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STREAMLINES CONCENTRATION AND APPLICATION TO
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Abstract. For a smooth domain containing the origin, we consider a divergence-free
vector field and exclude certain types of possible isolated singularities at the origin, based on
the geometry of streamlines that go near that possible singular point.

1. Introduction. In this paper we consider divergence-free smooth vector fields u ∈
C1(D \ {0},R3) defined on a domain D of R3 containing the origin which may have a sin-
gular point at the origin. We give a definition based on streamline concentration towards the
eventual singularity, and we show that if there is sufficient streamline concentration, then the
vector field cannot be an L2 function; we define this situation precisely in the next section.
Therefore, this result rules out a certain geometric situation (streamline concentration) at a
possible singular time for incompressible fluid equations such as the 3D Navier-Stokes equa-
tions. Before going any further, let us briefly recall a few results about the 3D Navier-Stokes
equations on R3. The equations ruling the flow of an incompressible viscous fluid on R3 are

(1.1)

{
∂tv − �v + div(v ⊗ v) + ∇p = 0 ,

div(v) = 0 , v|t=0 = v0 ,

in which v is a vector-valued function representing the velocity of the fluid, and p is the
pressure. The initial value problem of the above equation is endowed with the condition that
v(0, ·) = v0 ∈ L2(R3).

A finite energy weak solution to the Navier-Stokes equations (1.1) over a time interval
(0, T ) is a pair (v, p) satisfying

(1) the equation (1.1) in the distributional sense,
(2) (v, p) ∈ L∞([0, T ], L2) ∩ L2([0, T ], Ḣ 1) × L

5/3
loc ((0, T ) × R3),

(3) the energy inequality, for 0 < t < T ,

‖v(t, ·)‖2
L2 + 2

∫ t

0
‖∇v(t ′, ·)‖2

L2 dt ′ ≤ ‖v(0, ·)‖2
L2 .(1.2)

For a divergence free initial data v0 ∈ (L2(R3))3, the existence of global in time and finite
energy weak solutions to the Navier-Stokes equations is due to the pioneer works of Leray
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[14] in the case D = R3 and Hopf [11] in the case of the torus. However, neither the unique-
ness nor the global regularity are known. These questions are the outstanding problems of
regularity for solutions to the Navier-Stokes equations. Recall that the space-time singular set
S(u) of u is defined as follows.

DEFINITION 1.1. A point (x0, t0) is not in S(u) if there exists a parabolic cylinder
Q(x0,t0)(r) := {|x − x0| < r} × (t0 − r2, t0) about (x0, t0) such that the solution u is in
L∞(Q(x0,t0)(r)).

Modern regularity theory for solutions to the equation (1.1) began with the works of
Prodi [15], Serrin [17], Ladyzhenskaya [13] implying that if

u ∈ L
p
t (L

q
x)(Q(x0,t0)(r)) , for

3

q
+ 2

p
< 1 ,

then ∂k
xu is in Cα((Q(x0,t0)(r/2))) for some 0 < α < 1 and therefore u is regular. Later

on, Struwe [18] extended this to the case (of scaling invariant pair) i.e., 3/q + 2/p = 1,
and recently this was extended to the limit case u ∈ L∞

t (L3
x) by Escauriaza, Seregin, and

Sverak (see their famous work [9]). After the appearance of the Prodi-Serrin-Ladyzhenskaya
criterion, many different regularity cirteria and Liouville type theorem of solutions to (1.1)
were established (see [1], [2], [7] and [12]).

We would like to mention a regularity criterion in [19] by Vasseur (see also [5]). He gave
a regularity criterion for solutions u to (1.1) in terms of the integral condition div(u/|u|) ∈
Lp(0,∞; Lq(R3)) with 2/p + 3/q � 1/2 imposed on the scalar quantity F = div(u/|u|).
Note that the case (p, q) = (6,∞) is included.

Concerning the analysis of the singular set S(u), we recall the following facts: First,
by definition, the set S(u) is closed, and thanks to the result of Foias and Temam [10], the
1/2 dimensional Hausdorff measure of the set of singular times τ (u) := projt S(u) is zero.
Next, Scheffer [16] and then Caffarelli, Kohn and Nirenberg [4] showed the best result con-
cerning partial regularity of suitable weak solutions (roughly, weak solutions satisfying the
local energy inequality instead of the global one (1.2)) of the Navier-Stokes equations stat-
ing that the parabolic one-dimensional Hausdorff measure of S(u) is zero (see [3]). Finally,
a consequence of the latter result is a bound on the spatial singular set for each time slice
ST := S(u) ∩ {t = T } which has at most one-dimensional Hausdorff measure.

In this paper, we focus on the vector field at a possible singular time T ∈ τ (u), and
examine the geometry of its streamlines. Recall that in [6], Chan and the third author pro-
posed a possible scenario for an isolated space singularity at a possible blow-up time by using
the energy inequality and regularity criterions especially [9] and [19]. They constructed a
divergence free velocity field u within a streamtube segment with increasing twisting (i.e.,
increasing swirl).

The construction of such a vector field u demonstrates the way in which excessive in-
crease of twisting of streamlines can result in the blow up of the quantities ‖u‖Lα(R3) (for
some 2 < α < 3) and ‖div(u/|u|)‖L6(R3) while at the same time preserving the finite energy
property u ∈ L2(R3) of the fluid. Note that the increasing swirl streamtube is not included in
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the sufficient concentration streamlines case. The device of streamtube has already proposed
as the vortex-tube (see [8]).

In this work, we show that if “enough" streamlines of a smooth and divergence free
vector field concentrate towards a possible isolated singular point, then the vector field cannot
be an L2 function (note that such singular set has a zero one-dimensional Hausdorff measure).
The main idea is to costruct an appropriate “streamline flux tube” and apply Stokes’ Theorem.

2. A classification of divergence vector fields.

DEFINITION 2.1 (Streamline). Let D be a smooth domain containing the origin and
u : D \ {0} → R3 be a smooth vector field. For a starting point η ∈ D, we define a streamline
γη(s) : [0,∞) → R3 as the curve solving

(2.1) ∂sγη(s) = u(γη(s)) for s > 0 with γη(0) = η .

One may assume that streamlines are global, because otherwise, they go towards the
possible singular point at the origin.

The following definition is the key to classify the divergence-free vector field with a
possible isolated singularity at the origin. Let Bα be the open ball with radius α centered at
the origin.

DEFINITION 2.2. For α > r let

Aα
r = {η ∈ ∂Bα; γη(s) ∈ Br for some s > 0, and γη(s

′) ∈ Bα for 0 < s′ < s} .

The above definition excludes the streamlines entering the ball Bα infinitely many times
before entering Br . If it happens and a streamline enters Bα finitely many times before getting
into Br , then one can re-parametrize the time so that its last entrance occurs at time s = 0.

REMARK 2.3. For streamlines from Aα
r we have the following properties

• |Aα
r | is monotone decreasing with respect to α and increasing with respect to r . In-

deed,

|Aα
r | ≥ |Aα

r ′ | for r > r ′ , |Aα
r | ≥ |Aα′

r | for α < α′ .

• Without loss of generality, we can assume that streamlines from Aα
r are globally

defined.
• From definition of Aα

r we cannot have stagnation points of the fluid (i.e., u(γη(s)) = 0
for some s > 0).

DEFINITION 2.4 (Stream-surface and flux-tube). Let D ⊂ R3 be a surface and s be
such that γη(s) is defined for each η ∈ D.

• A stream-surface SD(s) is defined as SD(s) = ⋃
η∈D γη(s).

• A flux-tube T D(s) is given by T D(s) = ⋃
0≤s ′≤s SD(s′).

• The mantle of the flux-tube T D(s) is ∂T D(s).
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FIGURE 1. The set A of Corollary 2.6, with streamlines going to the origin.

For |x| �= 0 denote by n̂(x) = x/|x|. Smoothness and membership in C1 are used
interchangeably. The main result reads as follows.

THEOREM 2.5. If for some α > 0 and for some C > 0 independent of r ,
| ∫Aα

r
u · n̂dσ | ≥ Cr1/2 as r → 0, then u /∈ L2(R3).

The following special case is worth noting. See Figure 1.

COROLLARY 2.6. Suppose, for some α > 0 and for A ⊂ ∂Bα, that
∫
A u · n̂dσ �= 0

and Aα
r ⊃ A for 0 < r < α. Then u /∈ L2(R3).

PROOF. It follows from the definition of Aα
r that u · n̂ has constant (negative) sign on

Aα
r . Let C = | ∫A u · n̂dσ | > 0, then for 0 < |r| < min{1, α}, we have | ∫Aα

r
u · n̂dσ | ≥

| ∫A u · n̂dσ | ≥ Cr1/2. �

The proof of Theorem 2.5 proceeds in a few steps. First of all suppose that

∫
∂Br

|u · n̂|dσ ≥
∣∣∣∣
∫

Aα
r

u · n̂dσ

∣∣∣∣
for each r (this is proved in a moment). Then, Jensen’s inequality gives

(2.2)
1

|∂Br |
∫

∂Br

|u|2dσ ≥
(

1

|∂Br |
∫

∂Br

|u|dσ

)2

or

(2.3)
∫

∂Br

|u|2dσ ≥ 1

|∂Br |
(∫

∂Br

|u|dσ

)2
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and, by assumption,

1

|∂Br |
(∫

∂Br

|u|dσ

)2

≥ 1

4πr2

∣∣∣∣
∫

Aα
r

u · n̂dσ

∣∣∣∣
2

≥ 1

4πr2 Cr = C

4πr
,

from which it follows that

‖u‖L2 ≥
(∫ ε

0

∫
∂Br

|u|2dσdr

)1/2

≥
(∫ ε

0

C

4πr

)1/2

= ∞ ,

where ε > 0 is such that | ∫Aα
r
u · n̂dσ | ≥ Cr1/2 for 0 < r ≤ ε.

Now, to prove that
∫
∂Br

|u · n̂|dσ ≥ ∣∣ ∫
Aα

r
u · n̂dσ

∣∣, observe first of all that
∫
Aα

r
u · n̂dσ =∫

reg Aα
r
u · n̂dσ where reg Aα

r = {η ∈ Aα
r ; (u · n̂)(η) �= 0}. Since α is fixed, let Ar denote

reg Aα
r . From the definition of Aα

r it follows that (u · n̂)(η) < 0 for η ∈ Ar .

LEMMA 2.7. Let D ⊂ ∂Bα have piecewise smooth boundary and (u · n̂)(η) < 0 for
η ∈ D. Suppose that SD(s) ⊂ Br for some s > 0 and that SD(s′) ⊂ Bα for 0 < s′ ≤ s. Then∫

D

u · n̂dσ =
∫

D∗
u · n̂dσ ,

where D∗ ≡ T D(s) ∩ ∂Br . Also, if D1 and D2 are two such sets with D1 ∩ D2 = ∅, then
D∗

1 ∩ D∗
2 = ∅.

PROOF. The function γη : D × [0, s] → T D(s) is onto and it follows from the theory
of ordinary differential equations and from u ∈ C1 that γη ∈ C1. Also, γη is injective, which
follows from uniqueness of solutions and from the fact that for each η ∈ D, γη(s) /∈ D for
s > 0. From these properties it can be shown that ∂T D(s) = D ∪SD(s)∪T ∂D(s). Piecewise
smoothness of ∂T D(s) then follows from the piecewise smoothness of ∂D and smoothness of
solutions to the vector field. Let T = {x ∈ T D(s); r < |x| < α} and V = {x ∈ T ∂D(s); r <

|x| < α}, and let D∗ be as defined above. Note that T has piecewise smooth boundary since
it is the intersection of two sets with piecewise smooth boundary. Write ∂T = D ∪D∗ ∪V . If
x ∈ V then a part of the streamline through x lies in V , therefore u(x) is in the tangent space
of V at x. Then, applying the divergence theorem and using div u ≡ 0 give the stated result.
Observe that the implication D1 ∩ D2 = ∅ ⇒ D∗

1 ∩ D∗
2 = ∅ follows from the uniqueness of

solutions in the same way as above. �

CLAIM 2.8. Ar is open. Moreover, for each η ∈ Ar there is a δ > 0 such that D ≡
{ξ ∈ ∂Bα; |ξ − η| < δ} satisfies the assumptions of the above lemma.

PROOF. Let η ∈ Ar and s be as in the definition of Aα
r . Then (u · n̂)(η) < 0. By

continuity there exists δ > 0 such that E ≡ {ξ ∈ ∂Bα; |ξ − η| ≤ δ} has (u · n̂)(λ) < 0
for ξ ∈ E. E is compact, and by a property of compact sets, there exists α > 0 such that
dist(ξ, E) < α implies (u · n̂)(ξ) < 0. Let t = inf{s′ > 0; |γη(s

′) − η| > α/2} and let
β(s) = inf{|γη(s

′)−∂Bα |; t ≤ s′ ≤ s}. Observe that β > 0 since the sets {γη(s
′); t ≤ s′ ≤ s}

and ∂Bα are compact and disjoint. Let β ′ > 0 be such that |ξ − γη(s)| < β ′ implies ξ ∈ Br .



278 E. FOXALL, S. IBRAHIM AND T. YONEDA

Let α′ = min{α/2, β, β ′}. By continuous dependence on initial data, there is a δ′ > 0, δ′ ≤ δ

so that |ξ −η| < δ′ implies |γξ (s
′)−γη(s

′)| < α′ for 0 ≤ s′ ≤ s. For these ξ , |γξ (s
′)−E| < α

for 0 ≤ s′ ≤ t and so (u·n̂)(γξ (s
′)) < 0 for 0 ≤ s′ ≤ t , from which it follows that γξ (s

′) ∈ Bα

for 0 < s′ ≤ t . Then, |γξ (s) − γη(s)| < β ′ implies γξ (s) ∈ Br , and |γξ (s
′) − γη(s

′)| < β

implies γξ (s
′) ∈ Bα , for t ≤ s′ ≤ s. Therefore, δ′ gives D that satisfies the claim. �

END OF THE PROOF OF THEOREM 2.5. Since Ar is open it is Lebesgue measurable.
It follows that for each ε > 0, by a theorem for measurable sets there exists a closed K ⊂ Ar

such that m(Ar \ K) < ε, where m denotes Lebesgue measure. For each η ∈ Ar let Dη be
as in the above claim, then {Dη}η∈K is an open cover of K . Since K is a closed and bounded
subset of R3, it is compact and therefore from the above cover one can take a finite subcover
{Dηi }1≤i≤k. Let E1 = Dη1 and for 2 ≤ i ≤ k let Ei = Dηi \ Ei−1. Then the Ei are
pairwise disjoint and have piecewise smooth boundary, and

⋃k
i=1 Ei covers K . For each i let

E∗
i = T Ei (s) ∩ ∂Br . Then ∫

⋃k
i=1 Ei

u · n̂dσ =
∫

⋃k
i=1 E∗

i

u · n̂dσ

using the equality
∫
Ei

u·n̂dσ = ∫
E∗

i
u·n̂dσ (from Lemma 2.7) for each i and that Ei ∩Ej = ∅

implies E∗
i ∩ E∗

j = ∅. Since
⋃k

i=1 E∗
i ⊂ ∂Br and m(Ar \ ⋃k

i=1 Ei) ≤ m(Ar \ K) < ε, it
follows that ∫

∂Br

|u · n̂dσ | ≥
∣∣∣∣
∫

Ar

u · n̂dσ

∣∣∣∣ − ε‖u‖L∞(∂Bα) .

Since u ∈ C1(D \ {0},R3) by assumption we have ‖u‖L∞(∂Bα) < ∞. Moreover, since ε > 0
is arbitrary we have ∫

∂Br

|u · n̂dσ | ≥
∣∣∣∣
∫

Ar

u · n̂dσ

∣∣∣∣ =
∣∣∣∣∣
∫

Aα
r

u · n̂dσ

∣∣∣∣∣
as claimed.

REMARK 2.9. • Note that the condition
∣∣ ∫

Aα
r
u·n̂dσ

∣∣ ≥ Cr1/2 in the theorem implic-
itly requires that the Lebesgue measure of the set Aα

r is non-zero for some α > 0 and
any 0 < r < α. The example of a rotating vector field u(x) = (1/|x|γ )(x2,−x1, 0)

shows that for any α > 0 and for any r < α, the set Aα
r is empty.

• We can easily generalize the main theorem (Theorem 2.5) to Lp spaces (1 ≤ p ≤ ∞).
In fact, we just use Hölder inequality instead of Jensen’s inequality which is used in
(2.2) and (2.3). More precisely we have the following statement:

If for some α > 0 and for some C > 0 independent of r , | ∫Aα
r
u · n̂dσ | ≥

Cr2(1−1/p) as r → 0, then u /∈ Lp(R3).
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