ∧ �mωcr =

∫
{t=1−δ}∪{u=1−δ}∪{t=0}∪{u=0}

s∗
ε ϕ ∧ �mωcr .

The norm ‖s∗
ε ϕ‖∞ is bounded for a fixed ε > 0. Besides, ‖i∂/∂x(�mωcr)‖ = O(δ) for

t = 1 − δ or u = 1 − δ. Hence,

lim
δ→0

∫
{t=1−δ}

s∗
ε ϕ ∧ �mωcr = 0

lim
δ→0

∫
{u=1−δ}

s∗
ε ϕ ∧ �mωcr = 0 .

On the other hand

(48)
∫

{t=0,u>ε}
s∗
ε ϕ ∧ �mωcr = 0,

∫
{u=0,t>ε}

s∗
ε ϕ ∧ �mωcr = 0 .

Indeed, for t = 0, u > ε, sε = s1. In this case, by Lemma 5.1

s∗
ε ϕ

∂

∂y
= s∗

ε ϕ
∂

∂u
= 0 .

Hence,

(s∗
ε ϕ ∧ �mωcr)

(
∂

∂x
,

∂

∂y
,

∂

∂u

)
= 0 .

This shows the first equation in (48). The second one follows by symmetry. We have shown
so far that

(49) E(Ω1,Ω2) = 1

4

∫
{0<x,y<1,t=0,0<u<ε}∪{0<x,y<1,u=0,0<t<ε}

s∗
ε ϕ ∧ �mωcr .

To compute the latter integral we take the limit as ε goes down to 0.

lim
ε→0

∫
{0<x,y<1,t=0,0<u<ε}

s∗
ε ϕ ∧ �mωcr

= lim
ε→0

∫ 1

0

∫ 1

0

∫ ε

0

(
s∗
ε ϕ ∧ �mωcr

)
(x,0,y,u)

(
∂

∂x
,

∂

∂y
,

∂

∂u

)
dudydx

= lim
ε→0

∫ 1

0

∫ 1

0

∫ 1

0
ε
(
s∗
ε ϕ ∧ �mωcr

)
(x,0,y,εv)

(
∂

∂x
,

∂

∂y
,

∂

∂u

)
dvdydx .

Since the norm of εsε∗ is uniformly bounded, we may apply Lebesgue’s dominated conver-
gence theorem to put the limit inside the integral. Since s∗

ε ϕ(∂/∂x), s∗
ε ϕ(∂/∂y) are uniformly

bounded, ∫ 1

0

∫ 1

0

∫ 1

0
lim
ε→0

ε
(
s∗
ε ϕ ∧ �mωcr

)
(x,0,y,εv)

(
∂

∂x
,

∂

∂y
,

∂

∂u

)
dvdydx

=
∫ 1

0

∫ 1

0

(∫ 1

0
lim
ε→0

εs∗
ε ϕ

(
∂

∂u

)
dv

)
�mωcr

(
∂

∂x
,

∂

∂y

)
dydx .
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Finally, by continuity, and since limε→0 εsε∗( ∂
∂u

) is tangent to the fibers of π1,

lim
ε→0

εϕ

(
sε∗

(
∂

∂u

))
= ϕ

(
lim
ε→0

εsε∗
(

∂

∂u

))
= lim

ε→0

∂hε

∂u
(x, 0, y, εv) = ρ′(v)f1(x, 0, y, 0) .

Therefore

lim
ε→0

∫
{(x,y)}

∫
{0<u<ε}

(
s∗
ε ϕ ∧ �mωcr

)
(x,0,y,u)

=
∫

{(x,y)}
f1(x, 0, y, 0)�mωcr .

Similarly,

lim
ε→0

∫
{(x,y)}

∫
{0<t<ε}

(
s∗
ε ϕ ∧ �mωcr

)
(x,t,y,0)

= −
∫

{(x,y)}
f2(x, 0, y, 0)�mωcr .

This, together with (49), completes the proof since θ = f2 − f1, and

�mωcr = sin θ
dx1dx2

|x2 − x1|2 .

The renormalization in this article is also called Hadamard finite-part integrals or Hadamard
regularization. �
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