Tohoku Math. J. 65 (2013), 607–608

CORRIGENDUM TO "ON A CLASS OF FOLIATED NON-KÄHLERIAN COMPACT COMPLEX SURFACES"

MARCO BRUNELLA

(Received January 29, 2013)

Abstract. In this note we correct a mistake in author's paper Tohoku Mathematical Journal Vol. 63, No. 3 (2011), 441–460.

In the paper [Br, p. 444], we stated a certain property of the pair (\tilde{S}, \tilde{C}) , namely that $\tilde{S} \setminus \tilde{C}$ is simply connected. The proof given there, however, is not convincing; the problem is that, when we take a Nakamura deformation (S', C') of (S, C), the complement $S \setminus C$ is certainly *not* diffeomorphic to $S' \setminus C'$; it is instead diffeomorphic to $S' \setminus (C' \cup \Delta)$, where $\Delta \subset S'$ is a smooth disc with boundary on C' (vanishing cycle). Hence starting with a rational curve R' in S' which intersects C' at a single point, it is not clear how to find a smooth sphere Σ in S intersecting C again at a single point, because R' could intersect Δ .

In this note we correct that mistake. The main point is the following weaker statement.

PROPOSITION 1. In above situation, we have rank $H_1(\tilde{S} \setminus \tilde{C}, \mathbf{Z}) = 0$.

In [Br], the property " $\pi_1(\tilde{S} \setminus \tilde{C}) = 0$ " is used exclusively in the proof of [Br, Lemma 2.2], and it is immediate to check that the weaker property provided by Proposition 1 is largely sufficient to prove [Br, Lemma 2.2].

Let us now prove Proposition 1.

We use Mayer-Vietoris sequence, with integer coefficients, applied to the covering $\{U, V\}$ of \tilde{S} , with U a tubular neighborhood of \tilde{C} and $V = \tilde{S} \setminus \tilde{C}$:

$$H_2(U) \oplus H_2(V) \xrightarrow{\iota_*} H_2(\tilde{S}) \xrightarrow{\partial_*} H_1(U \cap V) \longrightarrow H_1(U) \oplus H_1(V) \longrightarrow H_1(\tilde{S})$$

We have $H_1(\tilde{S}) = 0$, $H_1(U) = H_1(\tilde{C}) = 0$, and $H_1(U \cap V) = H_1(\partial U) = \mathbb{Z}^2$, since the boundary ∂U is diffeomorphic to $\mathbb{T}^2 \times \mathbb{R}$. Hence, the statement of the proposition is equivalent to say that there exist two classes in $H_2(\tilde{S})$ whose images by ∂_* in $H_1(U \cap V) = \mathbb{Z}^2$ are linearly independent.

The group $H_2(U)$ is generated by the rational curves $\{C_j\}_{j \in \mathbb{Z}}$ composing \tilde{C} , each one of selfintersection -3. It follows that for every nontrivial class $A \in H_2(U)$ we have $A \cdot A \leq 3$ (to see this, observe that the intersection matrix Q of a chain of (-3)-curves can be written as $Q_0 - 1$, where Q_0 is the intersection matrix of a chain of (-2)-curves, which is still negative

²⁰⁰⁰ Mathematics Subject Classification. Primary 32J15; Secondary 37F75.

This article is a posthumous submission following the will of the family.

definite). On the other side, for every nontrivial class $B \in H_2(V)$ we have $B \cdot B \leq -1$, because the intersection form is negative definite.

Return now to the deformation argument of [Br, p. 444]. It shows, at least, that we can find a smooth oriented sphere Σ in *S* homologous to the exceptional rational curve $R' \subset S'$. In particular, $\Sigma \cdot \Sigma = -1$ or -2 and $\Sigma \cdot C = R' \cdot C' = 1$ (as already observed, in spite of this Σ could intersect *C* many times). Let $\tilde{\Sigma} \subset \tilde{S}$ be a diffeomorphic lifting of Σ to \tilde{S} . We claim that $[\tilde{\Sigma}] \in H_2(\tilde{S})$ is not in the image of $H_2(U) \oplus H_2(V)$ by i_* , and consequently not in the kernel of ∂_* . Indeed, suppose by contradiction that $[\tilde{\Sigma}] = A + B$, with $A \in H_2(U)$ and $B \in H_2(V)$, so that $\tilde{\Sigma} \cdot \tilde{\Sigma} = A \cdot A + B \cdot B$. Since this selfintersection is -1 or -2, the only possibility is that A = 0. Thus $\tilde{\Sigma}$ is homologous to a simplicial complex with support disjoint from \tilde{C} , and, by projection, Σ is homologous to a simplicial complex with support disjoint from *C*. But this is in contradiction with $\Sigma \cdot C = 1$.

Take now a second lifting of Σ to \tilde{S} , say $\tilde{\Sigma}_1 = \varphi(\tilde{\Sigma})$ where φ is the generator of the deck transformations. By the previous argument, the two classes $\sigma = \partial_*([\tilde{\Sigma}])$ and $\sigma_1 = \partial_*([\tilde{\Sigma}_1])$ are both nonzero in $H_1(U \cap V) = \mathbb{Z}^2$, and we claim that they are also linearly independent. Indeed, these two classes are related by $\sigma_1 = M(\sigma)$, where $M \in SL(2, \mathbb{Z})$ is the monodromy of the \mathbb{T}^2 -bundle over \mathbb{S}^1 corresponding to the boundary of a tubular neighborhood $U_0 = U/\varphi$ of *C* in *S*. This monodromy is of hyperbolic type ($|\operatorname{Tr}(M)| > 2$), and hence for every nonzero $(n, m) \in \mathbb{Z}^2$ we have that (n, m) and M(n, m) are linearly independent. In particular, this applies to $(n, m) = \sigma$.

EXAMPLE 2. Let us conclude with an example showing that the argument of [Br, p. 444], used in a different situation, leads to a wrong conclusion. We take Kato surface S of intermediate type, $b_2(S) = 2$. There is a cycle $C \subset S$ and a smooth rational curve $D \subset S$, with $D \cdot D = -2$ and $D \cdot C = 1$. Again by Nakamura's deformation theorem, we can deform S to a blown up Hopf surface S', in such a way that C is deformed to an elliptic curve C' and, moreover, D is preserved, i.e., deformed to a rational curve D' with $D' \cdot D' = -2$ and $D' \cdot C' = 1$. Necessarily, there is on S' another rational curve E', with $E' \cdot E' = -1$, $E' \cdot D' = 1$ and $E' \cdot C' = 0$. If it would be possible to deform E' to a smooth sphere $\Sigma \subset S$ with $\Sigma \cap D = \{1 \text{ point}\}$ and $\Sigma \cap C = \emptyset$, then we would obtain that a loop linked around D would be homotopic to zero in $S \setminus (C \cup D)$. But this is not true.

REFERENCES

[Br] M. BRUNELLA, On a class of foliated non-Kählerian compact complex surfaces, Tohoku Math. J. 63 (2011), 441–460.

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE – UMR 5584 – 9 Avenue Savary 21078 Dijon France