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A GROUP-THEORETIC CHARACTERIZATION OF THE DIRECT
PRODUCT OF A BALL AND PUNCTURED PLANES
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Abstract. Employing the same technique as in our previous papers, we establish an
intrinsic characterization of the direct product of a complex Euclidean ball and punctured
planes in the category of Stein manifolds from the viewpoint of holomorphic automorphism
group.

1. Introduction. This is a continuation of our previous papers [1, 5], and the same
terminology and notation will be used.

Let M be a connected complex manifold and let Aut(M) be the group of all holomorphic
automorphisms of M equipped with the compact-open topology. Then one of the fundamen-
tal problems in complex geometric analysis is to determine the complex analytic structure
of M by the topological group structure of Aut(M). Of course, this is impossible without
any further assumptions on M , since there exist many domains in Cn that are not biholomor-
phically equivalent although their groups of automorphisms are isomorphic as topological
groups. Moreover, it seems worth noting here that Aut(M) cannot have the structure of a Lie
group, in general. Indeed, consider the holomorphic automorphism group Aut(Cn) of Cn with
n ≥ 2, for example. Then it is terribly big and cannot have the structure of a Lie group with re-
spect to the compact-open topology. However, there already exist several articles solving the
problem affirmatively. For instance, Byun-Kodama-Shimizu [1], Isaev [2], Isaev-Kruzhilin
[3] and Kodama-Shimizu [4, 5, 6] investigated the problem in the case when the manifolds
M are some special domains in Cn, and characterized such domains by their holomorphic
automorphism groups. In particular, in the previous paper [1], by looking at some topolog-
ical subgroups with Lie group structures of Aut(Bk × Cl ), we succeeded in characterizing
the space Bk × Cl from the viewpoint of the holomorphic automorphism group, where Bk

denotes the open unit ball in Ck . In view of this, it would be naturally expected that the same
conclusion is also valid for the space Bk × (C∗)l , where C∗ = C \ {0} the punctured plane.
Recall that, in the proof of our characterization theorem of Bk × C l in [1], the crucial fact is
that Bk ×Cl admits an effective continuous action of the direct product U(k)×U(l) of unitary
groups by holomorphic automorphisms and this fact simplified many arguments especially in
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the case where k + l ≥ 3. But, Bk × (C∗)l no longer admits such an action of U(k) × U(l),
except when l = 1. This causes many new difficulties to characterize the space Bk × (C∗)l .

The main purpose of this paper is to overcome these difficulties and establish the follow-
ing group-theoretic characterization of the space Bk × (C∗)l :

THEOREM. Let M be a connected Stein manifold of dimension n. Assume that Aut(M)

is isomorphic to Aut(Bk ×(C∗)n−k) as topological groups for some integer k with 0 ≤ k ≤ n.
Then M is biholomorphically equivalent to Bk × (C∗)n−k .

In the special case of n = 2 and k = 1, this was already verified in [8] by using the
same method as in Section 3.2 of this paper. Moreover, when k = 0, our result is a special
case of [5, Theorem 2]. On the other hand, in the case of k = n, this was shown in [1] and
[2]. Therefore, taking these into account, we will carry out the proof of Theorem in the case
where 0 < k < n.

The main idea of the proof of Theorem is as follows. Firstly, we realize M as a Rein-
hardt domain D in Cn by using the assumption of Theorem. Since M is a Stein manifold,
the Reinhardt domain D is pseudoconvex. Secondly, using the pseudoconvexity of D, we
list up all the possible cases where Aut(D) is isomorphic to Aut(Bk × (C∗)n−k) as topo-
logical groups. We essentially use here the assumption that M is Stein, because, if D is
not necessarily pseudoconvex, then we cannot classify D explicitly in contrast with the ar-
gument in [5], where M is only holomorphically separable and admitting a smooth enve-
lope of holomorphy. Finally, by comparing carefully the structure of suitable subgroups of
Aut(Bk × (C∗)n−k) and Aut(D) that are isomorphic to each other under the given isomor-
phism Φ : Aut(Bk × (C∗)n−k) → Aut(D), we eliminate all the possibilities except for
the case where D is biholomorphically equivalent to the model domain Bk × (C∗)n−k . As
a typical example of this, we illustrate the following: Let Γ be a topological subgroup of
Aut(Bk × (C∗)n−k) and put Λ = Φ(Γ ). Let C(Γ ) be the centralizer of Γ and Z(Γ ) its com-
mutator group in Aut(Bk × (C∗)n−k). Similarly, we denote by C(Λ) and Z(Λ) the subgroups
of Aut(D) relative to Λ. Hence, Z(Γ ) and Z(Λ) are isomorphic under the isomorphism
Φ. With these notations, if one of the cases where D is not biholomorphically equivalent to
Bk ×(C∗)n−k occurs, then one can find a topological subgroup Γ of Aut(Bk ×(C∗)n−k) such
that Z(Γ ) is non-abelian, while Z(Λ) is abelian, a contradiction. Making use of these kind of
arguments, we obtain the conclusion of Theorem.

Combining Riemann’s extension theorem with the proof of [1, Corollary], we obtain the
following fundamental fact:

COROLLARY. If two pairs (k, l) and (k′, l′) of non-negative integers do not coincide,
then the groups Aut(Bk × (C∗)l) and Aut(Bk′ × (C∗)l′) are not isomorphic as topological
groups.

This paper is organized as follows. In Section 2, we collect some preliminary facts.
In particular, two main tools for our study are given. One is a special subgroup G(D) of
GL(n,Z) which, in some sense, measures the complexity of the algebraic automorphism
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group Autalg(D) of a given Reinhardt domain D, and the other is a tool for the standardization
of compact group actions on complex manifolds. After that, employing the same techniques
as in the previous papers [1, 5], we prove Theorem in Section 3.

2. Preliminaries. Throughout this paper, we use the following notation: For the
given integer k with 0 ≤ k ≤ n and a point (z1, . . . , zn) ∈ Cn, we set

l = n − k , Ω∗
k,l = Bk × (C∗)l , z = (z1, . . . , zk) ,

z′ = (z2, . . . , zk) and w = (w1, . . . , wl) = (zk+1, . . . , zn) .

For non-negative integers p, q , positive integers r, s, and a ring R, we denote by

Xp,q = Cp × (C∗)q , X� = X1,0 or X0,1 , and

M(r, s, R) the set of all r × s matrices over R .

Let D be an arbitrary Reinhardt domain in Cn. Then we have important topological
subgroups T (D) and Π(D) of Aut(D) induced by the standard actions of the n-dimensional
torus T n = (U(1))n on Cn and the multiplicative group (C∗)n on Cn respectively, and also
the topological subgroup Autalg(D) of Aut(D) consisting of all elements ϕ of Aut(D) such
that each component of ϕ is given by a Laurent monomial, that is, setting ϕ = (ϕ1, . . . , ϕn)

by coordinates, ϕi are given by

ϕi(z) = αiz
ai1
1 · · · zain

n , 1 ≤ i ≤ n ,(2.1)

where (aij ) ∈ GL(n,Z) and (αi) ∈ (C∗)n. We call Autalg(D) the algebraic automorphism
group of D and each element of Autalg(D) is called an algebraic automorphism of D. It is
known [4] that these groups are related in the following manner: The centralizer of the torus
T (D) in Aut(D) is given by Π(D), while the normalizer of T (D) in Aut(D) is given by
Autalg(D).

Here consider the mapping 	 : Autalg(D) → GL(n,Z) that sends an element ϕ of
Autalg(D) written in the form (2.1) into the element (aij ) ∈ GL(n,Z). Then it is easy to
see that 	 is a group homomorphism with ker 	 = Π(D); and hence it induces a group
isomorphism

Autalg(D)/Π(D)
∼=−→ G(D) := 	(Autalg(D)) ⊂ GL(n,Z) .(2.2)

More precisely, combining this with the proof of [5, p. 660, Sublemma], one can see the
following:

LEMMA 2.1. Let D1 and D2 be Reinhardt domains in Cn. Assume that there exists
a topological group isomorphism Ψ : Aut(D1) → Aut(D2) such that Ψ (T (D1)) = T (D2).
Then Ψ induces a group isomorphism Ψ̃ : G(D1) → G(D2) between the groups G(D1) and
G(D2). Moreover, there exists an element L ∈ GL(n,Z) such that Ψ̃ is given by Ψ̃ (N) =
LNL−1 for N ∈ G(D1).

The following standardization of compact group actions on complex manifolds is impor-
tant for our proof:
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LEMMA 2.2 (Generalized Standardization Theorem [7]). Let M be a connected com-
plex manifold of dimension n that is holomorphically separable and admits a smooth envelope
of holomorphy and let K be a connected compact Lie group of rank n. Assume that an in-
jective continuous group homomorphism ρ of K into Aut(M) is given. Then there exists a
biholomorphic mapping F of M onto a Reinhardt domain D in Cn such that

Fρ(K)F−1 = U(n1) × · · · × U(ns) ⊂ Aut(D) ,

where each U(nj ) is the unitary group of degree nj and
∑s

j=1 nj = n.

Now let us consider the special case where D is our model space Ω∗
k,l = Bk × (C∗)l .

Then, concerning the algebraic automorphism group of Ω∗
k,l , we can see the following fact

(cf. [9, Section 4]):

LEMMA 2.3. The group Autalg(Ω
∗
k,l) consists of all elements having the form

(z,w) 	→ (α1zσ(1), . . . , αkzσ(k), β1w
a11
1 · · · wa1l

l , . . . , βlw
al1
1 · · · wall

l )

where (α1, . . . , αk) ∈ T k, (β1, . . . , βl) ∈ (C∗)l, σ are permutations of {1, . . . , k} and
(aij ) ∈ GL(l,Z). In particular, the group G(Ω∗

k,l) is isomorphic to the direct product Sk ×
GL(l,Z), where Sk is the linear symmetric group of degree k.

We finish this section by the following fact, which can be proved by direct computations:

LEMMA 2.4. (1) Let P ∈ M(r, n,Z), Q ∈ M(n, s,Z) and assume that PAQ = 0
for all A ∈ GL(n,Z). If P 
= 0, then we have Q = 0.

(2) Let R, S ∈ M(1, t,Z) and assume that RNS = 0 for all N ∈ M(t, 1,Z). If
R 
= 0, then we have S = 0.

3. Proof of Theorem. Throughout this section, we write Ω∗ = Ω∗
k,l for the sake of

simplicity.
As mentioned in the introduction, we shall prove Theorem in the case where 0 < k =

n − l < n. Moreover, once the proof of Theorem for l ≥ 2 is accomplished, then that for
l = 1 follows by a simple modification of it. Indeed, when l = 1, we have only one vector
q1 in (3.5) below, and there are only two possibilities: q1 = 0 or q1 
= 0. Hence, applying
(a properly adjusted form of) the method used in CASES I or II in the proof for l ≥ 2, one
may obtain the proof required here. Therefore, we have only to prove Theorem under the
assumption that k ≥ 1 and l ≥ 2. The proof will be divided into two cases where k ≥ 2 and
k = 1, and will be carried out in the following two subsections.

Now let M be a connected Stein manifold of dimension n, and assume that there exists
a topological group isomorphism Φ : Aut(Ω∗) → Aut(M). Note that T n ⊂ U(k) × T l ⊂
Aut(Ω∗). Hence, by Lemma 2.2 we may assume that M is a Reinhardt domain D in Cn and
we have a topological group isomorphism Φ : Aut(Ω∗) → Aut(D) such that Φ(T (Ω∗)) =
T (D). It then follows from Lemma 2.1 that the groups G(Ω∗) and G(D) defined in (2.2)
are isomorphic. Moreover, by the same reasoning as in the proof of [5, Theorem 1], we may
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assume that

Φ(U(k) × T l) = U(k) × T l , and so Φ(SU(k)) = SU(k)

under the identification given by SU(k) = SU(k) × {(1, . . . , 1)} ⊂ U(k) × T l .
Now, notice that the centralizer CΩ∗(U(k) × T l) of U(k) × T l in Aut(Ω∗) is given by

{γEk ; |γ | = 1} × (C∗)l and it is isomorphic to the centralizer CD(U(k) × T l) ⊂ {γEk ; γ ∈
C∗} × (C∗)l of U(k) × T l in Aut(D) under the isomorphism Φ. Therefore Φ induces a
continuous topological group isomorphism, denoted again by Φ,

Φ : (U(k) × T l)CΩ∗(U(k) × T l) = U(k) × (C∗)l → (U(k) × T l)CD(U(k) × T l) .(3.1)

For later purpose, we here look into this isomorphism more closely. To this end, recall the
description of the isomorphism Φ of U(k) × T l onto itself given in [5, (2.3)]. Then, by the
same reasoning as in that paper, one can choose a (2l + 2) × (2l + 1) real matrix

(
M1 M2

0 M3

)
=




a b1 · · · bl r1 · · · rl

c1 d11 · · · d1l p11 · · · p1l

...
...

...
...

...

cl dl1 · · · dll pl1 · · · pll

0 . . . . . . 0 s1 · · · sl
...

... q11 · · · q1l

...
...

...
...

0 . . . . . . 0 ql1 · · · qll




,(3.2)

where M1 ∈ GL(l + 1,Z), M2, M3 ∈ M(l + 1, l,R) with det(dij ) 
= 0, rank M3 = l,
such that the isomorphism Φ in (3.1) can be expressed as follows: For an arbitrary element
g ∈ U(k) × (C∗)l written in the form

g = (
e2πiθA, e2πi(θ1+iφ1), . . . , e2πi(θl+iφl )

)
(3.3)

with A ∈ SU(k) and θ, θj , φj ∈ R, 1 ≤ j ≤ l, the isomorphism Φ is given by

Φ(g) = (
e

2πi{(aθ+∑l
j=1 bj θj )+∑l

j=1(rj +isj )φj }
Φs(A) ,

e
2πi{(c1θ+∑l

j=1 d1j θj )+∑l
j=1(p1j+iq1j )φj }

, . . . ,

e
2πi{(clθ+∑l

j=1 dlj θj )+∑l
j=1(plj+iqlj )φj })

,

(3.4)

where Φs is the restriction of Φ to SU(k) and, without loss of generality, we may assume that
Φs(A) = A or Φs(A) = Ā for every A ∈ SU(k). Note that the expression in the form (3.3)
of a given element g ∈ U(k)× (C∗)l is not unique. However, the right-hand side of (3.4) does
not depend on the choice of representation of g as in (3.3) (cf. [5]).

The following vectors will be important in our proof:

s = (s1, . . . , sl) , qj = (qj1, . . . , qjl) , 1 ≤ j ≤ l ,(3.5)

where si and qjk are the components of the matrix M3 in (3.2).



490 J. BYUN, A. KODAMA AND S. SHIMIZU

3.1. Proof of Theorem in the case k ≥ 2. We now proceed to define the following
subgroup Γ of Aut(Ω∗) and consider its image Λ := Φ(Γ ) under Φ:

Γ = {
(Ek, e

−2πφ1, . . . , e−2πφl ) ; φj ∈ R, 1 ≤ j ≤ l
} ⊂ U(k) × (C∗)l ,

Λ = {(
e

2πi
∑

j (rj+isj )φj Ek, e
2πi

∑
j (p1j +iq1j )φj , . . . ,

e
2πi

∑
j (plj+iqlj )φj

) ; φj ∈ R, 1 ≤ j ≤ l
} ⊂ GL(k,C) × (C∗)l .

Since D is a pseudoconvex Reinhardt domain in Cn and since dim Π(D) =
dim Π(Ω∗) = k + 2l < 2n, we see that D ∩ (C∗)n is a proper subset of (C∗)n. Thus
there exists a point p0 = (z0, w

0
1, . . . , w

0
l ) ∈ ∂D ∩ (C∗)n. Since the subgroup Λ of Aut(D)

can be regarded as a subgroup of Aut(Cn), the orbit Λ·p0 of Λ passing through the point p0

must lie in the boundary ∂D. Take a point (z,w) ∈ Λ ·p0 arbitrarily. Then there is a point
φ = (φ1, . . . , φl) ∈ Rl such that

(‖z‖, |w1|, . . . , |wl |) = (e−2πs·φ‖z0‖, e−2πq1·φ |w0
1|, . . . , e−2πql ·φ|w0

l |) ,(3.6)

where a · b is the Euclidean inner product of a, b ∈ Rl and s, qj are the vectors appearing in
(3.5). We now have two cases to consider.

CASE I. {q1, . . . , ql} is linearly dependent in Rl .
Since rank M3 = l by (3.2), we may assume that {q1, . . . , ql−1} is linearly independent,

so that ql can be written uniquely as

ql = λ1q1 + · · · + λl−1ql−1 with λj ∈ R , 1 ≤ j ≤ l − 1 .

Thus |w1|−λ1 · · · |wl−1|−λl−1 |wl | = |w0
1|−λ1 · · · |w0

l−1|−λl−1 |w0
l | on Λ·p0 by (3.6).

LEMMA 3.1. CASE I does not occur.

PROOF. Assuming that this case occurs, we shall derive a contradiction. We have now
two cases to consider.

Case (I-1). ql = 0: For each φ ∈ Rl and for each p0 ∈ ∂D ∩ (C∗)n, we have

‖z‖ = e−2πs·φ‖z0‖ , |wj | = e−2πqj ·φ |w0
j | , 1 ≤ j ≤ l − 1 , |wl| = |w0

l | .
Moreover, {s, q1, . . . , ql−1} is lnearly independent and D ∩ {z = 0} 
= ∅, since D is a
pseudoconvex Reinhardt domain and D is invariant under the action of U(k)×T l with k ≥ 2.
Thus, after a linear change of coordinates, if necessary, D may be described as D = Ck ×
Xa,b × W , where 0 ≤ a, b ∈ Z, a + b = l − 1, and W is one of the domains

{|wl| < 1} , {|wl| > 1} , {0 < |wl | < 1} , and {r < |wl | < 1} (0 < r < 1)

in C. However this is impossible. Indeed, observe that the centralizer Π(Ω∗) of T n in
Aut(Ω∗) is isomorphic to the real Lie group T k × (C∗)l of dimension k + 2l. On the other
hand, the centralizer Π(D) of T n in Aut(D) is isomorphic to the Lie group (C∗)n−1 × T 1 of
dimension 2k +2l −1 in any cases. Since these groups are isomorphic, we have k = 1, which
contradicts our assumption k ≥ 2, as desired.
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Case (I-2). ql 
= 0: After relabeling the indices, if necessary, we may assume that
λ1 · · · λs 
= 0, λs+1 = · · · = λl−1 = 0, so that D can be expressed as

D = Ck × Xa,b × Y

for

Y =




{|w1|−λ1 · · · |ws |−λs |wl| < 1, wj ,wl ∈ X�} ,

{|w1|−λ1 · · · |ws |−λs |wl| > 1, wj ∈ X�, wl ∈ C∗} ,

{r < |w1|−λ1 · · · |ws |−λs |wl| < 1, wj , wl ∈ C∗} (0 < r < 1) ,

where 0 ≤ a, b ∈ Z, a +b = l − s −1. (Recall that X� = C or C∗.) This is also impossible.
Indeed, notice that Π(D) is isomorphic to the Lie group

(C∗)k+l−s−1 × {(γ1, . . . , γs, γl) ∈ (C∗)s+1 ; |γ1|−λ1 · · · |γs |−λs |γl| = 1}
of dimension 2k + 2l − 1. Then, since dim Π(Ω∗) = k + 2l as above, we have k = 1,
contradicting our assumption k ≥ 2.

As a result, we have shown that CASE I does not occur. �

CASE II. {q1, . . . , ql} is linearly independent in Rl .
In this case, the vector s can be written uniquely in the form

s = λ1q1 + · · · + λlql with λj ∈ R , 1 ≤ j ≤ l .

Then, by the same procedure as in CASE I, one can see that ‖z‖|w1|−λ1 · · · |wl |−λl is constant
on each orbit Λ· p0 in ∂D. We have again two cases to consider.

Case (II-1). s = 0: By repeating the same arguement as in CASE I, we may assume
that D has the form

D = {‖z‖ < 1} × Xa,b for some 0 ≤ a, b ∈ Z, a + b = l .(3.7)

LEMMA 3.2. In Case (II-1), D is biholomorphically equivalent to Ω∗.

PROOF. It suffices to show that a = 0 in (3.7). First we assert that b > 0. Indeed,
assume not. Then D = {‖z‖ < 1}× C l and so G(D) = Sk × Sl is a finite group. On the other
hand, G(Ω∗) = Sk × GL(l,Z) is infinite. Since G(D) is isomorphic to G(Ω∗) by Lemma
2.1, this is a contradiction. Thus we have b > 0, as asserted.

Next, assume that a > 0. Then, by using obvious notation, the groups G(D) and G(Ω∗)
can be described as

G(D) =

Sk 0 0

0 Sa M(a, b,Z)

0 0 GL(b,Z)


 and G(Ω∗) =

(
Sk 0
0 GL(l,Z)

)
.

Moreover, by Lemma 2.1 one can find an element L ∈ GL(n,Z) such that the group isomor-
phism Φ̃ : G(Ω∗) → G(D) is given by Φ̃(N) = LNL−1 for N ∈ G(Ω∗). Thus, putting
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L = (
P Q
R S

)
and L−1 = (

P ∗ Q∗
R∗ S∗

)
, where P,P ∗ ∈ M(k, k,Z),Q,Q∗ ∈ M(k, l,Z), R,R∗ ∈

M(l, k,Z) and S, S∗ ∈ M(l, l,Z), we see that

Φ̃

((
A 0
0 B

))
=

(
PAP ∗ + QBR∗ PAQ∗ + QBS∗
RAP ∗ + SBR∗ RAQ∗ + SBS∗

)
(3.8)

belongs to G(D) for every A ∈ Sk and for every B ∈ GL(l,Z). Hence we have PAQ∗ =
0,QBS∗ = 0 for all A ∈ Sk and for all B ∈ GL(l,Z).

If Q = 0, we have Q∗ = 0 and S∗ = S−1. Thus it follows from (3.8) that(
Sa M(a, b,Z)

0 GL(b,Z)

)
= SGL(l,Z)S−1 = GL(l,Z) .

If Q 
= 0, we have S∗ = 0 by Lemma 2.4. Thus, (3.8) implies that(
Sa M(a, b,Z)

0 GL(b,Z)

)
= {RAQ∗ ; A ∈ Sk} .

Therefore, in any cases we arrive at a contradiction, since a > 0 and b > 0.
As a result, we conclude that a = 0, as desired. �

Case (II-2). s 
= 0: We wish to prove that this case does not occur. Once this is done,
our proof of Theorem for k ≥ 2 follows from Lemmas 3.1 and 3.2.

Renaming the indices if necessary, we may assume that

λ1 · · ·λs 
= 0 , λs+1 = · · · = λl = 0 for some 1 ≤ s ≤ l .

After a change of coordinates by an algebraic automorphism, there exist only three possibili-
ties as follows:

(A.1) D ∩ (C∗)n = {‖z‖|w1|−λ1 · · · |ws |−λs < 1} ∩ (C∗)n,
(A.2) D ∩ (C∗)n = {‖z‖|w1|−λ1 · · · |ws |−λs > 1} ∩ (C∗)n,
(A.3) D ∩ (C∗)n = {r < ‖z‖|w1|−λ1 · · · |ws |−λs < 1} ∩ (C∗)n (0 < r < 1).

Since D ∩ {z = 0} 
= ∅, the cases (A.2) and (A.3) do not occur. So it is enough to consider
only the case (A.1). In this case, if λj0 > 0 for a j0, then D ∩ {wj0 = 0} = ∅. Indeed,
assume that there exists a point p = (z∗, w∗

1 , . . . , w∗
l ) ∈ D with w∗

j0
= 0. By taking a

suitable nearby point if necessary, we may assume that z∗ 
= 0, w∗
j 
= 0 for all j 
= j0.

Then, taking the limit (z,w) → p through D ∩ (C∗)n, we obtain a contradiction: 1 ≥
lim(z,w)→p ‖z‖|w1|−λ1 · · · |ws |−λs = ∞. Therefore, after a change of coordinates induced by
the correspondence wj → w±1

j , 1 ≤ j ≤ s , if necessary, one may assume that D is of the
form

D = {(z,w1, . . . , wl) ; ‖z‖|w1|−λ1 · · · |ws |−λs < 1, z ∈ Ck, wj ∈ X�}(3.9)

with λj < 0, 1 ≤ j ≤ s.

LEMMA 3.3. In (3.9), all λj ’s are rational numbers.

PROOF. Assuming that λj0 /∈ Q for some j0, we shall show that the commutator group
ZΩ∗(Γ ) of the centralizer CΩ∗(Γ ) of Γ in Aut(Ω∗) is non-abelian, while the commutator
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group ZD(Λ) of the centralizer CD(Λ) of Λ in Aut(D) is abelian. Once this is verified, we
arrive at a contradiction, since ZΩ∗(Γ ) is isomorphic to ZD(Λ).

Now, put H(z,w) = (h(z),w) for h ∈ Aut(Bk). Then H ∈ CΩ∗(Γ ); accordingly, one
may regard Aut(Bk) as a subgroup of CΩ∗(Γ ). This, together with the fact that Aut(Bk) is a
simple Lie group, guarantees that ZΩ∗(Γ ) is a non-abelian group containing Aut(Bk) as its
subgroup.

Let us now study the structure of ZD(Λ). For this purpose, take an arbitrary element
F = (F1, . . . , Fn) ∈ CD(Λ) and let Fa(z,w) = ∑

Aµνz
µwν be the Laurent expansion of

Fa (1 ≤ a ≤ k) on D. Then

e2πi
∑

j (rj+isj )φj Fa(z,w) = Fa

(
e2πi

∑
j (rj+isj )φj z1, . . . ,

e
2πi

∑
j (rj+isj )φj zk, e

2πi
∑

j (p1j+iq1j )φj w1, . . . , e
2πi

∑
j (plj+iqlj )φj wl

)
for all φj ∈ R. Therefore, whenever Aµν 
= 0, we have

(|µ| − 1)

l∑
j=1

(rj + isj )φj + ν1

l∑
j=1

(p1j + iq1j )φj + · · · + νl

l∑
j=1

(plj + iqlj )φj = 0

for all φj ∈ R. Hence

(|µ| − 1)rj + ν1p1j + · · · + νlplj = 0 , (|µ| − 1)sj + ν1q1j + · · · + νlqlj = 0

for all j . In particular, it follows from the second equality that (|µ|−1)s+ν1q1 +· · ·+νlql =
0. Since {q1, . . . , ql} is linearly independent and s = λ1q1 + · · · + λsqs , this means that
(|µ| − 1)λj + νj = 0, 1 ≤ j ≤ s, and νj = 0, s + 1 ≤ j ≤ l. Consequently, |µ| = 1
and νj = 0 for all j , since λj0 /∈ Q. Therefore Fa has the form Fa(z,w) = ∑k

j=1 αaj zj with
αaj ∈ C.

Analogously, one can show that the component function Fk+b (1 ≤ b ≤ l) can be
written in the form Fk+b(z,w) = γbwb with γb ∈ C∗.

Therefore each F ∈ CD(Λ) has the form F(z,w) = (Az, γ1w1, . . . , γlwl), where A ∈
GL(k,C) and γj ∈ C∗ (think of z as column vector), and hence, ZD(Λ) can be expressed as
ZD(Λ) = {(z,w) 	→ (Az,w) ; A ∈ G} with a certain closed subgroup G of SL(k,C). More
strongly, we here claim that G is contained in SU(k) and so ZD(Λ) is a real Lie group of
dimension ≤ k2 − 1. Once this is shown, we obtain a contradiction: k2 − 1 ≥ dim ZD(Λ) =
dim ZΩ∗(Γ ) ≥ dim Aut(Bk) = k2 + 2k. Thus, to complete the proof of Lemma 3.3, we
have only to prove that G is a subgroup of SU(k). To this end, choose an element F(z,w) =
(Az,w) of ZD(Λ) arbitrarily and take a point (z0, w0) = (z0, w

0
1, . . . , w

0
l ) ∈ ∂D ∩ (C∗)n.

Then (‖z0‖u,w0) ∈ ∂D or (A(‖z0‖u),w0) ∈ ∂D for every u ∈ Ck, ‖u‖ = 1, so that
‖Au‖ = ‖A(‖z0‖u)‖|w0

1|−λ1 · · · |w0
s |−λs = 1. This means that A ∈ U(k) and hence G is a

subgroup of SU(k), as asserted. �

Our domain D is now of the form

D = {(z,w1, . . . , wl) ; ‖z‖|w1|−λ1 · · · |ws |−λs < 1, z ∈ Ck, wj ∈ X�} ,(3.10)

where λj ∈ Q and λj < 0 for every 1 ≤ j ≤ s.
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LEMMA 3.4. In (3.10), if all λj ’s are integers and D ∩ {w1 · · · ws = 0} = ∅, then D

is biholomorphically equivalent to Ω∗.

PROOF. Consider the algebraic automorphism ϕ(z,w) = (z∗, w∗) defined by

(z∗
1, . . . , z

∗
k , w

∗) = (z1w
−λ1
1 · · · w−λs

s , . . . , zkw
−λ1
1 · · ·w−λs

s , w) .

Note that D is now contained in Ck × (C∗)s × Cl−s , the domain of ϕ. Thus it gives a
biholomorphic equivalence between D and ϕ(D) = {‖z∗‖ < 1}×Xa,b for some non-negative
integers a, b. Hence, D is biholomorphically equivalent to Ω∗ by Lemma 3.2. �

Thanks to Lemma 3.4, we may assume that D has the form as in (3.10) and furthermore
D satisfies the following:

(λ1, . . . , λs) /∈ Zs or D ∩ {w1 · · · ws = 0} 
= ∅ .(3.11)

As mentioned before, in order to complete the proof of Theorem for k ≥ 2, we have only
to verify the following:

LEMMA 3.5. Case (II-2) does not occur.

For every subgroup G of Aut(Ω∗), we know that ZD(Φ(G)) and ZΩ∗(G) are isomor-
phic. Thus, in what follows we assume that Case (II-2) occurs, and we shall derive a contra-
diction by showing that the group ZD(Φ(Γ )) is abelian, while the group ZΩ∗(Γ ) is not, for a
certain subgroup Γ of Aut(Ω∗). Our proof of this will be divided into two cases where k ≥ 3
and k = 2.

PROOF OF LEMMA 3.5 FOR k ≥ 3. In this case, under the identification
given by

SU(k − 1) =
{(

1 0
0 A

)
; A ∈ SU(k − 1)

}
⊂ SU(k) ,

we consider the following subgroup Γ of Aut(Ω∗) and its image Λ = Φ(Γ ):

Γ = {
(A, e−2πφ1 , . . . , e−2πφl ) ; A ∈ SU(k − 1), φj ∈ R, 1 ≤ j ≤ l

}
,

Λ = {(
e

2πi
∑

j (rj+isj )φjA, e
2πi

∑
j (p1j +iq1j )φj , . . . ,

e
2πi

∑
j (plj+iqlj )φj

) ; A ∈ SU(k − 1), φj ∈ R, 1 ≤ j ≤ l
}
.

SUBLEMMA 3.6. The group ZΩ∗(Γ ) is a non-abelian group.

PROOF. Let ∆ = {u ∈ C ; |u| < 1} be the unit disc in C. Then, since every α ∈ Aut(∆)

extends to an element α̃ ∈ Aut(Ω∗) written in the form α̃(z,w) = (α(z1), β(z1)z
′, w),

(z,w) = (z1, z
′, w) ∈ Ω∗, the group CΩ∗(Γ ) contains a subgroup G isomorphic to the

simple Lie group Aut(∆). Thus, the commutator group ZΩ∗(Γ ) of CΩ∗(Γ ) also contains G.
Consequently, it is non-abelian, as desired. �

SUBLEMMA 3.7. The group ZD(Λ) is an abelian group.
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PROOF. Take an element F = (F1, . . . , Fn) ∈ CD(Λ) arbitrarily, and notice that
Φs(SU(k − 1)) = SU(k − 1). We then have

e
2πi

∑
j (rj+isj )φj F1(z,w) = F1

(
e

2πi
∑

j (rj+isj )φj z1 ,

e
2πi

∑
j (rj+isj )φjAz′, e2πi

∑
j (p1j +iq1j )φj w1, . . . , e

2πi
∑

j (plj+iqlj )φj wl

)
for all φj ∈ R and for all A ∈ SU(k−1). Since k−1 ≥ 2, this implies that F1 does not depend
on the variable z′. So F1 has the form F1(z,w) = F1(z1, w). Let F1(z1, w) = ∑

Aµνz
µ
1 wν

be the Laurent expansion of F1 and let Aµν 
= 0. Then

(µ − 1)

l∑
j=1

(rj + isj )φj + ν1

l∑
j=1

(p1j + iq1j )φj + · · · + νl

l∑
j=1

(plj + iqlj )φj = 0

for all φj ∈ R. Hence

(µ − 1)rj + ν1p1j + · · · + νlplj = 0 , (µ − 1)sj + ν1q1j + · · · + νlqlj = 0(3.12)

for all j . Thus, putting

M =




r1 p11 · · · pl1
...

...
...

rl p1l · · · pll

s1 q11 · · · ql1
...

...
...

sl q1l · · · qll




,(3.13)

we have

M · t (µ − 1, ν1, . . . , νl) = 0 ,(3.14)

where ta denotes the transpose of a given column vector a. On the other hand, by the second
equality in (3.12), we have (µ − 1)s + ν1q1 + · · · + νlql = 0. Accordingly

νj = −λj (µ − 1) , 1 ≤ j ≤ s , νs+1 = · · · = νl = 0 .

Now consider the mapping F ′ := (F2, . . . , Fk). Since F ′(z1, Az′, w) = AF ′(z,w) for
all A ∈ SU(k−1) and k−1 ≥ 2, F ′ can be written in the form F ′(z,w) = β(z1, w)z′, where
β is a holomorphic function. It then follows that

β
(
e

2πi
∑

j (rj+isj )φj z1, e
2πi

∑
j (p1j+iq1j )φj w1, . . . , e

2πi
∑

j (plj+iqlj )φj wl

) = β(z1, w)

for all φj ∈ R. So, letting β(z1, w) = ∑
Aµνz

µ
1 wν be the Laurent expansion of β and

assuming Aµν 
= 0, we obtain that

µ

l∑
j=1

(rj + isj )φj + ν1

l∑
j=1

(p1j + iq1j )φj + · · · + νl

l∑
j=1

(plj + iqlj )φj = 0

for all φj ∈ R, which says that

M · t (µ, ν1, . . . , νl) = 0 .(3.15)
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Next consider the component function Fk+b (1 ≤ b ≤ l) of F . Then, since
Fk+b(z1, Az′, w) = Fk+b(z,w) for all A ∈ SU(k − 1), Fk+b has the form Fk+b(z,w) =
Fk+b(z1, w). Let Fk+b(z1, w) = ∑

Aµνz
µ
1 wν be the Laurent expansion of Fk+b and assume

that Aµν 
= 0. By repeating the same argument as above, we then have

M · t (µ, ν1, . . . , νb − 1, . . . , νl) = 0 .(3.16)

Notice that l ≤ rank M ≤ l + 1 by (3.2). Thus we have two cases to consider.
Case (a). rank M = l + 1: According to (3.14), (3.15) or (3.16), we have µ − 1 =

ν1 = · · · = νl = 0, µ = ν1 = · · · = νl = 0, or µ = ν1 = · · · = νb − 1 = · · · = νl = 0,

respectively, and hence, F is of the form F(z,w) = (αz1, βz′, γ1w1, . . . , γlwl) with some
non-zero constants α, β, γj . Thus ZD(Λ) is a trivial group.

Case (b). rank M = l: Since {q1, . . . , ql} is linearly independent, we have

rank




s1 q11 · · · ql1
...

...
...

sl q1l · · · qll


 = l .

Therefore, by (3.14) we have νj = −λj (µ − 1), 1 ≤ j ≤ s, and νs+1 = · · · = νl = 0.
Since D ∩ {z = 0} 
= ∅, we see that µ ≥ 0. Here, if µ = 0, then λj = νj ∈ Z for all
1 ≤ j ≤ s. Consequently, D ∩ {w1 · · ·ws = 0} 
= ∅ by our assumption (3.11). Hence
νj0 ≥ 0 for some 1 ≤ j0 ≤ s, which contradicts the fact νj0 = λj0 < 0. As a result, we have
seen that µ ≥ 1. Taking this into account, we put

n1 = min{n ∈ N ; −λjn ∈ Z , 1 ≤ j ≤ s} , mj = −λjn1 , 1 ≤ j ≤ s .(3.17)

Then n1,mj ∈ N and

(µ − 1, ν1, . . . , νs, νs+1, . . . , νl) = m(n1,m1, . . . ,ms, 0, . . . , 0) , m = 0, 1, 2, . . . .

Thus F1 has the form F1(z,w) = α(z
n1
1 w

m1
1 · · · wms

s )z1. Here, noting that

|zn1
1 w

m1
1 · · ·wms

s | = (|z1||w1|−λ1 · · · |ws |−λs )n1 ,

we see that α is a nowhere vanishing holomorphic function on the unit disc ∆.
For the mapping F ′, we have by (3.15) that µs + ν1q1 + · · · + νlql = 0, from which it

follows that νj = −λjµ, 1 ≤ j ≤ s, and νs+1 = · · · = νl = 0. Since D ∩ {z = 0} 
= ∅, we
have µ ≥ 0, and so

(µ, ν1, . . . , νs , νs+1, . . . , νl) = m(n1,m1, . . . ,ms, 0, . . . , 0) , m = 0, 1, 2, . . . .

Therefore F ′ can be expressed as F ′(z,w) = β(z
n1
1 w

m1
1 · · · wms

s )z′, where β is a nowhere
vanishing holomorphic function on ∆.

For the function Fk+b (1 ≤ b ≤ l), we see by (3.16) that

µs + ν1q1 + · · · + (νb − 1)qb + · · · + νlql = 0 ,
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and so




νb − 1 = −λbµ ,

νj = −λjµ , 1 ≤ j ≤ s , j 
= b ,

νj = 0 , s + 1 ≤ j ≤ l

or




νb = 1 ,

νj = −λjµ , 1 ≤ j ≤ s ,

νj = 0 , s + 1 ≤ j ≤ l , j 
= b

according to 1 ≤ b ≤ s or s + 1 ≤ b ≤ l. Hence, by using the integers n1, mj defined in
(3.17), Fk+b can be written in the form Fk+b(z,w) = γb(z

n1
1 w

m1
1 · · · wms

s )wb, where γb is a
nowhere vanishing holomorphic function on ∆.

Summarizing our result obtained so far, we have shown that CD(Λ) consists of all ele-
ments F ∈ Aut(D) having the form

F(z,w) = (α(u)z1, β(u)z′, γ1(u)w1, . . . , γl(u)wl) , u = z
n1
1 w

m1
1 · · · wms

s ,(3.18)

where α, β and γj are nowhere vanishing holomorphic functions on ∆.
Finally we assert that ZD(Λ) is, in fact, an abelian group. To this end, we set

D̂ = {(z,w) ∈ Cn ; ‖z‖|w1|−λ1 · · · |ws |−λs < 1} .(3.19)

Then, since n1,mj ∈ N for all 1 ≤ j ≤ s, the group CD(Λ) can be regarded as a subgroup of
Aut(D̂) by (3.18). We now verify our assertion only in the case where l = 2 and s = 1, since
the verification in the general case is almost identical. Since ‖z‖n1 |w1|m1 = (‖z‖|w1|−λ1)n1

in this case, we have

D̂ = {(z,w) ∈ Ck × C2 ; ‖z‖n1 |w1|m1 < 1}
and we know that each F ∈ CD(Λ) has the form

F(z,w) = (α(u)z1, β(u)z′, γ1(u)w1, γ2(u)w2) , u = z
n1
1 w

m1
1 ,

with nowhere vanishing holomorphic functions α, β and γj on ∆.
We first claim that

α(u)n1γ1(u)m1 = α(0)n1γ1(0)m1 on ∆ , and |α(0)n1γ1(0)m1 | = 1 .(3.20)

To prove our claim, consider the holomorphic function f (u) := α(u)n1γ1(u)m1u on ∆ and
take an arbitrary point u ∈ ∆. Then there is a point (z1, 0′, w1, 0) ∈ D̂ with u = z

n1
1 w

m1
1 .

Since F(z1, 0′, w1, 0) = (α(u)z1, 0′, γ1(u)w1, 0) belongs to D̂, we have |f (u)| < 1, and
hence f (∆) ⊂ ∆. Moreover, put

Mc = {(z1, 0′, w1, 0) ∈ D̂ ; z
n1
1 w

m1
1 = c} for each c ∈ ∆ .

Then it is not difficult to see that F(Mc) ⊂ Mf (c). This, combined with the fact F−1 ∈
CD(Λ), yields at once that f is an automorphism of ∆ with f (0) = 0. Thus we have f (u) =
Au with |A| = 1, proving the claim (3.20).

Thanks to (3.20), if we set A = α(0)n1γ1(0)m1 , then F−1 is given by

F−1(z,w) = (α(A−1u)−1z1, β(A−1u)−1z′, γ1(A
−1u)−1w1, γ2(A

−1u)−1w2) .
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Thus, repeating the same computations as in the proof of [1, Theorem], one can show that
ZD(Λ) is abelian. Hence we have proved Sublemma 3.7. �

Since ZΩ∗(Γ ) is now isomorphic to ZD(Λ), we have a contradiction by Sublemmas 3.6
and 3.7, which completes the proof of Lemma 3.5 for k ≥ 3.

PROOF OF LEMMA 3.5 FOR k = 2. In this case, we consider the subgroup

Γ =
{((

1 0
0 e4πiθ

)
, e2πi(θ1+iφ1), . . . , e2πi(θl+iφl )

)
; θ, θj , φj ∈ R, 1 ≤ j ≤ l

}

of U(k) × (C∗)l ⊂ Aut(Ω∗) and put Λ = Φ(Γ ). Since we may assume that Φs(A) = A

for A ∈ SU(2), it follows from (3.4) that

Λ = {(
e

2πi[{(a−1)θ+∑
j bj θj }+∑

j (rj+isj )φj ]
, e

2πi[{(a+1)θ+∑
j bj θj }+∑

j (rj+isj )φj ]
,

e2πi{(c1θ+∑
j d1j θj )+∑

j (p1j +iq1j )φj }, . . . ,
e

2πi{(clθ+∑
j dlj θj )+∑

j (plj+iqlj )φj }) ; θ, θj , φj ∈ R, 1 ≤ j ≤ l
}
.

By the same reasoning as in the proof of Sublemma 3.6, we have the following:

SUBLEMMA 3.8. The group ZΩ∗(Γ ) is a non-abelian group.

We shall complete the proof of Lemma 3.5 for k = 2 by showing the following:

SUBLEMMA 3.9. The group ZD(Λ) is an abelian group.

PROOF. Let F = (F1, . . . , Fn) ∈ CD(Λ) and let F1(z,w) = ∑
Aµνz

µwν be the
Laurent expansion of F1. Then, for any non-zero coefficient Aµν , we have

(µ1 − 1)

[{
(a − 1)θ +

l∑
j=1

bj θj

}
+

l∑
j=1

(rj + isj )φj

]

+ µ2

[{
(a + 1)θ +

l∑
j=1

bjθj

}
+

l∑
j=1

(rj + isj )φj

]

+ ν1

{(
c1θ +

l∑
j=1

d1j θj

)
+

l∑
j=1

(p1j + iq1j )φj

}
+ · · ·

+ νl

{(
clθ +

l∑
j=1

dlj θj

)
+

l∑
j=1

(plj + iqlj )φj

}
= 0
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for all θ, θj , φj ∈ R, 1 ≤ j ≤ l. Hence



a c1 . . . cl

b1 d11 . . . dl1
...

...
...

bl d1l . . . dll

r1 p11 . . . pl1
...

...
...

rl p1l . . . pll

s1 q11 . . . ql1
...

...
...

sl q1l . . . qll







µ1 + µ2 − 1
ν1
...

νl


 =




µ1 − µ2 − 1
0
...

0


 .

Put

M =




a c1 . . . cl

b1 d11 . . . dl1
...

...
...

bl d1l . . . dll


 and M−1 =




α1 ∗
α2 ∗
...

...

αl+1 ∗


 .

(Note that M = tM1 ∈ GL(l + 1,Z) by (3.2).) Then

α1 = det(dij )
/

det M ∈ Z \ {0}, αj ∈ Z , 2 ≤ j ≤ l + 1 , and




µ1 + µ2 − 1
ν1
...

νl


 =




α1(µ1 − µ2 − 1)

α2(µ1 − µ2 − 1)
...

αl+1(µ1 − µ2 − 1)


 .(3.21)

On the other hand, since (µ1 + µ2 − 1)s + ν1q1 + · · · + νlql = 0 and {q1, . . . , ql} is linearly
independent, we have

νj = −λj (µ1 + µ2 − 1) , 1 ≤ j ≤ s , and νj = 0 , s + 1 ≤ j ≤ l .(3.22)

Let F2(z,w) = ∑
Aµνz

µwν be the Laurent expansion of F2 and assume that Aµν 
= 0.
Then, in exactly the same way as in the case of F1, we have




µ1 + µ2 − 1
ν1
...

νl


 =




α1(µ1 − µ2 + 1)

α2(µ1 − µ2 + 1)
...

αl+1(µ1 − µ2 + 1)


 , and(3.23)

νj = −λj (µ1 + µ2 − 1) , 1 ≤ j ≤ s , and νj = 0 , s + 1 ≤ j ≤ l .(3.24)
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Finally, denoting by F2+b(z,w) = ∑
Aµνz

µwν the Laurent expansion of F2+b for 1 ≤
b ≤ l and assuming Aµν 
= 0, we obtain that



µ1 + µ2

ν1
...

νb − 1
...

νl




=




α1(µ1 − µ2)

α2(µ1 − µ2)
...

αl+1(µ1 − µ2)


 .(3.25)

Thus



νb − 1 = −λb(µ1 + µ2) ,

νj = −λj (µ1 + µ2) , 1 ≤ j ≤ s , j 
= b ,

νj = 0 , s + 1 ≤ j ≤ l

or




νj = −λj (µ1 + µ2), 1 ≤ j ≤ s,

νb = 1,

νj = 0, s + 1 ≤ j ≤ l, j 
= b

according to 1 ≤ b ≤ s or s + 1 ≤ b ≤ l.
Our next task is to find more concrete description of F . We proceed with a case by case

analysis.
Case (a). α1 = 1: For F1, we have µ2 = 0 by (3.21) and so νj = −λj (µ1 − 1), 1 ≤

j ≤ s, and νj = 0, s+1 ≤ j ≤ l, by (3.22). On the other hand, since D∩{z = 0} 
= ∅, we see
µ1 ≥ 0. If µ1 = 0, then λj = νj ∈ Z, 1 ≤ j ≤ s, and hence D∩{w1 · · ·ws = 0} 
= ∅ by our
assumption (3.11). Thus νj0 ≥ 0 for some 1 ≤ j0 ≤ s, contradicting the fact νj0 = λj0 < 0.
Therefore we have µ1 ≥ 1. Put

n1 = min{n ∈ N ; −λjn ∈ Z, 1 ≤ j ≤ s} , mj = −λjn1 , 1 ≤ j ≤ s .

Then n1,mj ∈ N and

(µ1 − 1, µ2, ν1, . . . , νs , νs+1, . . . , νl) = m(n1, 0,m1, . . . ,ms, 0, . . . , 0)

for m = 0, 1, 2, . . . . So F1 has to be of the form F1(z,w) = α(z
n1
1 w

m1
1 · · ·wms

s )z1.

As to F2, we have µ2 = 1 by (3.23), so that νj = −λjµ1, 1 ≤ j ≤ s, and νj =
0, s + 1 ≤ j ≤ l, by (3.24). Since µ1 ≥ 0, we have

(µ1, µ2 − 1, ν1, . . . , νs , νs+1, . . . , νl) = m(n1, 0,m1, . . . ,ms, 0, . . . , 0)

for m = 0, 1, 2, . . . . Hence, F2 has the form F2(z,w) = β(z
n1
1 w

m1
1 · · · wms

s )z2.
Finally, consider the function F2+b (1 ≤ b ≤ l). Then we have µ2 = 0 by (3.25) and

hence


νb − 1 = −λbµ1 ,

νj = −λjµ1 , 1 ≤ j ≤ s , j 
= b ,

νj = 0 , s + 1 ≤ j ≤ l

or




νj = −λjµ1 , 1 ≤ j ≤ s ,

νb = 1 ,

νj = 0 , s + 1 ≤ j ≤ l , j 
= b

according to 1 ≤ b ≤ s or s + 1 ≤ b ≤ l. Since µ1 ≥ 0, we conclude that F2+b can be
expressed as F2+b(z,w) = γb(z

n1
1 w

m1
1 · · ·wms

s )wb.
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Eventually, we have shown that, if α1 = 1, CD(Λ) consists of all elements F ∈ Aut(D)

written in the form

F(z,w) = (α(u)z1, β(u)z2, γ1(u)w1, . . . , γl(u)wl) , u = z
n1
1 w

m1
1 · · ·wms

s ,

where α, β and γj are nowhere vanishing holomorphic functions on the unit disc ∆. In par-
tiqular, we may regard CD(Λ) as a subgroup of Aut(D̂), where D̂ is the domain defined in
(3.19). Therefore, by repeating the same argument as in the proof of Sublemma 3.7, one can
verify that ZD(Λ) is an abelian group.

Case (b). α1 = −1: In this case, put

n2 = min{n ∈ N ; −λjn ∈ Z, 1 ≤ j ≤ s} , mj = −λjn2 , 1 ≤ j ≤ s .

Then, just as in the Case (a), we can see that each F ∈ CD(Λ) has the form

F(z,w) = (α(u)z1, β(u)z2, γ1(u)w1, . . . , γl(u)wl) , u = z
n2
2 w

m1
1 · · ·wms

s ,

where α, β and γj are nowhere vanishing holomorphic functions on ∆. Hence, ZD(Λ) has to
be an abelian group.

Case (c). α1 
= ±1: Notice that (α1 − 1)/(α1 + 1) and α1/(α1 + 1) are positive
rational mumbers, in this case. Taking this into account, we put

n1 = min

{
n ∈ N ; α1 − 1

α1 + 1
n ∈ Z,

−2α1λj

α1 + 1
n ∈ Z, 1 ≤ j ≤ s

}
,

n2 = α1 − 1

α1 + 1
n1 , mj = −2α1λj

α1 + 1
n1 , 1 ≤ j ≤ s .

Also, noting that

|z1|n1 |z2|n2 |w1|m1 · · · |ws |ms ≤ (‖z‖|w1|−λ1 · · · |ws |−λs )2α1n1/(α1+1) < 1

for every point (z,w) ∈ D, we put R = sup{ |zn1
1 z

n2
2 w

m1
1 · · ·wms

s | ; (z,w) ∈ D}. Then, by
repeating the same argument as above, it can be verified that every element F ∈ CD(Λ) has
the form

F(z,w) = (α(u)z1, β(u)z2, γ1(u)w1, . . . , γl(u)wl) , u = z
n1
1 z

n2
2 w

m1
1 · · · wms

s ,

where α, β and γj are nowhere vanishing holomorphic functions on the open disc {u ∈
C ; |u| < R}. From this we conclude that ZD(Λ) is an abelian group.

Therefore, we have shown that ZD(Λ) is an abelian group in any cases, as desired. �

Eventually, by Sublemmas 3.8 and 3.9 we have proved Lemma 3.5 for k = 2. Hence we
complete the proof of Theorem in the case k ≥ 2.

3.2. Proof of Theorem in the case k = 1. The method of our proof for k = 1 is almost
identical to that for k ≥ 2. Therefore we shall give only an outline of the proof, and the detail
is left to the reader.

We now proceed to define the following subgroup Γ of Aut(Ω∗) and consider the image
Λ := Φ(Γ ) of it under the isomorphism Φ:
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Γ = {(
1, e−2πφ1, . . . , e−2πφl

) ; φj ∈ R
}
,

Λ = {(
e

2πi
∑

j (rj+isj )φj , e
2πi

∑
j (p1j+iq1j )φj , . . . , e

2πi
∑

j (plj+iqlj )φj
) ; φj ∈ R

}
.

Now take a point p0 = (z0, w
0
1, . . . , w

0
l ) ∈ ∂D ∩ (C∗)n and let (z,w) ∈ Λ · p0. Then

there exists an element φ ∈ Rl such that

(|z|, |w1|, . . . , |wl |) = (
e−2πs·φ|z0|, e−2πq1·φ|w0

1|, . . . , e−2πql ·φ |w0
l |

)
.(3.26)

The following lemma can be proved just as in the case of Sublemma 3.6:

LEMMA 3.10. The group ZΩ∗(Γ ) is a non-abelian group.

As in Subsection 3.1, we divide the proof of Theorem for k = 1 into two cases.

CASE I. {q1, . . . , ql} is linearly dependent in Rl .

By (3.2) we may assume that {q1, . . . , ql−1} is linearly independent in Rl . Then
{s, q1, . . . , ql−1} is linearly independent and ql can be written uniquely as ql = λ1q1 +
· · · + λl−1ql−1, λj ∈ R. Thus |w1|−λ1 · · · |wl−1|−λl−1 |wl | is constant on the orbit Λ·p0 for
each point p0 ∈ ∂D ∩ (C∗)n by (3.26).

Case (I-1). ql = 0: In this case, after a change of coordinates by an algebraic auto-
morphism, D may coincide with one of the following three domains:

(B.1) {|z| < 1} × Xa,b , (B.2) {0 < |z| < 1} × Xa,b , (B.3) {r < |z| < 1} × Xa,b ,

where a, b are non-negative integers with a + b = l and 0 < r < 1.

LEMMA 3.11. (1) The case (B.1) occurs only when a = 0 and hence D is biholo-
morphically equivalent to Ω∗.

(2) The cases (B.2) and (B.3) do not occur.

PROOF. (1) If a = 0, then b = l and D = Ω∗. Assume that a > 0. Then we will
arrive at a contradiction saying that G(Ω∗) and G(D) are not isomorphic. Indeed, this can be
achieved by employing the same computations as in the proof of Lemma 3.2.

(2) Assume that either of the cases (B.2) or (B.3) occurs. Then we can find a subgroup
G of GL(l,Z) such that

G(D) =
{(

1 0
N A

)
; N ∈ Zl, A ∈ G

}
.

Now, as in the proof of Lemma 3.2, consider the group isomorphism Φ̃ : G(Ω∗) → G(D)

given by the matrix L = (
P Q
R S

) ∈ GL(n,Z) with L−1 = (
P ∗ Q∗
R∗ S∗

)
. Then Φ̃−1

(( 1 0
N El

)) ∈
G(Ω∗) for all N ∈ Zl . Thus Q∗NP = 0, Q∗NQ = 0 and S∗NP = 0. In particular,
Q = 0 by Lemma 2.4 and hence Φ̃−1

(( 1 0
N El

)) = ( 1 0
0 El

)
for all N ∈ Zl . Clearly this is

absurd, thereby the proof of (2) is completed. �

Case (I-2). ql 
= 0: We may assume that λ1 · · · λs 
= 0, λs+1 = · · · = λl−1 = 0 for
some s. Thus, up to an algebraic automorphism, we have three cases:
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(C.1) D = Xa,b × {|w1|−λ1 · · · |ws |−λs |wl | < 1, wj ,wl ∈ X�
}

with λ1, . . . , λs < 0 ,

(C.2) D = Xa,b × {|w1|−λ1 · · · |ws |−λs |wl | > 1, wj ∈ X�, wl ∈ C∗}
with λ1, . . . , λs > 0 ,

(C.3) D = Xa,b × {
r < |w1|−λ1 · · · |ws |−λs |wl | < 1, wj , wl ∈ C∗}

with λ1, . . . , λs < 0 ,

where a, b are non-negative integers with a + b = l − s and 0 < r < 1.
The proof of the following lemma is identical to that of Lemma 3.3:

LEMMA 3.12. In the cases (C.1) through (C.3), all λj ’s are rational numbers.

LEMMA 3.13. We have D ∩ {w1 · · · wswl = 0} 
= ∅. In particular, the case (C.3)

does not occur.

PROOF. Assuming that D ∩ {w1 · · · wswl = 0} = ∅, we shall derive a contradiction.
In the case (C.1), we put

ml = min{n ∈ N ; −λjn ∈ Z , 1 ≤ j ≤ s} , mj = −λjml , 1 ≤ j ≤ s .(3.27)

Then ml,mj ∈ N and gcd(m1, . . . ,ms,ml) = 1. Moreover, noting that

(|w1|−λ1 · · · |ws |−λs |wl|)ml = |w1|m1 · · · |ws |ms |wl |ml ,

we have D = Xa,b × {0 < |w1|m1 · · · |ws |ms |wl |ml < 1}. On the other hand, since
gcd(m1, . . . ,ms,ml) = 1, there exists a matrix (aij ) ∈ GL(s + 1,Z) such that (a(s+1)1, . . . ,

a(s+1)(s+1)) = (m1, . . . ,ms,ml). Using this, we define the algebraic automorphism
ϕ(z,w) = (z∗, w∗) of Xa,b × (C∗)s+1 by

z∗ = z , w∗
j = w

aj1
1 · · · wajs

s w
aj(s+1)

l , 1 ≤ j ≤ s ,

w∗
l = w

m1
1 · · · wms

s w
ml

l , and w∗
j = wj for j 
= l .

Then ϕ(D) = Xa,b+s × {0 < |w∗
l | < 1}. But this is impossible by Lemma 3.11.

In the case (C.2), D is algebraically equivalent to

D = Xa,b × {0 < |w1|λ1 · · · |ws |λs |wl| < 1} ,

which is a domain of type (C.1). Thus this is also impossible.
In the case (C.3), the same algebraic isomorphism ϕ introduced above gives a biholo-

morphic mapping from D to the domain ϕ(D) = Xa,b+s × {r < |w∗
l | < 1} of type (B.3).

Hence the case (C.3) does not occur, thereby the lemma is proved. �

By virtue of Lemma 3.13, it is enough to consider the following two cases:

Case (I-2-1). There exist integers i0, j0 ∈ {1, . . . , s, l} such that

i0 
= j0 , D ∩ {wi0 = 0} 
= ∅ , D ∩ {wj0 = 0} 
= ∅ ;
Case (I-2-2). There exists an integer i0 ∈ {1, . . . , s, l} such that

D ∩ {wi0 = 0} 
= ∅ , D ∩ {wj = 0} = ∅ for every j ∈ {1, . . . , s, l} \ {i0} .
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LEMMA 3.14. If D is a domain of type (C.1), then Case (I-2-1) does not occur.

PROOF. Assume this does, and take an arbitrary element F ∈ CD(Λ). Then, it is
possible to show, by the Laurent series argument as in the previous subsection, that F has the
form

F(z,w) = (α(u)z, γ1(u)w1, . . . , γl(u)wl) , u = w
m1
1 · · · wms

s w
ml

l ,(3.28)

where α, γj are nowhere vanishing holomorphic functions on ∆ and mj, ml are the same
integers appearing in (3.27). Therefore, ZD(Λ) must be abelian. Since ZD(Λ) is isomorphic
to ZΩ∗(Γ ) and since ZΩ∗(Γ ) is non-abelian by Lemma 3.10, this is a contradiction. Thus we
have proved the lemma. �

LEMMA 3.15. Let D be a domain of type (C.1) and assume that Case (I-2-2) occurs.
Then D is biholomorphically equivalent to Ω∗.

PROOF. First we assert that mi0 = 1. Indeed, assume that mi0 ≥ 2. Then, by using the
fact that gcd(m1, . . . ,ms,ml) = 1, we can verify that each F ∈ CD(Λ) has the same form
as in (3.28). Thus ZD(Λ) has to be abelian, contradicting the assertion in Lemma 3.10.

When mi0 = 1, let us define the algebraic automorphism ϕ(z,w) = (z∗, w∗) by

z∗ = z , w∗
i0

= w
m1
1 · · · (wi0−1)

mi0−1wi0(wi0+1)
mi0+1 · · · wml

l , w∗
j = wj , j 
= j0 .

Then D is biholomorphically equivalent to ϕ(D) = Xa,b+s × {|w∗
i0
| < 1}. Consequently, our

assertion follows from Lemma 3.11. �

The domain of type (C.2) can be transformed into some domain of type (C.1) by an
algebraic automorphism. Thus, the investigation of such a domain is reduced to that of type
(C.1). Therefore, we have proved Theorem for k = 1 in Case I.

CASE II. {q1, . . . , ql} is linearly independent in Rl .
In this case, s can be expressed as s = λ1q1 + · · · + λlql , λj ∈ R.

Case (II-1). s = 0: By passing to an algebraic image if necessary, D can be described
as D = W × Xa,b, where 0 ≤ a, b ∈ Z, a + b = l, and W is one of the three domains

{|z| < 1} , {0 < |z| < 1} and {r < |z| < 1} (0 < r < 1)

in C. Hence, this case is reduced to Case (I-1) and D is biholomorphically equivalent to Ω∗.

Case (II-2). s 
= 0: We may assume that λ1 · · · λs 
= 0, λs+1 = · · · = λl = 0 for
some s. Then, it is easily seen that |z||w1|−λ1 · · · |ws |−λs is a constant on the orbit Λ·p0 for
each point p0 ∈ ∂D ∩ (C∗)n. So, by considering again suitable algebraic automorophisms if
necessary, we have the following three cases:

(D.1) D = {|z||w1|−λ1 · · · |ws |−λs < 1, z,wj ∈ X�
} × Xa,b

with λ1, . . . , λs < 0 ,

(D.2) D = {|z||w1|−λ1 · · · |ws |−λs > 1, z ∈ C∗, wj ∈ X�
} × Xa,b

with λ1, . . . , λs > 0 ,
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(D.3) D = {
r < |z||w1|−λ1 · · · |ws |−λs < 1, z, wj ∈ C∗} × Xa,b

with λ1, . . . , λs < 0, 0 < r < 1 .

Again, repeating the same argument as before, we can show the following:

LEMMA 3.16. In the cases (D.1) through (D.3), all λj ’s are rational numbers.

LEMMA 3.17. We have D ∩ {zw1 · · · ws = 0} 
= ∅. In particular, the case (D.3) does
not occur.

PROOF. Assuming that D ∩ {zw1 · · · ws = 0} = ∅, we will arrive at a contradiction as
follows. Consider first the case (D.1) and put

N = min{n ∈ N ; −λjn ∈ Z, 1 ≤ j ≤ s} , mj = −λjN , 1 ≤ j ≤ s .(3.29)

Then N,mj ∈ N and gcd(N,m1, . . . ,ms) = 1. Moreover, D can be expressed as

D = {0 < |z|N |w1|m1 · · · |ws |ms < 1} × Xa,b .

Here, since gcd(N,m1, . . . ,ms) = 1, by the same reasoning as in the proof of Lemma 3.13,
there exists an algebraic automorphism ϕ of (C∗)s+1×Xa,b that transforms D into the domain
{0 < |z∗| < 1} × (C∗)s × Xa,b. However, this is impossible by Lemma 3.11.

In the case (D.2), D is obviously algebraically equivalent to the domain

{0 < |z||w1|λ1 · · · |ws |λs < 1} × Xa,b .

But, since every λj > 0, this is also impossible by the above case (D.1).
In the case (D.3), by the same algebraic automorphism ϕ considered in the case (D.1), D

is transformed into the domain {r < |z∗| < 1} × (C∗)s × Xa,b. Again this is impossible by
Lemma 3.11. Therefore we have proved the lemma. �

By Lemma 3.17, we have the following four cases to consider:

Case (II-2-1). There exist integers i0, j0 ∈ {1, . . . , s} such that

i0 
= j0,D ∩ {wi0 = 0} 
= ∅,D ∩ {wj0 = 0} 
= ∅ .

Case (II-2-2). D ∩ {z = 0} 
= ∅,D ∩ {wi0 = 0} 
= ∅ for some i0 ∈ {1, . . . , s} .

Case (II-2-3). D ∩ {z = 0} 
= ∅,D ∩ {wj = 0} = ∅ for every 1 ≤ j ≤ s.

Case (II-2-4). D ∩ {z = 0} = ∅ and, for some i0 ∈ {1, . . . , s}, one has

D ∩ {wi0 = 0} 
= ∅,D ∩ {wj = 0} = ∅ for every j ∈ {1, . . . , s} \ {i0} .

LEMMA 3.18. If D is a domain of type (D.1), then Cases (II-2-1) and (II-2-2) do not
occur.

PROOF. Assume that one of these cases occurs and choose an element F = (F1, . . . ,

Fn) ∈ CD(Λ) arbitrarily. Let Fj (z,w) = ∑
Aµνz

µwν be the Laurent expansion of Fj (1 ≤
j ≤ n) and let Aµν be a non-zero coefficient of it. Then, by the conditions in Cases (II-2-1)
or (II-2-2) one may obtain a bunch of relations between the exponents µ, ν = (ν1, . . . , νl )
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and λj as in the proof of Sublemma 3.9 that forces F to be of the form

F(z,w) = (α(u)z, γ1(u)w1, . . . , γl(u)wl) , u = zNw
m1
1 · · · wms

s ,

where α, γj are nowhere vanishing holomorphic functions on ∆ and N,mj are the integers
defined in (3.29). Thus, ZD(Λ) has to be abelian. This is a contradiction as mentioned before.
Hence Lemma 3.18 is proved. �

LEMMA 3.19. Let D be a domain of type (D.1) and assume that either Case (II-2-3)

or Case (II-2-4) occurs. Then D is biholomorphically equivalent to Ω∗.

PROOF. Let us consider Case (II-2-3). First of all, by making use of the fact
gcd(N,m1, . . . ,ms) = 1, one can show that N = 1. Then, there exists an algebraic au-
tomorphism ϕ of C × (C∗)s ×Xa,b that induces a biholomorphic mapping of D onto ϕ(D) =
{|z∗| < 1} × (C∗)s × Xa,b. Thus D is biholomorphically equivalent to Ω∗ by Lemma 3.11.

Next, consider Case (II-2-4). If mi0 ≥ 2, then we may obtain a contradiction just as in
the proof of Lemma 3.15. Moreover, in the case when mi0 = 1, D is algebraically equivalent
to the domain {|w∗

i0
| < 1} × (C∗)s × Xa,b. Accordingly, D is biholomorphically equivalent

to Ω∗ by Lemma 3.11, as desired. �

Finally, notice that the domain of type (D.2) is algebraically equivalent to a domain of
type (D.1). Therefore we have proved Theorem for k = 1 in Case II.

Summing up the results obtained above, we conclude that D is biholomorphically equiv-
alent to Ω∗. Hence we complete the proof of Theorem in the case k = 1.
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