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OPTIMAL NORM ESTIMATE OF OPERATORS RELATED TO
THE HARMONIC BERGMAN PROJECTION ON THE BALL
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Abstract. We first obtain an optimal norm estimate for one-parameter family of oper-
ators associated with the weighted harmonic Bergman projections on the ball. We then use this
result and derive an optimal norm estimate for the weighted harmonic Bergman projections.

Introduction. For a fixed positive integer n ≥ 2, let B denote the open unit ball in Rn.
For α > −1, we denote by dVα the weighted measure defined by dVα(x) = λα(1 − |x|2)αdx
where dx is the Lebesgue volume measure on B. The constant λα is chosen so that Vα(B) =
1, i.e.,

λα = 2

n|B| · Γ (n/2 + α + 1)

Γ (n/2)Γ (α + 1)

where |B| denotes the volume of B.
Given α > −1 and 1 ≤ p < ∞, the weighted harmonic Bergman space bpα = b

p
α(B) is

the space of all complex-valued harmonic functions u on B such that

‖u‖Lpα =
( ∫

B

|u|p dVα
)1/p

< ∞ .

As is well known, each bpα is a closed subspace of the Lebesgue space Lpα = L
p
α(B, dVα) and

thus is a Banach space. In particular, b2
α is a Hilbert space for each α. By mean value property

of harmonic functions, it is easily seen that point evaluations are continuous on b2
α. Thus, to

each x ∈ B, there corresponds a unique Rα(x, ·) ∈ b2
α which has the following reproducing

property:

(1) u(x) =
∫
B

u(y)Rα(x, y) dVα(y) , x ∈ B

for all u ∈ b2
α. The kernel Rα(x, y), called the reproducing kernel for b2

α, is real and symmet-
ric; see (6) below.

Note that the Hilbert space orthogonal projection from L2
α onto b2

α, denoted by Πα and
called the α-weighted harmonic Bergman projection, can be realized as an integral operator
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by (1):

Παψ(x) =
∫
B

ψ(y)Rα(x, y) dVα(y) , x ∈ B
for functions ψ ∈ L2

α . For each α > −1, it is well known that Πα is bounded on Lpα for
1 < p < ∞, but not for p = 1.

The growth rate of the kernel Rα(x, y) is well known (see [4]):

(2) |Rα(x, y)| ≤ Cα

[x, y]n+α
for all x, y ∈ B. This motivates us to consider an operator with the kernel [x, y]−(n+α). More
explicitly, we define an operatorΛα by

Λαψ(x) =
∫
B

ψ(y)

[x, y]n+α dVα(y) , x ∈ B
for functions ψ that make the integral well defined. For each α > −1, the operator Λα is
also bounded on Lpα if and only if 1 < p < ∞. This must have been known to experts, even
though we could not find an explicit reference in the literature.

Our first result is the following optimal norm estimates ofΛα acting onLpα when p varies
throughout the full range and when α is fixed:

(3) ‖Λα‖p ≈ p2

p − 1
(α fixed)

for all 1 < p < ∞. Here and in elsewhere, ‖T ‖p denotes the operator norm of a bounded
linear operator T : Lpα → L

p
α . Also, for positive quantities X and Y, the notation X ≈ Y

means that X/Y is bounded below and above by some positive constant that depends only on
allowed parameters.

Note |Παψ| ≤ CαΛα|ψ|. Thus (3) gives an upper estimate of the norm ‖Πα‖p of Πα
acting on Lpα . When α is fixed, we show that such an estimate for ‖Πα‖p is optimal, which is
our second result:

(4) ‖Πα‖p ≈ p2

p − 1
(α fixed)

for all 1 < p < ∞. Earlier, Zhu [9] obtained the same estimate in the context of holomorphic
Bergman spaces over the unit ball of Cn. Zhu’s result was then extended by the last two
authors [5] to the setting of harmonic Bergman spaces over the upper half-space.

In Section 1 we express the weighted harmonic Bergman kernel by means of fractional
derivatives. Such an integral representation allows us to estimate the weighted harmonic
Bergman kernels. Section 2 is devoted to the proof of (3) with some additional information
on behavior as α → −1; see Theorem 2.2. In fact Theorem 2.2 states that the dependency
of the upper estimate on parameter α as α → −1 is at most like (α + 1)−1. However, we
do not know whether such behavior with parameter α is sharp. In Section 3 we establish an
estimate, with the help of (3), that implies the upper estimate of (4). Most part of the section
is devoted to a careful analysis of the behavior of Cα in (2) as α → −1. Our estimate shows
that Cα stays bounded as α → −1. So, the growth rate of ‖Πα‖p as α → −1 is at most like
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(α + 1)−1. However, as in the case of ‖Λα‖p , we do not know whether such behavior with
parameter α is sharp, either. In Section 4 we establish the lower estimate of (4).

CONSTANTS. Throughout the paper we use the same letter C, always depending on
the dimension n, to denote various positive constants which may change at each occurrence.
Those constants will often depend on other parameters such as α and p as well. Such addi-
tional dependency will be explicitly indicated in subscripts. For example, Cα will stand for
constants depending only on n and α.

1. Weighted harmonic Bergman kernel. The series expansion of the unweighted
kernel function R0(x, y) is well known:

(5) R0(x, y) = 2

n

∞∑
k=0

(
k + n

2

)
Zk(x, y) , x, y ∈ B

where Zk(x, y) denotes extended zonal harmonics of order k; see [1, Theorem 8.9] where
some extra constant factor, caused by non-normalization, appears. We refer to [1, Chapter 5]
for definition of zonal harmonics and related facts. However, we would like to mention that
each Zk(x, y) has the k-th order homogeneity in each variable separately, which we will use
later.

The series expansion (5) can be easily modified to the weighted cases. More explicitly,
we have

(6) Rα(x, y) = ωα

∞∑
k=0

Γ (k + n/2 + α + 1)

Γ (k + n/2)
Zk(x, y)

for general α > −1 where ωα = Γ (n/2)/Γ (n/2+α+1); see [4, Section 2] or [7, Proposition
3]. This series converges absolutely and uniformly on K × B for every compact set K ⊂ B.
When n = 2, note that (6) can be written (in complex notation) in a closed form

(7) Rα(x, y) = 1

(1 − xy)α+2 + 1

(1 − xy)α+2 − 1 .

The series expansion (5) is also well known to be closely related to the extended Poisson
kernel P(x, y) for B defined by

P(x, y) = 1 − |x|2|y|2
[x, y]n , x, y ∈ B .

Here and elsewhere, we let

[x, y] =
√

1 − 2x · y + |x|2|y|2
to simplify the notation. Using the series expansion

(8) P(x, y) =
∞∑
k=0

Zk(x, y)
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and utilizing homogeneity of extended zonal harmonics, one can verify by a straightforward
calculation

(9) Rm(x, y) = ωm[∂m+1
r (rn/2+mP(x, ry))]r=1

for integers m ≥ 0 where ∂r = ∂/∂r . We remark in passing that (9) (with m = 0) also leads
to the explicit formula for R0(x, y) as in [1, Theorem 8.13].

Here, we need a versions of (9) for general α > −1, which is not necessarily an integer.
To this end we first introduce a notion of fractional derivatives. Given s real, denote by 	s

the smallest integer bigger than s. For s > 0 and an 	s
-times continuously differentiable
function f on [0, 1), we define the fractional derivative Dsf of order s by

Dsf (r) = r−s

Γ (	s
 − s)

∫ 1

0
(1 − t)	s
−s−1∂

	s

t [f (rt)] dt .

Now, we have the following representation of weighted harmonic Bergman kernels for n ≥ 3
in terms of fractional derivatives. Recall that for n = 2 we have the explicit formula (7).

PROPOSITION 1.1 (n ≥ 3). Let α > −1. Then

Rα(x, y)=ωα[Dα+1
r (rn/2+αP (x, ry))]r=1

= ωα

Γ (	α
 − α)

∫ 1

0
(1 − t)	α
−α−1∂

	α
+1
t [tn/2+αP (x, ty)] dt

for x, y ∈ B.

PROOF. Fix x, y ∈ B and put

f (r) = rn/2+αP (x, ry) , 0 ≤ r < 1 .

In case α is an integer, note that f (α+1)(0) = 0, because n ≥ 3. So, the claimed integral
representation reduces to

ωα

∫ 1

0
f (α+2)(t) dt = ωαf

(α+1)(1) ,

which is the same as (9).
Now, assume that α is not an integer. So, let α = m + ε where m is an integer and

0 < ε < 1. Note 	α
 + 1 = m + 2 and 	α
 − α = 1 − ε. Using (8) and homogeneity of
Zk(x, ·), we have

f (r) =
∞∑
k=0

rk+n/2+αZk(x, y)

so that

∂m+2
t [f (rt)] = rn/2+α

∞∑
k=0

Γ (k + n/2 + α + 1)

Γ (k + n/2 + α −m− 1)
tk+n/2+α−m−2Zk(x, ry)

for r, t ∈ [0, 1). Note k + n/2 + α − m − 1 > 0 for all k ≥ 0, because α > m. Thus,
multiplying both sides of the above by (1 − t)−ε and then integrating term by term against the
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measure dt , we have

Dα+1f (r)= r−(α+1)

Γ (1 − ε)

∫ 1

0
(1 − t)−ε∂m+2

t [f (rt)] dt

= rn/2−1
∞∑
k=0

ak
Γ (k + n/2 + α + 1)

Γ (k + n/2 + α −m− 1)
Zk(x, ry)

where

ak = 1

Γ (1 − ε)

∫ 1

0
(1 − t)−εtk+n/2+α−m−2 dt .

Also, recall α = m+ ε. Thus we have

ak = Γ (k + n/2 + α −m− 1)

Γ (k + n/2)

for each k ≥ 0. Combining these observations, we obtain

Dα+1f (r)= rn/2−1
∞∑
k=0

Γ (k + n/2 + α + 1)

Γ (k + n/2)
Zk(x, ry)

= ω−1
α rn/2−1Rα(x, ry)

where the second equality comes from (6). Now, evaluating both sides of the above at r = 1,
we have the first equality. For the second equality, note that f (rt) = (rt)n/2+αP (x, rty) and
thus

Dα+1f (r)= r−(α+1)

Γ (1 − ε)

∫ 1

0
(1 − t)−ε∂m+2

t [f (rt)] dt

= rn/2−1

Γ (1 − ε)

∫ 1

0
(1 − t)−ε∂m+2

t [tn/2+αP (x, rty)] dt .
So, evaluating both sides of the above at r = 1, we have the second equality. The proof is
complete. �

2. Estimate of ‖Λα‖p . In this section we prove the optimal norm estimate asserted
in (3). Given α > −1 and s > 0, consider the function Jα,s defined by

Jα,s(x) =
∫
B

(1 − |y|2)α dy
[x, y]n+α+s

for x ∈ B. It is known that Jα,s(x) grows like (1 − |x|2)−s as |x| → 1; see, for example, [2,
Lemma 2.5]. However, such boundedness is not enough for our purpose. In order to obtain
our optimal upper estimate, we need to keep track of how the growth rate of Jα,s(x) depends
on parameters α and s.

Given a, b, c real with c �= 0,−1,−2, . . . , let F(a, b, c; t) be the hypergeometric func-
tion

F(a, b, c; t) =
∞∑
j=0

(a)j (b)j

(c)j

tj

j !
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for 0 ≤ t < 1. Here, (a)0 = 1 and (a)k = a(a+1) · · · (a+k−1) for k ≥ 1 as usual. The role
of this hypergeometric function in our argument lies in the following equality (see [6, Lemma
2.1]) for c real:

(10)
∫
∂B

dσ(ζ )

|x − ζ |c = F

(
c

2
,
c − n

2
+ 1,

n

2
; |x|2

)
, x ∈ B

where dσ denotes the normalized surface area measure on ∂B.

LEMMA 2.1. Given ν > 0, there is a constant Cν > 0 such that

C−1
ν Γ (s)Γ (α + 1) ≤ Jα,s(x)− Jα,s(0)

(1 − |x|2)−s − 1
≤ CνΓ (s)Γ (α + 1) , x ∈ B, x �= 0

for 0 < α + 1 < ν and 0 < s < ν.

PROOF. Let x ∈ B. Integrating in polar coordinates and then using (10), we have

Jα,s(x)= n|B|
∫ 1

0
(1 − t2)αtn−1F

(
n+ α + s

2
,
α + s

2
+ 1,

n

2
; t2|x|2

)
dt

= n|B|Γ (n/2)
2Γ ((n+ α + s)/2)Γ ((α + s)/2 + 1)

∞∑
k=0

ak

k! |x|
2k(11)

where

ak = Γ ((n+ α + s)/2 + k)Γ ((α + s)/2 + 1 + k)

Γ (n/2 + k)

{
2

∫ 1

0
(1 − t2)αtn+2k−1 dt

}

= Γ (α + 1)
Γ ((n+ α + s)/2 + k)Γ ((α + s)/2 + 1 + k)

Γ (n/2 + α + 1 + k)

for each k ≥ 0. On the other hand, we have

(12)
1

(1 − |x|2)s = 1

Γ (s)

∞∑
k=0

Γ (s + k)

k! |x|2k .

Recall that, by Sterling’s formula, to each a ≥ 0 corresponds a constant Ca such that

C−1
a <

Γ (t + a)

tt+a−1/2e−t
< Ca

for t ≥ 1. Using this, one may verify that

(13) C−1
α,s <

ak

Γ (s + k)Γ (α + 1)
< Cα,s

for all k ≥ 1 where Cα,s > 0 is a constant continuously depending on α, s and staying
bounded as α → −1 and s → 0. Also, note that the constant factor in (11) stays bounded as
α → −1 and s → 0. Thus we conclude the lemma from (11), (12) and (13). The proof is
complete. �

THEOREM 2.2. Given ν > 0, there is a constant Cν > 0 such that

C−1
ν

p2

p − 1
≤ ‖Λα‖p ≤ Cν

p2

(α + 1)(p − 1)
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for 1 < p < ∞ and 0 < α + 1 < ν.

PROOF. Fix ν > 0. Let 1 < p < ∞ and assume 0 < α + 1 < ν. We first establish the
upper estimate. We use the well known Shur’s test (see [8, Theorem 3.6]). As a test function
we take the function h(x) := (1 − |x|2)−(α+1)/pq where q is the conjugate exponent of p. By
Lemma 2.1 we have an estimate∫

B

h(x)p dVα(x)

[x, y]n+α = λαJ(α+1)/p−1,(α+1)/q(y)

≤ CνλαΓ

(
α + 1

p

)
Γ

(
α + 1

q

)
h(y)p

for y ∈ B. Similarly, we have∫
B

h(y)q dVα(y)

[x, y]n+α ≤ CνλαΓ

(
α + 1

p

)
Γ

(
α + 1

q

)
h(x)q

for x ∈ B. Thus we obtain by Shur’s test

‖Λα‖p ≤ CνλαΓ

(
α + 1

p

)
Γ

(
α + 1

q

)

≤ Cν
1

Γ (α + 1)
Γ

(
α + 1

p

)
Γ

(
α + 1

q

)

= Cν

∫ 1

0
t(α+1)/p−1(1 − t)(α+1)/q−1 dt .

On the other hand, we have∫ 1

0
t(α+1)/p−1(1 − t)(α+1)/q−1 dt ≤ Cν

p + q

α + 1
= Cν

p2

(α + 1)(p − 1)
;

the first inequality can be easily verified by splitting the integral into two pieces
∫ 1/2

0 + ∫ 1
1/2.

We now turn to the lower estimate. Since the norm ‖Λα‖p should continuously depend
on parameters p and α, we may assume α < 0 and p �= 2 for the rest of the proof.

First, consider the case where 1 < p < 2. It suffices to establish

(14) ‖Λα‖p ≥ Cν

p − 1
.

To prove this, we use the test function f (x) := (1 − |x|2)−s where s = (α + 1)(2 − p). Note
0 < s < 1 (because α < 0) and α − s + 1 > α − ps + 1 > 0. Since Γ (α − s + 1) ≈
(α− s+1)−1 = 1/(α+1)(p−1) and Γ (α+1)(α+1) = Γ (α+2) ≈ 1, we have by Lemma
2.1

(15) Λαf (x) = λαJα−s,s(x) ≥ CνΓ (s)

p − 1
[f (x)− 1]

for x ∈ B. For the norm of f , a straightforward calculation yields

‖f ‖p
L
p
α

= cnλα
Γ (α − ps + 1)

Γ (n/2 + α − ps + 1)
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where cn is a dimensional constant. On the other hand, using the elementary inequality 1 −
us ≥ s(1 − u) for 0 ≤ u ≤ 1 and 0 < s < 1, we have

‖f − 1‖p
L
p
α

= λα

∫
B

(1 − |x|2)α−ps[1 − (1 − |x|2)s]p dx

= cnλα

2

∫ 1

0
(1 − t)n/2−1tα−ps(1 − ts )p dt

≥ cnλα

2
sp

∫ 1

0
(1 − t)n/2+p−1tα−ps dt

= cnλα

2

spΓ (n/2 + p)Γ (α − ps + 1)

Γ (n/2 + α + p − ps + 1)
.

It follows that

‖f − 1‖Lpα
‖f ‖Lpα

≥ s

{
Γ (n/2 + p)Γ (n/2 + α − ps + 1)

2Γ (n/2 + α + p − ps + 1)

}1/p

.

This, together with (15), yields

(16) ‖Λα‖p ≥ Cν

p − 1

{
Γ (n/2 + p)Γ (n/2 + α − ps + 1)

Γ (n/2 + α + p − ps + 1)

}1/p

,

because sΓ (s) = Γ (s + 1) ≈ 1 and 2−1/p ≈ 1. Note that the expression in the bracket of
(16) stays bounded below and above as α → −1 and p → 1. Thus we obtain the desired
estimate for 1 < p < 2.

We now consider the case where 2 < p < ∞. Let 2 < p < ∞ and q be the conjugate
exponent of p. Then we have by duality

‖Λα‖p = sup
||ϕ||

L
p
α
=1

||Λαϕ||Lpα

= sup
‖ϕ‖

L
p
α

=1
sup

‖ψ‖
L
q
α
=1

∣∣∣∣
∫
B

(Λαϕ)ψ dVα

∣∣∣∣

= sup
‖ψ‖

L
q
α
=1

sup
‖ϕ‖

L
p
α
=1

∣∣∣∣
∫
B

ϕΛαψ dVα

∣∣∣∣
= sup

‖ψ‖
L
q
α
=1

‖Λαψ‖Lqα
= ‖Λα‖q .

Thus we have by (14)

‖Λα‖p ≥ Cν

q − 1
.

Since 4/(q − 1) ≥ q2/(q − 1) = p2/(p − 1), this completes the proof for 2 < p < ∞. The
proof is complete. �
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3. Upper estimate of ‖Πα‖p when α → −1. Recall |Παψ| ≤ CαΛα|ψ|. Thus, as
an immediate consequence of Theorem 2.2, we obtain

‖Πα‖p ≤ Cα
p2

p − 1
(α fixed)

for 1 < p < ∞. However, this estimate does not provide any information on how ‖Πα‖p
behaves when α varies with p fixed, especially when α → −1. In this section we intend to
show that the constant Cα above grows at most as fast as (α + 1)−1 when α → −1. We
do not know whether such a growth rate is sharp, but suspect probably not. In fact Zhu [9]
conjectured the boundedness of Cα when α → −1 in the context of holomorphic Bergman
spaces over the unit disk and we agree with him.

We begin with an elementary integral estimate which is also well known except for con-
stant factors. While one may use series expansion and Sterling’s formula (as in the proof of
Lemma 2.1) to obtain a more precise upper bound, the upper bound as stated is enough for
our purpose.

LEMMA 3.1. Let α > −1, s > 0 and 0 ≤ ε < 1. Then∫ 1

0

(1 − r)α

rε(1 − tr)α+s+1 dr ≤ ε−ε
(

1

s
+ 1

α + 1
+ ε

(1 − ε)2

)
(1 − t)−s

for 0 ≤ t < 1. Here, ε−ε is understood to be 1 for ε = 0.

PROOF. Let

Iε(t) :=
∫ 1

0

(1 − r)α

rε(1 − tr)α+s+1
dr , 0 ≤ t < 1 .

For ε = 0, integrating by parts, we have

I0(t) = 1

α + 1
+ α + s + 1

α + 1

∫ 1

0

t (1 − r)α+1

(1 − tr)α+s+2 dr .

Note ∫ 1

0

t (1 − r)α+1

(1 − tr)α+s+2 dr ≤
∫ 1

0

t dr

(1 − tr)s+1 = (1 − t)−s − 1

s
.

Accordingly, we have

I0(t) ≤ 1

α + 1
+ α + s + 1

s(α + 1)
[(1 − t)−s − 1] =

(
1

s
+ 1

α + 1

)
(1 − t)−s − 1

s
,

which implies the inequality for ε = 0. For 0 < ε < 1, we have

Iε(t)=
∫ ε

0
+

∫ 1

ε

≤ (1 − t)−s

1 − ε

∫ ε

0

dr

rε
+ ε−εI0(t)

= ε1−ε

(1 − ε)2
(1 − t)−s + ε−εI0(t) ,



366 B. R. CHOE, H. KOO, AND K. NAM

which yields the inequality for 0 < ε < 1. The proof is complete. �

A proof of the following lemma for α = 0 can be found in [3, Proposition 2.2]. However,
the proof therein does not seem to extend to general α. Here, we provide a proof for general
α by modifying the argument in the proof of [4, Lemma 2.7].

LEMMA 3.2. Let α > −1 and s > 0. Then∫ 1

0

(1 − t)α dt

[x, ty]s+α+1 ≤ 4 · 3s+α+1
(

1

s
+ 1

α + 1

)
[x, y]−s

for x, y ∈ B.

PROOF. Fix x, y ∈ B. If |x||y| < 1/2, then [x, ty] ≥ 1 − t|x||y| > 1 − |x||y| > 1/2
for all 0 ≤ t < 1. Also, if x · y ≤ 0, then [x, ty] ≥ 1 for all 0 ≤ t < 1. So, the estimate is
trivial if either |x||y| < 1/2 or x · y ≤ 0.

Now, assume |x||y| > 1/2 and x · y > 0. Let θ = θ(x, y) ≥ 0 be the half of the positive
angle between x and y. Note θ < π/4. Put c = (|y||x|)−1(1 − sin θ). First, consider the case
c ≥ 1. Note

(17) [x, y]2 = (1 − |x||y|)2 + 4|x||y| sin2 θ .

Thus [x, y] < 3(1 − |x||y|), because c ≥ 1. It follows from Lemma 3.1 that∫ 1

0

(1 − t)α dt

[x, ty]s+α+1
≤

∫ 1

0

(1 − t)α dt

(1 − t|x||y|)s+α+1

≤
(

1

s
+ 1

α + 1

)
(1 − |x||y|)−s

<

(
1

s
+ 1

α + 1

)
3s[x, y]−s ,

which implies the desired estimate.
Next consider the case c < 1. In this case we have

(18) 0 < 1 − c = sin θ − (1 − |x||y|)
|x||y| ≤ 2 sin θ .

Also, since 1 − |x||y| < sin θ , we have

(19) [x, y] ≤ 3 sin θ

by (17). We split the integral into two pieces∫ 1

0

(1 − t)α dt

[x, ty]s+α+1
=

∫ c

0
+

∫ 1

c

and estimate each integral separately.
For the first integral, we note∫ c

0
≤

∫ c

0

(1 − t)α dt

(1 − t|x||y|)s+α+1
:= I + II
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where, by integration by parts,

I = 1

α + 1

[
1 − (1 − c)α+1

(1 − c|x||y|)s+α+1

]

and

II = |x||y| s + α + 1

α + 1

∫ c

0

(1 − t)α+1

(1 − t|x||y|)s+α+2 dt .

Since 1 − c|x||y| = sin θ , we have by (18)

|I | = (sin θ)−s

α + 1

∣∣∣∣∣(sin θ)s −
(

1 − c

sin θ

)α+1
∣∣∣∣∣ ≤ 1 + 2α+1

α + 1
(sin θ)−s

and

II ≤ s + α + 1

α + 1

∫ c

0

|x||y| dt
(1 − t|x||y|)s+1

≤
(

1

s
+ 1

α + 1

)
(sin θ)−s .

Combining these observations with (19), we see∫ c

0
≤ 3

(
1

s
+ 1

α + 1

)
2α+1(sin θ)−s ≤ 3

(
1

s
+ 1

α + 1

)
3α+s+1[x, y]−s ,

which implies the desired estimate for the first integral.
To estimate the second integral, note that

t|x||y| ≥ c|x||y| = 1 − sin θ > 1 − 1√
2
>

1

4
, c ≤ t < 1 ,

because θ < π/4. So, using (17) (with ty in place of y) and (18), we have∫ 1

c

≤ (sin θ)−(s+α+1)
∫ 1

c

(1 − t)α dt

= (1 − c)α+1

α + 1
(sin θ)−(s+α+1)

≤ 2α+1

α + 1
(sin θ)−s .

Consequently, we conclude from (19) that∫ 1

c

≤ 3s+α+1

α + 1
[x, y]−s ,

which gives the desired estimate for the second integral. This completes the proof for the case
c < 1 and the proof of the lemma. �

LEMMA 3.3. Given a multi-index γ = (γ1, . . . , γn), there is a constant Cγ > 0 such
that

|∂γy P (x, y)| ≤ Cγ

[x, y]n+|γ |−1

for x, y ∈ B. Here, ∂γy = (∂/∂y1)
γ1 · · · (∂/∂yn)γn and |γ | = γ1 + · · · + γn.
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PROOF. The asserted inequality will hold, once we have the estimate

∂
γ
y

(
1

[x, y]n
)

≤ Cγ

[x, y]n+|γ | .

This is a special case of [3, Lemma 2.1] but under the additional assumption 2|x − y| ≥
max{1 − |x|, 1 − |y|}, which was used therein only for the estimate

[x, y] =
√

|x − y|2 + (1 − |x|2)(1 − |y|2) � |x − y| + (1 − |x|)+ (1 − |y|) .
The estimate above is actually valid for all x, y ∈ B, because if 2|x − y| ≤ 1 − |x| and
1 − |y| ≤ 1 − |x|, then

|x − y| + (1 − |x|)+ (1 − |y|) ≈ 1 − |x| ≤ 1 − |y| + |x − y| � [x, y] .
This completes the proof. �

The next lemma shows that the constantCα in (2) stays bounded when α approaches −1.

LEMMA 3.4. Given ν > 0, there is a constant Cν > 0 such that

|Rα(x, y)| ≤ Cν

[x, y]n+α , x, y ∈ B
for 0 < α + 1 < ν.

PROOF. For n = 2 one may use (7). Since |1−xy| = [x, y], it is clear that |Rα(x, y)| ≤
Cα[x, y]−(2+α) which implies the desired estimate.

Now, assume n ≥ 3 for the rest of the proof. Fix ν. Let 0 < α + 1 < ν and α = m + ε

where m is an integer and 0 ≤ ε < 1. Fix x, y ∈ B. Let g(t) = P(x, ty) and f (t) =
tn/2+αg(t). Then we have by Proposition 1.1

Rα(x, y)= ωα

Γ (1 − ε)

∫ 1

0

f (m+2)(t)

(1 − t)ε
dt;(20)

note that ωα stays bounded as α → −1.
We assume that n/2 + α is not an integer; the estimate below is simpler when n/2 + α

is an integer. Note that f (m+2)(t) is a linear combination of functions of the form
tn/2+α−m−2+kg(k)(t) where k = 0, 1, . . . ,m + 2. Since n ≥ 3, we have tn/2+α−m−2+k ≤
t−1/2 for each k. It follows from Lemma 3.3 that

(21) |f (m+2)(t)| ≤ Cν

t1/2[x, ty]n+m+1
.

On the other hand, Lemma 3.2 gives∫ 1

0

(1 − t)−ε

t1/2[x, ty]n+m+1
dt ≤

∫ 1/2

0
+

∫ 1

1/2

≤ √
2 · 2n+α+1 + √

2
∫ 1

0

(1 − t)−ε

[x, ty]n+m+1
dt

≤Cν
(

2α[x, y]n+α + 4n+m+1

(n+ α)(1 − ε)

)
[x, y]−(n+α)
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≤Cν [x, y]−(n+α)
1 − ε

.

This, together with (21) and (20), yields

|Rα(x, y)| ≤ Cν
[x, y]−(n+α)

Γ (1 − ε)(1 − ε)
= Cν

[x, y]−(n+α)
Γ (2 − ε)

.

Now, since Γ (2 − ε) ≈ 1, we conclude the desired estimate for n ≥ 3. This completes the
proof. �

The next proposition is now an immediate consequence of Lemma 3.4 and Theorem 2.2.

PROPOSITION 3.5. Given ν > 0, there is a constant Cν > 0 such that

‖Πα‖p ≤ Cν
p2

(α + 1)(p − 1)

for 1 < p < ∞ and 0 < α + 1 < ν.

4. Lower estimate of ‖Πα‖p. In this section we establish the lower estimate for the
operator norm ‖Πα‖p. The first thing to do is to show that the order −(n + α) in Lemma
3.4 is best possible. Namely, we first show that the inequality there can be reversed (modulo
constant factor) when (x, y) belongs to a certain region.

As an auxiliary tool, we briefly review pseudohyperbolic distance ρ on B given by

ρ(x, y) = |x − y|
[x, y] , x, y ∈ B .

For x ∈ B and 0 < r < 1, let Er(x) denote pseudohyperbolic ball with radius r and center
x. Then a straightforward calculation gives us that Er(x) is a Euclidean ball (with center
(1 − r2)(1 −|x|2r2)−1x and radius (1 −|x|2)(1 −|x|2r2)−1r). The following lemma is taken
from [2].

LEMMA 4.1. The inequality

1 − ρ(x, y)

1 + ρ(x, y)
≤ [x, z]

[y, z] ≤ 1 + ρ(x, y)

1 − ρ(x, y)

holds for x, y, z ∈ B.

We also need the derivative estimate

(22) |∇yRα(x, y)| ≤ Cα

[x, y]n+α+1 , x, y ∈ B ;
see [4, Lemma 2.8].

In what follows we denote by Γβ(ζ ), where β > 1 and ζ ∈ ∂B, the non-tangential
approach region, with aperture β and vertex ζ , consisting of all points x ∈ B such that

|x − ζ | ≤ β(1 − |x|) .
Also, we denote by x ′ the radial projection of x ∈ B, x �= 0, onto ∂B.
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LEMMA 4.2. Given α > −1, there exist numbers β > 1, r0 ∈ (0, 1) and a constant
Cα > 0 such that

Rα(x, y) >
Cα

[x, y]n+α
whenever y ∈ Γβ(x ′) and |x|, |y| ≥ r0.

PROOF. The case n = 2 can be treated by utilizing the explicit formula (7). We skip the
details. So, assume n ≥ 3 for the rest of the proof.

Fix α > −1. Let x, y ∈ B. To begin with assume |x||y| ≥ 1/2. First, we consider the
case y ′ = x ′. Write α = m + ε where m is an integer and 0 ≤ ε < 1. Let g(t) = P(x, ty)

and f (t) = tn/2+αg(t). Let M(t) = tn/2+αg(m+2)(t) and E(t) = f (m+2)(t) −M(t). Using
these functions and Proposition 1.1, we decompose Rα(x, y) into the sum of the major and
error terms as follows:

(23) ω−1
α Γ (1 − ε)Rα(x, y) =

∫ 1

0

M(t)

(1 − t)ε
dt +

∫ 1

0

E(t)

(1 − t)ε
dt .

Since x ′ = y ′, we have

g(t) = 1 + t|x||y|
(1 − t|x||y|)n−1

= 2

(1 − t|x||y|)n−1
− 1

(1 − t|x||y|)n−2

so that

g(k)(t)= (n+ k − 3)!
(n− 2)!

(|x||y|)k
(1 − t|x||y|)n+k−1

[
2(n+ k − 2)− (n− 2)(1 − t|x||y|)](24)

for integers k ≥ 1. In particular, we have

g(m+2)(t) ≥ (n+m− 1)!
(n− 2)!2m+1

1

(1 − t|x||y|)n+m+1

and thus obtain an estimate for the major term∫ 1

0

M(t)

(1 − t)ε
dt ≥ Cα

∫ 1

0

tn/2+α dt
(1 − t)ε(1 − |x||y|t)n+m+1

≥ Cα

(1 − |x||y|)n+m+1

∫ 1

|x||y|
dt

(1 − t)ε

= Cα

(1 − ε)(1 − |x||y|)n+α .

(25)

We now estimate the error term. To do so, we assume that n/2 + α is not an integer, as
in the proof of Lemma 3.4. Since n ≥ 3, we see from (24) (or as in the proof of Lemma 3.4)
that

|E(t)| ≤ Cα

t1/2(1 − t|x||y|)n+m .
So, integrating both sides of the above against the measure (1 − t)−ε dt , we obtain by Lemma
3.1

(26)
∫ 1

0

E(t)

(1 − t)ε
dt ≤ Cα

(1 − ε)(1 − |x||y|)n+α−1
.
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Note [x, y] = 1 − |x||y|, because x ′ = y ′. Therefore, denoting the constants Cα in (25)
and (26) by Cα,1 and Cα,2, respectively, we obtain by (23)

ω−1
α Γ (1 − ε)Rα(x, y)≥ Cα,1 − (1 − |x||y|)Cα,2

(1 − ε)[x, y]n+α .

Thus we see that there exists a number r0 sufficiently close to 1 such that

Rα(x, y)≥ Cα,3

[x, y]n+α where Cα,3 = ωαCα,1

2Γ (2 − ε)
,(27)

completing the proof for the case x ′ = y ′ (with arbitrary β > 1).
We now consider the case where x ′ �= y ′. Let β > 1 be an aperture to be chosen later

and let y ∈ Γβ(x ′). Also assume |x|, |y| > r0. Since

|y − x ′|2 = (1 − |y|)2 + |y||y ′ − x ′|2 ,
we have

|y − |y|x ′|2 = |y|2|y ′ − x ′|2 ≤ |y − x ′|2 − (1 − |y|)2 < δ2(1 − |y|)2
where δ = √

β2 − 1. Thus

|y − |y|x ′| < δ(1 − |y|) < δ(1 − |y|2) < δ[y, |y|x ′] ,
i.e., y ∈ Eδ(|y|x ′). Consequently, we have

Rα(x, y) ≥ Rα(x, |y|x ′)− |Rα(x, y)− Rα(x, |y|x ′)|
= Rα(x, |y|x ′)− |y − |y|x ′| sup

z∈Eδ(|y|x ′)
|∇zRα(x, z)| .(28)

We now estimate the second term of the above. Let z ∈ Eδ(|y|x ′). Note [y, |y|x ′] ≤ [y, x] +
[x, |y|x ′] ≤ 2[x, y]. Thus

|y − |y|x ′| < δ[y, |y|x ′] ≤ 2δ[x, y] .
Meanwhile, since (assume δ < 1/4)

[x, y]
[x, z] ≤ 1 + ρ(y, z)

1 − ρ(y, z)
<

1 + 2δ

1 − 2δ
< 3

by Lemma 4.1, we have by (22)

|∇zRα(x, z)| ≤ Cα

[x, z]n+α+1
≤ Cα

[x, y]n+α+1
.

Combining these observations, we have

|y − |y|x ′| sup
z∈Eδ(|y|x ′)

|∇zRα(x, z)| ≤ δCα,4

[x, y]n+α
where Cα,4 is a constant depending only on n and α.

Now, assuming |x|, |y| > r0 and substituting (27) and the above estimate into (28), we
obtain Rα(x, y) ≥ (Cα,3 − δCα,4)[x, y]−(n+α) and thus conclude

Rα(x, y) >
Cα,3

2[x, y]n+α
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for some β sufficiently close to 1, as desired. This completes the proof. �

Now we are ready to prove the lower estimate for the operator norm of ‖Πα‖p.

PROPOSITION 4.3. Given α > −1, there is a constant Cα > 0 such that

‖Πα‖p ≥ Cα
p2

p − 1

for 1 < p < ∞.

PROOF. We provide a proof only for 1 < p ≤ 2; the case 2 ≤ p < ∞ then follows by
duality argument as in the proof of Theorem 2.2.

Fix α > −1. Our test function will be the characteristic function supported on a Eu-
clidean ball. Let β = β(n, α) > 1 and r0 = r0(n, α) ∈ (0, 1) be the numbers as in Lemma
4.2. Fix a number β0 ∈ (1, β) sufficiently close to β such that β − β0 < 1/2. Increasing r0 if
necessary, we may assume 1/β0 + (1 − r0)/2 < 1. Let c = c(n, p, α) be a sufficiently small
positive number to be chosen later. To begin with let c < (1 − r0)/(2β0) and put

r1 := c(β − β0)(1 − c) .

Finally, let z = (1−c)e where e = (1, 0, . . . , 0) andψ be the characteristic function supported
on the ball Br1(z) of radius r1 and center z.

Since r1 < c/2, we have
c

2
< c − r1 < 1 − |y| < c + r1 < 2c , y ∈ Br1(z)

and thus

‖ψ‖p
L
p
α

= Vα[Br1(z)] = λα

∫
Br1 (z)

(1 − |y|2)α dy ≈ λαc
n+α .(29)

We now estimate the Lpα -norm of Παψ . Let

Q=
{
ζ ∈ ∂B ; ζ · e >

1

β0
+ 1 − r0

2

}

and

E = {e − tζ ; ζ ∈ Q, 2β0c < t < 1 − r0} .
For x = e − tζ ∈ E, we have

(30)
1 − |x|
|x − e| ≥ 1 − |x|2

2t
= ζ · e − t

2
>

1

β0
.

This implies r0 < |x| < 1 − 2c for x ∈ E.
Let x ∈ E and y ∈ Br1(z). Since

|e − y ′| =
∣∣z− |z|y ′∣∣

|z| ≤ 2|z− y|
|z| <

2r1
1 − c

= 2c(β − β0) < (β − β0)(1 − |x|) ,
we have by (30)

|x − y ′| ≤ |x − e| + |e − y ′| < β(1 − |x|) .
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In other word, we have

(31) E ⊂ Γβ(y
′) for each y ∈ Br1(z) .

Also, note

(32) |y| ≥ |z| − |z− y| > 1 − c − r1 > 1 − 2c > |x| > r0 .

Meanwhile, since |x| < 1 − 2c < |y|, we have

[x, y]2 = |x − y|2 + (1 − |x|2)(1 − |y|2) < |x − y|2 + (1 − |x|2)2 ,
which implies

(33) [x, y] ≤ |x − e| + |e − y| + 1 − |x|2 < 4|x − e|
where the last inequality follows from the fact

|e − y| ≤ |e − z| + |z− y| < c+ r1 < 2c < |x − e| .
It follows from (31), (32), Lemma 4.2 and (33) that

Rα(x, y) ≥ Cα

[x, y]n+α ≥ Cα

|x − e|n+α .
Since this holds for all x ∈ E and y ∈ Br1(z), we obtain

Παψ(x) =
∫
Br1 (z)

Rα(x, y) dVα(y) ≥ Cα
λαc

n+α

|x − e|n+α x ∈ E ,

and thus by (30)

(34)
∫
B

|Παψ|p dVα ≥ Cpα λ
p+1
α cp(n+α)

∫
E

dx

|x − e|p(n+α)−α .
The integral in the right side of the above can be explicitly computed as

|Q|
∫ 1−r0

2β0c

t(n+α)(1−p)−1dt = Cα(2β0c)
−(n+α)(p−1)

p − 1

{
1 −

(
2β0c

1 − r0

)(n+α)(p−1)}
,

where |Q| denotes the surface area ofQ, which depends only on n and α. Thus, fixing c such
that (

2β0c

1 − r0

)(n+α)(p−1)

<
1

2
,

we have by (29) and (34)∫
B

|Παψ|p dVα ≥ Cp+1
α λpα

(2β0)
−(n+α)(p−1)

p − 1
‖ψ‖p

L
p
α
.

This yields

(35) ||Παψ||Lpα ≥ Cαλα

(p − 1)1/p
‖ψ‖Lpα ,

where we used the fact C1/p
α ≈ Cα for 1 < p ≤ 2. Note that

1

(p − 1)1/p
= (p − 1)(p−1)/p

p − 1
≥ 4A

p − 1
≥ A

p2

p − 1
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for some absolute constant A. Therefore we deduce from (35) that

(36) ‖Παψ‖Lpα ≥ Cαλα

p − 1
‖ψ‖Lpα ,

which implies the assertion for 1 < p ≤ 2. The proof is complete. �

Combining Propositions 3.5 and 4.3, we conclude the next theorem.

THEOREM 4.4. Given α > −1, there is a constant Cα > 0 such that

C−1
α

p2

p − 1
≤ ‖Πα‖p ≤ Cα

p2

p − 1

for 1 < p < ∞.
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