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Abstract. The convergence of stochastic processes is one of subjects founded on im-
portance of the numerical analysis and physical models with stability. Such practical impor-
tance inspires us with vast range of interests as to on which space the convergence can be
addressed and which sort of accommodated method is required for demonstrating the con-
vergence on the space in the focus. In this article, we establish an accommodated procedure
to show the convergence of Markov processes on the ring of p-adic integers which emerges
from a construction of random fractals. As seen in other studies on the subject, the notion of
generalized Mosco-convergence will be highlighted.

Introduction. The convergence of stochastic processes is one of subjects founded on
the importance of the numerical analysis and physical models with stability. Such practical
importance inspires us with vast range of interests as to on which space the convergence
can be addressed and which sort of accommodated method is required to demonstrate the
convergence.

In a progress in the Dirichlet space theory, Mosco introduced the notion of Γ -conver-
gence to encompass the convergence in terms of Dirichlet forms. The insight showed that the
convergence as bilinear forms is not always sufficient to deduce the convergence of stochas-
tic processes and clarified which sort of extra sufficient conditions must be imposed for the
rigorous justification of the phenomenon.

In [15], Kuwae and Shioya implemented the framework by complying those sufficient
conditions to the case where the state space is deformed and the Dirichlet form alters. After
those progresses, various cases with convergent sequence of Dirichlet forms are investigated.
For instance, on typical fractals emerged as the limit of sequence of closed sets with funda-
mental shapes, the convergence of stochastic processes on the closed sets was figured out due
to the framework. In fact, Kumagai and Sturm demonstrated in [14] a vast framework on the
convergence of Hunt processes which naturally encompasses the celebrated approximation
method invented by Kigami in [12], where a sequence of Dirichlet forms are introduced on
such closed sets aiming at the standard Hunt process on typical fractals embedded in the Eu-
clidean space. Recently, in [17], Suzuki studied a convergence of Markov processes arising
from tree structure as in [13] and [9].
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In the present article, we will propose an accommodated method to deal with conver-
gence of Hunt processes with the same spirit as Hinz in [6] so that it covers the convergence
arising from construction of random fractals on the ring of p-adic integers where the shapes
of the closed sets are deformed randomly. Since we employ Dirichlet space theory in describ-
ing a sequence of Hunt processes on the randomly deformed closed sets, an analysis on the
sequence of random Dirichlet forms will be required.

In the second section, we will point out examples where convergence of Hunt processes
on Zp is expected to be verified and propose a framework which covers these examples.
As a main object in our investigation, we will consider Markov processes which admit the
characterization by Kolmogorov’s equations

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
PKf ,Ki (t) = −ã(Kf )PKf ,Ki (t)+ ∑∞

j �=f ũ(Kf ,Kj )PKj ,Ki (t) ,

d

dt
PKf ,Ki (t) = −ã(Ki)PKf ,Ki (t)+ ∑∞

j �=i PKf ,Kj (t)ũ(Kj ,Kj ) ,

on PKf ,Ki (t) = P(X(t) ∈ Kf | X(0) ∈ Ki) with reasonably given coefficients ũ(Kf ,Kj )
and ã(Kf ) as originally proposed by Karwowski and Vilela-Mendes in [11], by introducing
disjoint balls {Kf } with identical radius satisfying ∪f Kf = Zp. We will discuss convergence
of Hunt processes associated with a construction of a random fractal. To be more precise, in
accordance with the removal of randomly taken ball with the radius in the cut-out procedure in
[10], we remove the ball from the support of the measure involved in the coefficients ã(Kf )
and ũ(Kf ,Kj ) and renormalize the measure in the coefficients so that the Markov process
associated with the equation with the coefficients involving the cut-out effect is obtained. In
accordance with the cut-out effect with the framework of the generalized Mosco-convergence,
we will take an equivalent procedure to the cut-out within the framework of Dirichlet space
and study the sequence of Hunt processes constructed as step-by-step cut-outs are processed.

In the third section, we will prepare some lemmas to prove the convergence relying the
notion of KS-convergence established by Kuwae and Shioya. In the final section, sufficient
conditions for the convergence of Hunt processes including condition for the tightness will be
verified with the terminology in the Dirichlet space theory.

The authors would like to thank the reviewer for his or her valuable comments.

1. Convergence of Dirichlet forms. As Kumagai and Sturm studied, a natural in-
terest on the convergence of stochastic processes can arise from improving precision level
in various approximations. Since the phenomenon in the ring Zp of p-adic integers is illus-
trated by a randomly moving ball with the radius determined by the precision level, the sort
of convergence is expected to be observed when the radius of the ball goes to zero as the ball
turns to a particle. The convergence is describable by taking sequence of Dirichlet forms k-th
term of which admits the family of functions Ck taking constant on every ball with the radius
p−(k+1) in Zp as its domain. As a fundamental observation on the convergence in such prim-
itive phenomenon, the sequence {EHk,Zp } of Dirichlet forms arising from the construction of
a Dirichlet space on Zp in [7] is expected to be covered. In fact, each of the Dirichlet forms
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admits the family of functions Ck taking constant on every ball with the radius p−(k+1) in Zp

as its domain. From the consitency of the Dirichlet forms

EHk+1,Zp
(u, v) = EHk,Zp (u, v)

for any pair of functions u, v ∈ Ck in the sense of [7], we can derive

lim
k→∞ EHk,Zp (u, v) = EK(u, v)

for any locally constant functions u, v on Zp, where EK(u, v) stands for the bilinear form in
the article.

For a coverage to deal with this sort of convergence, we may focus on the sequence
{(Ek, Ck)} of pairs of symmetric bilinear forms and their domains each of which admits the
representation

(1) Ek(u, v) =
∫∫

(Fk×Fk)∩{x �=y}
(u(x)− u(y))(v(x)− v(y))ρk(x, y)dμk(x)dμk(y) ,

for u, v ∈ Ck , where {μk} stands for a sequence of Radon measures with a vague limit μF .
{Fk} for a sequence of closed sets in Zp and ρk(x, y) for a non-negative locally constant
function on Zp × Zp \ {(x, x) ; x ∈ Zp}. In fact, particularly by choosing μk as an identical
Radon measure, ρk(x, y) as K(x, y) and Fk as the whole space Zp independent of k, we can
cover the case which was dealt with in [7].

A main reason to focus on such sequence of Dirichlet forms can be found in a construc-
tion of a random fractal. In fact, we take a positive real number α satisfying α < 1 − t2 with
the real parameter t2 and the sequence {μk} of random Radon measures in the article [10] and
introduce a sequence of random symmetric bilinear forms {EFk } defined by

EFk (u, v) =
∫∫

(Fk×Fk)∩{x �=y}
(u(x)− u(y))(v(x)− v(y))‖x − y‖−αdμk(x)dμk(y) ,

for locally constant functions u, v on Zp, where ‖x−y‖ stands for the p-adic norm of x−y ∈
Zp. Hereafter, the family of locally constant function on Zp will be denoted by C and the Haar
measure on Zp by μ.

In the construction of the random fractal F in [10], Fk is obtained right after removal
of a ball with radius p−�k in [10], Fk is described as a union of balls with radius p−�k .
By recalling the fact that �k < k for sufficiently large k, we will regard Fk as a union of
balls with radius p−(k+1) to subdue the use of suffix in notations. We already saw in [10]
that, for any ball A in Zp, {μk(A)} is an {Fk}-martingale with the deterministic initial value
given by the Haar measure μ(A) of A. In particular, we focused on a sequence {μk}∞k=1 of
random Radon measures on Zp defined by μk(A) = (

Πk
j=1(1 − p−�j )−1

)
μ(A ∩ Fk) and

satisfying E(μk(A)) = μ(A) for any ball A in Zp. We obtained the random Radon measure
μF on Zp which is uniquely characterized by μF (A) = limk→∞ μk(A) for any ball A ⊂ Zp

with probability one. In our compact space Zp, Radon measure has finite total mass and the
finiteness of μF with probability one follows from E(μF (Zp)) = μ(Zp) = 1 obtained in
[10].
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If the sequence {An} of the balls each of which is taken for the n-th cut out procedure
satisfies lim infk→∞ kμ(Ak) = t1 and lim supk→∞ kμ(Ak) = t2 for some t1 and t2 with
0 < t1 < t2 < 1, then it turned out in [10] that the Hausdorff dimension dimH F of the
random fractal F given by F = ∩∞

k=1A
c
k satisfies dimH F ≤ 1 − t1 with probability one and

dimH F ≥ 1 − t2 with a positive probability. To be more precise, μF concentrates only on F
and ∫

F

∫

F

1

‖x − y‖α dμF (x)dμF (y) < ∞
holds valid with probability one for any α satisfying 0 < α < 1 − t2 and μF (F) > 0 with a
positive probability. Therefore, we can introduce the bilinear form

EF (u, v) =
∫∫

(F×F)∩{x �=y}
(u(x)− u(y))(v(x)− v(y))‖x − y‖−αdμF (x)dμF (y) ,

for any pair of functions u, v in C with probability one.　

PROPOSITION 1.1. The sequence {EFk } of symmetric bilinear forms converges to EF ,
in the sense that

lim
k→∞ EFk (u, v) = EF (u, v) ,

for any pair of functions u, v in C with probability one.

PROOF. As pointed out in Chapter VII Lemma 1 in [18], any function in C is de-
scribed as

∑n
i=1 ai1Bi with some real coefficients a1, . . . , an, disjoint balls B1, . . . , Bn in Zp

and positive integer n. It suffices to show the convergence of the sequence {μk(A)μk(B)}
to μF (A)μF (B) for any disjoint balls A,B in Zp with probability one. The convergence
follows from the vague convergence of {μk} to μF with probability one. �

Thanks to these observations, we may concentrate our interest to the case that a non-
random Radon measure μF satisfying

lim
k→∞ EFk (u, v) = EF (u, v)

for any pair of functions u, v in C is given as the vague limit of non-random Radon measures
{μk}.

Since {EFk } is represented as {Ek} by taking the function 1/‖x − y‖α as ρk(x, y) inde-
pendently chosen in k, we may concentrate our attention only on the sequence {Ek} repre-
sented by (1). By denoting either the Haar measure used in [7] or μF introduced in [10] by
μ0 in either case discussed so far, the bilinear forms obtained as the limit are written by a
single representation

(2) E0(u, v) = 1

2

∫∫

(Zp×Zp)∩{x �=y}
(u(x)− u(y))(v(x)− v(y))ρ(x, y)μ0(dx)μ0(dy)

for any pair of functions u, v in C.　
Similarly to [8], for any sequence {c(m)}m∈Z−∪{0} with Z− = {m ∈ Z ;m < 0} sat-

isfying c(0) ≤ c(−1) ≤ · · · ≤ c(m) ≤ · · · and Radon measure ν on Zp, we can define
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b
(ν)
x,m = ν(B(x, pm)) and b(ν)x,� = ν(B(x, p�) \ B(x, p�−1)) non-positive integers m, � and

take a symmetric bilinear form

E ({c},ν)(u, v) =
∫∫

(Zp×Zp)∩{x �=y}
(u(x)− u(y))(v(x)− v(y))ρ({c},ν)(x, y)dν(x)dν(y)

where ρ({c},ν)(x, y) = ∑0
�=m+1 b

(ν)
x,�c(�)(2c(m)− c(�))− b

(ν)
x,mc(m)

2 with the integer m sat-
isfying pm = ‖x − y‖.

For the sequence {μk} of the Radon measure arising from the random fractal and its
vague limit μ0, we obtain the sequence {E ({c},μk)} of the symmetric bilinear forms and
{E ({c},μ0)}. As a corollary of Proposition 1.1, we have the following assertion:

COROLLARY 1.2. The sequence {E ({c},μk)} converges to E ({c},μ0), in the sense that

lim
k→∞ E ({c},μk)(u, v) = E ({c},μ0)(u, v) ,

for any pair of functions u, v in C with probability one.

PROOF. We may assume that u = 1B and v = 1B ′ for some distinct balls B,B ′ with ra-
dius p−�. Since ρ({c},μk)(x, y) is independent of (x, x ′) with x ∈ B and x ′ ∈ B ′, the value can
be represented by ρ({c},μk )(B,B ′). By denoting the distance between B and B ′ by p−m, the
vague convergence of {μk} to μ shows that ρ({c},μk )(B,B ′) = ∑0

ν=m+1 b
(μk)
x,ν c(ν)(2c(m) −

c(ν))−b(μ0)
x,m c(m)

2 tends to ρ({c},μ0)(B,B ′) = ∑0
ν=m+1 b

(μ0)
x,ν c(ν)(2c(m)−c(ν))−b(μ0)

x,m c(m)
2

as k → ∞. Therefore, by combining this with the convergence of {μk(B)μk(B ′)} shown in
the proof of Proposition 1.1, we have limk→∞ E ({c},μk )(1B, 1B ′) = limk→∞ ρ({c},μk)(B,B ′)
μk(B)μk(B

′) = ρ({c},μ0)(B,B ′)μ0(B)μ0(B
′) = E ({c},μ0)(1B, 1B ′). �

This corollary allows us to choose ρ({c},μk ) as ρk in (1) for regarding E ({c},μk) as Ek and
choose ρ({c},μ0) as ρ in (2) for regarding E ({c},μ0) as E0. In what follows, we will establish a
method to address the convergence of Hunt processes relevant to the sequences {EHk,Zp }, {EFk }
and {E ({c},μk)} of Dirichlet forms each of which converges to EK, EF and E ({c},μ0) respec-
tively as symmetric bilinear forms. From now on, whichever sequence of Dirichlet forms is
addressed, we will denote the sequence of Dirichlet forms by {Ek} and its limit by E0 . In
building our scheme, we may concentrate our focus on the case that ρ and any ρk in the se-
quence take constant on every Cartesian product B × B ′ of distinct balls B and B ′ with the
same radius in Zp and that limk→∞ ρk(x, y) = ρ(x, y) for any pair x, y of distinct points in
Zp.

LEMMA 1.3. The symmetric bilinear form (E0, C) is closable on L2(Zp;μ0).

PROOF. We assume that a sequence {un} in C satisfies limn,m→∞ E0(un − um, un −
um) = 0 and limn→∞ ‖un‖L2(Zp;μ0)

= 0. These conditions imply that, for any ε > 0, there
exists a subsequence {un′ } satisfying E0(un′ − um′ , un′ − um′) ≤ ε and limn′→∞ un′(x) = 0
almost every x in the support of the measure μ0. Then, one sees
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E0 (un′ , un′ )

≤ lim inf
m′→∞

∫ ∫

(Zp×Zp)∩{x �=y}
(un′(x)− um′(x)− un′(y)− um′(y))2ρ(x, y)dμ0(x)dμ0(y)

≤ ε .

By repeating the procedure of taking subsequence, one can take some subsequence {um}
of {un}, limm→∞ E0(um, um) = 0. This implies limn→∞ E0(un, un) = 0. �

This lemma shows that E0 admits the symmetric bilinear form E with the domain F
obtained as the smallest closed extension of E0 and as its domain.

2. Lemmas. For any δ > 0, we define the symmetric bilinear form

E (δ)k (u, v) =
∫∫

(Zp×Zp)∩{‖x−y‖>δ}
(u(x)− u(y))(v(x)− v(y))ρk(x, y)dμk(x)dμk(y)

with domain Ck and

E (δ)(u, u) =
∫∫

(Zp×Zp)∩{‖x−y‖>δ}
(u(x)− u(y))(v(x)− v(y))ρ(x, y)dμ0(x)dμ0(y)

with domain C. Then, Ek and E admit similar expressions obtained by taking δ = 0.
In discussing the convergence of L2(Zp;μk) to L2(Zp;μ0) in the sense of Kuwae and

Shioya [15], we can take the identity map as the linear operator Φk : C → L2(Zp;μk) for
any k. This is because the vague convergence of {μk} to μ0 implies limk→∞ ‖u‖L2(Zp;μk) =
‖u‖L2(Zp;μ0)

for any u ∈ C.
For our situation, we can restate the definition of the KS-strongly convergence in [15]

as follows: A sequence {vk}∞k=1 of functions vk ∈ L2(Zp;μk) is said to be KS-strongly
convergent to a function v ∈ L2(Zp;μ0), if there exists a sequence {ϕj }∞j=1 ⊂ C such that
limj→∞ lim supk→∞ ‖ϕj − vk‖L2(Zp;μk) = 0 and limj→∞ ‖ϕj − v‖L2(Zp;μ0)

= 0. Then

we recall that a sequence {uk}∞k=1 of functions uk ∈ L2(Zp;μk) is said to be KS-weakly
convergent to a function u ∈ L2(Zp;μ0), if limk→∞(uk, vk)L2(Zp;μk) = (u, v)L2(Zp;μ0)

for

any KS-strongly convergent sequence {vk}∞k=1 with vk ∈ L2(Zp;μk) and the KS-strong limit
v.

Let us take a KS-weakly convergent sequence {uk}∞k=1 with a KS-weak limit in L2(Zp;
μ0) and fix a positive integer � satisfying p−� ≤ δ. For a given locally integrable function u
on Zp with respect to μk , we define a locally constant function on Zp by

(u)μk,�(x) = 1

μk(B(x, p−�))

∫

B(x,p−�)
u(y)dμk(y) .

LEMMA 2.1. (i) supk ‖uk‖L2(Zp;μk) < ∞,

(ii) k ≥ � implies
∫
Zp
(uk)μk,�(x)dμk(x) = ∫

Zp
uk(x)dμk(x),

(iii) sup� supk≥� ‖(uk)μk,�‖L2(Zp;μk) < ∞,
(iv) there exists a sequence {K(�)}∞�=1 of non-negative integers such that sup� supk≥K(�)

‖(uk)μk,�‖L2(Zp;μ0)
< ∞.
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PROOF. (i) The assertion follows from Lemma 2.3 in [15].
(ii) The identity is verified by the identities

∫

Zp

(u)μk,�(x)dμk(x)=
∫

Zp

1

μk(B(x, p−�))

∫

B(x,p−�)
u(y)dμk(y)dμk(x)

=
∫

Zp

1

μk(B(x, p−�))

∫

Zp

u(y)1B(y,p−�)(x)dμk(y)dμk(x)

=
∫

Zp

∫

Zp

1

μk(B(x, p−�))
u(y)1B(y,p−�)(x)dμk(y)dμk(x)

=
∫

Zp

μk(B(y, p
−�))

μk(B(y, p−�))
u(y)dμk(y)

=
∫

Zp

u(x)dμk(x)

for any measurable function u on Zp with supp[u] ⊂ Fk , where we use the identity,
B(x, p−�) = B(y, p−�) for any k ≥ �.

(iii) Since (u)μk,�(x)
2 ≤ (u2)μk,�(x) on Zp as well for any measurable function u on

Zp, the finiteness of sup� supk≥� ‖(uk)μk,�‖L2(Zp;μk) can be verified by (i) and (ii).
(iv) The sequence of the non-negative integers in the assertion is obtained by (iii) and

the inequality
∫

Zp

|v(x)|2dμk(x) ≥ 1

2

∫

Zp

|v(x)|2dμ0(x)

valid for any function v on Zp taking constant on every ball with radius p−� and sufficiently
large k. �

For any pair B,B ′ of disjoint balls with the same radius p−� with p−� ≤ δ, we denote
the values ρ(x, x ′) and ρk(x, x ′) determined independently of the choice x ∈ B, x ′ ∈ B ′
by ρ(B,B ′) and by ρk(B,B ′), respectively, and then we see ρk(B,B ′) ≥ (1 − δ)ρ(B,B ′)
for sufficiently large k owing to the convergence limk→∞ ρk(x, y) = ρ(x, y) for any distinct
x, y ∈ Zp.

Since one can observe that

|(u)μk,�(x)− (u)μk,�(y)|
= 1

μk(B(x, p−�))μk(B(y, p−�))

×
∣
∣
∣
∣

∫

B(x,p−�)

∫

B(y,p−�)
(u(w)− u(z))dμk(w)dμk(z)

∣
∣
∣
∣

≤
(

1

μk(B(x, p−�))μk(B(y, p−�))
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×
∫

B(x,p−�)

∫

B(y,p−�)
(u(w)− u(z))2dμk(w)dμk(z)

)1/2

with the right-hand side independent of x ∈ B, y ∈ B ′ for any balls B,B ′ with the radius p−�
and that μk(B) ≥ (1 − δ)μ0(B) for any ball B with the radius p−� and sufficiently large k,

Ek(u, u) ≥ E (δ)k (u, u)

≥
∫∫

1{‖x−y‖>δ}
μk(B(x, p−�))μk(B(y, p−�))

×
∫

B(x,p−�)

∫

B(y,p−�)
(u(w)− u(z))2ρk(z,w)dμk(w)dμk(z)dμk(x)dμk(y)

≥
∫∫

{‖x−y‖>δ}
((u)μk,�(x)− (u)μk,�(y))

2ρk(x, y)dμk(x)dμk(y)

=
∑

B∩B ′ �=∅,diam(B)=diam(B ′)=p−�
((u)μk,�(B)− (u)μk,�(B

′))2ρk(B,B ′)μk(B)dμk(B ′)

≥ (1 − δ)3
∑

B∩B ′ �=∅
((u)μk,�(B)− (u)μk,�(B

′))2ρ(B,B ′)μ0(B)dμ0(B
′)

≥ (1 − δ)3
∫∫

{‖x−y‖>δ}
((u)μk,�(x)− (u)μk,�(y))

2ρ(x, y)dμ0(x)dμ0(y) ,

where (u)μk,�(B) and (u)μk,�(B
′) stand for the values (u)μk,�(x) and (u)μk,�(y) determined

independently of the choice x ∈ B, y ∈ B ′ respectively.
For any KS-weakly convergent sequence {uk}∞k=1, by taking sufficiently large k, we have

Ek(uk, uk) ≥ E (δ)k (uk, uk)

≥
∫∫

1{‖x−y‖>δ}
μk(B(x, p−�))μk(B(y, p−�))

×
∫

B(x,p−�)

∫

B(y,p−�)
(uk(w)− uk(z))

2ρk(z,w)dμk(w)dμk(z)dμk(x)dμk(y)(3)

≥ (1 − δ)3
∫∫

{‖x−y‖>δ}
((uk)μk,�(x)− (uk)μk,�(y))

2ρ(x, y)dμ0(x)dμ0(y)

≥ (1 − δ)3E (δ)((uk)μk,�, (uk)μk,�) .
We may assume that supk Ek(uk, uk) < ∞ without losing general setting in our discus-
sion on the generalized Mosco-convergence. Accordingly, the boundedness of the sequence
{(uk)μk,�}k≥K(�) with respect to the norm (E (δ)(u, u)+ ‖u‖2

L2(Zp;μ0)
)1/2 is obtained.

In dealing with the measureμ0, we may remove the balls with radius p−� from Zp which
are not charged by the measure μ0. For a precise description, we denote the family of all balls
with radius p−� contained in Zp by {Bi ; i = 0, . . . , p� − 1} and replace Zp with S� =
⋃
i∈I� Bi by introducing I� = {i ∈ {0, . . . , p� − 1} ;μ0(Bi) > 0} in the definition of the KS-

strong convergence. For instance, we can observe the KS-strong convergence of {vk1S�}∞k=0
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to v1S� when the KS-strong convergence of the sequence {vk}∞k=0 to v is obtained. Here, we
introduce a positive finitely-many valued function {g�} and a sequence {hk,�} of finitely-many
valued functions on S� by g�(x) = ∑

i∈I� μ0(Bi)1Bi (x) and hk,�(x) = ∑
i∈I� μk(Bi)1Bi (x).

Then the vague convergence of {μk}∞k=1 to μ0 implies limk→∞ hk,�(x) = g�(x) at each x ∈
S�. In what follows, we will denote supp[μk] by Fk and supp[μ0] by F . Now we are in
position to discuss the following convergences:

LEMMA 2.2. For any KS-weakly convergent sequence {uk}∞k=1 with the KS-weak limit
u ∈ L2(F ;μ0),

(i) {uk(g�/hk,�)1S�}∞k=1 is a KS-weakly convergent sequence to u,
(ii) there exists a subsequence {k�} satisfying lim�→∞((uk�1S�)k�,�, 1B)L2(Fk� ;μk� ) =

(u, 1B)L2(F ;μ0)
for any ball B in Zp.

PROOF. (i) Since the KS-strong convergence of {vk}∞k=1 to v implies the KS-strong con-
vergence of {vk(g�/hk,�)1S�}∞k=1 to v1S� , we obtain the KS-weak convergence of {uk(g�/hk,�)
1S�}∞k=1 to u by the identities

lim
k→∞

(

uk
g�
hk,�

1S�, vk

)

L2(Fk;μk)
= lim
k→∞

(

uk, vk
g�
hk,�

1S�

)

L2(Fk;μk)
= (u, v1S�)L2(F ;μ0)

= (u, v)L2(F ;μ0)

for any KS-strong convergent sequence {vk}∞k=1 to v.
(ii) Thanks to (i), we see limk→∞(uk(g�/hk,�)1S�, vk)L2(Fk;μk) = (u, v)L2(F ;μ0)

for any
� and any KS-strong convergent sequence {vk}∞k=1 to v. Due to the KS-strong convergence of
{1B}∞k=1 to 1B for any ball B in Zp, we can take a subsequence {k�} of k satisfying

lim
�→∞

(

uk�
g�
hk�,�

1S�, 1B

)

L2(Fk� ;μk� )
= (u, 1B)L2(F ;μ0)

by an ordinary method for doubly indexed sequence. The assertion follows from the following
identities:

((uk�1S�)μk,�, 1B)L2(F ;μ0)

=
∫

Zp

1

μk�(B(x, p
−�) ∩ Fk�)

∫

B(x,p−�)∩Fk�
uk�(y)1S�(y)dμk�(y)1B(x)dμ0(x)

=
∫

Zp

1

μk�(B(x, p
−�) ∩ Fk�)

∫

S�

uk�(y)1B(x,p−�)∩Fk� (y)dμk�(y)1B(x)dμ0(x)

=
∫

Zp

1

μk�(B(x, p
−�) ∩ Fk�)

∫

S�

uk�(y)1B(x,p−�)(y)1Fk� (y)dμk�(y)1B(x)dμ0(x)

=
∫

Zp

1

μk�(B(x, p
−�) ∩ Fk�)

∫

S�

uk�(y)1B(y,p−�)(x)1F (x)dμk�(y)1B(x)dμ0(x)
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=
∫

Zp

1

μk�(B(x, p
−�) ∩ Fk�)

∫

S�

uk�(y)1B(y,p−�)(x)1F (x)dμk�(y)1B(y)dμ0(x)

=
∫

Zp

1

μk�(B(x, p
−�) ∩ Fk�)

∫

S�

uk�(y)1B(y,p−�)∩F (x)dμk�(y)1B(y)dμ0(x)

=
∫

Zp

∫

S�

1

μk�(B(y, p
−�) ∩ Fk�)

uk�(y)1B(y,p−�)∩F (x)dμk�(y)1B(y)dμ0(x)

=
∫

S�

μ0(B(y, p
−�) ∩ F)

μk�(B(y, p
−�) ∩ Fk� )

uk�(y)1B(y)dμk�(y)

=
(

uk�
g�
hk�,�

1S�, 1B

)

L2(Fk� ;μk� )
,

for sufficiently large �. This is due to supp[μk�] = Fk� , supp[μ0] = F and the equivalence of
x ∈ B and y ∈ B under the condition ‖x − y‖ ≤ p−� for sufficiently large �. �

Let {uk} be a KS-weakly convergent sequence with a KS-weak limit u ∈ L2(F ;μ0)

satisfying uk ∈ Ck for any k = 1, 2, . . . . By applying the Lemma 2.2 (ii), we can take a
subsequence {k�} of {k} such that

lim
�→∞((uk�)μk� ,�, 1B)L2(F ;μ0)

= lim
�→∞((uk�1S�)μk� ,�, 1B)L2(F ;μ0)

= (u, 1B)L2(F ;μ0)

for any ball B with sufficiently small radius, where the first identity follows from the identity
(uk�)μk� ,�

= (uk�1S�)μk� ,� on S� and supp[μ0] = F ⊂ S� for any �.

3. Convergence of Hunt processes. In this section, we will validate the conditions
(a) and (b) listed in Definition 2.1 (iv) of [6]. For that purpose, we consider the KS-weakly
convergent sequence {uk} with the KS-weak limit u and its subsequence {(uk�)μk,�} taken
in the previous section. We may assume that {(uk�)μk,�} is extracted from {uk} so that {uk�}
satisfies lim�→∞ Ek� (uk�, uk�) = lim infk→∞ Ek(uk, uk). The Banach-Saks theorem shows
that some subsequence {(uk�′ )�′ } of {(uk�)μk,�} is extracted so as to converge weakly to some
element v in L2(F ;μ0) and satisfy

lim
n→∞

∥
∥
∥
∥

1

n

n∑

�′=1

(uk�′ )�′ − v

∥
∥
∥
∥
L2(F ;μ0)

= 0

and

lim
n→∞ E (δ)

(
1

n

n∑

�′=1

(uk�′ )�′ − v,
1

n

n∑

�′=1

(uk�′ )�′ − v

)

= 0 .

On the other hand, we have seen that lim�→∞((uk�)μk,�, 1B)L2(F ;μ0)
= (u, 1B)L2(F ;μ0)

for any ball B with sufficiently small radius. Any u ∈ L2(F ;μ0) gives the functional T (ϕ) =
∫
F u(x)ϕ(x)dμ0(x) defined for the restriction ϕ|F of locally constant function ϕ on Zp to
F and the fact that T vanishes if and only if u is the zero element in L2(F ;μ0) implies the
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family C(F ) of continuous functions on F is a dense subfamily of L2(F ;μ0). Therefore, we
conclude that u = v. Similarly to Section 5 in [6], we can prove

lim inf
�′→∞

Ek�′ (uk�′ , uk�′ ) ≥ E(u, u) ,
as required in the generalized Mosco-convergence. In fact, by applying

E (δ)
(

1

n

n∑

�′=1

(uk�′ )�′,
1

n

n∑

�′=1

(uk�′ )�′
)1/2

≤ 1

n

n∑

�′=1

E (δ)((uk�′ )�′, (uk�′ )�′)1/2 ,

we can derive

lim inf
k→∞ Ek(uk, uk)≥ lim

�′→∞
E (δ)k�′ (uk�′ , uk�′ )

≥ (1 − δ)3 lim sup
�′→∞

E (δ)((uk�′ )�′, (uk�′ )�′)

≥ (1 − δ)3 lim
n→∞ E (δ)

(
1

n

n∑

�′=1

(uk�′ )�′,
1

n

n∑

�′=1

(uk�′ )�′
)

≥ (1 − δ)3E (δ)(u, u)
from (3).

Since these inequalities hold valid for any δ > 0, the required inequality for the condition
(a) has been validated.

The rest of the section is devoted to verify the other condition for the generalized Mosco-
convergence. Namely, we will show that, for any u ∈ L2(F ;μ0), there exists a KS-strongly
convergent sequence {uk} with the KS-strong limit u satisfying lim supk→∞ Ek(uk, uk) ≤
E(u, u) as in (iv)-(b) in Definition 2.1 in [6].

We first note that we may assume u in F . By the definition of the smallest closed exten-
sion E of E0, for any u ∈ F , we can take the sequence {ϕn} in the family of locally constant
function on Zp,

lim
n→∞ E(ϕn, ϕn) = E(u, u) and lim

n→∞ ‖ϕn|F − u‖L2(F ;μ0)
= 0 .(4)

By Proposition 1.1, Corollary 1.2 and the vague convergence of {μk} to μ0, there exists some
k1 > 0 such that for k > k1

|‖ϕ1 − ϕ0‖L2(Zp;μk) − ‖ϕ1 − ϕ0‖L2(F ;μ0)
| < 1

2
and

|Ek(ϕ1, ϕ1)− E(ϕ1, ϕ1)| < 1

2
.(5)

Here and the sequel, the domain of the measure μ0 is viewed as the family of topological
Borel sets in Zp. For some k2 > 0, k > k2 implies that

|‖ϕ2 − ϕ0‖L2(Zp;μk) − ‖ϕ2 − ϕ0‖L2(F ;μ0)
| < 1

22
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|‖ϕ2 − ϕ1‖L2(Zp;μk) − ‖ϕ2 − ϕ1‖L2(F ;μ0)
| < 1

22

and

|Ek(ϕ2, ϕ2)− E(ϕ2, ϕ2)| < 1

22 .

By repeating this procedure, for any positive integer j , there exists kj such that k > kj

implies

|‖ϕj − ϕi‖L2(Zp;μk) − ‖ϕj − ϕi‖L2(F ;μ0)
| < 1

2j
for any positive integer i with i < j and

|Ek(ϕj , ϕj )− E(ϕj , ϕj )| < 1

2j

for any integer k with k > kj . For any K , there exists iK such that i, j ≥ iK implies ‖ϕj −
ϕi‖L(Zp;μ0) <

1
2K

. Accordingly, one sees that j ≥ iK implies

‖ϕj − ϕiK ‖L2(F ;μ0)
≤ 1

2K
,

which shows that

‖ϕj − ϕiK‖L2(Zp;μk) ≤ ‖ϕj − ϕiK ‖L2(F ;μ0)
+ 1

2j
≤ 1

2K
+ 1

2j
,

for any integers j with j > iK and k > kj .
We denote ϕiK by ψK and define {uk} by uk = ϕj for kj+1 ≥ k > kj . Then for

sufficiently large k,

‖uk − ψK‖L2(Zp;μk) ≤ 1

2j
+ 1

2K
,

which shows

lim sup
k→∞

‖uk − ψK‖L2(Zp;μk) ≤ 1

2K
.

Since lim supK→∞ ‖u−ψK‖L2(F ;μ0)
= 0, the sequence {uk} converges KS-strongly to u. By

combining this with lim supk→∞ Ek(uk, uk) = E(u, u) obtained by (4) and (5), the general-
ized Mosco-convergence of the Dirichlet forms is verified.

We shall shift our attention to the tightness of the Hunt processes associated with the
Dirichlet spaces. We see that our Dirichlet form Ek is covered by the framework in [11] with
Kolmogorov’s equation. In fact, Zp is described as the disjoint union of finitely many balls

{K(m)
i } with radius p−m and the value Ek(1K(m)

i

, 1
K
J(m)
j

) of the symmetric bilinear form for

distinct balls K(m)
i ,K

(m)
j is given by μk(K

(m)
i )

∫

K
(m)
j

ρk(x, y)dμk(y) determined indepen-

dently by choice of x ∈ K
(m)
i . This shows that the Hunt process {X(k)t } generated by the

Dirichlet form Ek on L2(Zp;μk) admits a characterization by Kolmogorov’s equations
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⎧
⎨

⎩

d
dt
P
K
(m)
f ,K

(m)
i

(t) = −ãk(K(m)
f )P

K
(m)
f ,K

(m)
i

(t)+ ∑∞
j �=f ũk(K

(m)
f ,K

(m)
j )P

K
(m)
j ,K

(m)
i

(t) ,

d
dt
P
K
(m)
f ,K

(m)
i

(t) = −ãk(K(m)
i )P

K
(m)
f ,K

(m)
i

(t)+ ∑∞
j �=i PK(m)

f ,K
(m)
j

(t)ũk(K
(m)
j ,K

(m)
i ) ,

with the coefficients ũk(K
(m)
f ,K

(m)
j ) = ∫

K
(m)
j

ρk(x, y)dμk(y) and ãk(K
(m)
f ) = ∑∞

j �=f
ũk(K

(m)
f ,K

(m)
j ) = ∫

K
(m)
f

c ρk(x, y)dμk(y) determined independently by the choice of x ∈
K
(m)
f .

This also shows that the exponential holding time of {X(k)t } for the transition out of
state K(m)

f is determined by the parameter ãk(K
(m)
f ). Namely, the exit time τ

k,K
(m)
f

of {X(k)t }
from the ball K(m)

f is exponentially distributed with the parameter ãk(K
(m)
f ) under Px with

x ∈ K(m)
f . Accordingly, it admits the following estimate

Px(τk,K(m)
f

< δ) = 1 − exp(−ãk(K(m)
f )δ) ≤ δ

∫

K
(m)
f

c
ρk(x, y)dμk(y)

for any x ∈ K(m)
f and δ > 0 from which we can derive that

∑

K
(m)
f ⊂Zp

∫

K
(m)
f

Px(τk,K(m)
f

< δ)dμk(x)≤ δ
∑

K
(m)
f ⊂Zp

∫

K
(m)
f

∫

K
(m)
f

c
ρk(x, y)dμk(x)dμk(y)

= δ

2

∑

K
(m)
f ⊂Zp

Ek(1K(m)
f

, 1
K
(m)
f

).

Since the right-hand side does not exceed an arbitrarily given real number ε > 0 for suffi-
ciently small δ > 0 independently of the choice of sufficiently large k as long as the radius
p−m is fixed, the tightness of {X(k)t } on any finite time interval follows from the general
framework on Markov processes, as discussed in [6, Section 6].

For the main assertions in what follows, we replace the measure μk with μk(·)/μk(Zp)
and denote the replaced measure again by μk for each k = 0, 1, 2, . . . under the condition
μ0(Zp) > 0. In fact, all results obtained so far are valid after these replacements which can
be performed with a positive probability in the cases based on the random fractal due to the
results in [10]. When μ0(Zp) = 0, we conventionally redefine μ0 as the trivial measure
vanishing on Zp.

By applying the methods in the proofs of Theorem 2.1 and subsequent Corollary 2.1 in
[6], we can obtain assertions similar to those in [6] on the resolvent {G(k)λ } and the semi-group

{P (k)t } associated with the Dirichlet space (Ek,Fk) for k = 1, 2, . . . . Since the sequence
of random Dirichlet forms has originally triggered our discussion, we can summarize the
assertions in the following statements:

THEOREM 3.1. (i) The sequence {Ek} of Dirichlet forms is generalized Mosco-
convergent to E as k → ∞ with probability one under the condition μ0(Zp) > 0,
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(ii) for any λ > 0, the sequence {G(k)λ } of the resolvent operators is KS-convergent to
Gλ as k → ∞ with probability one under the condition μ0(Zp) > 0,

(iii) for any t > 0, the sequence {P (k)t } of the semi-group operators is KS-convergent
to Pt as k → ∞ with probability one under the condition μ0(Zp) > 0.

COROLLARY 3.2. The finite dimensional distribution of {X(k)t } with initial distribution
μk generated by the Dirichlet space (Ek,Fk) weakly converges to the one of the Hunt pro-
cess {X(0)t } with initial distribution μ0 generated by the Dirichlet space (E,F), i.e., for any
positive real numbers t1, t2, . . . , t� with t1 < t2 < · · · < t� and any real-valued continuous
function u on Z�p

lim
k→∞E

μk [u(X(k)(t1), . . . , X(k)(t�))] = Eμ0 [u(X(0)(t1), . . . , X(0)(t�))]

with probability one under the condition μ0(Zp) > 0.

Let us denote the space of Zp-valued right continuous function on [0, t] with left limits
by DZp ([0, t]). Then we have the following assertion similarly to [6]:

THEOREM 3.3. The probability law of the Hunt process {X(k)t } underPμk weakly con-
verges to the one of {X(0)t } under Pμ0 in DZp ([0, t]) as k tends to ∞ with probability one
under the condition μ0(Zp) > 0.
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