# CORRIGENDUM TO "ON A CLASS OF FOLIATED NON-KÄHLERIAN COMPACT COMPLEX SURFACES" 

Marco Brunella

(Received January 29, 2013)


#### Abstract

In this note we correct a mistake in author's paper Tohoku Mathematical Journal Vol. 63, No. 3 (2011), 441-460.


In the paper [Br, p. 444], we stated a certain property of the pair $(\tilde{S}, \tilde{C})$, namely that $\tilde{S} \backslash \tilde{C}$ is simply connected. The proof given there, however, is not convincing; the problem is that, when we take a Nakamura deformation $\left(S^{\prime}, C^{\prime}\right)$ of $(S, C)$, the complement $S \backslash C$ is certainly not diffeomorphic to $S^{\prime} \backslash C^{\prime}$; it is instead diffeomorphic to $S^{\prime} \backslash\left(C^{\prime} \cup \Delta\right)$, where $\Delta \subset S^{\prime}$ is a smooth disc with boundary on $C^{\prime}$ (vanishing cycle). Hence starting with a rational curve $R^{\prime}$ in $S^{\prime}$ which intersects $C^{\prime}$ at a single point, it is not clear how to find a smooth sphere $\Sigma$ in $S$ intersecting $C$ again at a single point, because $R^{\prime}$ could intersect $\Delta$.

In this note we correct that mistake. The main point is the following weaker statement.
PROPOSITION 1. In above situation, we have $\operatorname{rank} H_{1}(\tilde{S} \backslash \tilde{C}, \boldsymbol{Z})=0$.
In $[\mathrm{Br}]$, the property " $\pi_{1}(\tilde{S} \backslash \tilde{C})=0$ " is used exclusively in the proof of [Br, Lemma 2.2], and it is immediate to check that the weaker property provided by Proposition 1 is largely sufficient to prove [ Br , Lemma 2.2].

Let us now prove Proposition 1.
We use Mayer-Vietoris sequence, with integer coefficients, applied to the covering $\{U, V\}$ of $\tilde{S}$, with $U$ a tubular neighborhood of $\tilde{C}$ and $V=\tilde{S} \backslash \tilde{C}$ :

$$
H_{2}(U) \oplus H_{2}(V) \xrightarrow{i_{*}} H_{2}(\tilde{S}) \xrightarrow{\partial_{*}} H_{1}(U \cap V) \longrightarrow H_{1}(U) \oplus H_{1}(V) \longrightarrow H_{1}(\tilde{S})
$$

We have $H_{1}(\tilde{S})=0, H_{1}(U)=H_{1}(\tilde{C})=0$, and $H_{1}(U \cap V)=H_{1}(\partial U)=Z^{2}$, since the boundary $\partial U$ is diffeomorphic to $\boldsymbol{T}^{2} \times \boldsymbol{R}$. Hence, the statement of the proposition is equivalent to say that there exist two classes in $H_{2}(\tilde{S})$ whose images by $\partial_{*}$ in $H_{1}(U \cap V)=Z^{2}$ are linearly independent.

The group $H_{2}(U)$ is generated by the rational curves $\left\{C_{j}\right\}_{j \in Z}$ composing $\tilde{C}$, each one of selfintersection -3 . It follows that for every nontrivial class $A \in H_{2}(U)$ we have $A \cdot A \leq 3$ (to see this, observe that the intersection matrix $Q$ of a chain of $(-3)$-curves can be written as $Q_{0}-1$, where $Q_{0}$ is the intersection matrix of a chain of $(-2)$-curves, which is still negative

[^0]definite). On the other side, for every nontrivial class $B \in H_{2}(V)$ we have $B \cdot B \leq-1$, because the intersection form is negative definite.

Return now to the deformation argument of [Br, p. 444]. It shows, at least, that we can find a smooth oriented sphere $\Sigma$ in $S$ homologous to the exceptional rational curve $R^{\prime} \subset S^{\prime}$. In particular, $\Sigma \cdot \Sigma=-1$ or -2 and $\Sigma \cdot C=R^{\prime} \cdot C^{\prime}=1$ (as already observed, in spite of this $\Sigma$ could intersect $C$ many times). Let $\tilde{\Sigma} \subset \tilde{S}$ be a diffeomorphic lifting of $\Sigma$ to $\tilde{S}$. We claim that $[\tilde{\Sigma}] \in H_{2}(\tilde{S})$ is not in the image of $H_{2}(U) \oplus H_{2}(V)$ by $i_{*}$, and consequently not in the kernel of $\partial_{*}$. Indeed, suppose by contradiction that $[\tilde{\Sigma}]=A+B$, with $A \in H_{2}(U)$ and $B \in H_{2}(V)$, so that $\tilde{\Sigma} \cdot \tilde{\Sigma}=A \cdot A+B \cdot B$. Since this selfintersection is -1 or -2 , the only possibility is that $A=0$. Thus $\tilde{\Sigma}$ is homologous to a simplicial complex with support disjoint from $\tilde{C}$, and, by projection, $\Sigma$ is homologous to a simplicial complex with support disjoint from $C$. But this is in contradiction with $\Sigma \cdot C=1$.

Take now a second lifting of $\Sigma$ to $\tilde{S}$, say $\tilde{\Sigma}_{1}=\varphi(\tilde{\Sigma})$ where $\varphi$ is the generator of the deck transformations. By the previous argument, the two classes $\sigma=\partial_{*}([\tilde{\Sigma}])$ and $\sigma_{1}=\partial_{*}\left(\left[\tilde{\Sigma}_{1}\right]\right)$ are both nonzero in $H_{1}(U \cap V)=\boldsymbol{Z}^{2}$, and we claim that they are also linearly independent. Indeed, these two classes are related by $\sigma_{1}=M(\sigma)$, where $M \in \operatorname{SL}(2, \boldsymbol{Z})$ is the monodromy of the $\boldsymbol{T}^{2}$-bundle over $\boldsymbol{S}^{1}$ corresponding to the boundary of a tubular neighborhood $U_{0}=U / \varphi$ of $C$ in $S$. This monodromy is of hyperbolic type $(|\operatorname{Tr}(M)|>2)$, and hence for every nonzero $(n, m) \in \boldsymbol{Z}^{2}$ we have that $(n, m)$ and $M(n, m)$ are linearly independent. In particular, this applies to $(n, m)=\sigma$.

Example 2. Let us conclude with an example showing that the argument of $[\mathrm{Br}, \mathrm{p}$. 444], used in a different situation, leads to a wrong conclusion. We take Kato surface $S$ of intermediate type, $b_{2}(S)=2$. There is a cycle $C \subset S$ and a smooth rational curve $D \subset S$, with $D \cdot D=-2$ and $D \cdot C=1$. Again by Nakamura's deformation theorem, we can deform $S$ to a blown up Hopf surface $S^{\prime}$, in such a way that $C$ is deformed to an elliptic curve $C^{\prime}$ and, moreover, $D$ is preserved, i.e., deformed to a rational curve $D^{\prime}$ with $D^{\prime} \cdot D^{\prime}=-2$ and $D^{\prime} \cdot C^{\prime}=1$. Necessarily, there is on $S^{\prime}$ another rational curve $E^{\prime}$, with $E^{\prime} \cdot E^{\prime}=-1$, $E^{\prime} \cdot D^{\prime}=1$ and $E^{\prime} \cdot C^{\prime}=0$. If it would be possible to deform $E^{\prime}$ to a smooth sphere $\Sigma \subset S$ with $\Sigma \cap D=\{1$ point $\}$ and $\Sigma \cap C=\emptyset$, then we would obtain that a loop linked around $D$ would be homotopic to zero in $S \backslash(C \cup D)$. But this is not true.

## References

[Br] M. Brunella, On a class of foliated non-Kählerian compact complex surfaces, Tohoku Math. J. 63 (2011), 441-460.


[^0]:    2000 Mathematics Subject Classification. Primary 32J15; Secondary 37F75.
    This article is a posthumous submission following the will of the family.

