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Abstract. Under an infinitesimal version of the Bishop-Gromov relative volume com-
parison condition for a measure on an Alexandrov space, we prove a topological splitting
theorem of Cheeger-Gromoll type. As a corollary, we prove an isometric splitting theorem for
Riemannian manifolds with singularities of nonnegative (Bakry-Emery) Ricci curvature.

1. Introduction. A main purpose of this paper is to prove a splitting theorem of
Cheeger-Gromoll type for singular spaces. Since it is impossible to define the Ricci curva-
ture tensor on Alexandrov spaces, we consider an infinitesimal version of the Bishop-Gromov
volume comparison condition as a candidate of the conditions of the Ricci curvature bounded
below. Under the volume comparison condition for a measure on an Alexandrov space, we
prove a topological splitting theorem. As a corollary, we prove an isometric splitting theorem
for an Alexandrov space whose regular part is a smooth Riemannian manifold of nonnegative
(Bakry-Emery) Ricci curvature.

Let us present the volume comparison condition. For a real number κ , we set

sκ(r) :=




sin(
√

κr)/
√

κ if κ > 0 ,

r if κ = 0 ,

sinh(
√|κ |r)/√|κ | if κ < 0 .

The function sκ is the solution of the Jacobi equation s′′
κ (r)+κsκ(r) = 0 with initial condition

sκ (0) = 0, s′
κ (0) = 1.

Let M be an Alexandrov space of curvature bounded from below locally and set rp(x) :=
d(p, x) for p, x ∈ M , where d is the distance function. For p ∈ M and 0 < t ≤ 1, we define a
subset Wp,t ⊂ M and a map Φp,t : Wp,t → M as follows. We first set Φp,t (p) := p ∈ Wp,t .
A point x ( �= p) belongs to Wp,t if and only if there exists y ∈ M such that x ∈ py and
rp(x) : rp(y) = t : 1, where py is a minimal geodesic from p to y. Since a geodesic does not
branch on an Alexandrov space, for a given point x ∈ Wp,t such a point y is unique and we
set Φp,t (x) := y. The triangle comparison condition implies the local Lipschitz continuity of
the map Φp,t : Wp,t → M . We call Φp,t the radial expansion map.
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Let µ be a positive Radon measure on M with full support, N ≥ 1 a real number, and
Ω ⊂ M a subset. The following is an infinitesimal version of the Bishop-Gromov volume
comparison condition for µ corresponding to the condition of the lower Ricci curvature bound
Ric ≥ (N − 1)κ with dimension N .

INFINITESIMAL BISHOP-GROMOV CONDITION BG(κ,N) FOR µ ON Ω . For any p ∈
M , t ∈ ( 0, 1 ], and any measurable function f : M → [ 0,+∞ ) with the property (∗) below,
we have ∫

Wp,t

f ◦ Φp,t (y) dµ(y) ≥
∫

M

t sκ (t rp(x))N−1

sκ (rp(x))N−1
f (x) dµ(x) .

(∗) f has a compact support in Ω \ {p} and, if κ > 0, the support is contained in the open
metric ball B(p, π/

√
κ) centered at p of radius π/

√
κ.

We say that µ satisfies BG(κ,N) if it satisfies BG(κ,N) on Ω = M .

For an n-dimensional complete Riemannian manifold, the Riemannian volume measure
satisfies BG(κ, n) if and only if the Ricci curvature satisfies Ric ≥ (n − 1)κ (see [27, The-
orem 3.2] for the ‘only if’ part). We see some studies on similar (or same) conditions to
BG(κ,N) in [6, 13, 39, 18, 19, 37, 27, 45, 21] etc. BG(κ,N) is sometimes called the Measure
Contraction Property and is weaker than the curvature-dimension (or lower N-Ricci curva-
ture) condition CD((N − 1)κ,N) introduced by Sturm [40] and Lott-Villani [24] in terms of
mass transportation. For a measure on an Alexandrov space, BG(κ,N) is equivalent to the
(κ/(N − 1),N)-measure contraction property introduced by Ohta [27]. For an n-dimensional
Alexandrov space of curvature ≥ κ , the n-dimensional Hausdorff measure Hn on M satisfies
BG(κ, n) (see [21]). Note that we do not necessarily assume M to be of curvature uniformly
bounded below. We assume the Alexandrov curvature condition just for the local regularity of
the space. If an Alexandrov space M has a measure µ satisfying BG(κ,N), then the dimen-
sion of M is less than or equal to N [27, Corollary 2.7]. The infinitesimal Bishop-Gromov
condition is stable under the measured Gromov-Hausdorff convergence (cf. [6, Appendix 2]
and [13, §5. I+]).

One of our main theorems is stated as follows.

THEOREM 1.1 (Topological splitting theorem). Let M be an Alexandrov space of cur-
vature bounded from below locally and µ a positive Radon measure on M with full support.
Assume that, for any relatively compact open subset Ω ⊂ M , there exists a real number
NΩ ≥ 1 such that µ satisfies BG(0, NΩ) on Ω . If, in addition, M contains a straight line,
then M is homeomorphic to M ′ × R for some metric space M ′.

Note that BG(0, NΩ) in this theorem can be replaced with the curvature dimension con-
dition.

This theorem is new even if M is a complete Riemannian manifold. We do not know
if the isometric splitting in the theorem is true, i.e., if M is isometric to M ′ × R for some
Alexandrov space M ′, even in the case where µ is the n-dimensional Hausdorff measure. If
we replace ‘BG(0, NΩ)’ with ‘curvature ≥ 0’, then the isometric splitting was proved by
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Milka [26], Grove-Petersen [14] and Yamaguchi [47], as a generalization of the well-known
Toponogov splitting theorem. For n-dimensional Riemannian manifolds with Riemannian
volume measure, BG(0, n) is equivalent to Ric ≥ 0 and the isometric splitting under Ric ≥ 0
was proved by Cheeger-Gromoll [7]. In our case, we do not have the Weitzenböck formula,
so that we cannot obtain the isometric splitting at present.

A rough idea of our proof came from that of Cheeger-Gromoll [7]. One of essential
points in our proof is to prove a generalized version of the Laplacian comparison theorem
(Theorem 4.1), where our discussion is much different from the Riemannian case. We also
prove the maximum principle for subharmonic functions, by using the result of the first named
author [16] and Cheeger’s theory [5].

If the metric of M has enough smooth part, we can prove the isometric splitting. For that,
we consider the following.

DEFINITION 1.2 (Singular Riemannian space). M is called a singular Riemannian
space if the following (1), (2) and (3) are satisfied.

(1) M is an Alexandrov space of curvature bounded below locally.
(2) The set SM of singular points is a closed set in M .
(3) The set M \SM of non-singular points is an (incomplete) C2 Riemannian manifold.

Note that any complete Riemannian orbifold is a singular Riemannian space.

COROLLARY 1.3. Let M be an n-dimensional singular Riemannian space. If the Ricci
curvature satisfies Ric ≥ 0 on M\SM , then M is isometric to M ′×Rk, where M ′ is a singular
Riemannian space containing no straight line and k := n − dim M ′.

If M is a complete Riemannian orbifold, then Corollary 1.3 was proved by Borzellino-
Zhu [3].

We next consider the Bakry-Emery Ricci curvature. Let n be an integer with n ≥ 1, and
N a real number with N > n, or N = +∞. On an n-dimensional C2 Riemannian manifold
with a measure dµ(x) = e−V (x) d vol(x), where V is a C2 function and vol the Riemannian
volume measure, the N-dimensional Bakry-Emery Ricci curvature tensor RicN,µ is defined
by

RicN,µ :=
{

Ric + Hess V − (N − n)−1dV ⊗ dV if n < N < +∞ ,

Ric + Hess V if N = +∞ .

COROLLARY 1.4. Let M be an n-dimensional singular Riemannian space, N a num-
ber with n < N ≤ +∞, and V : M → R a continuous function which is of C2 on M \ SM .
We assume that supM V < +∞ if N = +∞. If the Bakry-Emery Ricci curvature satisfies
RicN,µ ≥ 0 on M \ SM for dµ(x) := e−V (x) d vol(x), then M is isometric to M ′ × Rk and V

is constant on {x}×Rk for each x ∈ M ′, where M ′ is a singular Riemannian space containing
no straight line and k := n − dim M ′.

Corollary 1.4 is an extension of the result of Lichnerowicz [22] (see also [46] and [11])
for complete Riemannian manifolds. In the case where N = +∞, the assumption supM V <

+∞ is necessary as was pointed out by Lott [23] (see also [46]).
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REMARK 1.5. (1) All the results in this paper are true even in the case where M

has non-empty boundary. We implicitly assume the Neumann boundary condition on the
boundary of M when we consider the Laplacian on M . In particular, the results hold for any
convex subset of M .

(2) We can apply Corollaries 1.3 and 1.4 to get some results for the fundamental group
of a singular Riemannian space of nonnegative (Bakry-Emery) Ricci curvature (cf. [7]). How-
ever, we do not know if we can obtain the same results for an Alexandrov space satisfying the
infinitesimal Bishop-Gromov condition. One of the problems is that we cannot prove that a
covering space inherits the infinitesimal Bishop-Gromov condition. Another problem is that
the splitting is only homeomorphic. If the space splits as M ′ × R homeomorphically, then we
do not know if M ′ is an Alexandrov space or not, and we cannot apply our splitting theorem
to M ′. This is not enough to investigate the fundamental group.

(3) In our previous paper [20], we proved a Laplacian comparison theorem and a split-
ting theorem weaker than those in this paper. The proof in this paper is much easier than that
in [20]. We will not publish [20] from any journal.

(4) Recently, H.-C. Zhang and X.-P. Zhu [48] have proved a version of an isometric
splitting theorem under a new condition corresponding to the nonnegativity of Ricci curva-
ture. Their condition implies the curvature-dimension condition and the infinitesimal Bishop-
Gromov condition for the Hausdorff measure.

2. Preliminaries. A geodesic space is defined to be a metric space in which any two
points x and y can be joined by a length-minimizing curve whose length is equal to the
distance between x and y. Let M be a proper geodesic space, where ‘proper’ means that
any bounded subset of M is relatively compact. We call a locally (resp. globally) length-
minimizing curve in M a geodesic (resp. a minimal geodesic). Denote by M2(κ) a complete
simply connected 2-dimensional space form of constant curvature κ . For three different points
x, y, z ∈ M and a real number κ , we denote by ˜� κxyz the angle between a minimal geodesic
from ỹ to x̃ and a minimal geodesic from ỹ to z̃ for three points x̃, ỹ, z̃ ∈ M2(κ) such that
d(x̃, ỹ) = d(x, y), d(ỹ, z̃) = d(y, z) and d(z̃, x̃) = d(z, x), where d is the distance function.
˜�
κxyz is uniquely determined if either the following (1) or (2) is satisfied.

(1) κ ≤ 0.
(2) κ > 0 and d(x, y) + d(y, z) + d(z, x) < 2π/

√
κ .

A proper geodesic space M is said to be an Alexandrov space (of curvature bounded below
locally) if for any point x ∈ M there exists a neighborhood U of x and a real number κ such
that, for any different four points p, q1, q2, q3 ∈ U , we have

(T) ˜� κqipqj , i, j = 1, 2, 3, are all defined and satisfy

˜�
κq1pq2 + ˜�

κq2pq3 + ˜�
κq3pq1 ≤ 2π .

For a given point x ∈ M , we denote by κ(x) the supremum of such κ’s. Then, κ(x) is lower
semi-continuous in x ∈ M , so that κ is bounded from below on any compact subset of an
Alexandrov space. The globalization theorem states that, for any compact subset Ω o1f an
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Alexandrov space M , there exists a compact set Ω ′ ⊃ Ω such that (T) holds for any mutually
different p, q1, q2, q3 ∈ Ω and for any real number κ with κ ≤ infx∈Ω ′ κ(x), provided that M

is not a 1-dimensional Riemannian manifold. For a constant κ , we say that M is of curvature
≥ κ if (T) holds for any mutually different four points p, q1, q2, q3 ∈ M . In the case where M

is not a 1-dimensional Riemannian manifold, the globalization theorem implies that M is of
curvature ≥ κ if and only if κ ≥ κ on M . For a 1-dimensional complete Riemannian manifold
M and for κ > 0, M is of curvature ≥ κ if and only if the diameter of M is at most π/

√
κ,

i.e., M is isometric to either a segment of length at most π/
√

κ or a circle of length at most
2π/

√
κ .

In this paper, we always assume that all Alexandrov spaces have finite Hausdorff dimen-
sions. Refer to [4, 29, 17] for the basics of the geometry and analysis on Alexandrov spaces,
such as, the space of directions, the tangent cone, etc.

Let M be an Alexandrov space of Hausdorff dimension n < +∞. Then, n coincides
with the covering dimension of M , which is a nonnegative integer. Take any point p ∈ M

and fix it. Denote by ΣpM the space of directions at p, and by KpM the tangent cone at p.
ΣpM is an (n − 1)-dimensional compact Alexandrov space of curvature ≥ 1 and KpM an
n-dimensional Alexandrov space of curvature ≥ 0.

DEFINITION 2.1 (Singular point, δ-singular point). A point p ∈ M is called a singu-
lar point of M if ΣpM is not isometric to the unit sphere Sn−1. For δ > 0, we say that a point
p ∈ M is δ-singular if Hn−1(ΣpM) ≤ vol(Sn−1)− δ. Let us denote the set of singular points
of M by SM and the set of δ-singular points of M by Sδ .

Note that a point p ∈ M is non-singular if and only if the tangent cone KpM is isometric
to Rn. We have SM = ⋃

δ>0 Sδ . Since the map M � p �→ Hn(ΣpM) is lower semi-
continuous, the set Sδ of δ-singular points in M is a closed set. The following lemma is
sometimes useful.

LEMMA 2.2 (cf. [35]). Let γ be a minimal geodesic joining two points p and q in M .
Then, the spaces of directions ΣxM at all points x ∈ γ \ {p, q} are isometric to each other.
In particular, any minimal geodesic joining two non-singular (resp. non-δ-singular) points is
contained in the set of non-singular (resp. non-δ-singular) points (for any δ > 0).

DEFINITION 2.3 (Boundary). The boundary of an Alexandrov space M is defined in-
ductively. If M is one-dimensional, then M is a complete Riemannian manifold and the
boundary of M is defined as usual. Assume that M has dimension ≥ 2. A point p ∈ M

is said to be a boundary point of M if ΣpM has non-empty boundary.

Any boundary point of M is a singular point. More strongly, the boundary of M is
contained in Sδ for a sufficiently small δ > 0, which follows from the Morse theory in [30, 32].

The doubling theorem (cf. [30, §5], [4, 13.2]) states that if M has non-empty boundary,
then the double dbl(M) of M (i.e., the gluing of two copies of M along their boundaries) is
an Alexandrov space without boundary and each copy of M is convex in the double.
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Denote by ŜM (resp. Ŝδ) the set of singular (resp. δ-singular) points of dbl(M) contained
in M , where M is identified with a copy in dbl(M). We agree that ŜM = SM and Ŝδ = Sδ

provided M has no boundary.
The following shows the existence of differentiable and Riemannian structure on M .

THEOREM 2.4. For an n-dimensional Alexandrov space M , we have the following:
(1) There exists a number δn > 0 depending only on n such that M∗ := M \ Ŝδn is

a manifold (with boundary ∂M∗) [4, 30, 32] and has a natural C∞ differentiable structure
(even on the boundary ∂M∗) [17].

(2) The Hausdorff dimension of SM is at most n − 1 [4, 29], and that of ŜM is at most
n − 2 [4]. We have SM = ŜM ∪ ∂M∗.

(3) We have a unique continuous Riemannian metric g on M \ SM ⊂ M∗ such that
the distance function induced from g coincides with the original one of M [29]. The tangent
space at each point in M \ SM is isometrically identified with the tangent cone [29]. The
volume measure on M∗ induced from g coincides with the n-dimensional Hausdorff measure
Hn [29].

REMARK 2.5. In [17] we construct a C∞ structure only on M \ B(Sδn , ε). However
this is independent of ε and extends to M∗. The C∞ structure is a refinement of the structures
of [29, 28, 31] and is compatible with the DC structure of [31].

Note that the metric g is defined only on M∗ \ SM and does not continuously extend to
any other point of M . In general, the set of non-singular points M∗ \ SM is not a manifold.
There is an example of an Alexandrov space M such that SM is dense in M (see [29]).

DEFINITION 2.6 (Cut-locus). Let p ∈ M be a point. We say that a point x ∈ M is a
cut point of p if no minimal geodesic from p contains x as an interior point. We agree that p

is not a cut point of p. The set of cut points of p is called the cut-locus of p and denoted by
Cutp.

Note that Cutp is not necessarily a closed set. For the Wp,t defined in §1, it follows that⋃
0<t<1 Wp,t = M \ Cutp. The cut-locus Cutp is a Borel subset and satisfies Hn(Cutp) = 0

[29, Proposition 3.1].
By [29, Lemma 4.1], the function rp = d(p, ·) is differentiable on M\(SM ∪Cutp∪{p}).

At any differentiable point x of rp, −∇rp(x) is tangent to a unique minimal geodesic from
p to x, where ∇rp(x) denotes the gradient vector of rp at x. This implies that the gradient
vector field ∇rp is continuous at all differentiable points of rp.

3. Sobolev spaces and maximum principle. A main purpose of this section is to
prove the maximum principle for subharmonic functions on a weighted Alexandrov space. To
prove it, we apply the maximum principle in the setting of a Dirichlet form which was proved
by the first named author [16]. For that, we need to investigate Sobolev spaces on a weighted
Alexandrov space by using Cheeger’s theory [5]. We refer [12] for the basic terminologies of
Dirichlet forms and [5] for those of Cheeger’s Sobolev spaces.
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Let (X, d) be a proper geodesic space and µ a positive Radon measure on X with full
support. We take two open subsets Ω,Ω ′ ⊂ X with Ω̄ ⊂ Ω ′, where Ω̄ is the closure of Ω in
X. Assume that (X, d,µ) satisfies the volume doubling condition for metric balls contained in
Ω ′ and a (1, p)-Poincaré inequality on any metric ball contained in Ω ′ for a fixed number p >

1 in the sense of upper gradient (cf. [5]). Lp(Ω; µ) denotes the Banach space of Lp functions
on Ω with respect to µ, and W 1,p(Ω; µ) the (1, p)-Sobolev space of (Ω, d,µ) defined by
Cheeger [5]. We denote by gu a minimal generalized upper gradient for u ∈ W 1,p(Ω; µ),
which is unique up to modification on sets of µ-measure zero (see [5, Theorem 2.10]). Let
W

1,p

0 (Ω; µ) be the W 1,p-closure of the set of functions u ∈ W 1,p(Ω; µ) such that the support

of u is compact and contained in Ω . Denote by W
1,p

0,loc(Ω; µ) the localization of W
1,p

0 (Ω; µ),
i.e., the set of functions u : Ω → R such that, for any relatively compact open subset U ⊂ X

with Ū ⊂ Ω , there is a function uU ∈ W
1,p
0 (Ω; µ) satisfying that u = uU µ-a.e. on U . For

u ∈ W
1,p

0,loc(Ω; µ), we define gu : Ω → R to be guU on each U . By [5, Corollary 2.25], the
function gu is defined uniquely up to modification on sets of µ-measure zero. We also call gu

a minimal generalized upper gradient for u.

REMARK 3.1. In Cheeger’s paper [5], the statements of the theorems are described
under Ω ′ = X. However, all the discussions in the proofs are local and valid for Ω ′ ⊂ X.

The following lemma is needed for the proof of the maximum principle.

LEMMA 3.2. For a function u : Ω → R, the following (1) and (2) are equivalent to
each other.

(1) We have u ∈ W
1,p

0,loc(Ω; µ) ∩ C(Ω) and gu ≤ 1 µ-a.e., where C(Ω) denotes the
set of continuous functions on Ω .

(2) u is locally 1-Lipschitz on Ω , i.e., for any point x0 ∈ Ω , there exists a neighbor-
hood B of x0 in Ω such that u|B is 1-Lipschitz.

PROOF. The implication (2) ⇒ (1) follows from a standard discussion.
We prove (1) ⇒ (2). Assume that u ∈ W

1,p
0,loc(Ω; µ) ∩ C(Ω) and gu ≤ 1 µ-a.e. We fix a

point x0 ∈ Ω and take a closed ball B ′ centered at x0 and contained in Ω . There is a closed
ball B centered at x0 such that all minimal geodesics joining two points in B are entirely
contained in B ′. We have B ⊂ B ′ and u|B ′ ∈ W 1,p(B ′; µ) ∩ C(B ′). Denote by CLip(B ′)
the set of Lipschitz functions on B ′. By [5, Theorem 5.3] (see also the proof of [5, Theorem
5.1]), there are functions ui ∈ CLip(B ′) and gi ∈ Lp(B ′; µ) ∩ C(B ′), i = 1, 2, . . . , such that
ui → u, gi → gu in Lp(B ′; µ) as i → ∞, lim supi→∞ gi ≤ gu µ-a.e. on B ′, and each gi is
an upper gradient for ui . Since gu ≤ 1 µ-a.e. on Ω and since each gi is continuous, there is a
number iε for each ε > 0 such that gi ≤ 1 + ε on B ′ for all i ≥ iε. For any x, y ∈ B, we take
a minimal geodesic γ : [ 0, d(x, y) ] → X joining x to y with arclength parameter. Since γ

is contained in B ′, we have

|ui(x) − ui(y)| ≤
∫ d(x,y)

0
gi ◦ γ (s) ds ≤ (1 + ε) d(x, y) ,
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namely ui for i ≥ iε is (1 + ε)-Lipschitz on B for any ε > 0. By the Arzelá-Ascoli theorem,
{ui |B} has a subsequence which uniformly converges to a 1-Lipschitz function v on B. Since
u is continuous, we have u = v on B and u is 1-Lipschitz on B. This completes the proof. �

From now on, we consider an Alexandrov space. Let M be an Alexandrov space, µ a
positive Radon measure on M with full support, and Ω ⊂ M an open subset. We assume
that µ satisfies BG(κ,N) on some neighborhood Ω ′ of Ω̄ for two real numbers N ≥ 1 and
κ . According to the result of Ranjbar-Motlagh [37], we have a (1, 1)-Poincaré inequality on
any ball in Ω ′ in the sense of upper gradient, which implies a (1, p)-Poincaré inequality on
any ball in Ω ′ for any p ≥ 1. Since the infinitesimal Bishop-Gromov condition implies the
volume doubling condition for balls in Ω ′, we can apply Cheeger’s theory [5] of Sobolev
spaces on the metric measure space (Ω, d,µ).

LEMMA 3.3. The set Cutp ∩ Ω is of µ-measure zero for any point p ∈ M .

PROOF. Assume that µ(Cutp ∩ Ω) > 0 for some point p ∈ M . Then, for such a point
p, there is a small number δ > 0 such that the set

A := {x ∈ Cutp ∩ Ω ; d(x, ∂Ω) > δ, δ < d(x, p) < 1/δ}

has positive µ-measure. The closure of A is compact and contained in Ω \ {p}. Applying
BG(κ,NΩ) on Ω to the indicator function of A yields that µ(Φ−1

p,t (A)) > 0 for any t ∈
( 0, 1 ). It follows from A ⊂ Cutp that Φ−1

p,t (A) ∩ Φ−1
p,t ′(A) = ∅ for any mutually different

t, t ′ ∈ ( 0, 1 ). Since µ is a Radon measure, this is a contradiction. �

LEMMA 3.4. The set SM ∩ Ω is of µ-measure zero.

PROOF. We find a dense countable subset {pi}∞i=1 of M . Lemma 3.3 implies that⋃∞
i=1 Cutpi ∩ Ω is of µ-measure zero. Thus, it suffices to prove that SM ⊂ ⋃∞

i=1 Cutpi .
Take any point x ∈ M \ ⋃∞

i=1 Cutpi . We are going to prove that x is non-singular. Since x

is not a cut point of pi , there is a minimal geodesic γi from pi passing through x for each i.
Since the tangent cone Kx is isometric to the magnification limit of M around x, as the limit
of each γi we have a straight line γ̄i in Kx passing through the vertex of Kx . Since {pi} is
dense in M , the union of the images of all γ̄i’s is dense in Kx . By using the splitting theorem
of Toponogov type (cf. [26]), Kx is isometric to Rn, i.e., x is non-singular. This completes
the proof. �

PROPOSITION 3.5. Any locally Lipschitz function on Ω is differentiable µ-a.e. on Ω .

PROOF. By [5, Theorem 10.2], any locally Lipschitz function on Ω is infinitesimally
generalized linear µ-a.e. By Lemma 3.4, it suffices to consider only non-singular points. At
a non-singular point, any infinitesimally generalized linear function is differentiable by [5,
Theorem 8.11]. This completes the proof. �

REMARK 3.6. We can improve Proposition 3.5 as that any locally Lipschitz function
on Ω ′ is differentiable µ-a.e. on Ω ′. This is because the proposition holds for any Ω with
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Ω̄ ⊂ Ω ′ and there is an increasing sequence Ωi , i = 1, 2, . . . , such that Ω̄i ⊂ Ω and⋃
i Ωi = Ω .

With the help of Proposition 3.5, we define a Dirichlet form. Denote by C
Lip
0 (Ω) the set

of Lipschitz functions with compact support in Ω . We define a bilinear form by

Eµ(u, v) :=
∫

Ω

〈∇u,∇v〉 dµ, u, v ∈ C
Lip
0 (Ω) ,

where 〈·, ·〉 is the Riemannian metric on M \ SM . Note that 〈∇u,∇v〉 is µ-a.e. defined by
Proposition 3.5.

LEMMA 3.7. The bilinear form (Eµ,C
Lip
0 (Ω)) is closable in L2(Ω; µ) and its clo-

sure, say (Eµ,W
1,2
0 (Ω; µ)), coincides with Cheeger’s (1, 2)-Sobolev space with the Dirichlet

boundary condition and is a strongly local regular Dirichlet form on L2(Ω; µ) in the sense
of [12].

PROOF. By [5, Theorem 5.1], the minimal upper gradient of a locally Lipschitz function
u : Ω → R coincides with the local Lipschitz constant of u, which is equal to ‖∇u‖ at
any differentiable point of u, where ‖ · ‖ denotes the norm induced from the Riemannian
metric on M \ SM . Therefore, by Proposition 3.5, the Cheeger’s energy of u ∈ C

Lip
0 (Ω)

coincides with Eµ(u, u), so that, by [5, Theorem 4.24], (Eµ,C
Lip
0 (Ω)) is closable and its

closure (Eµ,W
1,2
0 (Ω; µ)) coincides with Cheeger’s Sobolev space with Dirichlet boundary

condition. The strong locality, the regularity and the Markovian property of (Eµ,W
1,2
0 (Ω; µ))

are all obvious. This completes the proof. �

Let ρΩ denote the intrinsic metric on Ω induced from the Dirichlet form
(Eµ,W

1,2
0 (Ω; µ)) (cf. [2]), i.e., for x, y ∈ Ω ,

ρΩ(x, y) := sup{u(x) − u(y) ; u ∈ W
1,2
0,loc(Ω; µ) ∩ C(Ω), dµ〈u〉 ≤ dµ} ,

where µ〈u〉 is the energy measure of u (cf. [12, §3.2]). It is known that ρΩ is a pseudo-metric
in general.

PROPOSITION 3.8. For any x0 ∈ Ω , there exists a neighborhood B of x0 in Ω such
that ρΩ = d on B × B. In particular, ρΩ is a metric which induces the same topology of d

on Ω .

PROOF. It is easy to prove that µ〈u〉 = g2
u dµ for any u ∈ W

1,2
0,loc(Ω; µ), so that dµ〈u〉 ≤

dµ is equivalent to gu ≤ 1 µ-a.e. By Lemma 3.2 we have

ρΩ(x, y) = sup{u(x) − u(y) ; u : Ω → R is locally 1-Lipschitz} .

Let us prove that d(x, y) ≤ ρΩ(x, y) for any x, y ∈ Ω . We fix x, y ∈ Ω and set
u(z) := d(y, z), z ∈ Ω . Then, u is 1-Lipschitz and u(x) − u(y) = d(x, y), which imply
d(x, y) ≤ ρΩ(x, y).

Fix a point x0 ∈ Ω . There is a neighborhood B of x0 in Ω such that all minimal geodesics
joining two points in B are entirely contained in Ω . Let us prove that d(x, y) ≥ ρΩ(x, y)
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for any x, y ∈ B. Take any locally 1-Lipschitz function u : Ω → R. It follows from the
condition for B that u is (globally) 1-Lipschitz on B, so that, for any x, y ∈ B, we have
u(x) − u(y) ≤ d(x, y), which implies ρΩ(x, y) ≤ d(x, y). This completes the proof. �

DEFINITION 3.9 (µ-subharmonicity). A function u ∈ W
1,2
0,loc(Ω; µ) is said to be µ-

subharmonic if ∫
Ω

〈∇u,∇f 〉 dµ ≤ 0

for any nonnegative function f ∈ C
Lip
0 (Ω).

Using Lemma 3.7 and Proposition 3.8, we prove the maximum principle.

THEOREM 3.10 (Maximum principle). Assume that Ω is connected. If a continuous
µ-subharmonic function u ∈ W

1,2
0,loc(Ω; µ) attains its maximum in Ω , then u is constant on

Ω .

PROOF. As is mentioned before, we have the volume doubling condition for balls in
Ω ′ and a (1, p)-Poincaré inequality on any ball in Ω ′ for any p ≥ 1. By [15, Theorem 5.1
and Corollary 9.8], we have a (2, 2)-Poincaré inequality on Ω , which together with Proposi-
tion 3.8 implies a parabolic Harnack inequality on Ω (see [41, Theorem 3.5]). Therefore, the
same proof as in [39, Theorem 7.4] works to obtain a strictly positive locally Hölder contin-
uous heat kernel pΩ(t, x, y), (t, x, y) ∈ (0, ∞) × Ω × Ω , associated to (Eµ,W

1,2
0 (Ω; µ))

on L2(Ω; µ). The method of the proof of [39, Proposition 7.5] also works to obtain the
strong Feller property of the semigroup T Ω

t f (x) := ∫
Ω pΩ(t, x, y)f (y) µ(dy), where f is

a bounded Borel function on Ω . Owing to the strong maximum principle due to the first
named author [16, Theorems 1.3 and 8.5 with the last remark in Example 8.2], we have the
theorem. �

4. Laplacian comparison theorem. The purpose of this section is to prove the fol-
lowing theorem. We set cotκ(r) := s′

κ(r)/sκ (r) for the function sκ defined in §1.

THEOREM 4.1 (Laplacian comparison theorem). Let M be an Alexandrov space, µ a
positive Radon measure on M with full support, and Ω ⊂ M an open subset. If µ satisfies
BG(κ,NΩ) on Ω for two real numbers NΩ ≥ 1 and κ , then we have

(4.1)
∫

M

〈∇rp,∇f 〉 dµ ≥
∫

M

{−(NΩ − 1) cotκ ◦rp} f dµ

for any point p ∈ M and for any nonnegative function f ∈ C
Lip
0 (Ω \ {p}).

Note that rp and f above are differentiable µ-a.e. on Ω by Proposition 3.5 and Remark
3.6.

Let V be a function on M with a certain regularity condition. For the measure dµ(x) =
e−V (x) dHn(x), we define

�µ := � + ∇V = −eV div(e−V ∇·) ,
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where � is the nonnegative Laplacian and ∇V is the gradient vector field of V , considered to
be a directional derivative. The inequality (4.1) is a weak form of the formal inequality

(4.2) �µrp ≥ −(NΩ − 1) cotκ ◦rp

on Ω \ {p}, and −(NΩ − 1) cotκ ◦rp is the Laplacian of the distance function on an NΩ -
dimensional complete simply connected space form of constant curvature κ , provided that
NΩ is an integral number with NΩ ≥ 2. We do not know if the pointwise inequality (4.2)
implies the weak form (4.1) in general. However, if M is a singular Riemannian space and if
V is a C2 function, then (4.2) implies (4.1). For the proof of this, we first prove (4.2) in the
sense of barrier by the same way as in [10] and then prove (4.1). The details are omitted here.

Since, for an n-dimensional Alexandrov space of curvature ≥ κ , the n-dimensional Haus-
dorff measure Hn satisfies BG(κ, n) (see [21]), the above Laplacian Comparison Theorem
(Theorem 4.1) leads us to the following.

COROLLARY 4.2. If M is an n-dimensional Alexandrov space of curvature ≥ κ , then
for any p ∈ M we have �rp ≥ −(n − 1) cotκ ◦rp on M \ {p} in the weak sense.

Since the Riemannian metric on an Alexandrov space is not continuous on any singular
point, a standard proof of the Laplacian comparison theorem for Riemannian manifolds does
not work. Renesse [43] proved Corollary 4.2 under some additional condition. In the case of
µ = Hn with BG(κ, n), another different proof using a version of Green formula can be seen
in our previous paper [20].

PROOF OF THEOREM 4.1. Let f ∈ C
Lip
0 (Ω \ {p}) be any nonnegative function. By

Proposition 3.5 and Remark 3.6, f and r are differentiable µ-a.e. on Ω . It follows from
t rp(Φp,t (x)) = rp(x) that, for µ-almost all x ∈ Ω ,

d

dt
Φp,t (x)

∣∣∣∣
t=1

= −rp(x)∇rp(x)

and so

〈rp∇rp,∇f 〉 = −
〈

d

dt
Φp,t (x)

∣∣∣∣
t=1

,∇f

〉
= − d

dt
f ◦ Φp,t (x)

∣∣∣∣
t=1

.

For 0 < t < 1 we define a function Ft : M → R by

Ft(x) :=
{

(f ◦ Φp,t (x) − f (x))/(1 − t) for x ∈ Wp,t ,

0 for x ∈ M \ Wp,t .

Then we have

lim
t→1−0

Ft (x) = − d

dt
f ◦ Φp,t (x)

∣∣∣∣
t=1

for µ-almost all x ∈ Ω . It follows from d(x,Φp,t (x)) = (1 − t)rp(x)/t , x ∈ Wp,t , that
|Ft (x)| ≤ L rp(x)/t for all t ∈ ( 0, 1 ) and x ∈ M , where L is a Lipschitz constant of f .
Thus, the dominated convergence theorem implies∫

M

〈rp∇rp,∇f 〉 dµ = −
∫

M

d

dt
f ◦ Φp,t (x)

∣∣∣∣
t=1

dµ(x)
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= lim
t→1−0

∫
M

Ft (x) dµ(x)

= lim
t→1−0

[ ∫
Wp,t

f ◦ Φp,t (x)

1 − t
dµ(x) −

∫
Wp,t

f (x)

1 − t
dµ(x)

]

and by BG(κ,NΩ) and f (x)/(1 − t) ≥ 0,

≥ lim inf
t→1−0

[∫
M

t sκ (t rp(x))NΩ−1f (x)

(1 − t)sκ (rp(x))NΩ−1
dµ(x) −

∫
M

f (x)

1 − t
dµ(x)

]

≥
∫

M

lim inf
t→1−0

t sκ(t rp(x))NΩ−1 − sκ(rp(x))NΩ−1

(1 − t)sκ (rp(x))NΩ−1
f (x) dµ(x)

= −
∫

M

d

dt
{t sκ(t rp(x))NΩ−1}

∣∣∣∣
t=1

f (x)

sκ(rp(x))NΩ−1 dµ(x)

=
∫

M

{−1 − (NΩ − 1)rp(x) cotκ(rp(x))} f (x) dµ(x) .

By ∇(rpf ) = f∇rp + rp∇f , we see that

〈rp∇rp,∇f 〉 = 〈∇rp,∇(rpf )〉 − f µ-a.e.

and therefore,

(4.3)
∫

M

〈∇rp,∇(rpf )〉 dµ ≥
∫

M

{−(NΩ − 1) cotκ(rp(x))} rp(x)f (x) dµ(x) .

We now give any nonnegative function f̂ ∈ C
Lip
0 (Ω \ {p}). Set f (x) := f̂ (x)/rp(x) for

x �= p and f (p) := 0. Then, f : M → R is a nonnegative function which belongs to
C

Lip
0 (Ω \ {p}). (4.3) implies (4.1) for f̂ . This completes the proof. �

In our paper [17], we proved for an Alexandrov space M the existence of the heat kernel
of M and the discreteness of the spectrum of the Laplacian (the generator of the Dirichlet
energy form) on a relatively compact domain in M . As applications to Theorem 4.1, we have
the following heat kernel and first eigenvalue comparison results, which generalize the results
of Cheeger-Yau [8] and Cheng [9].

B(p, r) denotes the metric ball centered at p and of radius r and Mn(κ) an n-dimensional
complete simply connected space form of curvature κ .

COROLLARY 4.3. Let M be an n-dimensional Alexandrov space and assume that Hn

satisfies BG(κ, n). Let Ω ⊂ M be an open subset containing B(p, r) for a number r > 0.
Denote by ht : Ω × Ω → R, t > 0, the heat kernel on Ω with Dirichlet boundary condition,
and by h̄t : B(p̄, r) × B(p̄, r) → R that on B(p̄, r) for a point p̄ ∈ Mn(κ). Then, for any
t > 0 and q ∈ B(p, r), we have

ht (p, q) ≥ h̄t (p̄, q̄) ,

where q̄ ∈ Mn(κ) is a point such that d(p̄, q̄) = d(p, q).
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COROLLARY 4.4. Let M be an n-dimensional Alexandrov space and r > 0 a real
number. Assume that Hn satisfies BG(κ, n). Denote by λ1(B(p, r)) the first eigenvalue of the
Laplacian on B(p, r) with Dirichlet boundary condition, and by λ1(B(p̄, r)) that on B(p̄, r)

for a point p̄ ∈ Mn(κ). Then we have

λ1(B(p, r)) ≤ λ1(B(p̄, r)) .

Once we have Theorem 4.1, the proofs of Corollaries 4.3 and 4.4 are the same as of
Renesse [43, Theorem II and Corollary 1]. We verify that the local (L1, 1)-volume regularity
is not needed in the proof of [43, Theorem II]. We also obtain a Brownian motion comparison
theorem in the same way as in [43].

5. Splitting theorem. We prove the Topological Splitting Theorem (Theorem 1.1)
following the idea of Cheeger-Gromoll [7]. However, we still need some extra lemmas to fit
the discussions of [7] to Alexandrov spaces.

Let M be a non-compact Alexandrov space and γ a ray in M , i.e., a geodesic defined on
[ 0,+∞ ) such that d(γ (s), γ (t)) = |s − t| for any s, t ≥ 0.

DEFINITION 5.1 (Busemann function). The Busemann function bγ : M → R for γ

is defined by
bγ (x) := lim

t→+∞{t − d(x, γ (t))} , x ∈ M .

It follows from the triangle inequality that t − d(x, γ (t)) is monotone non-decreasing in
t , so that the limit above exists. bγ is a 1-Lipschitz function.

DEFINITION 5.2 (Asymptotic relation). We say that a ray σ in M is asymptotic to γ

if there exist a sequence ti → +∞, i = 1, 2, . . . , and minimal geodesics σi : [ 0, li ] → M

with σi(li ) = γ (ti) such that σi converges to σ as i → ∞, (i.e., σi(t) → σ(t) for each t).

For any point in M , there is a ray asymptotic to γ from the point. Any subray of a ray
asymptotic to γ is asymptotic to γ . By the same proof as for Riemannian manifolds (cf. [38,
Theorem 3.8.2(3)]), for any ray σ asymptotic to γ , we have

(5.1) bγ ◦ σ(s) = s + bγ ◦ σ(0) for any s ≥ 0 .

LEMMA 5.3. Let f : M → R be a 1-Lipschitz function and u, v ∈ ΣpM two direc-
tions at a point p ∈ M . If the directional derivative of f to u is equal to 1 and that to v equal
to −1, then the angle between u and v is equal to π .

PROOF. There are points xt , yt ∈ M , t > 0, such that d(p, xt ) = d(p, yt ) = t for all
t > 0 and that the direction at p of pxt (resp. pyt ) converges to u (resp. v) as t → 0. The
assumption for f tells us that

lim
t→0

f (xt ) − f (p)

t
= 1 and lim

t→0

f (yt ) − f (p)

t
= −1 ,

which imply

lim
t→0

d(xt , yt )

t
≥ lim

t→0

f (xt ) − f (yt )

t
= 2 .



72 K. KUWAE AND T. SHIOYA

This completes the proof. �

LEMMA 5.4. Assume that a ray σ : [ 0, +∞ ) → M is asymptotic to a ray γ :
[ 0, +∞ ) → M , and let s be a given positive number.

(1) If σ(s) is a non-singular point, then bγ is differentiable at σ(s) and ∇bγ (σ (s)) is
tangent to σ .

(2) Among all rays emanating from σ(s), only the subray σ |[ s,+∞ ) of σ is asymptotic
to γ .

PROOF. (1) follows from the same discussion as for Riemannian manifolds (see [38,
Theorem 3.8.2]), in which we need the total differentiability of the distance function from a
compact subset of M . This is obtained in the same way as in [29, Theorem 3.5 and Lemma
4.1].

(2) Take any ray τ from σ(s) asymptotic to γ . By (5.1), the derivative of bγ ◦τ is equal
to 1. Therefore, using Lemma 5.3 yields that the angle between σ |[0,s] and τ is equal to π , so
that σ ′(s) = τ ′(0). This completes the proof. �

Note that if σ(s) is a non-singular point, then Lemma 5.4(1) implies (2).

LEMMA 5.5. Let γ be a straight line in M . Denote by b+ the Busemann function for
γ+ := γ |[ 0,+∞ ) and by b− that for γ− := γ |( −∞,0 ]. If b+ + b− ≡ 0 holds, then M is
covered by disjoint straight lines bi-asymptotic to γ . In particular, b−1+ (t) for all t ∈ R are
homeomorphic to each other and M is homeomorphic to b−1+ (t) × R.

PROOF. Take any point p ∈ M and a ray σ : [ 0,+∞ ) → M from p asymptotic to
γ+. For any s > 0, the directional derivatives of b+ to the two opposite directions at σ(s)

tangent to σ are −1 and 1, respectively. Since b− = −b+ and by Lemma 5.3, a ray from σ(s)

asymptotic to γ− is unique and contains σ([ 0, s ]). By the arbitrariness of s > 0, σ extends
to a straight line bi-asymptotic to γ . Namely, for a given point p ∈ M , we have a straight
line σp passing through p and bi-asymptotic to γ . By Lemma 5.4(2), any ray from a point
in σp asymptotic to γ± is a subray of σp. In particular, σp is unique (up to parameters) for a
given p, and for any two points p, q ∈ M the images of σp and σq either coincide or do not
intersect each other. M is covered by {σp}p∈M and this completes the proof. �

LEMMA 5.6. Let µ be a positive Radon measure on M with full support and let Ω ⊂
M be an open subset. Assume that µ satisfies BG(0, NΩ) on Ω for a real number NΩ ≥ 1.
Then, the Busemann function bγ for any ray γ in M is µ-subharmonic on Ω in the sense of
Definition 3.9.

PROOF. We take a sequence ti → +∞, i = 1, 2, . . . . Since rγ (ti), bγ are both Lips-
chitz, they are differentiable µ-a.e. on Ω by Proposition 3.5 and Remark 3.6. Let x ∈ Ω be
any non-singular point where rγ (ti ) and bγ are all differentiable. We have a unique minimal
geodesic σx,i from x to γ (ti ) and −∇rγ (ti)(x) is tangent to it. A ray σx from x asymp-
totic to γ is unique and ∇bγ (x) is tangent to it. Since σx,i → σx as i → ∞, we have
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−∇rγ (ti )(x) → ∇bγ (x). For any nonnegative function f ∈ C
Lip
0 (Ω), the dominated conver-

gence theorem and Laplacian Comparison Theorem (Theorem 4.1) show that∫
Ω

〈∇bγ ,∇f 〉 dµ = − lim
i→∞

∫
Ω

〈∇rγ (ti ),∇f 〉 dµ

≤ (NΩ − 1) lim
i→∞

∫
supp f

f

rγ (ti )

dµ = 0 ,

where supp f is the support of f . This completes the proof. �

PROOF OF THEOREM 1.1. Let Ω ⊂ M be any connected, relatively compact and open
subset. The assumption of the theorem yields that there is a number NΩ ≥ 1 such that µ

satisfies BG(0, NΩ) on a neighborhood of Ω̄ . By Lemma 5.6, b := b++b− is µ-subharmonic
on Ω , where b+ and b− are the Busemann functions as in Lemma 5.5 for a straight line γ in
M . It follows from the triangle inequality that b ≤ 0. We have b ◦ γ ≡ 0 by the definition of
b±. The maximum principle (Theorem 3.10) proves that b ≡ 0 on Ω if Ω intersects γ . By
the aribitrariness of such Ω , we have b ≡ 0 on M . Lemma 5.5 proves the theorem. �

PROOF OF COROLLARIES 1.3 AND 1.4. Let M , N and V be as in Corollary 1.4. In
Corollary 1.3, we assume that N = n and V = 1, in which case we have RicN,µ = Ric and
�µ = �+∇V = �. For the corollaries, it suffices to prove that if M contains a straight line,
then M is isometric to M ′ ×R and V is constant on {x}×R for each x ∈ M ′. This is because
if M ′ × R is a singular Riemannian space, then so is M ′.

We first assume that N < +∞. Since any geodesic joining two points in M \ SM

is contained in M \ SM (see Lemma 2.2), the condition RicN,µ ≥ 0 on M \ SM implies
BG(0, N) for µ on M \SM (see [1] and also [40, 24]). By Hn(SM) = 0, µ satisfies BG(0, N)

on M (an easy discussion proves that for any convergent sequence pi → p∞ in M , BG(0, N)

for p = pi implies BG(0, N) for p = p∞). We then apply Theorem 1.1 to M and µ for
NΩ = N . In the proof of the theorem, we obtain that b+ and b− are both µ-subharmonic and
b++b− = 0. Therefore, b± is µ-harmonic, i.e., a weak solution of �µb± = 0 on M \SM . By
the regularity theorem of elliptic differential equations, b+ is of C2 on M \ SM and satisfies
�µb+ = 0 pointwise on M \ SM . We use the generalized Weitzenböck formula for RicN,µ:

−�µ

(‖∇f ‖2

2

)
+ 〈∇�µf,∇f 〉

= (�µf )2

N
+ RicN,µ(∇f,∇f ) +

∥∥∥∥Hess f + �f

n
In

∥∥∥∥
2

HS

+ n

N(N − n)

(
−N − n

n
�f + 〈∇V,∇f 〉

)2

for any C2 function f : M \ SM → R (see [42, (14.46)]), where In denotes the identity
operator and ‖ · ‖HS the Hilbert-Schmidt norm. Since ‖∇b+‖ = 1 and RicN,µ(∇b+,∇b+) ≥
0, putting f := b+ in the above formula yields that Hess b+ = −(�b+/n)In and ((N −
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n)/n)�b+ = 〈∇V,∇b+〉. Since

0 = �µb+ = �b+ + 〈∇V,∇b+〉 = N

n
�b+ ,

we have Hess b+ = 0 and 〈∇V,∇b+〉 = 0 on M \ SM . Thus, b+ is a linear function along
any geodesic in M \SM . Since any geodesic segments in M can be approximated by geodesic
segments in M\SM , b+ is linear along any geodesic in M . Since M is covered by straight lines
bi-asymptotic to γ , b+ is averaged D2 in the sense of [25]. The isometric splitting follows
from [25, Theorem A]. Since 〈∇V,∇b+〉 = 0 on M \ SM , V is constant along each straight
line bi-asymptotic to γ . This proves the corollaries in the case of N < +∞.

We next consider the case where N = +∞. By Ric∞,µ ≥ 0, the same discussion as in
[22], [11, (1)] and [46, (2.21)] leads to

�µrp(x) ≥ −n − 1

rp(x)
+ 2V (x)

rp(x)
− 2

rp(x)2

∫ rp(x)

0
V (γ (s)) ds

≥ −n − 1 + 2 supM V − 2V (x)

rp(x)

for any p ∈ M and x ∈ M\(SM ∪Cutp∪{p}), where γ is a unique unit speed geodesic joining
p to x. Therefore, for a given compact subset Ω ⊂ M , setting NΩ := n+2 supM V −2 infΩ V ,
we have

�µrp ≥ −NΩ − 1

rp

on Ω \ (SM ∪ Cutp ∪ {p}), which together with a standard discussion (cf. the proof of [27,
Theorem 3.2]) yields BG(0, NΩ) on Ω for µ. (Also, we directly obtain the Laplacian compar-
ison (Theorem 4.1) as was stated under (4.2)). By applying Theorem 1.1, M splits as M ′ × R

homeomorphically. We have �µb+ = 0 on M \ SM . Apply the generalized Weitzenböck
formula for Ric∞,µ:

−�µ

(‖∇f ‖2

2

)
+ 〈∇�µf,∇f 〉 = Ric∞,µ(∇f,∇f ) + ‖ Hess f ‖2

HS .

By setting f := b+, the left-hand side vanishes, so that, by Ric∞,µ ≥ 0, we have
Ric∞,µ(∇b+,∇b+) = 0 and Hess b+ = 0 on M \ SM . In the same way as in the case of
N < +∞, we obtain that M is isometric to M ′ × R. Since Ric(∇b+,∇b+) = 0, we have

0 = Ric∞,µ(∇b+,∇b+) = Hess V (∇b+,∇b+) = ∂2

∂t2
V

in the coordinate (x, t) ∈ M ′ × R = M , so that V is linear along each line {x} × R, x ∈ M ′.
Since V is bounded, it is constant along each line {x} × R, x ∈ M ′. �
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